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 32 

Abstract 33 

 34 

People adjust their learning rate rationally according to local environmental statistics and calibrate such 35 
adjustments based on the broader statistical context. To date, no theory has captured the observed range of 36 
adaptive learning behaviors or the complexity of its neural correlates. Here, we attempt to do so using a 37 
neural network model that learns to map an internal context representation onto a behavioral response via 38 
supervised learning. The network shifts its internal context upon receiving supervised signals that are 39 
mismatched to its output, thereby changing the “state” to which feedback is associated. A key feature of 40 
the model is that such state transitions can either increase learning or decrease learning depending on the 41 
duration over which the new state is maintained. Sustained state transitions that occur after changepoints 42 
facilitate faster learning and mimic network reset phenomena observed in the brain during rapid learning. 43 
In contrast, state transitions after one-off outlier events are short-lived, thereby limiting the impact of 44 
outlying observations on future behavior. State transitions in our model provide the first mechanistic 45 
interpretation for bidirectional learning signals, such the p300, that relate to learning differentially 46 
according to the source of surprising events and may also shed light on discrepant observations regarding 47 
the relationship between transient pupil dilations and learning. Taken together, our results demonstrate that 48 
dynamic latent state representations can afford normative inference and provide a coherent framework for 49 
understanding neural signatures of adaptive learning across different statistical environments.  50 

 51 

Significance Statement: 52 

How humans adjust their sensitivity to new information in a changing world has remained largely an open 53 
question. Bridging insights from normative accounts of adaptive learning and theories of latent state 54 
representation, here we propose a feed-forward neural network model that adjusts its learning rate online 55 
by controlling the speed of transitioning its internal state representations. Our model proposes a mechanistic 56 
framework for explaining learning under different statistical contexts, explains previously observed 57 
behavior and brain signals, and makes testable predictions for future experimental studies.  58 

 59 

Introduction 60 

People and animals are often required to update behavior in the face of new information. While standard 61 
supervised learning or reinforcement learning models have shown great success in performing particular 62 
tasks and explaining general trends in behavior, they lack the flexibility of biological systems, which seem 63 
to adjust the influence of new information dynamically, especially in environments that evolve over time 64 
(Behrens, Woolrich, Walton, & Rushworth, 2007; Donahue & Lee, 2015; Farashahi, Donahue, Hayden, 65 
Lee, & Soltani, 2019; Li, Nassar, Kable, & Gold, 2019; Massi, Donahue, & Lee, 2018; Nassar & Gold, 66 
2010). Recent advances in understanding these adaptive learning behaviors have relied on probabilistic 67 
modeling to better understand the computational problems that organisms face for survival in their everyday 68 
life (Soltani & Izquierdo, 2019). 69 

Bayesian probability theory has been extensively applied to describing adaptive learning algorithms in 70 
changing environment to provide normative accounts for learning behavior. Probabilistic models prescribe 71 
learning that is more rapid during periods of environmental change and slower during periods of stability 72 
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(Adams & MacKay, 2007; Behrens et al., 2007; Nassar & Gold, 2010; Wilson, Nassar, & Gold, 2010). 73 
These models have provided insight into why people seem to adjust learning according to their level of 74 
uncertainty (Browning, Behrens, Jocham, O’Reilly, & Bishop, 2015; Muller, Mars, Behrens, & O’Reilly, 75 
2019) and the probability with which an observation reflects a changepoint (Adams & MacKay, 2007; 76 
Nassar, Wilson, Heasly, & Gold, 2010). In this framework, the human brain is viewed as implementing an 77 
optimal learning algorithm that embodies the statistical properties of the world it operates in (Meyniel & 78 
Dehaene, 2017; O’Reilly, 2013).  79 

