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Abstract

Biological regulatory systems, such as transcription factor or kinase networks, nervous
systems and ecological webs, consist of complex dynamical interactions among many
components. “Network motif” models focus on small sub-networks to provide
quantitative insight into overall behavior. However, conventional network motif models
often ignore time delays either inherent to biological processes or associated with
multi-step interactions. Here we systematically examine explicit-delay versions of the
most common network motifs via delay differential equations (DDEs), both analytically
and numerically. We find many broadly applicable results, such as the reduction in
number of parameters compared to canonical descriptions via ordinary differential
equations (ODE), criteria for when delays may be ignored, a complete phase space for
autoregulation, explicit dependence of feedforward loops on a difference of delays, a
unified framework for Hill-function logic, and conditions for oscillations and chaos. We
emphasize relevance to biological function throughout our analysis, summarize key
points in non-mathematical form, and conclude that explicit-delay modeling simplifies
the phenomenological understanding of many biological networks and may aid in
discovering new functional motifs.

Introduction 1

Biological regulation consists of complex networks of dynamical interactions [1–9]. For 2

example, transcription factors regulate the production of proteins and other 3

transcription factors [10–12], kinases and phosphatases regulate the behavior of enzymes 4

and other kinases and phosphatases [1, 4, 5, 8]. At a larger scale, cells regulate the 5

growth of other cells [13, 14], and populations of organisms interact with each other in 6

ecosystems [15]. The term “network motif” has been coined to describe particularly 7

important substructures in biological networks, such as negative feedback, feedforward 8

regulation and cascades [2, 11,16]. The function of these motifs often depends on 9

emergent properties of many parameters, notably delays [12,17–21], but in fact there 10

has been no thorough treatment of network motifs with these delays included explicitly. 11

Here we provide a theoretical and practical basis for analyzing network motifs with 12

explicit delays, and we demonstrate the utility of this approach in a variety of biological 13
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contexts. Previous work showed that behavior can change dramatically when explicit 14

delay terms are incorporated in models of biological systems, as evidenced by the 15

appearance of oscillations, for example [18,22,22–26]. These delay effects may occur at 16

multiple spatial and temporal scales. For example, at the intracellular scale, 17

natural [27–29] and synthetic [30,31] genetic oscillators have been shown to depend on 18

delays, as have coupled intercellular oscillators [24,26,32] and physiological conditions 19

such as respiration [33]. At the multicellular scale, many delayed regulation mechanisms 20

have been examined in developmental pathways [2, 12], where delays can be significant 21

and crucial to proper formation of large-scale structure such as the vertebrate 22

spine [22,26,34–36]. We have also shown previously that the delays expected in 23

Delta-Notch-based lateral inhibition patterning may be important for ensuring 24

patterning fidelity [32]. Delays in nervous sstems arise in various axon conduction and 25

signal integration steps, and influence the presence or absence of synchronicity [37,38]. 26

On an ecological scale, delays in interactions such as predator-prey relationships induce 27

population booms and busts [13]. It is thus clear that delays play a significant role in 28

regulatory networks in biological systems. 29

On a conceptual level, regulatory networks are often depicted as directed graphs, for 30

example with biological molecules represented as nodes, while directional edges indicate 31

activation and repression using regular and blunted arrows, respectively (Fig 1). Much 32

information is left out in such cartoons. Notably, these diagrams are generally not 33

drawn with time scales associated with particular arrows. This reflects the fact that the 34

amount of time for a particular regulatory step may depend on multiple parameters, 35

such as removal rates and activation thresholds [2]. Furthermore, a single arrow can 36

often schematically represent many individual, biochemical steps [27,39] as a way to 37

simplify a model of the actual, more complex network. 38

39
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Fig 1. Explicit inclusion of time delays in mathematical models of network
motifs can reproduce non-delay models using fewer variables and
parameters, but can also lead to more complex behavior. (A) An example
genetic regulatory network including genes X, Y , and Z, regulated by one another either
positively (activation, regular arrow) or negatively (repression, blunt arrow). Model on
left incorporates no explicit delay terms, whereas model on right incorporates explicit
delay terms τ1,2. (B) Ordinary differential equations (ODEs) and delay differential
equations (DDEs) corresponding to (A) with regulation strengths αi, removal rates βi
and cooperativities ni. (C) Numerical simulations of equations in (B) for one set of
initial conditions using parameters αx = 1, αy = 1.2, αz = 1.2, βx = βy = βz = 1,
nx = ny = nz = 2 for the ODE simulation, and αx = 0.5, αz = 0.3529, βx = βz = 0.5,
nx = nz = 2 for the DDE simulations (dashed curves: τx = 0.8, τz = 0.1; solid curves:
τx = 3, τz = 4). Note that delays can cause more complex dynamics (e.g., transient
oscillations) compared to models in which effects are instantaneous, and where both
models give the same long-term steady state behavior. Left: instantaneous effects
modeled using ODEs, Right: delayed effects modeled using DDEs. 41

Mathematically, these regulatory cartoons are often modeled using ordinary 42

differential equations (ODEs), in which all information is assumed to pass from one 43

variable to another instantaneously (with relative timing often determined by a rate 44

constant). This may be a reasonable assumption if any intermediate steps are fast, but 45

that is not always the case. For multicellular systems, for example, the time it takes to 46

convert an incoming signal from one cell first into gene expression, then into an external 47

signal for another cell to measure, and finally into gene expression in that downstream 48

cell is not negligible compared to differentiation times [32,40]. Thus ODE models of 49

simplified networks may fail to capture real delays and their effects by oversimplification 50

or require additional variables and parameters to predict more complex 51

phenomena [26,32,40]. 52

An intriguing solution to making the time scales and delays explicit is to use delay 53

differential equations (DDEs). As opposed to ODEs, DDEs have derivatives which 54

depend explicitly on the value of variables at times in the past. For example, 55

ẋ(t) = αx(t) (1)

is an ODE, and 56

ẋ(t) = αx(t− τ) (2)

is a corresponding DDE, where x(t− τ) represents the value of x at a time τ units in 57

the past, making the effect of x on the current rate of change of x delayed by a time τ . 58

The time scales and delays are thus explicit (Fig 1). Multiple steps (“cascades”) within 59

a network can then be more rigorously simplified into a single step with delay (see Fig 60

3). This makes interpretation of the phenomenology simpler and reduces the number of 61

equations and parameters in the model [27,32]. 62

DDE models also expand the available dynamics in a model with this reduced set of 63

equations and parameters. With ODEs, a 1-variable system such as Eq 1 can only lead 64

to simple exponential growth or decay with no overshooting or oscillations, as 65

guaranteed by the Poincaré-Bendixson theorem [41,42]. A corresponding DDE with the 66

same equation, such as Eq 2, can lead to stable, unstable, bistable, oscillatory, or 67

chaotic behavior depending on parameters [20,33,43–47]. It may thus be possible to use 68

simplified network models to examine comparatively larger networks without losing key 69

information about the dynamics of an original, more detailed system. 70

A key challenge in using DDEs to achieve modeling simplicity with diverse available 71

dynamics is their mathematical complexity relative to ODEs [48]. For example, a 72

2-component model consisting of variables X and Y can be represented as a 73
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2-dimensional ODE system, as the system can be fully described at any given time by 74

the two instantaneous values of X and Y . However, the analogous DDE model is in fact 75

infinite-dimensional, as to describe such a system requires not just the two 76

instantaneous values of X and Y , but their full historical values up to a delay τ in the 77

past. Accordingly, an entire time interval −τ ≤ t ≤ 0 must be specified in the initial 78

conditions of a DDE system for a unique solution [49]. A first-order, single-variable, 79

linear ODE with constant coefficients such as Eq 1 has a single exponential solution, 80

while the corresponding DDE, Eq 2, has exponential solutions corresponding to an 81

infinite number of eigenvalues derived from a transcendental characteristic equation. It 82

is precisely this added mathematical complexity that expands the available dynamics 83

while using the same number of equations. 84

Despite the challenges, much progress has been made into analytical understanding 85

the evolution and stability of delay differential equations [45,50–57] as well as systems 86

thereof [42,58]. When analytic methods become intractable, numerical methods are 87

available to simulate the behavior of these equations [59, 60]. We see an opportunity to 88

use DDEs to recapitulate dynamics found in ODE solutions of network motif behavior 89

with fewer genes and thus fewer modeling parameters and equations (see Fig 1), a type 90

of “modeling simplicity.” 91

In this work, we thoroughly examine the most common network motifs [2, 11] with 92

explicit delays and present an approachable, step-by-step view of the mathematical 93

analysis in order to make such delay equations easy to use for biologists and others. We 94

derive the complete phase space for autoregulation with delay, demonstrating explicitly 95

the regimes in which delays are and are not important. We show that the essential 96

behaviors of all eight [61] feed-forward motifs can be recapitulated in a single 97

feed-forward motif with delays. We next discuss more complex situations that include 98

two-component feedback loops, multiple delays with feedback, and arbitrary networks of 99

interactions. A reference summary is provided in Table 3. Finally, we discuss how these 100

results can be applied to understanding fundamental design principles of various natural 101

biological systems. 102

Results 103

Our results are divided up into 7 sections corresponding to 7 different regulatory 104

networks of increasing complexity. We start with simple regulation with delay (Motif 0) 105

and cascades (Motif I), including their demonstration of how the DDE models relates to 106

multi-step ODE models. We then cover autoregulation (Motif II), logic (Motif III), 107

feedforward loops (Motif IV), multi-component feedback (Motif V), and multiple 108

feedback (Motif VI). Each section, in addition to analyzing a network of biological 109

importance, includes new methods of DDE analysis and their implications for biological 110

network motifs. Multiple new results are also useful for the more conventional ODE 111

network analysis.. Each section then concludes with the “key results” for the relevant 112

motif in non-mathematical terms, and an overall reference table (Table 3) is included in 113

the discussion. 114

Motif 0: Direct Hill regulation 115

As a prerequisite for understanding more complex network motifs, we first describe how 116

we use DDEs to model simple regulation of a gene Y by a gene X as the most basic 117

motif, and then provide a simple yet unified mathematical framework for both 118

activation and inhibition with delay. 119
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Activation and inhibition can both be modeled with a single unified 120

function. 121

As a concrete example of biological regulation [62], we first consider a transcription 122

factor x regulating the production of a protein y (see Fig 2). If x activates y, the 123

production rate of y increases with increasing x, generally saturating at a maximum rate 124

α. Often there is an additional cooperativity term n which determines how steeply y 125

increases with x in the vicinity of the half-maximal x input value k. In this framework, 126

n = 0 is constitutive production, n = 1 is a Michaelis-Menten regulation, 1 < n < 5 is a 127

typical biological range of cooperativity, and n→∞ is a step-function regulation. If x 128

represses y, the same conditions hold except that the production rate of y then decreases 129

with increasing x. A standard quantitative model for this behavior is called the Hill 130

function, and serves as a good approximation for many regulatory phenotypes in biology, 131

including transcription and translation rates, phosphorylation, enzymatic activity, 132

neuronal firing, and so forth [63,64]. In general there may also be a leakage rate α0 that 133

yields constant y production in the absence of x. The concentration of y also generally 134

removed at a rate β proportional to its concentration. This removal term can represent 135

many biophysical processes, such as degradation, dilution, compartmentalization, or 136

sequestration [65,66]; for simplicity we mainly use the term “degradation.” 137
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Fig 2. Direct regulation by activators and inhibitors. (A) The simplest
regulation network consists of a single input X directly regulating a single output Y .
We use a dotted arrow to represent either activation or repression, with an implied
explicit delay. (B) Direct activation (left) is represented by a pointed arrow and direct
repression (right) by a blunt arrow. (C) Time response (Eq 7) of activated (left) and
repressed (right) Y following a rise in X that exponentially approaches a new steady
state (X = 6) from zero (governed by Ẋ(T ) = 6−X(T )). Note that the finite value of
ηX leads to an effective leakage slightly greater than ε for the repressor case. For the
activator, n = −2 and η = (ηX − ε)(1 + ηnX) = 5.6528 to match the X steady state. For
the repressor, n = 2 and η = ηX − ε = 5.5 to match the X steady state. In both cases,
γ = 2, ε = 0.5. 139

Together these can be written as: 140

ẏ(t) = α0 +
αxn(t)

kn + xn(t)
− βy(t) (activator). (3)
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If x instead “represses” y instead of activating it, the form is similar: 141

ẏ(t) = α0 +
αkn

kn + xn(t)
− βy(t) (repressor). (4)

For biologically meaningful results, all variables and parameters in these equations 142

should be real and non-negative. Note, however, that the activator case is equivalent to 143

the repressor case with n < 0. In this paper we will therefore allow n to be negative, 144

which is simply a notational modification used in order to combine the two cases. With 145

this notation, the effective cooperativity is |n|. Thus, we have: 146

ẏ(t) = α0 +
αkn

kn + xn(t)
− βy(t)


