
From bioinformatics user to bioinformatics engineer: a
report

Gilderlanio Santana de Araújo
gilderlanio@gmail.com

Laboratório de Genética Humana e Médica

Programa de Pós-Graduação em Genética e Biologia Molecular

Instituto de Ciências Biológicas

Universidade Federal do Pará, Belém, Brazil.

Abstract1

Teaching computer programming is not a simple task and it is challenging to introduce the concepts of program-2

ming in graduate programs of other fields. Little efforts have been made on engaging students in computational3

development after programming trainings. An emerging need is to establish subjects of bioinformatics and pro-4

gramming languages in genetics and molecular biology graduate programs, when students in these degree programs5

are immersed in a sea of genomic and transcriptomic data, which demands proficient computational treatment.6

I report an empirical guideline to introduce programming languages and recommend Python as first language7

for graduate programs in which students were from genetics and molecular biology backgrounds. Including the8

development of programming solutions related to graduate students’ research activities may improve program-9

ming skills and better engagement. These results suggest that the applied approach leads to enhanced learning10

of introductory to autonomy in highly advanced programming concepts by graduate students. This guide should11

be extended for other research programs.12

1 Introduction13

Bioinformatics is an interdisciplinary area that requires a depth knowledge in computational, statisti-14

cal/mathematical and life sciences subjects. In 2016, the ISCB Education Committee’s Curriculum Task15

Force described needs for bioinformatics education and competencies of bioinformatics engineers who16

actively develops algorithms and computational systems, as well as of bioinformatics users that explore17

computational infrastructures and softwares in specific contexts to work on data analysis of different18

sorts, such as population genetics, phylogeny, medical genetics (Mulder et al., 2018; Welch et al., 2016).19

Initiatives such as The European Bioinformatics Institute (EMBL-EBI - https://www.ebi.ac.uk/), the20

Pan African bioinformatics network for H3Africa (H3AbioNet - www.h3abionet.org), the Bioinformatics21

Multidisciplinary Environment (BioME - https://bioinfo.imd.ufrn.br/) and the Bioinformatics Interunits22

Program of the Federal University of Minas Gerais (http://www.pgbioinfo.icb.ufmg.br/) extensively pro-23

mote academic education and training in bioinformatics subjects as a way to supply the demand for24

bioinformatics engineers and users capable of processing and analyzing the high volume of data from the25

’omics’ sciences, such as genomics, transcriptomics and proteomics.26

1

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.08.03.225979doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.03.225979
http://creativecommons.org/licenses/by-nd/4.0/

2 Methods 2

Despite the number of programs in Bioinformatics, Attwood et al. (2017) identified a strong bias27

for conducting short courses to fill skill gaps towards bioinformatics analysis and, in the same study,28

the authors state that it is more necessary to mix bioinformatics subjects with life sciences programs.29

Next generation bioinformatics must be supported by feasible and engaging curricula in their graduate30

programs. The need for effective programming training is emergent, due to the problems of computational31

biology that have required implementation of robust algorithms, which must be able to handle large32

volumes of data generated by high-throughput sequencing technologies, for example.33

Currently, most of life sciences graduate students are submerged in a sea of ”omics” data and their34

educational programs have shown an inhibition or have adapted their curriculum program to include35

computer programming and information technology-related trainings. Teaching algorithms, logics or36

programming languages, in many cases, is a challenging task. Interestingly, bioinformatics candidate37

students in the North of Brazil are predominantly from different undergraduate backgrounds, in particular38

biology, biomedical sciences, medical schools, as further discussed in subsequent sections. In addition,39

there is a lack of methodologies aimed at real-time learning that demystifies and motivates the student to40

learn programming languages, which can favor the use and application of computational thinking after41

the end of the course.42

Here, I report the experience of teaching programming languages to students of the Graduate Program43

in Genetics and Molecular Biology (PPGBM - http://ppgbm.propesp.ufpa.br/) at the Federal University44

of Pará, as well as the description of an empirical method for keeping these students engaged in the45

development of their computational solutions, after the training time. I proposed a course entitled46