While probabilistic modeling provides an ideal observer account for many of the adjustments in learning 80 
rate observed in humans and animals (Behrens et al., 2007; Nassar, Bruckner, & Frank, 2019; Nassar & 81 
Gold, 2010), it has thus far failed to clarify the underlying neural mechanisms. One issue is that exact 82 
Bayesian inference can be closely approximated by many qualitatively different algorithms (Bernacchia, 83 
Seo, Lee, & Wang, 2011; Farashahi et al., 2017; Iigaya, 2016; Mathys, Daunizeau, Friston, & Stephan, 84 
2011; Nassar et al., 2010; Wilson, Nassar, & Gold, 2013; A. J. Yu & Dayan, 2005). One such approximation 85 
that relies on a single dynamic learning rate can capture behavior across a wide range of statistical 86 
environments (Nassar, Waltz, Albrecht, Gold, & Frank, 2021). However, direct implementation of this 87 
model requires a dynamic learning rate signal that is invariant to statistical context – that is to say, if 88 
adaptive learning is accomplished through adjustments of a learning rate, then some brain signal must 89 
reflect the “learning rate” – and do so across all statistical contexts. Such a learning rate signal has yet to 90 
be observed in the brain, despite several attempts to do so across different statistical contexts (D’Acremont 91 
& Bossaerts, 2016; Li et al., 2019; Nassar, Bruckner, et al., 2019). In contrast, brain signals that predict 92 
more learning in discontinuously changing environments (Behrens et al., 2007; Jepma et al., 2016; 93 
McGuire, Nassar, Gold, & Kable, 2014; Nassar et al., 2012; O’Reilly et al., 2013), do not do so consistently 94 
across different statistical conditions (D’Acremont & Bossaerts, 2016). For example, feedback locked P300 95 
signals, which positively correlate with learning in discontinuously changing environments (Jepma et al., 96 
2018, 2016) , negatively correlate with learning in environments that contain occasional outlier (oddball) 97 
events (Nassar, Bruckner, et al., 2019). These observations run contrary to models that implement learning 98 
rate adjustments: if the brain adjusts a latent variable that controls “learning rate”, this signal should 99 
correlate with learning in any context with measurable adjustments of learning – for example, when the 100  
signal is stronger, consistently indicate more learning. Other approximations to normative learning have 101  
been more closely connected to specific neural signals, but fail to capture the range of behaviors displayed 102  
by people, for example the ability to immediately discount past experience after a changepoint (Bernacchia 103  
et al., 2011; Farashahi et al., 2017; Mathys et al., 2011), or the ability to calibrate learning across different 104  
statistical environments (Behrens et al., 2007). In sum, while previous models have explored the potential 105  
neural mechanisms for adaptive learning, no algorithm has captured the range of human behavior and its 106  
neural correlates across generative structures.  107  

Here we build such a generalized framework based on the idea that adaptive learning is accomplished by 108  
controlling internal representations according to environmental structure (L. Q. Yu, Wilson, & Nassar, 109  
2021). We implement this idea with a feed-forward neural network model that maps an internal context 110  
representation (which can be thought of as its “mental context” and serves to organize learning across events 111  
much like the state in a reinforcement learning model) onto a continuous action space in order to perform 112  
a predictive inference task. We show that the effective learning rate of the model is proportional to the rate 113  
at which its internal context evolves in time, and that better model performance can be achieved when 114  
context transitions are discontinuous and elicited by surprising events. Furthermore, we show that context 115  
transitions can speed learning after changepoints, or slow them after oddball events, assuming appropriate 116  
state transitions occur between trials (L. Yu, Wilson, & Nassar, 2020). Our model produces these behaviors 117  
without an explicit representation of learning rate, and instead relies on an internal context that transitions 118  
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rapidly after surprising events much like patterns of activity previously observed in prefrontal cortex 119  
(Karlsson, Tervo, & Karpova, 2012; Nassar, McGuire, et al., 2019).  120  

Furthermore, it requires context transition signals that bidirectionally affect learning according to statistical 121  
context (changepoint versus oddball), providing a mechanistic explanation for feedback-locked P300 122  
signals that show the same complex relationship to learning (Nassar, Bruckner, et al., 2019), and potentially 123  
shedding light on discrepant relationships between pupil diameter and learning that have been reported 124  
(compare Nassar et al., 2012 to O’Reilly et al., 2013). Taken together, our results support the idea that 125  
adaptive learning behavior emerges through abrupt transitions in mental context. Under this view, we argue 126  
that learning rate dynamics emerge as a consequence of changes in the internal representations to which 127  
learning is bound, and that the brain has no need to represent a global learning rate signal directly.  128  