−∞ < n < 0 (activator)

n = 0 (constitutive)

0 < n <∞ (repressor)

. (5)

which provides a unified, single-function description for both activators and inhibitors 147

(and constitutive expression), providing a powerful mechanism to analyze both cases 148

simultaneously as we will do throughout this work. The activator case technically fails 149

when x is identically zero, since that would imply division by zero, but the limit as x 150

goes to zero causes the regulation term to be zero, which is the same result as assumed 151

by our notation. An initial value of exactly zero for x can thus lead to a divide-by-zero 152

error in simulations, but is easily avoided. The consitutive case is degenerate, in that 153

n = 0, α 6= 0 is equivalent to n 6= 0, α = 0 with α0 → α0 + α/2. 154

The negative value of n allowed here should not be confused with the term “negative 155

cooperativity” used in the binding kinetics literature [67], which in our notation would 156

refer strictly to a negative value of n with magnitude less than one (i.e., −1 < n < 0). 157

The Hill function has an inflection point for all |n| > 1 (see Appendix S2), which allows 158

there to be 3 fixed points for n < 0 when feedback is introduced below (see Fig. S2). 159

Delays may be present in regulation, but are not modeled in removal. 160

For an explicit delay τ in regulation, we would replace x(t) with x(t− τ) in the 161

regulation (Hill) term, but not in the removal term, which is directly dependent on y 162

itself, and thus not expected to have any delay. This form of regulation is, as noted, 163

quite general, but for concreteness we will generally refer to quantities like x (or y) as 164

the concentrations of some transcription factor or protein x. Thus we arrive at an 165

explicit-delay model of activating or repressive biological regulation as follows: 166

ẏ(t) = α0 +
αkn

kn + xn(t− τ)
− βy(t)


−∞ < n < 0 (activator)

n = 0 (constitutive)

0 < n <∞ (repressor)

. (6)

Nondimensionalizing yields 4 key parameters for any regulation. 167

In analyzing various network motifs, we will generally work with a non-dimensionalized 168

version of this equation, formed by dividing all concentrations by the half-maximal 169

input concentration k and dividing times by the degradation time 1/β, which has the 170

effect of measuring concentrations in units of k and times in units of 1/β. This yields a 171

simplified equation as follows: 172

Ẏ (T ) = ε+
η

1 +Xn(T − γ)
− Y (T )


−∞ < n < 0 (activator)

n = 0 (constitutive)

0 < n <∞ (repressor)

, (7)
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with dimensionless variables X = x/k, Y = y/k, T = tβ, and dimensionless parameters 173

ε = α0/kβ, η = α/kβ, γ = τβ, and n. We thus reduce the number of parameters from 6 174

to 4, and as discussed below, primarily η and γ are important. In this form, η is a 175

normalized “regulation strength” and γ is a normalized delay. Again, the consitutive 176

case is degenerate, in that n = 0, η 6= 0 is equivalent to n 6= 0, η = 0 with ε→ ε+ η/2. 177

The dynamics of direct activation and repression via Eq 7 are demonstrated in Fig 2C. 178

The dimensionless nature of the remaining parameters additionally implies that 179

these parameters are “big” or “small” depending on whether they are simply large or 180

small compared to 1, respectively. For example, γ = τβ ∼ 1 implies that the delay (τ) 181

and degradation (1/β) times are approximately equal. In subsequent sections we 182

therefore almost always explore parameter values linearly between 0.1 and 10. 183

Key results for direct regulation 184

1. Time scales are specified explicitly as a normalized ratio of delay to degradation 185

times. 186

2. We use standard Hill equations for regulation, with the regulation term delayed in 187

time but no delay in the degradation term. 188

3. We simplify and unify the use of both activators and repressors in a single 189

equation by allowing negative Hill coefficients to represent activators. This 190

approach is useful for both ODEs and DDEs. 191

4. Nondimensionalizing regulatory functions reduces the number of parameters by 192

measuring variables and parameters in the relevant scales. 193

5. Nondimensionalized paramters can be considered large or small by comparing 194

their values to depending on whether they are greater or less than 1, respectively. 195

Motif I: Cascade (sequential regulation) 196

A common network motif in many biological networks is the cascade (see Fig 3), a series 197

of regulatory steps (i.e., x regulates y, which regulates z, etc.) [2, 11,68]. Since each 198

regulator must reach the corresponding half-maximal input value k before significantly 199

affecting the next item in the cascade, each step adds an effective delay, as we discussed 200

qualitatively above. We show here that in fact, mathematically, this cascade can be 201

approximated well by a single regulation (Hill function plus leakage) with the addition 202

of explicit delay (Fig 3). Furthermore, a cascade of regulation steps each with an 203

explicit delay is well approximated by a single regulation step with an explicit delay 204

equal to the sum of delays in each step (Fig 3). These together form the mathematical 205

basis validating the use of DDEs with single delay terms that consolidate multiple 206

phenomenological regulation steps. 207
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Delayed direct regulation approximates cascades of non-delayed regulation. 208
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Fig 3. Cascades with zero, one, and multiple delays. (A) A cascade is a linear
sequence of regulation steps, here X regulating Y regulating Z. (B) Standard models of
cascades use ODEs (top), in which each step leads to a characteristic delay in the
products Y and Z, which increases with each step based on the half-maximal inputs
and degradation rates for each step. In an equivalent DDE model (middle), similar
behavior is accomplished by replacing the explicit cascade of implicit delays with a
single-step regulation including an explicit delay. A cascade in which each step contains
an explicit delay (bottom) behaves analogously to delayed direct regulation (as in
middle), with the final step delayed by the sum of delays in each step. ηX = 0.667,
ηY = ηZ = 3.25, βX = 0.667, βY = βZ = 1, nX = nY = −2. For the bottom graph in
(B), each step is governed by Eq 9 with the same parameters. 210

For a non-delayed cascade motif in which X regulates Y , which in turn regulates Z 211

(Fig 3), one can write down a nondimensional set of governing equations as follows: 212

Ẋ(T ) = ηX −X(T )

Ẏ (T ) =
ηY

1 +XnX (T )
− βy
βx
Y (T )

Ż(T ) =
ηZ

1 + Y nY (T )
− βz
βx
Z(T ),

(8)

in which βx, βy, and βz are the dimensional degradation rates of X, Y , and Z, 213

respectively (see Appendix S1). 214

We can show that an approximate single-step delayed regulation exists 215

corresponding to this cascade by considering the following. If the system is initially at 216

steady state X = ηX and then X is perturbed, then Y follows with a timescale βy/βx. 217
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Meanwhile, Z continues to remain at its original steady state value until Y changes 218

appreciably, which happens after an amount of time that it takes Y to change 219

(T ≈ βy/βx). Thus, at early times (T � βy/βx), Y changes much more rapidly than Z, 220

and so from the perspective of Z we can set Ẏ (T ) ≈ 0. Then this pseudo-steady state 221

value of Y can be inserted into the Hill term of Ż(T ), but with a delay γ = βx/βy 222

reflecting the time that Y takes to change. 223

Finally, by matching the values of the composite function at X = 0, X = 1, and 224

X →∞ as well its the slope at X = 1 compared to a single Hill function with leakage, 225

we can approximate the cascade as a single-step regulation of Z by X: 226

Ż(T ) ≈ α0 +
αkh

kh +Xh(T − γ)
− βz
βx
Z(T ). (9)

where the combined regulation parameters are (see Appendix S1) 227

α0 =
ηZ

1 + (ηY γ)nY

(
sgnnY + 1

2

)
α =

ηZ(ηY γ)|nY |

1 + (ηY γ)|nY |

kh =

(
2|nY | − 1

1 + (ηY γ)|nY |

)sgnnY

h = −nXnY
2

(
2|nY |

2|nY | − 1

) . (10)

The k can be removed by renormalization of X and the degradation rates removed by 228

renormalization of T . Note that because of the normalization ηX = αx/kxβx (see 229

Appendix S1), γ is inversely proportional to ηX . 230

This equivalence of parameters shows several results of biological importance. First, 231

the overall Hill coefficient h ≈ −nXnY /2 is proportional to the negative product of the 232

two individual Hill coefficients. Based on the signs of h, nX , and nY , this means that 233

two repressors or two activators act overall as an activator, whereas one activator and 234

one repressor overall act as a repressor, as intuitively expected. Second, it also means 235

that the cooperativity increases with the length of the cascade if cooperativities are 236

above 1, as has been found experimentally [68]. Third, the leakage is zero for nY < 0 237

and negligible (i.e., α0 � α) for nY > 0 if ηY γ � 1. This means that the maximum 238

possible amount of Y produced during the effective delay time must be sufficient to 239

repress Z. We have generally ignored this leakage term in the main text, for a more 240

detailed discussion on leakage see Appendix S3 and Fig. S3. 241

The total delay in a cascade equals the sum of individual delays. 242

For cascades with delays at each step, the same pseudo-steady-state analysis implies 243

that a corresponding single-step delayed regulation can be analyzed in which the single 244

delay is the sum of the multiple delays. In this case the effective delay from X to Z 245

would be βx/βy + γy + γz, where γy is the intrinsic delay between X and Y and γz is 246

the intrinsic delay already present between Y and Z. 247

Fig 3 shows simulations for a cascade of activators, perturbed from zero by a step 248

function regulating the upstream X. In the ODE model, each step has a timescale of 249

activation based on the cascade of degradation rates. The equivalent DDE model shows 250

a single-step regulation from X to Z where the rise of Z is delayed to the same time 251

scale as Z in the ODE model. The multi-delay cascade shows that additional delayed 252

steps appear approximately identical to earlier steps in the cascade but shifted in time. 253

Key results for cascades 254

1. Multiple steps can be simplified to a single step with explicit delay in the 255

regulation term. 256
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2. Composed Hill functions are approximately equivalent to a single Hill function 257

with leakage. 258

3. Shortening cascade leads to leakage term (even if there was none for the 259

individual steps), but the leakage is small if the final-step regulation strength is 260

smaller than the degradation rate of the initial step (αy/2kyβy � 1). 261

4. The total delay in a cascade is approximately equal to the sum of all single delays 262

and all degradation times. 263

5. The cascade overall is repressive when the number of individual repressing steps is 264

odd; otherwise, the cascade is activating. 265

Motif II: Autoregulation 266

Autoregulation describes the situation in which a single biological species (e.g., a 267

transcription factor) regulates its own production (Figs 4A-C). It is one of the most 268

common network motifs in biological regulatory networks [2, 69,70]. In this section we 269

analyze autoregulation with delay, deriving many predictions for its behavior, including 270

a complete phase space based on all parameters. 271

The complete phase space for autoregulation demonstrates quantitative 272

and qualitative importance of delays. 273

Based on Eq 5, the governing equation for such a system with delayed regulation is 274

given by setting Y = X (output equals input) in Eq 7: 275

Ẋ(T ) = ε+
η

1 +Xn(T − γ)
−X(T ). (11)

This equation has four parameters (η, γ, ε, and n). As outlined below, much of the 276

behavior can be understood from just two, η and γ. 277
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Fig 4. The complete phase diagram for the autoregulation network motif
has analytically derivable parameter regions for bistability, monostablility,
monostablility with damped oscillations, and oscillations. (A) The
autoregulation network motif, with a dotted arrow indicating either (B) self-activation
or (C) self-repression. The two cases are given by n < 0 (activation) and n > 0
(repression). (D) Stable (black circles) and unstable (white circles) fixed points for
activator and repressor cases are given by the intersection of the regulation (solid) and
degradation+leakage (dashed) lines. Note that activators can have 1, 2, or 3 fixed
points, whereas repressors always just have one. (E) Parameter space showing all
possible behaviors for autoregulation with delay. Shading shows simulation results (with
an interval of 0.1 for both γ and η axes) and curves show the analytically derived
bifurcation boundaries. See Fig. S1 for cases −3 ≤ n ≤ 3. (F) Representative
simulation curves for the four qualitatively different behaviors, with different colors
representing different initial conditions (see Materials and Methods). ε = 0. 279

Since leakage must be small relative to regulation (i.e., ε/η � 1) for regulation to be 280

strongly effective (“activated” rate much greater than “non-activated” rate), we will 281

focus here on the case with no leakage (ε = 0). We treat non-negligible leakage in the 282

supplements (see Appendix S3). Note that in general Eq 11 has no closed-form solution. 283

What we can do, however, is solve for the phase boundaries, or bifurcations, of this 284

equation. This tells us the types of dynamical behavior of X(T ) to expect in different 285

parameter regions. To do this, we first determine the fixed points of the system 286

described by Equation 11, and linearize around these fixed points. Next, we can 287

determine the eigenvalues of the corresponding linear dynamical system and, by solving 288

for when the real parts of these eigenvalues equal zero, we identify the system’s phase 289

boundaries. We then also confirm these analytical results with numerical simulations. 290