”Programming for Bioinformatics with Python”, in which I included core topics of Python, as well as47

empirical software engineering tasks, such as: definition of the scope of the candidates’ research project48

and functional requirement elucidation. I adopted ”divide and conquer” paradigm to script programming,49

pattern recognition of their data and processes, which suits well biological application development.50

Practical, interactive, and personalized activities in the context of each candidate in a real-time way51

improves consolidating concepts of programming languages and autonomy for life science candidates,52

which, in practice, put them in the path to become bioinformatics engineers.53

2 Methods54

2.1 Python for Bioinformatics55

Python is a hybrid programming language that allows scripting in a functional and object-oriented56

paradigm (https://www.python.org/doc/). By its resources, Python is considered a production-ready57

language, provides clear syntax and semantics, taking advantages of mandatory code indentation, which58

improves readability and refactoring. Python prioritizes the developer experience, making many software59

engineers choose it as a programming language, based on their potential for productivity, learning curve60

cost, and computational support.61

Python can be applied for general purposes, and have increased its use in bioinformatics. A survey62

of programming languages for bioinformatics was made on GitHub and points out the massive and63

predominant use of Python for genomic analysis (Suarez et al., 2018).64

Python improves productivity on the implementation of pipelines and integration of scientific work-65

flows. Python shows abundance of statistical libraries and supports mathematical computation with high66

potential for data science. Lately, some libraries in Python have been implemented with functions for67

large scale statistics, machine learning and high quality graphical representation of data. These are new68

features in Python, which aggregates some immeasurable features of the R language context, as for data69

visualization and data manipulation in dataframes structures.70

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.08.03.225979doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.03.225979
http://creativecommons.org/licenses/by-nd/4.0/

2 Methods 3

2.2 Course structure and execution period71

The course “Programming for Bioinformatics with Python” was designed to provide a basic knowledge in72

high-level programming languages for graduate students in genetics and molecular biology, at the Federal73

University of Pará.74

This curricular component is a way of improving computational skills, encouraging and arousing75

autonomy in algorithm implementation for processing and analyzing biological data within the context76

of a master, doctoral or post-doctoral research project of candidates with little or no knowledge of77

programming languages.78

The course was offered twice, from March to April 2019, and for the same months in 2020. The first79

class was formed by 16 students with little or no programming experience, while the second class was80

formed by 10 students with a similar background. In both periods, the programming classes had a 45-hour81

workload, with 15 classes of three hours. As of March 18, 2020, due to quarantine restrictions caused by82

the pandemics of COVID-19 in Brazil, all classess and monitoring of students’ project development in83

the second course started to be conducted remotely and this was maintained until the end of the course.84

2.3 Bibliography and Integrated development environment (IDE)85

The course was conducted with theoretical and essentially practical classes based on the computational86

biology literature. I adopted three reference textbooks: Bioinformatics Algorithms: Design and Imple-87

mentation in Python (Rocha and Ferreira, 2018), Learning python: Powerful object-oriented program-88

ming (Lutz, 2013) and the Introdução a Programação para Bioinformática com Biopython, which is only89

available in Brazilian Portuguese (Mariano et al., 2015).90

Differently from some courses, that use terminal or simple text-based editors, we conducted pro-91

gramming practical classes using the PyCharm Community (https://www.jetbrains.com/pt-br/), which92

is a professional integrated development environment (IDE) dedicated to improve Python programming.93

Linux Ubuntu environment was used for running scripts by command line.94

2.4 Computer programming and research topics95

I designed the course structure with 15 classes, 3 hours each, which included Python programming and96

research activities in parallel (see Figure 1). A total of 10 theoretical-practical lessons were performed,97

covering the following topics: introduction to computer programming; aspects of programming with98

Python (v3.0); data types; logical and arithmetic operations; data structures (list, dictionaries, tuples99

and sets); manipulation of strings; conditional and iterative structures; built-in functions, parameters,100

implementing new and reusing; using the command line and importing system libraries; file manipulation101