Methods 129  

Experimental task:  130  

We examine human and model behavior in a predictive inference task that has been described previously 131  
(McGuire et al., 2014; Nassar & Troiani, 2020). The predictive inference task is a computerized task in 132  
which an animated helicopter drops bags in an open field. In the pre-training session, human subjects 133  
learned to move a bucket with a joystick beneath the helicopter to catch bags that could contain valuable 134  
contents. During the main phase of the experiment, the helicopter was occluded by clouds and the 135  
participants were forced to infer its position based on the locations of bags it had previously dropped.  136  

Our initial simulations focus on dynamic environments in which surprising events often signal a change in 137  
the underlying generative structure (changepoint condition; figures 1-5). In the chanagepoint condition, bag 138  
locations were drawn from a distribution centered on the helicopter with a fixed standard deviation of 25 139  
(unless otherwise specified in the analysis). The helicopter remained stationary on most trials, but 140  
occasionally and abruptly changed its position to a random uniform horizontal screen location. The 141  
probability of moving to a new location on a given trial is controlled by the hazard rate (𝐻 = 0.1).  Unless 142  

otherwise noted, our modeling results are presented with 32 simulated subjects, to correspond to the sample 143  
size in (McGuire et al., 2014).  144  

We also considered a complementary generative environment in which surprising events were unrelated to 145  
the underlying generative structure (oddball condition; figure 6)(Nassar & Troiani, 2020). In the oddball 146  
condition, the helicopter would gradually move in the sky according to a Gaussian random walk (drift rate 147  

(𝐷𝑅) = 10). In the oddball condition bags were typically drawn from a normal distribution centered on the 148  
helicopter as described above, but on occasion a bag would be dropped in random location unrelated to the 149  
position of the helicopter.  The location of an oddball bag was sampled from a uniform distribution that 150  
spanned the entire screen. The probability of an oddball event was controlled by a hazard rate (𝐻 = 0.1). 151  

Normative learning model:  152  

A simple delta rule can perform the predictive inference by incrementally updating beliefs about the 153  
helicopter location according to prediction errors: 154  

𝐵𝑡+1 =  𝐵𝑡 +  𝛼𝛿     (1) 155  

𝛿 = 𝐵𝑎𝑔 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑡) − 𝐵𝑡(𝑡)     (2) 156  

here 𝐵 is belief about the helicopter position on each trial, 𝛿 is the prediction error observed on that trial, 157  

and 𝛼 is the learning rate. With a constant 𝛼, the model assigns the same weight to all predictions and 158  
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outcomes. Previous work has shown that Bayesian optimal inference can be reduced to a delta rule learning 159  
under certain approximations, leading to normative prescriptions for learning rate that are adjusted 160  
dynamically (Nassar, Bruckner, et al., 2019; Nassar et al., 2010). The resulting normative learning model 161  
takes information which human subjects would normally obtain during the pre-training sessions including 162  
Hazard rate and standard deviation, but also computes two latent variables, by using the trial-by-trial 163  
prediction error: 1) changepoint probability which is computed after an outcome is observed and indicates 164  
the probability that the observed outcome has reflects a change in the helicopter location, and 2) relative 165  
uncertainty which is computed before making the next prediction and indicates the models uncertainty 166  
about the location of the helicopter. Detailed information regarding how CPP and RU are calculated can be 167  
found inprevious work. (Nassar, Bruckner, et al., 2019) 168  

In the changepoint condition the normative learning rate 𝛼𝑡 is defined by: 169  

𝛼𝑡 = 𝐶𝑃𝑃 + 𝑅𝑈 − 𝐶𝑃𝑃 × 𝑅𝑈     (3)     170  

Where CPP is changepoint probability and RU is relative uncertainty. Using these two latent variables, 171  
which both track the prediction error, but with different temporal dynamics (McGuire et al., 2014), the 172  
model computes a dynamic learning rate that increases after a changepoint and gradually decreases in the 173  
following stable period after a changepoint. 174  

The same approximation to Bayesian inference can be applied in the oddball condition to produce a 175  
normative learning model that relies on oddball probability and relative uncertainty to guide learning. While 176  
the latent variables and form of the model mimic that in the changepoint condition, the learning rate differs 177  
in that it is reduced, rather than enhanced, in response to outcomes that are inconsistent with prior 178  
expectations: 179  

𝛼𝑡 = 𝑅𝑈 − 𝑂𝐵𝑃 × 𝑅𝑈      (4) 180  

Where OBP is the models posterior probability estimate that an outcome was an oddball event and RU 181  
reflects the model’s uncertainty about the current helicopter location. Thus, normative inference in the 182  
oddball condition requires decreasing learning according to the probability of an extreme event (oddball), 183  
whereas normative inference in the changepoint condition required increasing it.  184  