Fixed points do not depend on delays. 291

Fixed points are values X(T ) = X∗ for which X does not change with time. By 292

definition, we can substitute Ẋ(T ) = 0 and X(T ) = X(T − γ) = X∗ into in Eq 11, 293

indicating that the production term must exactly cancel out the degradation term 294

(Fig 4D). For repressors (n > 0) there is only a single fixed point regardless of the 295

parameter values so long as they remain biological. For activators (n < 0), there can be 296

1, 2, or 3 fixed points (2 fixed points is a border case for −n > 1). Explicitly, the fixed 297

point values are given by 298

X∗ (1 +X∗n) = η (12)

or X∗ = 0 (for activators only). Again, we assumed ε = 0 for simplicity. Note that these 299

fixed points only depend on 1/η = βk/α and ε/η = α0/α, and have no dependence on 300

the delay time τ . This is as it should be, because the fixed points are fixed in time by 301

definition, and should have no dependence on previous times. 302

Linearization is sufficient to determine bifurcations in qualitative behavior. 303

By focusing on small disturbances from the fixed points δX(T ) = X(T )−X∗ � 1, one 304

can linearize Eq 11 (see Appendix S2) around its fixed points. Assuming a solution 305

δX(T ) = A exp(λT ) yields a transcendental equation for the eigenvalues λ termed the 306

characteristic equation of Eq 11: 307

λ+ ηMe−γλ + 1 = 0. (13)

The constant function of the fixed point value M(X∗) is defined as 308

M(X∗) =
nX∗n−1

(1 +X∗n)
2 , (14)
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whose sign is given by n (positive for repressors and negative for activators), since all 309

the terms besides n are non-negative. 310

To determine whether the fixed points are stable, we solve for the conditions in 311

which the eigenvalues λ cross the imaginary axis, from negative to positive. This is true 312

when Reλ = 0, either at λ = 0 (termed a saddle-node bifurcation) or at λ = iω (termed 313

a Hopf bifurcation). 314

Saddle node bifurcations determine bistability in autoactivators. 315

For the saddle-node case (λ = 0), Eq 13 and Eq 12 reduce to (see Appendix S2): 316

η = −n(−n− 1)−
−n−1
−n . (15)

which gives real, positive (i.e., biologically meaningful) η for n < −1, meaning the 317

saddle-node bifurcation occurs only for autoactivation and not for autorepression. Note 318

that Eq 13 for λ = 0 is equivalent to the condition that the degradation rate 319

(normalized here to 1) and the production rate as functions of X∗ are tangent (i.e., the 320

two lines in Fig 4D activator case are tangent to one another at a single point). If the 321

production rate as a function of the fixed point is any steeper (η any larger), two 322

non-zero fixed points are created, a stable one with high X∗, and an unstable one with 323

lower X∗. For −n > 1, this means the system becomes bistable, since the state X∗ = 0 324

is always stable. 325

We can view Eq 15 as a function of −n (see Fig. S2). As a reminder, n < 0 for 326

activators so the biological cooperativity is |n| = −n. From this perspective, the 327

equation gives the value of η for onset of stability at a given n. The maximum value of 328

this function is η = 2 at −n = 2, meaning the system is always bistable above η = 2 329

regardless of the cooperativity (as long as −n > 1). The minimum is η = 1 which is the 330

last real value of the function at −n = 1, meaning bistability never occurs for −n < 1 or 331

for η < 1; for very large negative n, the bistability boundary also approaches η = 1. 332

Because the function is non-monotonic, it is also possible (although biologically perhaps 333

unrealistic except on an evolutionary timescale), to hold a value of 1 < η < 2 and 334

decrease n to a point where the bistability is lost, and then decrease n still further until 335

bistability is gained again. This can all be seen in the bifurcation curves in Fig. S2. 336

For the limiting case −n = 1, λ = 0 implies X∗ = 0 and η = 1, which is actually the 337

limit of Eq 15 as −n approaches 1. Then for η < 1, the origin is stable, and for η > 1, 338

only one new stable high-X fixed point is created, and the origin becomes unstable. For 339

0 < −n < 1, the value of M(X∗ = 0) approaches −∞ as X∗ approaches 0, which makes 340

λ > 0 near the origin unless η = 0 (no production of X; see Eq 13). The origin is thus 341

unconditionally unstable, and there is one other fixed point which is stable (unless 342

η = 0, in which case the origin is the only fixed point). Finally, for n = 0, the regulation 343

term is really just a leaky expression term, and we have η = 2X∗, which is the only 344

fixed point, and which is unconditionally stable. The origin is not a fixed point at all, as 345

it will not be for n > 0, the repressor case. 346

Hopf bifurcations determine oscillatory behavior in autorepressors. 347

For the Hopf bifurcation (λ = iω), Eq 13 and Eq 12 result in two equations, one for the 348

real parts of Eq 13 and one for the imaginary parts (see Appendix S2). 349

γ =
1

ω

(
− tan−1 ω + πk

)
, k = 0, 1, . . .

η =
|n|√

1 + ω2

(
|n|√

1 + ω2
− 1

)−n+1
n

.

(16)
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Equations 16 represent a series of curves parameterized by ω, but there is a single 350

outermost curve at k = 1 (γ is always negative if k = 0) giving real, positive values for 351

both γ and η. For values of γ and η greater than this boundary, X oscillates in a stable 352

limit cycle. This boundary exists for both positive and negative n; however, for negative 353

n (activators), the boundary lies entirely above the bistability boundary, which can be 354

found by taking the limit as ω → 0 (for which γ →∞), and equals exactly the 355

bistability boundary given by Eq 15. This means that at least one eigenvalue is positive 356

and real, so no oscillations are observed for activators. For repressors, any value of 357

n > 1 will have a boundary (see Appendix S2) given by Eq 16 beyond which the system 358

oscillates. This boundary has both horizontal (η) and vertical (γ) asymptotes, given as: 359

lim
ω→0

ηHopf = |n|(|n| − 1)−
n+1
n

lim
ω→
√
n2−1

γHopf =
− cos−1

(
−1
|n|

)
√
n2 − 1

.

(17)

Thus there is both a minimal required regulation strength regardless of delay, as well as 360

a minimum required delay regardless of regulation strength in order to achieve 361

oscillations. Note though that the vertical (γ) asymptote approaches zero as n→∞, 362

meaning a very large regulatory strength could achieve oscillations even with minuscule 363

delay if cooperativity is extremely steep. No oscillations occur for n ≤ 1, since oherwise 364

Eq 16 would give non-real η. 365

The oscillation period can be approximated by linearization near consecutive 366

maxima and minima of the oscillation (see Appendix S2). This method yields a period 367

of approximately 2(γ + 1), or 2(τ + 1/β) in dimensionful terms (compare also to [26]). 368

Biologically, this means that the concentration X is pushed from high to low (or vice 369

versa) after the delay time (τ) has elapsed and the concentration has equilibrated to its 370

new value via degradation (1/β). 371

Damped oscillations are expected when the largest eigenvalue satisfying Eq 13 has 372

non-zero imaginary part. This is never true for n < 0, and is true for n > 0 above the 373

curve denoted “spiral boundary” in Fig 1E and Fig. S1. This curve is given as follows: 374

η = nγeγ+1
(
nγeγ+1 − 1

)−n+1
n , (18)

which is derived in Appendix S4. It approaches η = 0 for large delay and has a vertical 375

asymptote at nγeγ+1 = 1, so there is some non-zero delay that has non-oscillating decay 376

for any strength η. 377

Putting together the derived boundary curves yields a η-γ phase space for each n, 378

displayed in Fig 4E and Fig. S1 along with simulations showing that this analytical 379

treatment matches the dynamical behavior. 380

Leakage prevents oscillations and bistability. 381

With leakage present (Appendix S3), the phase space becomes 3-dimensional, with 382

Fig 4E charts as 2-dimensional slices at ε = 0. With small leakage, this 2-dimensional 383

slice changes only slightly in a quantitative manner, but the qualitative portrait remains 384

the same. Large leakage, on the other hand, effectively drowns out the regulation, 385

preventing both oscillations (for negative autoregulation) and bistability (for positive 386

autoregulation). The full treatment with leakage and the corresponding phase portraits 387

are presented in the supplements (Appendix S3, Fig. S3). 388

Note that the explicit delay present in the model allowed us to capture an entire 389

phase space of oscillators, switches, and housekeeping (unregulated) genes in a single 390

equation with only two important free parameters. This phenomenological model can 391
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thus capture a large range of possible situations with relative simplicity. We arrived at 392

these results despite the added complexities of DDEs relative to ODEs without having 393

to analytically solve the differential equations. This same procedure can be applied to 394

more general regulatory networks, which we examine next. 395

Key results for autoregulation 396

1. The regulatory strength η, leakage ε, and cooperativity n determine the available 397

steady states, while the time delay γ determines the dynamics but does not affect 398

steady state behavior. 399

2. As analyzed in Appendix S3, the leakage ε is easily incorporated into these phase 400

boundaries as well, resulting in a 3D phase diagram for each n. Leakage primarily 401

serves to drown out the regulation, preventing oscillations and bistability at high ε. 402

3. The cooperativity n is incorporated into the analytically derived phase space 403

boundaries. No specific parameter values had to be assumed, and no linear 404

approximations needed to be made to the nonlinear regulation. 405

4. The entirety of the phase space for a self-regulating gene, both activator and 406

repressor, are contained within a single phase space of only two primary free 407

parameters (η and γ), while n serves a more modulating role as long as |n| > 1. 408

(There is also no chaos, as can be proven [42].) 409

5. Some cooperativity is necessary (i.e., |n| > 1) in order to realize bistability or 410

oscillations (i.e., these behaviors are impossible for |n| ≤ 1). For a range of 411

regulation strength (1 < η < 2), the bistability of self-activation is not achievable 412

for a range of cooperativities (see Fig. S2). 413

6. Damped oscillatory behavior occurs in autorepressors for small but non-zero delay 414

and regulation strength, meaning that regulation will overshoot or undershoot the 415

target fixed point for some initial conditions. No damped behavior is ever possible 416

for autoactivators, meaning there can be no overshoot. 417

7. Sustained oscillations require a minimum delay greater than zero, since the Hopf 418

bifurcation curve has both vertical and horizontal asymptotes. Higher 419

cooperativity decreases the required minimum delay, which approaches zero 420

(albeit for infinitely high regulation strength) for step-function regulation (infinite 421

cooperativity). 422

8. Both oscillations and bistability require a minimum regulatory strength, given by 423

the saddle-node bifurcation line in autoactivators (bistability) and by the 424

horizontal asymptote in autorepressors (oscillations). 425

9. Oscillation period in autorepression is approximately given by twice the delay 426

time plus the degradation time. 427

Motif III: Logic 428

So far we have only discussed regulation in which a single input regulates a single 429

output. We represent this 1-variable regulation using a delayed Hill function. To 430

represent networks in which two or more inputs regulate a single output (Fig 5), we 431

must choose a 2-variable function. Many such functions are used in biology to describe 432

specific mechanistic scenarios [71]. 433
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Fig 5. A simple approximation for digital logic using a sum of Hill terms
recapitulates all monotonic logic functions in a single parameter space. (A)
A prototypical regulatory network involving logic where X and Y both regulate Z, which
must integrate the two signals using some logic before it can in turn activate a
downstream reporter R. (B) Parameter space showing regions where regulation
approximately follows 14 of the 16 possible 2-input logic functions depending on the
strength of the two single-variable Hill regulation terms (ηZ1: regulation of Z by X, and
ηZ2: regulation of Z by Y). Network logic can be smoothly altered by varying the
parameters (ηZ1, ηZ2), with a change of sign in (n1, n2) required to switch quadrants.
The bottom-left quadrant shows that very weak regulation in both terms leads to an
always-off (FALSE) function, weak regulation in one arm only leads to single-input (X,
Y) functions, strong regulation in both arms leads to an OR function, and regulation too
weak in either arm alone to activate an output but strong enough in sum leads to an
AND function. The other three quadrants are related by applying NOT to one or both
inputs, with function names related by de Morgan’s law [72] NOT(X OR Y) = NOT X AND

NOT Y. In particular, X IMPLY Y = NOT(X) OR Y, X NIMPLY Y = X AND NOT(Y), X NOR

Y = NOT X AND NOT Y, and X NAND Y = NOT X OR NOT Y. Truth tables for all 16 logic
gates are provided in Table S2 for reference. The two non-monotonic logic functions, X
XOR Y and X XNOR Y, are those 2 of 16 not reproduced directly using this summing
approximation. They can be produced by layering, e.g., NAND gates [72]. (C)
Representative time traces for AND (ηZ1 = ηZ2 = 0.9) and OR (ηZ1 = ηZ2 = 1.8) gates
with n1 = n2 = −2, n3 = −20, ηR = ηZ1 + ηZ2. The function sgn(n) = +1 when n > 0,
sgn(n) = −1 when n < 0. 435