(creating, merging and writing raw data files). In the last practical lessons of the course, we explored102

libraries, such as BioPython (https://biopython.org/), Pandas (https://pandas.pydata.org/) and Seaborn103

(https://seaborn.pydata.org), that are proposed to assist routines for data manipulation and visualization.104

In parallel to programming Python topics, the course was designed to execute students’ research105

tasks. First, at the beginning of the course, all students were asked to provide a summary of their106

graduate projects. Second, problems in computational biology must be identified within the scope of107

each research project. Then, we were able to draw an overview of computational solutions, elicit and108

select functional requirements for bioinformatics problems, considering the time and scope. We adopted109

a divide-and-conquer strategy to implement solutions in the course time.110

Five classes were used to coordinate and supervise the development of computational solutions in can-111

didates’ research context. The project development included four steps: a) initialization of bioinformatics112

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.08.03.225979doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.03.225979
http://creativecommons.org/licenses/by-nd/4.0/

2 Methods 4

project development after lessons covering BioPython, Pandas and Seaborn; b) monitoring project de-113

velopment, which includes solving programming questions; c) ending project development and preparing114

presentations; and, finally, d) in-person or remote presentation of final projects to classmates.115

Fig. 1: Outline of the topics covered in the discipline of Programming for Bioinformatics with Python
(left) and parallel research activities (right). Research activities were performed to engage the
students with Python programming in face of their graduate research projetc.

In the classes on data types and data structures, we explored how “omics” data could be modeled116

and loaded in memory. Many research routines in genomics and transcriptomics were discussed, as well117

as how to use Python resources to model and implement solutions. For example, a DNA sequence can118

be simply represented by a string, or even by a more robust object like Bio.Seq from BioPython library.119

The Seq object provides methods similar to those implemented for strings, such as count, find, split120

and strip. In addition, the Seq object has an alphabet as an attribute, which can be instantiated from121

the Bio.Alphabet class, allowing you to build objects with a generic DNA or a standard alphabet of122

International Union of Pure and Applied Chemistry (IUPAC, https://iupac.org/. The Seq object also123

provides specific methods for manipulating DNA sequences, such as to obtain the complement, reverse124

complement and RNA sequence by transcription. On a large scale, the Bio.SeqIO object allows us to125

read sequences stored in .fasta files, which is the standard file to represent both nucleotide and peptide126

sequences.127

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.08.03.225979doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.03.225979
http://creativecommons.org/licenses/by-nd/4.0/

2 Methods 5

2.5 Continuous pratical lessons128

We adopted a continuously and individually assessment through problem-solving and mainly development129

of projects in Python language. The final projects were of mandatory public presentation in the case130

of the first course, and remotely via Google Hangouts, in the case of the second course, as previously131

mentioned.132

For example, a simple solution for calculating the genotype frequencies based on allele frequencies133

was requested, given that it is a routine task in the context of population genetics studies. The imple-134

mented algorithm must receive the frequencies of two alleles (A and B) of a genomic variant and print135

the genotypic frequencies at the terminal. Starting from this task, students were required to have a136

simple program, which would receive allele frequencies as input, and the system should inform genotype137

frequencies (AA, AB, BB).138

A possible solution to this problem was implemented in Listing 1. In this example, we explored pro-139

gramming concepts of using Python libraries, reading and processing data from shell terminal, converting140

data types, conditional structures, arithmetic operations and user interaction.141

1 import sys142

2143

3 # Capture from command line the frequencies of allele A and allele B.144

4 frq_allele_a = float(sys.argv [1])145

5 frq_allele_b = float(sys.argv [2])146

6147

7 # Validation of allele frequencies.148

8 if (frq_allele_a + frq_allele_b == 1):149

9150

10 frq_aa = frq_allele_a ** 2151

11 frq_ab = 2 * frq_allele_a * frq_allele_b152

12 frq_bb = frq_allele_b ** 2153

13 print("Freq. AA: ", frq_aa)154

14 print("Freq. AB: ", frq_ab)155

15 print("Freq. BB: ", frq_bb)156

16 else:157

17 print("Allele frequencies must be equals 1.")158

Listing 1: Code example to calculate genotypic frequencies of a population from allele frequencies.