 185  

Neural network models:  186  

In order to better understand how normative learning principles might be applied in a neural network we 187  
created a series of neural network models that use supervised learning rules to generate predictions in the 188  
predictive inference task. Specifically, we created a two-layer feed forward neural network that can perform 189  
the predictive inference task.  190  

Network architecture includes two layers: 191  

The input layer is composed of N neurons with responses characterized by a von Mises (circular) 192  
distribution with mean 𝑚 and fixed concentration equal to 32 We implemented several versions of this 193  

model depending on how the mean 𝑚 changes on a trial-by-trial basis. 194  

The output layer contains neurons corresponding to spatial location of the bucket on the screen. The 195  
response of output layer neurons was computed by the weighted sum of input layer:  196  
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𝑟𝑗 = ∑ 𝑥𝑖𝑤𝑖𝑗

𝑁𝑖𝑛

𝑖=1

  (5)       197  

Where 𝑥𝑖 is the activation of neuron 𝑖 in the input layer, 𝑟𝑗 is the response of neuron 𝑗 in the output layer 198  

and 𝑤𝑖𝑗 is the connection weight between neuron 𝑖 and neuron 𝑗. The bucket position chosen by the model 199  

on each trial was computed as a linear readout of the output layer: 200  

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =  ∑ 𝐿𝑗

𝑁𝑜𝑢𝑡

𝑗=1

𝑟𝑗     (6) 201  

Where 𝐿𝑗 is the location encoded by each corresponding unit 𝑟𝑗 in the output layer. Weight matrix is 202  

randomly initialized with a uniform distribution of mean zero and SD equal to 5 × 10−4. The network is 203  

then trained on each trial by modifying the weight matrix according to:                                                                204  

𝑤𝑖𝑗 = (1 − 𝜂)𝑤𝑖𝑗 +  𝜂𝑦𝑗𝑥𝑖  (7) 205  

Where 𝑦𝑗 is the probability on a normal distribution centered on the observed outcome evaluated at 𝐿𝑗 with 206  

standard deviation of 25 ( equal to the standard deviation of the outcome generative process), and 𝜂 is a 207  
constant synaptic learning rate controlling the weight changes of the neural network and was set to 0.1 for 208  
all models simulations.  Although this value was chosen somewhat arbitrarily, more simulations using 209  
network learning rates in the range of [0.01 – 0.6] didn’t affect the predictions of the model. 210  

 211  

Fixed context shift models: 212  

In the first models we consider, fixed context shift models, The mean 𝑚 is computed on each trial as follows: 213  

𝑚(𝑡+1) =  𝑚(𝑡) +  𝛥𝑚𝑓 (8) 214  

Here, Δ𝑚𝑓 takes a fixed value for all trials throughout the simulation (figure 2b&c). We considered 50 215  

different Δ𝑚𝑓values ranging from 0 to 2 in order to study the effect of context shifts on model performance. 216  

The word “context” refers to the subpopulation of input layer neurons that are firing above the threshold 217  
(here 0.0001 although the results are robust if using a range of values between 0.001-0.00001) on each trial. 218  
By incrementally increasing the mean of response distribution of the input layer, we can think of this context 219  
being changed on each trial. The architecture of the input layer is arranged in a circle so that hypothetically 220  
the context would be able to shift clockwise indefinitely. In order to minimize interference from previous 221  
visits to a set of context neurons we implemented weight decay (𝑊𝐷) on each time step according to the 222  

following rule: 223  

𝑊𝑡+1(𝑥𝑡 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) = 𝑊𝑡(𝑥𝑡 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) × 𝑊𝐷 (9) 224  

𝑊𝐷 = 0.1      225  

Note that this weight decay is not intended as a biological assumption, but rather a convenient simplification 226  
to allow the model to represent a large number of contexts with a small pool of neurons.  227  

Therefore, on each trial, first the model would make a prediction based on weighted sum of the active input, 228  
observe an outcome, shift the context by the assigned context shift and store the supervised signal in the 229  
new context. This new context is in turn used at the beginning of the next trial to produce a response. 230  
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 231  