One class of 2-variable functions that has found widespread use in describing 436

natural [2, 65,73–76] and synthetic [77–81] biological networks is the logic-gate 437

description. In analogy to digital electronics [72], logic gates in biology determine 438

whether the output is at high concentration (“on”) or at low concentration (“off”) 439

depending on whether the inputs are on and off. For example, commonly found 440

two-input logic gates include the AND gate (output on if and only if both inputs are on) 441

and the OR gate (output on if either or both inputs are on). 442

Despite the importance of specifying 2-input functions, these functions are not 443

always drawn explicitly in biological schematics (e.g., Fig 5A) [2, 65,73,74] as they are 444

in digital electronics [72]. In keeping with this lack of convention, we will not draw logic 445

gates in our schematics, but any time regulation proceeds from two inputs to one output 446

a logic function is implied. In this section we provide a specific function that covers 14 447

out of 16 possible 2-input logic operations, and show that these operations form a 448

continuous 2D parameter space. 449

A summing function characterized by two parameters reproduces all 450

2-input monotonic logic gates. 451

To begin our analysis of logic functions, we start by writing down some 452

nondimensionalized equations corresponding to Fig 5A. We assume that the degradation 453

constants (β) for Z and R are equal for simplicity, and that there is no leakage. In 454

addition, we allow the input genes to follow arbitrary dynamics, in keeping with their 455

role here as arbitrary network inputs. 456

Ż(T ) =
ηZ1

1 +Xn1(T − γ1)
+

ηZ2

1 + Y n2(T − γ2)
− Z(T )

Ṙ(T ) =
ηR

1 + Zn3(T − γZ)
−R(T ),

(19)

and where the notation as before is with ni > 0 for repressors and ni < 0 for activators. 457

The nondimensionalization is the same as for autoregulation (see Appendix S5). In 458
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particular, Z = z/kz is concentration of z normalized to its half-maximal input to r. 459

R = r/kr for arbitrary constant kr that could refer to, for example, the half-maximal 460

input of r on some downstream gene if r is a transcription factor. 461

We have made a choice to describe the regulation of Z due to X and Y using 462

separate additive Hill terms. Other formulations are possible. For example, the product 463

of two Hill coefficients can be used [82] or Xn1 and Y n2 could be summed in the 464

denominator of a single Hill function [65] or some combination thereof [75,76]. These all 465

represent subtly different biological situations. For example, Eq 19 most closely 466

describes two independent promoters for Z, one activated by X and one by Y , while 467

combining X and Y in the denominator of a single Hill function most closely describes 468

two transcription factors that bind a single promoter for Z. The benefit of using two 469

separate Hill functions is that it is mathematically tractable, and as we will see below, 470

can describe many logic functions simply by tuning of regulatory strengths.It is limited, 471

however, in that it necessarily has multiple states for Z, which are only rectified to a set 472

of binary states in R (Fig 5C). It also deals poorly with ratiometric inputs, as we will 473

note in the next section on feedforward motifs. Previous work has shown that a single 474

combination of terms can similarly produce almost as many logic functions [75, 76]. The 475

analysis done here using a sum of Hill terms for this and later motifs can be reproduced 476

with few changes using, for example, multiplicative terms (see Appendix S5). 477

Based on the normalization chosen for nondimensionalization, we can make a 478

surprisingly simple characterization of the logic resulting from this type of regulation 479

based on the idea of dynamic range matching [83]. Every regulator in Eq 19 appears in 480

a sum with unity in the denominator of the Hill function for the protein it is regulating. 481

This means that, in order to be an effective regulator, the normalized value of the 482

regulator must be able to go both above and below 1. This is in fact the reason that we 483

explicitly include the reporter R in this discussion. Defining the output of the logic 484

circuit as “on” or “off” requires some reference point of activity between on and off, 485

which is provided as kz, the half-maximal input of Z to R. After normalizing Z = z/kz, 486

this midpoint becomes Z = 1. 487

We assume that as effective regulators, X and Y can both take values above and 488

below 1. We will further assume that Z can also take on values below 1, in order to be 489

a good regulator of R. For this to be true, ηZ1 � max(X |n1|) and ηZ2 � max(Y |n2|). 490

If these conditions are not met, Z will activate R regardless of the inputs from X and 491

Y , indicated by the areas marked TRUE in Fig 5. 492

Let us say that X and Y settle on steady-state values X∗ ≡ ηX , Y ∗ ≡ ηY . If we 493

assume these values arbitrarily, then they serve as the inputs to the logic gates. A value 494

of ηX or ηY significantly greater than 1 is “high” (true, 1) in that it is seen as above the 495

unity regulatory threshold in the equation for Ż, and “low” if much less than 1, for the 496

converse reason. We then want to look at whether Z∗ is greater than or less than 1, 497

which similarly serve as “high” (true, 1) and “low” (false, 0) values, respectively, as used 498

in Ṙ. 499

For example, the case where n1,2 > 0 (two repressors), the steady state value of Z is 500

given as a function of ηX , ηY , ηZ1, and ηZ2, as shown in the column labeled Z∗ in 501

Table 1. We can then look at the value of Z∗ when the values of the inputs ηX and ηY 502

are much smaller or much larger than 1, under the above-given assumptions that 503

ηZ1 � max(η
|n1|
X ) and ηZ2 � max(η

|n2|
Y ). For example, if both ηZ1 > 1 and ηZ2 > 1, 504

then the output simplifies to the last column in Table 1. The table overall then 505

represents the truth table for a NAND gate. Calculations for all conditions are given 506

explicitly in Table S1. 507

By simply changing the parameters n1, n2, ηZ1, and ηZ2, the logic function can be 508

changed. If instead of having ηZ1 > 1 and ηZ2 > 1, they are both < 1 but their sum 509

> 1, then the table looks like a NOR gate. If their sum is < 1, then the table looks like a 510
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ηX ηY Z∗ Z∗ for ηZ1,2 > 1

� 1 � 1 ηZ1 + ηZ2 > 1
� 1 � 1 ηZ1 + ηZ2/η

n2

Y > 1
� 1 � 1 ηZ1/η

n1

X + ηZ2 > 1
� 1 � 1 0 < 1

Table 1. NAND Logic function for two repressors based on Eq 19.

FALSE gate (i.e., output is always low). If ηC1 > 1, ηC2 < 1, then it looks like NOT A. If 511

ηC1 < 1, ηC2 > 1, then it looks like NOT B. If we relax the assumptions that ηZ1,2 are 512

below the maximum of the inputs, then it looks like a TRUE gate (i.e., large enough ηZ1 513

or ηZ2 implies the output is always “on”). 514

This logic can be extended into all possible combinations of activators and 515

repressors, and combined into a convenient chart, shown in Fig 5B. The chart is 516

symmetric on interchange of the two inputs (η1 ↔ η2, n1 ↔ n2). It is also 517

anti-symmetric (that is, application of logical NOT) by conversion of an activator to a 518

repressor or vice versa (ni → −ni). Fourteen of the 16 possible two-input logic functions 519

are represented in the chart. All fourteen are monotonic functions of X and Y , in that 520

Z(X,Y = 1) > Z(X,Y = 0) and Z(1, Y ) > Z(0, Y ). The two non-monotonic gates, XOR 521

and XNOR are not represented by this simple logic motif, because summing (addition of 522

Hill terms) is monotonic. However, they can be constructed from connecting several of 523

these gates [72,83]. 524

The logic parameter space can be divided into AND-type, OR-type, and 525

single-input functions. 526

Only the 8 regulatory functions on the diagonals of Fig 5 (excluding FALSE and TRUE) 527

make use of both inputs. These eight can be further divided into positive or negative 528

regulation on each arm (4 possibilities) in conjunction with an AND or OR gate (8 529

possibilities total). Specifically, “OR-type” logic applies when both η1 > 1 and η2 > 1 530

(OR, NAND, and both IMPLY gates), and “AND-type” logic applies when both η1 < 1 and 531

η2 < 1 (AND, NOR, and both NIMPLY gates). This can be seen mathematically by using 532

Boolean logic simplification. For example, X NOR Y = NOT X AND NOT Y . Similarly,X 533

NAND Y = NOT X OR NOT Y . 534

It is important to note that this logic scheme is an approximation, and in reality the 535

sum of two Hill terms provides a form of fuzzy logic [84]. That is, if the inputs X or Y 536

are close to 1, or if the regulatory strengths ηZ1,2 are close to 1, then Z will also be 537

close to 1 for some input combinations. Thus the boundary lines in Fig 5 are soft, and 538

become exact as the cooperativities become large. Linearizing the R fixed point around 539

Z = 1, one can conclude that |n3| & 2(1− ε)/δ is required for an input δ above 1 to 540

yield an output ε below 1. Thus for highly digital logic, it must at least be true that 541

|n3| � 2 (δ = 1, ε = 0), and in the limit |n3| → ∞ (δ → 0) R becomes a step function, 542

as in the case of exact (rather than fuzzy) logic. 543

Our analysis thus far of the logic motif (Fig 5) with two separate inputs has focused 544

on steady state outcomes, and therefore only exhibited trivial dependence on delays. 545

Since there is no feedback in this network, we can mathematically time-shift the 546

definition of X(T ) and Y (T ) independently so that no delays remain in either input. 547

This changes however when the two inputs X and Y are not independent. As a simple 548

example, if X and Y represent the same input source (i.e., X ≡ Y ), then a difference of 549

delays between the two regulation arms cannot be shifted out entirely. This type of 550

regulation, in which a single input regulates a single output through two arms, is the 551

feedforward motif, which we turn to next. We will show in particular that this inability 552

to remove the difference of delays is essential to the motif’s behavior. 553
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Key results for logic 554

1. Logical functions can be determined by comparing the strength of regulatory 555

inputs to the half-maximal input of the regulated output. In non-dimensional 556

form, all strengths can be compared to 1. 557

2. Both the strengths of the inputs and the strength of the output on a reporter 558

must be considered to derive a logic function. 559

3. Boolean logic gates can be concisely described in a simple two-dimensional 560

parameter space given by sgn(n1)η1 and sgn(n2)η2. 561

4. Out of 16 possible 2-input logic gates, 14 are generated by a sum of two Hill 562

functions; only the two non-monotonic logic gates (XOR and XNOR) are not. 563

5. From an evolutionary perspective, the fact that all these logic gates fit in a single 564

parameter space implies easy conversion of AND-type logic and OR-type logic, with 565

a sign flip required on Hill coefficients needed to add NOTs to the logic functions. 566

This is similar to results for other functions describing a subset of logic 567

gates [75,76]. 568

6. For independent inputs, logic has only trivial dependence on delays, which shift 569

one input relative to another in time. 570

Motif IV: Feedforward loop 571

The feedforward motif (see Fig 6) is a non-cyclic regulation network in which an input, 572

X regulates an output, Z, via two separate regulation arms. One arm is “direct,” in 573

which X regulates Z in a single step, while the second arm is “indirect,” with X 574

regulating an intermediate Y , which in turn regulates Z. In this way, the first arm 575

“feeds forward” past the cascade (see Fig 6A-B). The motif is found commonly in 576

biological networks [11,85], comprising about 30% of three-gene regulatory interactions 577

in transcriptional circuits [86]. 578

The different combinations of activation and/or repression from the two terms 579

generate what are termed “coherent” (regulation arms are both activating or both 580

repressing the output) or “incoherent” (one activation arm and one repression arm) 581

feedforward motifs. These behaviors additionally depend on the logic (Fig 5) associated 582

with how the downstream element responds to its inputs [2, 61,65]. Standard 583

classification of feedforward loops based on which regulatory arms are activating or 584

inhibiting have been used in the literature (see Table 2). Here we show how a DDE 585

model maps onto these characterizations and provide analytical solutions to pulse and 586

frequency responses of feedforward loops. 587

Feedforward loop designation Fast regulation Slow regulation

Coherent types 1, 4 Activation Activation
Coherent types 2, 3 Repression Repression
Incoherent types 1, 4 Activation Repression
Incoherent types 2, 3 Repression Activation