2.6 Course structure evaluation159

For course evaluation purposes, a Google Forms was created to question students of both courses about160

basic training, the context in which the students developed or still develop their research project, which161

packages they used, as well as whether the student continued to work with Python. The questions that162

formed the research were defined as follows:163

• Enter your graduation course.164

• Have you continued to develop analyses using Python?165

• In what context/theme did you develop the course project in Python?166

• Which libraries, packages or modules do you use in your analyses?167

We performed a qualitative analysis based on the students’ discursive responses to assess the impact168

of the proposed course in their research after the end of the training period, as well as to understand the169

needs of genetic and molecular biology graduate programs regarding the development of bioinformatics170

tools and future training.171

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.08.03.225979doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.03.225979
http://creativecommons.org/licenses/by-nd/4.0/

3 Results 6

3 Results172

The questionnaire via Google Forms was answered by 13 students distributed from Graduate Program173

in Genetics and Molecular Biology and from Graduate Program in Oncology and Medical Sciences, both174

at the Federal University of Pará. The students presented different undergraduate degree backgrounds,175

being predominant the education in Biology (n = 6). Only one of the students reported a previous176

training in a field related to technology and data processing. The entire distribution of students by area177

is shown in Figure 2A.178

In the form, there was a question on whether these students have developed their analysis using Python179

since the end of the course. On that matter, a group of 84 % of the students reported a continuous use180

of Python libraries for their research activities, while only two answered that they have not been using181

Python.182

Fig. 2: Statistical summary of the Python discipline profile. (A) Distribution of students by undergradu-
ate degree. (B) Proportion of students who continue to develop their Python projects after Python
training. (C) Word cloud of the biological contexts, regarding the developed projects. (D) Python
libraries used for the development of students’ graduate projects.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.08.03.225979doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.03.225979
http://creativecommons.org/licenses/by-nd/4.0/

4 Discussion 7

From the students’ discursive response, I analyzed the context in which the projects were developed183

and which libraries in Python were used to solve their bioinformatics research problems. In Figure ?? C,184

a word cloud summarizes several scopes related to biological fields and molecular and genetic elements.185

All candidates have developed scripts to process Next-Generation Sequencing (NGS) data, being mostly186

studies related to population genetics and data integration of coding and non-coding RNA databases.187

In the context of each research projects, most candidates have implemented routines for extraction,188

loading and transformation of biological data for analysis. Data processing is a task that cost most of189

the time in implementing computational pipelines, for example input data for statistical tests, such as190

Fisher Test and Linear and Logistic regressions for studies of population genetics and gene expression,191

that require quality controls and format conversions. Other interesting analysis was a script developed to192

explore repeat elements in DNA sequences, which are short sequence of characters with 3, 4, 5 in length,193

that was screened in genome sequences of fishes. Large scale data were used by these students, such as194

databases that included 1000 Genomes Project (Consortium, 2010), Geuvadis (Lappalainen et al., 2013),195

circBase (Glažar et al., 2014), mirTArbase (Chou et al., 2017), pirBase (Wang et al., 2018) and The196

Cancer Genome Atlas Program (Weinstein et al., 2013).197

We found a predominance of data science-related libraries (see word cloud in Figure 2D) for genomic198

and transcriptomic analysis. More sophisticated analytic scripts were generated through the application199

of machine learning algorithms. In Python, several specialized libraries were adopted, such as BioPython,200

GenePop, Pandas, Seaborn, Scikit-learn and scikit-image. Based on these findings, I strong recommend201

data science-related courses for graduate students in Genetics and Molecular Biology in addition to202

Biostatiscs.203

As for reasearch topics, different themes were reported. An example was an analysis implemented in204