588

Table 2. Standard classification of feedforward loops [61]. Each type of
feedforward loop has two regulation arms (see Fig 6A), one fast-acting (short delay) and
one slow (larger delay). Each arm either activates or represses the output. This leads to
the four types of feedforward loops listed here. ODE models have twice as many distinct
feedforward loops as the DDE model, because the slow regulation arm in the DDE
model has only one step instead of two, and hence two designations are referenced in
the leftmost column for each type. 589
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Feedforward dynamics depend only on the difference in time delay between 590

two regulatory arms and their 2-input logic. 591

ODE models of this motif provide equations for each of the multiple regulators in such a 592

pathway, but we show here that the essential ingredients are the production of a 593

difference in delays between the two inputs to Z, in addition to the logic function 594

between the two inputs and the output Z. With a DDE model, we can drop the 595

intermediate Y , focusing just on the input and output proteins, X and Z, using two 596

regulating terms with different delay times (Fig 6A-B). 597
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Fig 6. The feedforward network motif owes its primary functions to a
difference in regulatory delays. (A) The feedforward motif with delays, in which a
single output Z is controlled by an input X via two regulatory arms with differing
delays. The straight, short arrow represents the “direct arm” with delay γ1 and the
longer, curved arrow represents the “indirect arm” with delay γ2 > γ1. (B) The ODE
model for an incoherent (type 1) feedforward motif, one of 8 possible networks in which
the intermediate gene Y is modeled explicitly in the indirect arm. (C) Simulations of
the four feedforward motifs with AND-type and OR-type logic (see Fig 5 and Table S2)
in response to short and long gain and loss of input signal. Blue curves: inputs (X),
orange curves: reporter R activated with high cooperativity by Z. Note that the
bottom two rows demonstrate pulse generation, while the top two rows filter short
signals. (D) Response of an incoherent feedforward motif to oscillatory input after
initial transients have died away. Z3 is a 3-frequency Fourier approximation of Z (see
E). (E) Fourier decomposition of Z from (D) by Eq 30 and by a numerical fit to the
data in (D). (F) Frequency scan (Bode plot) of (D) for 3 values of ∆γ, with the
theoretical envelopes from Eqs 31,32. (G) The maximum amplitude of the motif in (D)
over a range of ∆γ and the corresponding frequencies at which the maxima occur. Z
goes above 1 (activation threshold for R) for a small range of ∆γ. For (C-F), η1 = 0.9,
η2 = 0.7, n1 = 2, n2 = −2, n3 = −20, ηR = 2, A = 1. For (D), f = 0.05, ∆γ = 4. 599

Looking at Fig 6A, we can write down a simple equation for the regulation of Z, by 600

setting Y = X in Eq 19 (see Appendix S6): 601

Ż(T ) =
η1

1 +Xn1(T − γ1)
+

η2
1 +Kn2Xn2(T − γ2)

− Z(T ). (20)

Because each regulation term is controlled by the same input (X), we cannot in general 602

normalize the half-maximal input to 1 in both terms as we did for logic (Eq 19); 603

K = k1/k2 represents the ratio of the two input scales. We will assume that the level of 604

X has arbitrary dynamics, as in our discussion of logic in the previous section. 605

If one shifts the input variable backwards in time by γ1 (X̂(T ) = X(T + γ1)), we see 606

that the behavior of the feedforward equation actually depends only on the difference in 607

regulatory delays, ∆γ = γ2 − γ1 rather than each delay independently: 608

Ż(T ) =
η1

1 + X̂n1(T )
+

η2

1 +Kn2X̂n2(T −∆γ)
− Z(T ). (21)

For clarity we will from now on refer to X̂ as X without the hat unless specified. 609

To understand the behavior of Eq 21, we will analyze the output of Z to two types 610

of input X: a step input, and a continuous oscillation. The response of a system to 611

these two types of inputs, respectively termed step response and frequency response, are 612

often used in control theory to characterize an input-output relation [87]. 613

Step-pulse response of feedforward motifs can be solved analytically and 614

demonstrates filtering and pulse-generation behaviors. 615

We considered a step input (Fig 6C) to include both a step on (from low to high X) as 616

well as a step off (from high to low X): 617

X(T ) = X0 + (ηX −X0) (Θ(T )−Θ(T − ω)) (22)

where the Heaviside function is defined such that Θ(T ) = 1 for T < 0 and Θ(T ) = 0 for 618

T > 0. Eq 22 represents a square input pulse of width ω starting at X0 and reaching to 619

ηX . This is an on-pulse if ηX > X0 and an off-pulse if ηX < X0. 620
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The lack of feedback in feedforward loops and the fact that the square-pulse input of 621

Eq 22 takes on only two values simplify the form of Eq 20 significantly, allowing it to be 622

solved explicitly (see Appendix S6). The solution is: 623

Z(T ) = Zss + sgn(n1)η1Z
n1
1 f(T ) + sgn(n2)η2Z

n2

K f(T −∆γ) (23)

in which 624

f(T ) =
(
1− e−T

)
Θ(T )−

(
1− e−(T−ω)

)
Θ(T − ω)

Zss =
η1

1 +Xn1
0

+
η2

1 + (KX0)
n2

Znκ =
1

1 + (κηX)
|n| −

1

1 + (κX0)
|n| .

(24)

Here, Zss is the steady-state value of Z, Znκ are the magnitudes of deviation from 625

steady state due to each arm, and f(T ) specifies where the responses from the two 626

regulation arms are active. In terms of the original X (as opposed to the time-shifted 627

X̂), the output in Eq 24 is shifted to the right in time by γ1 relative to the input 628

original input X(T ). 629

There are several interesting results to note in this equation. First, the magnitude of 630

the Hill coefficients only serve to modulate the strength of the input, ηX and X0; they 631

have no other effect because the input already has infinitely steep transitions between 632

on and off. Likewise, the ratio of half-maximal input levels in the two arms (K = k1/k2) 633

only modulates the strength of the responses. 634

Second, the η values only appear in the baseline steady-state value Zss (determining 635

the logic of the steady state output) and in the combinations sgn(ni)ηi, which as noted 636

in Fig 5 are the parameters dictating the regulation logic. Based on Fig 5, there are 8 637

important logic functions which respond significantly to both inputs and are therefore 638

important for feedforward loops: four AND-type functions and four OR-type functions. 639

Third, the function f only serves to indicate where the responses from the two 640

regulation arms are active. If ω � 1, then f equals 0 at the beginning and end of the 641

pulse (T = 0, T = ω) and equals 1 in the middle of the pulse (0� T � ω). It is always 642

zero outside the pulse. All responses, contained in the function f , decay with time, so 643

the system both starts and ends at the steady state Zss. That is, feedforward responses 644

must be driven externally, unlike autoregulation. Overall there are four responses to the 645

input: beginning at T = 0, T = ω, T = 0 + ∆γ, and T = ω + ∆γ. 646

For coherent feedforward motifs, input pulses must be sufficiently wide (ω � 1) to 647

fully activate the output R. This implies that coherent feedforward motifs act as filters 648

against short signals, either short on signals (AND and NAND) or short off signals (OR and 649

NOR). The delay difference ∆γ determines how quickly the response starts (AND and NOR 650

logic) or returns to baseline once the pulse is over (for OR and NAND logic), so that large 651

∆γ maintains a response long after the input pulse has subsided. 652

For incoherent feedforward motifs, the output R is only fully activated if the pulse is 653

wide (ω � 1) and the delay difference is also wide (∆γ � 1), in which case a pulse of 654

output is formed. The output pulse is formed on either the on-step (slow arm IMPLY 655

fast arm, and slow arm NIMPLY fast arm) or the off-step (fast arm IMPLY slow arm, and 656

fast arm NIMPLY slow arm). This means that incoherent feedforward motifs act as pulse 657

generators. The delay difference ∆γ determines the minimum width of input pulse that 658

will produce a response in R. 659

A limitation in this description of feedforward loops is due to our choice of 660

sum-of-Hills logic function. It has been shown that incoherent feedforward motifs show 661

fold-change detection (FCD) for large input ranges X � 1 [71], in which the response to 662

an input s is not dependent on the absolute values before (X0) and after (ηX) the step 663

input, but only on the ratio (ηX/X0). This is not true for the current description. One 664
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can see this by replacing X in Eq 21 with F ∗X0, where F (T ) = X(T )/X0 is the 665

ratiometric input change. Assuming X � 1, there is an overall prefactor X0 on which 666

the dynamics of Z, and in turn R, depend. An alternative incoherent logic function 667

such as X(T )/(1 +X(T ) +X(T −∆γ) automatically has X0 drop out for large X with 668

the same substitution X = X0F . Thus, while the sum-of-Hills logic framework works 669

well for logical behavior, it is not ideal for describing ratiometric scenarios. 670

Many of the behaviors about feedforward motifs described in this section corroborate 671

earlier results from ODE models of feedforward loops [2, 2, 61,61,65,71,85,86,88,89], 672

but are derived here with just a single equation. In particular, it is well known that 673

coherent feedforward loops have filter capabilities and that incoherent feedforward loops 674

can act as pulse generators [2, 61, 65] or stripe generators when regulation is dependent 675

on space instead of time [90,91]. Furthermore, we can clearly demonstrate that the 676

feedforward loop dynamics depend entirely on the difference of delays in the two 677

regulation arms, a fact that can only be seen indirectly with ODE models [65]. 678

Frequency response of feedforward motifs can be solved analytically and 679

demonstrates low- and band-pass filtering capabilities. 680

There are many examples in which biological regulatory networks encode information as 681

the change in frequency of an oscillating input [92, 93]. It has been suggested that these 682

signals can be more robust to noise than encoding information in the absolute 683

concentration of inputs [94–96]. The fact that feedforward motifs can filter inputs based 684

on the width of square pulses suggests that they may have more general 685

frequency-filtering capabilities. We therefore include here as well an analysis of the 686

frequency response of this motif to sinusoidal input (Fig 6D-G). We will show that the 687

frequency dependence of the output follows the outline of a universal transfer function 688

curve, independent of the logic or delay difference. 689

Instead of the step input analyzed above, here we consider a sinusoidal input 690

X(T ) = A(1 + cos(2πfT )) (25)

which oscillates between zero and twice the amplitude 2A at a frequency f . Since X(T ) 691

is periodic with frequency f , and Eq 20 has no explicit time-dependent terms, every 692

term in the equation must be periodic with a fundamental frequency of f as well. We 693

can thus decompose the first regulatory term in a Fourier series as follows: 694

η1
1 +Xn1(T )

= η1

(
ax;n1

0

2
+
∞∑
k=1

ax;n1

k cos(2πfkT )

)
(26)

where the Fourier coefficients ax;nk (with n = n1) are determined as 695

ax;nk =
1

π

∫ 2π

0

cos(kT )

1 +An(1 + cos(T ))n
dT, (27)

for all f > 0 (see Appendix S6). In the trivial case f = 0 all coefficients are zero except 696

a0, which is 2 times the steady state value of Eq 21, slightly different in value than the 697

limit as f → 0. Since the input is chosen to be a pure cosine, there are no sine terms in 698

the Fourier expansion, which would otherwise add terms bx;n1

k sin(2πfkT ). The same 699

Fourier decomposition can be done for the second regulatory term, by using n = n2 700

instead of n1, setting T → T −∆γ in Eq 26, and replacing A→ AK in Eq 27. We will 701

not have need to discuss K = k1/k2 (not to be confused with the frequency multiplier k) 702

further, but one may keep in mind that all values of ax;n2

k below reflect this 703

modification in A. 704
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We can similarly decompose Z(T ) into Fourier components with unknown 705

coefficients azk and bzk: 706

Z(T ) =
az0
2

+
∞∑
k=1

azk cos(2πfkT ) + bzk sin(2πfkT ) . (28)

Because the regulatory terms and Z all have the same fundamental frequency, we can 707

solve for the output coefficients azk, bzk in terms of the input coefficients ax;n1

k , ax;n2

k (see 708

Appendix S6). 709

az0 = η1a
x;n1

0 + η2a
x;n2

0

azk =
η1a

x;n1

k + η2(cos(2πfk∆γ)− 2πfk sin(2πfk∆γ))ax;n2

k

1 + (2πfk)2

bzk =
2πfkη1a

x;n1

k + η2(2πfk cos(2πfk∆γ) + sin(2πfk∆γ))ax;n2

k

1 + (2πfk)2

. (29)

Finally, the Fourier decomposition can also be written in terms of magnitude and phase 710

instead of cos and sin components. In this format (see Appendix S6), 711

Z(T ) =
η1a

x;n1

0 + η2a
x;n2

0

2
+
∞∑
k=1

Ik cos(2πfkT − φk)

Ik =

√
(η1a

x;n1

k )2 + 2η1η2 cos(2πfk∆γ)ax;n1

k ax;n2

k + (η2a
x;n2

k )2

1 + (2πfk)2

φk = atan2 (2πfkη1a
x;n1

k + η2(2πfk cos(2πfk∆γ) + sin(2πfk∆γ))ax;n2

k ,

η1a
x;n1

k + η2(cos(2πfk∆γ)− 2πfk sin(2πfk∆γ))ax;n2

k )

. (30)

The magnitude of the output is symmetric to interchange of the two regulation arms 712