Python that aimed to perform expression quantitative trait analysis, in order to investigate the influence205

of polymorphisms on gene expression. This analysis was performed regarding genomic and transcriptomic206

data for African and European populations. Data were extracted from gEUVADIS and sample sequencing207

from the 1000 Genomes Project(Consortium, 2010; Lappalainen et al., 2013). Initially, the LabelEnconder208

function of the sklearn.preprocessing package was used to encode the genotypes AA, AB, and BB in 0,209

1, and 2, respectively. Then, the function snphwe library supports us to evaluate the Hardy-Weinberg210

Equilibrium (HWE) for each polymorphism. The shapiro function from scipy.stats was used to assess211

the normality of gene expression data. For graphical representations, histograms were used to draw the212

distribution of gene expression and boxplots were used to represent the regressions. For this purpose, the213

following libraries were used: matplotlib.pyplot, seaborn, numpy and statannot.214

4 Discussion215

Here, I discuss and report the experience of teaching high-level programming languages, like Python,216

adding in parallel the active and analytic activities for the development of computational solutions,217

implemented by graduate students, with a focus on developing scripts for their research projects. We218

designed the training to cover the fundamental aspects of programming languages and research activities219

as differential on engaging students on scripting.220

A high heterogeneity of ‘omics’ data in the candidate’s research projects was notable. The greater the221

number of students, the greater the level of heterogeneity in research and development projects. Then, I222

carried out parallel data description and modeling activities in Python, as a way of better comprehending223

data types, data structures and file formats, which allowed a better perception to students regarding the224

manipulation of their data and projects.225

Harmony was aimed between the research activities of graduate students and the development of their226

own solutions for their research projects. Remaining to develop solutions is no occasion. In most of the227

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.08.03.225979doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.03.225979
http://creativecommons.org/licenses/by-nd/4.0/

5 Conclusion 8

reported methodologies, only the theoretical-practical basis in programming languages is explored, being228

necessary to instigate candidates’ involvement spirit, that is, to make them less passive in the learning229

process and often dependent on computer specialists. This continuous engagement in the development230

of computational solutions is probably a reflection of the rapid and satisfactory return of parallel and231

applied activities of programming and own research activities. In this context, it is recommended to232

merge research activities in programming language subjects for graduate students of life sciences.233

Notably, implementing solutions for student’s research projects and obtaining quick solutions for their234

problems enhances their interest and curiosity to implement and use other Python resources not explored235

in the course. This is an aspect that highlights a level of autonomy achieved by students on developing236

their own solutions.237

With the described approach, new perspectives on training graduate students were conceived, with238

subjects related to programming languages. These students are now able to deal with bioinformatics239

problems that require analysis of large scale data, such as genome sequences and transcriptomic data.240

The course methodology consequently demystifies the use of programming languages and presents itself241

as a unique opportunity for the application of computer knowledge, to achieve quick solutions.242

Thus, I believe that the present work may contribute with ideas in the practical teaching of program-243

ming languages in the ”omics” era, being a facilitator in the construction of knowledge in life sciences244

undergraduate and graduate programs.245

I encourage the development of technical skills with professional tools such as PyCharm, qualifying246

the student to enter the industry market. In addition, this report reinforces the approaches of adapt-247

ing bioinformatics curricula for data science subjects, whereas mentioned techniques and methods are248

common in several research contents.249

5 Conclusion250

Genomics and transcriptomics are two research areas of constant application of data science methods251

and techniques to perform analysis on large data volumes. Python programming language have stood252

out in the scientific and industrial environment as support languages for building solutions. Among253

the ”omics” sciences, this language has reached out by providing several tools for general purposes.254