(η1 ↔ η2, n1 ↔ n2), while the phase is not. 713

The magnitude Ik decreases monotonically in f , as 714

Ik,env = 1/
√

1 + (2πfk)2, (31)

modulated by the sinusoidal numerator with period 1/k∆γ (and which equals Ik(f = 0) 715

for frequencies an integer multiple of 1/∆γ). Although harder to see explicitly in Eq 30, 716

a similar behavior applies to the phase φk as well. This can be found by looking again 717

at frequencies an integer multiple of 1/∆γ, in which case the phase reduces to 718

φk,env = tan−1 (2πkfint)− π
(

sgn (η1a
x;n1

k + η2a
x;n2

k ) + 1

2

)
. (32)

The amplitudes and phases as a function of frequency (also called Bode plots [87]) and 719

their envelopes are plotted in Figure 6F. 720

At frequencies f that are integer multiples of 1/k∆γ, the cosine in Ik equals ±1. 721

Because ax;−nk = −ax;nk (see Eq 27, Appendix S6), the output magnitude Ik then 722

increases to a local maximum for coherent feedforward motifs (sgn(n1) = sgn(n2)) and 723

decreases to a local minimum for incoherent feedforward motifs (sgn(n1) = sgn(n2)). 724

The opposite holds for frequencies that are half-integer multiples of 1/k∆γ. For the 725

special case of perfectly balanced incoherent feedforward motifs (η1 = η2, 726

n1 = −n2,K = 1), the magnitudes Ik decrease to zero for frequencies that are 727

half-integer multiple of 1/∆γ; otherwise, the maxima (for coherent) and minima (for 728

incoherent) equal Ik(f = 0). 729
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Interestingly, the delay difference ∆γ only appears in the cosine and sine functions of 730

Ik and φk. The monotonic envelopes that ignore these periodic effects for both the 731

magnitude (Eq 31) and phase (Eq 32) do not depend at all on the delay difference ∆γ 732

(Fig 6F). Thus for any delay difference, the frequency at which the magnitude envelope 733

decreases to one-half its value at f = 0 is found at f =
√

3/2πk, with an envelope phase 734

shift of −π/3. 735

Despite this non-dependence of the envelope on ∆γ, the absolute maximum 736

magnitude obtained for incoherent feedforward motifs does depend on ∆γ, as does the 737

frequency at which this maximum response occurs. The dependence on delay difference 738

is particularly strong near ∆γ = 1 (Fig 6G). This is because for ∆γ � 1, the envelope 739

decreases by half when f is many multiples of ∆γ, and thus past many local maxima, 740

and so the local maximum occurs at 0 < f � 1 with a maximum above Ik(f = 0). For 741

∆γ � 1, on the other hand, the envelope decreases by half before a single sinusoid is 742

complete, so the maximum is at f → 0. 743

At ∆γ ≈ 1, the first sinusoid reaches its maximum while the envelope is descending 744

most steeply, and the maximum occurs at f ≈ 1 with a value highly dependent on ∆γ. 745

To activate R, X must go above 1 for at least part of the output oscillation, meaning 746

that I1 must go above 1− 〈I〉 = 1− I0. Looking at Fig 6G, we see that for large 747

∆γ � 1, this occurs for small frequencies, and the feedforward loop acts as a low-pass 748

filter. However, there is a window of ∆γ ≈ 1 in which 1− I0 is large, at modest 749

frequencies (0.1 < f < 10), corresponding to the hump in magnitude, e.g., around 750

f = 0.5 for ∆γ = 1 in Fig 6F. The incoherent feedforward motif thus acts as a bandpass 751

filter for ∆γ ≈ 1, with ineffective regulation outside of modest frequencies. 752

For coherent feedforward motifs, the frequency at which the first minimum in output 753

response occurs follows the same logic, but the maximum response is always found at 754

f → 0. Since the maximum response is at low frequencies, coherent feedforward motifs 755

act as low-pass filters. 756

Key results for feedforward loops 757

1. Results for feedforward loops modeled by DDEs essentially replicate results known 758

from ODEs, but demonstrate explicitly and intuitively that their behavior 759

depends only on logic and delay diffference between regulatory arms. 760

2. There are 8 possible feedforward motifs, corresponding to the 4 AND-type functions 761

and the 4 OR-type functions on the diagonals of Fig 5B. 762

3. The only relevant parameters for feedforward motifs are the logic (sgn(n1)η1, 763

sgn(n2)η2) and the difference in delays (∆γ). The smaller delay merely leads to 764

an overall shift in the output equal to that delay. 765

4. Step-pulse responses of feedforward motifs are composed of 4 independent 766

responses: when the regulation arms are (1) both on, (2) both off, and (3,4) one 767

on and one off. 768

5. The importance of synchronized (both on or both off) versus anti-synchronized 769

(one on, one off) inputs on the two arms is determined by the difference in delays. 770

High delay difference means inputs are usually seen as anti-synchronous by the 771

output, while low delay difference means inputs are usually seen as synchronous. 772

6. Incoherent feedforward motifs generate pulses in response to step inputs, with the 773

delay difference determining the minimum width of input pulse that will produce 774

a response. 775
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7. Coherent feedforward motifs act as filters against short signals, with delay 776

difference determining how quickly the response starts (AND-type logic) or returns 777

to baseline once the pulse is over (OR-type logic). 778

8. Fold-change detection can occur for feedforward loops, but requires logic functions 779

that are not in the sum-of-Hill format. 780

9. Incoherent feedforward motifs can act as band-pass filters, responding most 781

strongly when the input wavelength exactly mismatches the delay difference 782

(half-integer multiples of 1/∆γ). 783

10. Coherent feedforward motifs act as low-pass filters and respond to higher 784

frequencies most strongly when the input wavelength matches the delay difference 785

time (integer multiples of 1/∆γ). 786

Motif V: Multi-component feedback 787

Many natural networks include two-component loops [65], in which, for example, a 788

transcription factor x regulates a transcription factor y which in turn regulates x 789

(Fig 7A). In this section we analyze the effect of explicitly modeling two steps in a 790

regulation loop as compared to modeling direct autoregulation. 791

Two-component feedback loops shows additional behaviors not predicted 792

from simple autoregulation. 793

We can write down the governing equations for such a system, using the same 794

normalizations as before (see Appendix S7), assuming for simplicity zero leakage and 795

that x and y have the same degradation rates β. This is equivalent to the 3-step 796

cascade Eq 8 with equal degradation rates and setting Z = X to form the loop. 797

Ẋ(T ) =
η1

1 + Y n1(T − γ1)
−X(T )

Ẏ (T ) =
η2

1 +Xn2(T − γ2)
− Y (T ).

, (33)
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Fig 7. Two-component autoregulatory loops reproduce behaviors of
autoregulation, but have additional behaviors describing the relative
dynamics of the components. (A) A two-component loop network motif, which is
similar to autoregulation but with two explicitly modeled genes instead of one. (B)
Parameter space of the two regulatory strength parameters showing phase diagram for a
loop composed of two activators (cross-activating) or two repressors (cross-inhibitory).
Shading shows results of simulations (with an interval of 0.1 for both γ and η axes);
blue curve is the analytically derived phase (bifurcation) boundary from Eqs 36. (C)
Parameter space varying both strength parameters. Because the Hopf bifurcations
depend only on the total delay and transient oscillations most prominent for equal
delays, we show only the cases γ1 = γ2. Blue curves show analytically derived Hopf
bifurcations. Black dashed curves are the bifurcation boundaries from (B). Except for
the activator/repressor case, all these curves lie above the bistability boundary given by
the black curve in (B), meaning oscillations are always transient. (D) Representative
simulations for specific initial conditions showing all possible qualitative behaviors for a
two-component loop with two activators, two repressors, or one activator and one
repressor. Hill coefficients equal 2 for repressors, -2 for activators. 799

The fixed points are given by η1 = X(1 + Y n1), η2 = Y (1 +Xn2) or (for two 800

activators) X = Y = 0. Linearizing around these fixed points and assuming ansatz 801

solutions of the form δX(T ) = A exp(λ1T ), δY (T ) = B exp(λ2T ), we find the set of 802

characteristic equations 803

A(λ+ 1) + η1M1Be
−λγ1 = 0

B(λ+ 1) + η2M2Ae
−λγ2 = 0.

(34)

where λ1 = λ2 ≡ λ must hold for the ansatz to be true for all time. This can be 804

rewritten in matrix form, with a matrix J times the vector (A, B)>. Diagonalizing J 805

results in two characteristic equations (see Appendix S7) 806

Λ± ≡ λ±
√
η1M1

√
η2M2e

−λ(γ1+γ2)/2 + 1 = 0 (35)

for two corresponding eigenmodes v+ = (1, Reiφ)> and v− = (−1, Reiφ)>, respectively, 807

where B/A = Reiφ is the ratio of δX to δY components in magnitude-phase notation 808

(see Appendix S7). Overall, the eigenvectors indicate a phase difference between X and 809

Y of φ for v+ and φ+ π for v−. When the Λ+ equation is satisfied for Reλ = 0, v+ 810

bifurcates and when the Λ− equation is satisfied for Reλ = 0, v− bifurcates. 811

Saddle-node bifurcations determine bistability modes. 812

For saddle-node bifurcations, at which bistability begin, we set λ = 0. This can only be 813

satisfied by the Λ+ equation if n1 < 0, n2 < 0 (two activators), and by the Λ− equation 814

if n1 > 0, n2 > 0 (two repressors). A feedback loop of an odd number of repressors 815

cannot have a saddle-node bifurcation. As for linear cascades (see Fig 3), the overall 816

autoregulation is repressive only if it contains an odd number of repressors. The 817

bistability boundary for both cases is then given by (Appendix S7) 818

η1 = n1n2
Xn2+1

(n1n2 − 1)Xn2 − 1

η2 = n1n2
Y n1+1

(n1n2 − 1)Y n1 − 1

f(X,Y ) ≡ n1n2X
n2Y n1

(1 +Xn2) (1 + Y n1)
= +1

(36)
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Here each η in the bifurcation boundary is determined by the steady state value of one 819

of the variables, while the third equation is a monotonic mapping between X and Y 820

that restricts the value of η1 relative to η2. 821

The phase difference φ = 0, thus we see that a two-activator loop bifurcates into 822

fixed points where X and Y are both high or both low, because the components of v+ 823

are of like sign, whereas a two-repressor loop (v−) bifurcates into fixed points where X 824

is high and Y is low or vice versa. This can be seen clearly in the data (Fig 7B,D). 825

Hopf bifurcations determine transient oscillations in modes restricted by 826

bistability. 827

For Hopf bifurcations, at which oscillations begin, we set λ = iω. The boundaries are 828

given for both eigenmodes by (Appendix S7) 829

γ1 =
1

ω

[
− tan−1 ω + φ+

π

2
(1− sgnn1) + πk

]
, k = 0, 1, . . .

γ2 =
1

ω

[
− tan−1 ω − φ+

π

2
(1− sgnn2) + πk

]
, k = 0, 1, . . .

η1 =
|n1n2|
1 + ω2

· Xn2+1(
|n1n2|
1+ω2 − 1

)
Xn2 − 1

η2 =
|n1n2|
1 + ω2

· Y n1+1(
|n1n2|
1+ω2 − 1

)
Y n1 − 1

f(X,Y ) ≡ |n1n2|
1 + ω2

· Xn2Y n1

(1 +Xn2) (1 + Y n1)
= 1.

(37)

As before, f = 1 provides a monotonic mapping between X and Y that restricts η1 830

relative to η2. These curves always lie entirely above the bistability boundary found 831

above. Thus, oscillations in v+ are not seen for two activators nor in v− for two 832

repressors, since those eigenmodes already have positive eigenvalues. The alternate 833

eigenmode, however, does show oscillations in each case. 834

Thus, the primary Hopf bifurcation for two activators occurs for v− (at k = 0) and 835

the primary Hopf bifurcation for two repressors occurs for v+ (at k = 1). Because 836

bistability has occurred, however, there are distant stable fixed point, making these 837

oscillations only transient. For one repressor and one activator, the primary bifurcation 838

occurs at k = 0 for v−, with a phase of −π/2 if n1 > 0, n2 < 0 (Y leads X) and π/2 if 839

n1 < 0, n2 > 0 (Y lags X) Because there is no bistability bifurcation, these are 840

sustained oscillations. 841

Based on Eqs 37, we can see that the primary Hopf bifurcations are equivalent for 842

differing values of the delays as long as the average delay is equal, because the oscillation 843

frequency ω of the eigenmodes only depends (implicitly) on the average delay: 844

〈γ〉 ≡ 1

2
(γ1 + γ2) =

1

ω

(
− tan−1 ω +

π

4
(2− sgnn1 − sgnn2) + πk

)
. (38)

In particular, oscillations are possible for activator-repressor loops even when one delay 845

is zero, as long as the sum of delays is greater than zero. On the other hand, the phase 846

difference between the oscillations depends only on the difference in delays given the 847

value ω: 848

φ =
ω

2
(γ1 − γ2) +

π

4
(sgnn1 − sgnn2) (39)

Together with the additional phase difference of π for v−, this implies that for equal 849

delays, there are synchronous oscillations for two-repressor loops, anti-synchronous 850

oscillations for two-activator loops, and π/2-shifted oscillations for activator-repressor 851
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loops. This phase relation also holds off the bifurcation boundary, where λ = µ+ iω, as 852

φ does not depend on µ (see Appendix S7). Note also that the overall phase in the 853

expressions for γ are 0 for two repressors, π for two activators, and π/2 for 854

activator-repressor loops. 855

Finally, one can also conclude from Eq 34 that (see Appendix S7) 856

λ =
1

γ2 − γ1
ln

(
η1M1B

2

η2M2A2

)
, (40)

which holds for both the real and imaginary parts of λ. This implies that the 857

oscillations grow most quickly and have the highest frequency when the delays are 858

nearly equal (γ1 = γ2). This consequently makes the transients most noticeable for 859

equal delays. All these results can be seen in the simulated data (Fig 7B,D). 860

Key results for feedback loops 861

1. Two-component feedback is very similar to direct autoregulation, but with new 862

behaviors noticeable, particularly in transient behavior. 863

2. Transient synchronous oscillation are possible for double repressor loops with 864

equal delays. 865

3. Transient anti-synchronous oscillation are possible for double activator loops with 866

equal delays. 867

4. Sustained oscillations exist for repressor/activator loops. 868

5. Transient oscillations are most pronounced when the delays are equal, and more 869

pronounced in double-repressor loops than in double-activator loops. 870

6. Oscillation requirements on regulatory strengths are determined by the average 871

delay. 872

7. Phase in oscillations between components and time extent of transient oscillations 873

are determined by the difference in delays. 874

Motif VI: Double feedback 875

Thus far, every motif we have analyzed contained at most one feedback loop. Multiple 876

feedback has been described to lead to interesting dynamics, such as excitablity [97] and 877

chaos [82]. A full analysis of this motif is beyond the scope of this work, for reasons 878

described below. In this section we focus on the possible chaotic dynamics that may 879

arise when multiple (and most simply, double) feedback is present. 880

Chaos [41] is a major class of dynamics besides multi-stability and oscillations of 881

potential importance to biology, characterized by oscillatory-like, unpredictable 882

long-term behavior. It has been suggested that biological systems may have evolved to 883

avoid chaos [98,99], but also that chaotic behavior can arise in disease states [33,100]. 884

For example, Mackey and Glass (of no known relation to author) modeled irregular 885

fluctuations in pathological breathing patterns and blood cell counts [33] using a 886

delayed feedback model. Epilepsy has likewise been modeled as a chaotic disorder [101]. 887

Much mathematical modeling has been done on gene networks that can give rise to 888

chaos in both non-delayed [98,102,103] and delayed [82,104,105] models. We thus 889

sought to determine under what conditions the delay-based models we studied in this 890

paper can give rise to chaotic dynamics, if at all, and if so what a minimal 891

chaos-producing motif may be. 892
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Chaotic behaviors are prevented in monotonic regulation with linear or 893

cyclic network topology. 894

In fact, none of the motifs analyzed so far can ever produce chaotic dynamics. This is 895

because cyclic network topology (no more than one loop) and monotonic regulation 896

guarantee that a system of delay equations will not have any chaotic solutions [42]. All 897

motifs we covered so far meet these criteria. Either non-monotonic feedback (as in the 898

Mackey-Glass equation [33]) or non-cyclic topology has the possibility to produce 899

chaotic dynamics. 900

The sum-of-Hills convention we used for expressing logic behavior excludes the two 901

non-monotonic two-input logic gates, XOR and XNOR if the two inputs refer to different 902

sources. However, this in not the case if a single source is used for both inputs (a 903

feedforward loop). Specifically, the sum-of-Hills logic is non-monotonic if both the signs 904

and the magnitudes of the Hill coefficients differ (see Appendix S8). If this feedforward 905

loop is then connected in an overall feedback loop, it is equivalent to a two-arm 906

autoregulation (Fig 8), from which we might expect chaotic solutions for some 907

parameters. In fact, this double feedback can yield chaotic dynamics even with 908

monotonic regulation (Fig 8) 909

910
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Fig 8. Double negative feedback induces chaotic behavior when the
difference in delay times is significant. (A) Cartoon of double feedback. (B-E)
focus on negative feedback, where chaos can occur. (B) Time trace of chaotic dynamics
after initial transients. (C) Trace of dynamics in phase space, with the derivative on the
vertical axis. While a simple oscillator would trace a loop (possibly with multiple
sub-loops if the waveform is complicated), the chaotic dynamics appear to fill an entire
region. (D) Fourier transform of chaotic dynamics show many peaks, indicating that
there are no simple set of frequencies underlying the dynamics. (E) Bifurcation diagram
for double negative feedback, with local maxima plotted. Simple oscillations intersperse
chaotic regimes, where local maxima with a range of values are found. η1 = η2 = 16,
n1 = 5, n2 = 2, and γ1 = 1. For (B-D), γ2 = 9.5. 912

The governing equation for such a double feedback motif is thus given by setting the 913

output and both inputs of the logic equation (Eq 19) to X (and letting K = 1 for 914

simplicity): 915

Ẋ(T ) =
η1

1 +Xn1(T − γ1)
+

η2
1 +Xn2(T − γ2)

−X(T ). (41)
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Chaotic behavior is possible for non-monotonic feedback with multiple 916

feedback and disparate delays. 917

From our simulation, we only found evidence for chaotic solutions if the delays in the 918

two arms differ substantially. Simulation results for double negative feedback is shown 919

in Fig 8 for n1 = 5, n2 = 2. Fig 8 illustrates several pieces of evidence that the 920

dynamics presented are chaotic. First (Fig 8B), the time trace of X(T ) does not appear 921

to settle down to a fixed point, and oscillates but with local maxima that are variable in 922

height. Second (Fig 8C), a phase-space trace of Ẋ versus X occupies an entire region in 923

phase space, rather than being confined to a 1-dimensional loop as would be expected 924

for non-chaotic oscillation. Note that this implies chaos for many initial conditions, 925

although we only used a single initial condition [41]. Third (Fig 8D), the Fourier 926

transform of the dynamics exhibit a large number of peaks, indicating that the 927

oscillations are not made up of a simple combination of frequencies. 928

A parameter space in which γ2 is varied relative to γ1 = 1 (Fig 8E) shows regions of 929

chaotic behavior interspersed with simple oscillatory dynamics, akin to chaotic behavior 930

in many systems [41]. We only explored the parameter space for γ1 = 1, but both delays 931

appear to be important, not only their ratio or difference. In particular, there are no 932

oscillations for both delays less than one. A full exploration of the two-delay parameter 933

space is left to future work. 934

We also found chaotic dyanmics for dual positive/negative feedback (non-monotonic 935

regulation) with η1 = 15, η2 = 1, n1 = 11, n2 = −3 and delays as in Fig 8 (see Fig. S4). 936

Qualitatively, the time dynamics appear more pulsatile (Fig. S4B) than dual negative 937

feedback. This makes sense with previous reports of dual positive/negative feedback 938

demonstrating excitable behavior [97]. The attractor also has a somewhat different 939

profile, notably containing a hole in the covered phase space (Fig. S4C), and the Fourier 940

spectrum has a denser set of peaks (Fig. S4D). Given the consistent presence of an 941

attracting (stable) fixed point (X = 0), dual positive feedback cannot support chaotic 942

solutions [41]. 943

Note that chaotic solutions are not expected even if the delays are different but the 944

strengths and Hill coefficients are identical (i.e., η1 = η2 ≡ η and n1 = n2 ≡ n). One 945

can see this by linearizing 41 and noting the η and M parameters can be pulled out in 946

front of the delayed terms. Then assuming an ansatz solution of A exp(λT ) results in 947

λ+ ηMe−λ(γ1+γ2) + 1 = 0, (42)

which is equivalent to the characteristic equation for autoregulation (Eq 13) with 948

γ = γ1 + γ2. Thus the bifurcation boundaries will follow similar rules to autoregulation, 949

ruling out chaotic solutions. The same holds for unequal strengths and Hill coefficients 950

but equal delays, simply by replacing the coefficient ηM → η1M1 + η2M2. Since dual 951

positive feedback likewise does not support chaotic solutions (see above), for chaotic 952

solutions to occur via double feedback, there must be at least one negative feedback 953

arm, the delays must differ, and either the cooperativities or strengths must differ. If 954

biological systems evolved to avoid chaos [98,99], it may be that these conditions are 955

selected against, even if the double-feedback motif is not. The parameter space over 956

which the fixed point is stable has been analyzed by Mahaffy and Zak [44], showing it to 957

be in general formed by intersections of an infinite number of bifurcation curves. 958

For further exploration of double negative feedback and other delayed network 959

motifs that exhibit chaotic dynamics, see Suzuki, et al. [82]. 960

Key results for double feedback 961

1. Double feedback with a difference in delays between autoregulatory arms can lead 962

to chaotic dynamics. 963
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2. For chaotic solutions, the two feedback arms must have different cooperativities 964

and differ strongly in their delays. 965

3. Feedback need not be nonmonotonic for chaotic solution. 966

4. For chaotic solutions, at least one feedback arm must be repressive. 967

5. Simpler regulatory motifs cannot generate chaos. 968

6. A systematic analysis of the complete parameter space of double feedback is likely 969

to be very complex [44] and is left for future work. 970

Discussion 971

The origin of delays and their effect on network motifs. 972

The complex network of interactions in biological systems are often simplified for 973

analysis by focusing on small network motifs that aim to capture their essential 974

dynamics [2, 11, 16]. However, ignoring mechanistic detail can introduce effective delays 975

into the interactions, and ignoring these delays in a mathematical model can lead to 976

mischaracterization. In this work, we systematically studied delay differential equation 977

(DDE) models of basic network motifs and compared them to the corresponding 978

ordinary differential equation (ODE) models that lack explicit delays. 979

DDEs are well suited to characterizing the behavior of effective delays, because they 980

incorporate explicit lags into dynamical governing equations without reference to the 981

intermediate steps that give rise to them. In this work, we demonstrated 982

mathematically that ODE-modeled, multi-step cascades and directly delayed, 983

DDE-modeled cascades are nearly equivalent. Specifically, a cascade with no explicit 984

delays can be approximated well as a single regulatory step with delay. Similarly, we 985

showed that feedback cascades have very similar behavior to direct autoregulation. This 986

establishes the familiarly mechanistic, ODE-modeled basis [30,106,107] for the more 987

phenomenological, DDE-modeled regulation we focused on in this work. 988

Some details are lost in the DDE modeling simplification, such as the relative 989

dynamics of components, or how the phenomenological, single-step parameters arise 990

from the mechanistic steps. At the same time, however, DDE models show rich 991

dynamics such as oscillations and chaos with fewer equations, variables, and parameters. 992

Using simplified models based on DDEs we were able to provide complete 993

phenomenological definitions of some of the most basic motifs, including cascades, logic, 994

feedforward loops, autoregulation, multi-component feedback, and double feedback 995

(Table 3). We further showed that the delays often determine key motif properties, such 996

as the oscillation period in negative autoregulation, and pulse width and frequency 997

cutoff in incoherent feedforward motifs. Interplay of multiple delays (e.g., their sums 998

and differences) then play a similar role in multi-component feedback, for determining 999

absolute and relative oscillation periods, and in multiple feedback, for determining 1000

chaotic dynamics. 1001

When simplifying networks using delay-based models, one must decide which and 1002

how many regulation steps to contract. If all possible cascades are “contracted” to 1003

delayed direct regulation and all looped cascades are contracted to delay direct 1004

autoregulation, then every network boils down to its topology (i.e., the number of loops) 1005

along with the strength, delay, cooperativity (including sign specifying activation or 1006

repression), and leakage associated with every remaining regulation. Changing the 1007

topology, however, fundamentally changes the motif. For example, we showed that 1008

replacing the cascade arm of a feedforward loop with a delayed, single-step regulation 1009

reproduces feedforward behavior (Fig 6). However, if an autoregulatory loop existed 1010
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Motif ODE Cartoons DDE Cartoons Equations Key Findings

0: Direct regulation

YX

YX

YX
τ

Eq 5

Activators and inhibitors com-
bined via negative Hill coefficient.
Delay provides explicit timescale.
Fig 2.

I: Cascade

Y ZX

Y ZX

Y ZX

Y ZX

ZX
τ

Eq 9
ODE cascades can be reduced to
simple DDE regulation. Delays
sum. Fig 3.

II: Autoregulation

X

X

Xτ Eq 11

Full parameter space derived. De-
lays matter only for negative au-
toregulation. Fig 4, Fig. S1, Fig.
S2, Fig. S3.