Modules like BioPython, scikit-bio, scikit-learn, Pandas and seaborn have been used successfully by most255

graduate students for solving statistical problems with machine learning and functions for large-scale256

data manipulation.257

Considering that only providing the essentials of programming languages might not give satisfactory258

results, adopting real-time computational development tasks to solve problems in each student’s research259

context entails the engagement in the development of scripts that automate their daily tasks in labora-260

tories. This aspect has been the motivational element to make the students have a real perception of the261

applicability of their own scripts or computational pipelines. This fact corroborates the high percentage262

of students who still use Python after the end of the course.263

In this way, I believe that this report contributes to consolidate new teaching methodologies, including264

applied classes of high-level programming languages like Python for bioinformatics in the era of ”omics”265

sciences.266

Acknowledgements267

Thanks to all graduate students that answered the online questionnaire and remain doing science and268

scripting in Python, even in pandemic situations. The outcomes of that questionnaire provided a helpful269

feedback to improve programming language training.270

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.08.03.225979doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.03.225979
http://creativecommons.org/licenses/by-nd/4.0/

5 Conclusion 9

References271

Attwood, T. K., Blackford, S., Brazas, M. D., Davies, A., and Schneider, M. V. (2017). A global272

perspective on evolving bioinformatics and data science training needs. Briefings in Bioinformatics,273

20(2), 398–404.274

Chou, C.-H., Shrestha, S., Yang, C.-D., Chang, N.-W., Lin, Y.-L., Liao, K.-W., Huang, W.-C., Sun,275

T.-H., Tu, S.-J., Lee, W.-H., et al. (2017). Mirtarbase update 2018: A resource for experimentally276

validated microrna-target interactions. Nucleic acids research, 46(D1), D296–D302.277

Consortium, . G. P. (2010). A map of human genome variation from population-scale sequencing. Nature,278

467(7319), 1061.279

Glažar, P., Papavasileiou, P., and Rajewsky, N. (2014). Circbase: A database for circular rnas. Rna,280

20(11), 1666–1670.281

Lappalainen, T., Sammeth, M., Friedländer, M. R., Ac‘t Hoen, P., Monlong, J., Rivas, M. A., Gonzalez-282

Porta, M., Kurbatova, N., Griebel, T., Ferreira, P. G., et al. (2013). Transcriptome and genome283

sequencing uncovers functional variation in humans. Nature, 501(7468), 506–511.284

Lutz, M. (2013). Learning python: Powerful object-oriented programming . ” O’Reilly Media, Inc.”.285

Mariano, D. D. C., Barroso, J. R. P., Correia, T. S., and Melo-Minardi, R. C. (2015). Introdução à286

Programação para Bioinformática com Biopython, volume 1. CreateSpace Independent Publishing287

Platform, 3 edition.288

Mulder, N., Schwartz, R., Brazas, M. D., Brooksbank, C., Gaeta, B., Morgan, S. L., Pauley, M. A.,289

Rosenwald, A., Rustici, G., Sierk, M., et al. (2018). The development and application of bioinformatics290

core competencies to improve bioinformatics training and education. PLoS computational biology ,291

14(2), e1005772.292

Rocha, M. and Ferreira, P. G. (2018). Bioinformatics Algorithms: Design and Implementation in Python.293

Academic Press.294

Suarez, C. G. H., Burbano, M. E. G., Guerrero, V. A. B., and Tovar, P. A. M. (2018). Bioinformatics295

software for genomic: a systematic review on github. Technical report, PeerJ Preprints.296

Wang, J., Zhang, P., Lu, Y., Li, Y., Zheng, Y., Kan, Y., Chen, R., and He, S. (2018). Pirbase: A297

comprehensive database of pirna sequences. Nucleic acids research, 47(D1), D175–D180.298

Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R. M., Ozenberger, B. A., Ellrott, K., Shmule-299

vich, I., Sander, C., Stuart, J. M., Network, C. G. A. R., et al. (2013). The cancer genome atlas300

pan-cancer analysis project. Nature genetics, 45(10), 1113.301

Welch, L., Brooksbank, C., Schwartz, R., Morgan, S. L., Gaeta, B., Kilpatrick, A. M., Mietchen, D.,302

Moore, B. L., Mulder, N., Pauley, M., et al. (2016). Applying, evaluating and refining bioinformatics303

core competencies (an update from the curriculum task force of iscb’s education committee). PLoS304

computational biology , 12(5), e1004943.305

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.08.03.225979doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.03.225979
http://creativecommons.org/licenses/by-nd/4.0/