III: Logic

Z RAND

X

Y

Z ROR

X

Y

Z R

X

Y

η1

η2
Eq 19

Sum of Hill terms yields all mono-
tonic logic gates in one param-
eter space. Delays not impor-
tant for steady state results, only
strengths. Fig 5, Table S1, Table
S2.

IV: Feedforward loop

Y

ZX

Y

ZX

Y

ZX

Y

ZX

Y

ZX

Y

ZX

Y

ZX

Y

ZX

ZX
Δτ

Eqs 20, 21

Capable of pulsing, signal filter-
ing by input pulse width or fre-
quency. All signal processing be-
havior is due to logic and differ-
ence in delays between arms. Fig
6.

V: Feedback loop

YX YX

YX YX

τ1

τ2

YX Eq 33

Delay sum governs oscillations,
which are transient for two repres-
sors (synchronous) and two acti-
vators (anti-synchronous). Delay
difference governs phase. Full pa-
rameter space derived. Fig 7.

VI: Double feedback Y ZX Xτ1 τ2 Eq 41

Chaos possible for two-delay feed-
back and not for simpler motifs
[42, 82]. Fig 8, Fig. S4. Future
work.

Complex networks

YX

Z

YX

Z

τ1

τ2

τ3
τ4

τ5τ6

Eqs S71,
S72, S74

Matrix analysis available (Ap-
pendix S9, Glass, et al. [32]).
Complex dynamics and spatial
behaviors possible. Future work.
Fig. S5.

Table 3. Summary of differences between ODE and DDE network regulation models and key findings. Each
DDE cartoon provides a simplified, unified model for several ODE cartoons.
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within this cascade (e.g., addition of self-activation to Y in Fig 6B), this would 1011

represent a fundamentally different network with likely different behavior. Importantly, 1012

if cascades are contracted without the addition of a delay, our results suggest that the 1013

model likely risks mischaracterizing the dynamics unless the individual steps are fast 1014

(i.e., production surpasses downstream half-maximal input much faster than it decays; 1015

in normalized terms, η � 1). If one is interested in modeling behavior of specific 1016

components relative to one another, these specific components can be incorporated 1017

without contraction. 1018

This ability to contract a network into a much smaller equivalent network (while 1019

preserving its topology) may aid in discovery of large-scale motifs that have important 1020

functions or that might otherwise be perceived as statistically insignificant. The motifs 1021

in this paper were originally discovered by scanning biological networks for subnetworks 1022

of n nodes that occur more frequently than expected by chance [11,16] (this in fact 1023

being the authors’ original definition of network motifs). However, this discovery 1024

method becomes increasingly difficult for n & 5 due to the combinatorial scaling of the 1025

number of possible motifs [108]. Performing a similar search on a contracted network 1026

would be equivalent to searching the original network for larger motifs, and places a 1027

stronger emphasis on topology than on number of components involved (e.g., X → Z 1028

being equivalent to X → Y → Z). While this can be done without DDEs, the 1029

introduction of delays allows one to perform the contraction while maintaining key 1030

information about the original dynamics. 1031

While our work has focused on a limited subset of network motif topologies, the 1032

same techniques can be applied to other more complex networks. Expanding on the 1033

eigenmode analysis we performed for multi-component feedback loops, one can describe 1034

the linear behavior of an arbitrary network near its fixed points by a matrix form of the 1035

characteristic equation (see Appendix S9, Fig. S5), J~a = 0 with 1036

Jij = (λ+ 1)δij + ηjMje
−γijλ. Diagonalizing J will yield a characteristic equation for 1037

each eigenmode, with a total number of eigenmodes corresponding to the number of 1038

components modeled in the network. Each mode can show bifurcations, yielding a 1039

potentially qualitatively rich set of dynamics. Not every mode will be equally important; 1040

those corresponding to the largest eigenvalues having the biggest effect on the results. 1041

Consider for example, lateral inhibition patterning, in which each cell represses the 1042

production of a protein Delta in immediately neighboring cells [26, 32,40]. In a 1043

one-dimensional tissue, the diagonal entries of J are λ+ 1, the off-diagonal entries are 1044

filled, and all other entries zero. We have previously shown that this system gives rise to 1045

an alternating spatial pattern in which “errors” in the pattern corresponding to 1046

unwanted eigenmodes are removed by increasing delay [32] to a bifurcation boundary in 1047

which only one desired mode has positive λ. Thus, large-scale networks modeled using 1048

the presented framework can provide predictions regarding rich dynamics of relevance to 1049

complex biological phenomena with relative modeling simplicity. 1050

Limitations of the current analysis and future directions. 1051

We have endeavored in this work to present a unified, comprehensive view of biological 1052

network motifs and delays therein, to analyze the effect of delays on the most common 1053

motifs, and to ascertain where such delays may or may not be important for biological 1054

function. Nonetheless, several aspects of these explicit-delay models have been left out 1055

of our analysis for simplicity and present rich areas for future study. We detail here 1056

such limitations of the present analysis. 1057

First, we did not incorporate any noise in our simulations, in order to clarify the 1058

analysis of the underlying equations. Biological systems are intrinsically noisy [109–111], 1059

and noise is known to affect dynamics of delay equations in sometimes unexpected 1060

ways [23,105,112,113]. It would be important to include an analysis of noise in future 1061
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work or in modeling specific biological systems. Reassuringly, our previous work on 1062

delays in lateral inhibition [32] showed no significant effects when the amplitude of the 1063

noise is significantly smaller than the strength of regulation. It therefore seems 1064

reasonable to expect that the main conclusions presented in this paper hold for similarly 1065

weak noise, although this has yet to be tested. 1066

Second, all our equations have used a constant delay. It is likely that in many 1067

biological contexts delays will be variable in time [43,114]. Others have studied the 1068

effect of variable and stochastic delays [43,113,115] (another form of noise), which 1069

complicate the picture we portray here, and whose effects may provide new insight into 1070

mechanisms of biological regulation [113]. For example, where we saw that 1071

multi-component feedback loops have transient oscillations that are most prominent 1072

where all delays are equal, delay distributions may expand the parameter regimes in 1073

which such transients are significant if the delay distributions overlap. 1074

Third, for all feedback or looped networks, we ran our simulations with initial 1075

conditions constant in time for all times smaller than zero (“constant histories”). 1076

Non-constant histories may show interesting effects on their own. For example, 1077

simulations of autorepression using Eq 11 show in-phase and anti-phase locking with 1078

constant histories regardless of the initial value, while sine-wave histories with 1079

randomized phase do not (see Fig. S6). 1080

Fourth, we focused almost entirely in this work on single-variable Hill-function 1081

regulation and linear degradation. While this covers many biological networks [65], it 1082

cannot represent all scenarios [33, 71]. For example, we noted that the sum-of-Hills logic 1083

recapitulates many known behaviors of feedforward loops, but a single-term function is 1084

needed to demonstrate fold-change detection [71]. Furthermore, zeroth-order [116] and 1085

nonlinear [117] degradation kinetics certainly play many roles not covered here, nor did 1086

we consider cases where removal terms include a delay. Similarly, we did not include any 1087

diffusion terms or partial derivative important in many pattern formation 1088

networks [118]. 1089

Finally, with the exception of Eq 41, we have not studied any equations in this work 1090

that have both feedback and multiple delays. This type of equation applies to any 1091

situation in which a protein, e.g., regulates its own production through two mechanisms, 1092

with each mechanism having its own delay. Mahaffy, et al. analyzed a linear version of 1093

such a DDE [44], showing that whether or not a fixed point is stable depends on the 1094

generally non-trivial intersection of an infinite set of bifurcation curves. Analyzing the 1095

situation in the nonlinear biological context is likely to be very challenging [44,46,52]. 1096

On a related note, Eq 41 is the only equation we studied that shows any indications 1097

of chaotic behavior for any parameters. This is not surprising for the non-feedback 1098

motifs, where there can only be transient dynamics for constant inputs (at steady state 1099

all variables depend algebraically on the upstream regulators, and one can simply plug 1100

in the input values to find the output) [65]. In general, the Poincaré-Bendixson 1101

theorem [41] proves a lack of oscillations for ODEs of dimension (number of 1102

components) less than 2 and lack of chaos for dimension less than 3. However, this does 1103

not hold for DDEs [41,42], because trajectories can cross themselves, which is in turn 1104

due to the fact that the current state depends on a whole history. The system is thus 1105

formally infinite-dimensional, since an infinite number of initial condition values (the 1106

whole history) must be specified to predict future behavior [56]. 1107

Despite this added complexity, Mallet-Paret and Sell proved that cyclic networks 1108

with monotonic, bounded regulation functions like the systems focused on in our work 1109

cannot result in chaotic behavior [42]. The activator-like Mackey-Glass equation [33], in 1110

contrast, has a non-monotonic regulation X(T − 1)/(1 +Xn(T − 1)), and is known to 1111

have chaotic solutions [33,104]. Likewise, more complicated networks with non-cyclic 1112

topologies such as double-negative feedback (e.g., Eq 41), where multiple delays affect a 1113
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single component, can have chaotic solutions. Future work can more fully explore the 1114

parameter spaces and derive analytical boundaries for double feedback and other 1115

chaos-producing networks [82]. 1116

Outlook 1117

Our results, many derived entirely analytically, provide simple behavioral descriptions of 1118

common network motifs in which the key phenomenological parameters of delay, 1119

regulatory strength, cooperativity, and leakage have defined roles. We believe that the 1120

simplicity of our models, despite their added mathematical complexity stemming from 1121

the use of delay differential equations, can serve as a powerful framework for analyzing 1122

regulatory networks. For example, determining whether biological networks can oscillate 1123

may amount to calculating an effective delay and regulatory strength and comparing to 1124

Fig 4E and Fig. S1. Designing synthetic biological oscillators could benefit from a 1125

similar procedure, adjusting parameters through genetic engineering to cross the Hopf 1126

bifurcation thresholds [23,31]. 1127

We have shown quantitatively when delays are necessary for behaviors such as 1128

oscillations. In contrast, our results also provide a strong prediction of where delays are 1129

not important. Delays do not affect steady states or logic of independent inputs in any 1130

network, Only a difference of delays between regulation arms is important in 1131

determining feedforward behavior. Only the sum of delays is important for determining 1132

onset of transient oscillations in feedback loops. 1133

Finally, we believe that the methods presented here for modeling biological networks 1134

with explicit delays may help resolve fundamental biological questions. For example, a 1135

comparison of negative feedback against multiple feedback may help determine whether 1136

chaos affects the cell cycle [99], or whether biology evolves to avoid double feedback due 1137

to its capacity for unpredictable output. Delays are often significant in multicellular 1138

signaling [32,40], and thus comparing effective delays against bistability boundaries can 1139

inform how realistic certain models of biological pattern formation may 1140

be [24,34,40,118–121]. Exploring “contracted” networks in which linear and looped 1141

cascades are replaced with single-step delayed regulation may help uncover new 1142

functional motifs in biological networks that are larger and more complex than those 1143

known today [108]. We hope that our work on the detailed mechanics of delay models in 1144

biological contexts will be helpful in studying and engineering a wide variety of 1145

phenomena, including transcription factor networks [11,26,61], cell cycles [99] other 1146

biological clocks [22,27,35], and pattern formation [32,122]. 1147

Materials and methods 1148

Analytics were in general performed by hand, and checked for validity using 1149

Mathematica. Numerical simulations were run in Matlab using the dde23 delay 1150

differential equation solver for DDEs and ode45 for ODEs. For autoregulation phase 1151

plots, simulations were run with 100 constant-history initial conditions spread 1152

logarithmically between 10−4 and 2η and run from T = 0 to T = 100(γ + 1). Solutions 1153

were considered stable if for all 100 simulations the maximum absolute value of the 1154

discrete derivative in the last three-quarters of the simulation time was less than 0.1. 1155

Stable solutions were sub-categorized as bistable if a histogram of final values over all 1156

100 solutions had more than 1 peak. Solutions were considered oscillatory if the average 1157

Fourier transform of the last three-quarters of the simulation time for all 100 solutions 1158

had more than zero peaks with amplitude (square root of power) greater than 100. 1159

Solutions were considered spiral if this oscillation condition held for the first one-quarter 1160

of the simulation time only. For two-component loops, initial conditions were used that 1161
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ranged between 0 and max(η1, η2), for equal X and Y and for apposing X and Y . 1162

Bistability was determined as for autoregulation, and a cutoff of 0.05 was used to 1163

determine “low” values. All simulation histories were constant except where indicated 1164

in Fig. S6. Specific parameter values and simulation details are given in the figures 1165

and/or made explicit in the MATLAB code in Data S1. 1166

Data availability 1167

All raw data and code is included in the supplementary material (Data S1). 1168
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