Table 1- Summary of the parameters used for simulation of the probabilistic inference task and neural network training. 232  

 233  

 234  

Ground Truth context shift model:  235  

To leverage the benefits of different context shifts which we observed in the fixed context shifts models we 236  
designed a model that would use a context shift optimized for each trial. The ground truth context shifts 237  
model has the same design of a fixed context shift model except instead of the constant term Δ𝑚, the model 238  

computes Δ𝑚 in a manner that depends on whether the current trial is a changepoint: 239  

 240  

∆𝑚 = {
𝑚𝑎 𝑥(𝛥𝑚𝑓) .  𝑖𝑓  𝑡 𝑖𝑠 𝑐ℎ𝑎𝑛𝑔𝑒𝑝𝑜𝑖𝑛𝑡

0.                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (10) 241  

 242  

 243  

 244  

Neural Network Parameter: Value Description 

Number of neurons in the input 

layer (𝑁𝑖𝑛) 

63 Equally-spaced points between 

[−𝜋. +𝜋] incrementing by 0.1 

Concentration (𝜅) 32 Concentration of the von Mises 

pdf used in the input layer 

Number of neurons in the output 

layer (𝑁𝑜𝑢𝑡) 

41 Equally-spaced points between -

50 and 350 , incrementing by 10 

Synaptic learning Rate (η) 0.1  

Weight Decay Threshold 0.01  

Weight Decay Rate (WD) 0.1  

Model Hazard Rate  0.7 The model uses a higher value 

compared to the actual hazard 

rate for optimal performance 

Input Layer Threshold 0.0001 Neurons firing above this 

threshold constitute the active 

“context” on each trial. 

Task Parameter:   

Hazard Rate (H) 0.1 Probability of a 

changepoint/oddball trial 

Noise (𝜎𝑁) 25 Standard Deviation of random 

process generating outcomes 

Standard Deviation of Drift Rate 

(𝜎𝑑𝑟𝑖𝑓𝑡) 

10 Standard Deviation of the 

random process generating drift 

rate in oddball condition 
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Dynamic context shift models:  245  

The ground truth context shift model assumes full knowledge of changepoint locations, whereas humans 246  
and animals must infer changepoints based on the data. Here we build plausibility into the ground truth 247  
model by controlling context shifts according to subjective estimates of changepoint probability (CPP) that 248  
are based on the observed trial outcomes: 249  

∆𝑚 =  𝑓(𝐶𝑃𝑃)     (11) 250  

The function, f, provides a fixed level of context shift according to the estimated changepoint probability 251  
by inverting the relationship between context shift and effective learning rate observed in the fixed context 252  
shift models and plotted in figure 2d. Thus, on each trial, the model will choose a context shift belonging 253  
to a fixed context shift model that has the closest effective learning rate to CPP. Thus, more surprising 254  
outcomes that yield higher values of CPP will consistently result in larger context shifts, with  a changepoint 255  
probability of one resulting in the maximal context shift and a changepoint probability of zero resulting in 256  
no context shift at all. 257  

CPP was computed either using the Bayesian normative model described above (Bayesian context shift) or 258  
from an approximation derived from the neural network itself (Network-based context shift). In the 259  
network-based version, the probability of a state transition is subjectively computed by the following 260  
equation: 261  

 𝐻/41

𝐻/41+ 𝑟𝑋𝑡
(1−𝐻)

  (12) 262  

which can be interpreted as a network-based approximation to Bayesian CPP estimation (For more details 263  
see supplementary at github.com/NassarLab/dynamicStatesLearning or in terms of a non-linear activation 264  
over prediction errors such as has been proposed in various conflict models (Botvinick, Braver, Barch, 265  
Carter, & Cohen, 2001; Cockburn & Frank, 2013). H can be thought of in Bayesian terms as a hazard rate, 266  

or in neural network terms as controlling the threshold of the activation function, and 𝑟𝑋𝑡
 is the firing rate 267  

of the output unit corresponding to the location 𝑋𝑡, which can be thought of as providing a readout of the 268  

outcome probability based on a Bayesian population code. The 41 reflects the total number of output units 269  
in our population, and since outcomes could occur that were in between the tuning of these units, in practice 270  

we used linear interpolation to estimate 𝑟𝑋𝑡
based the two output units closest to the actual outcome location. 271  

The hazard rate H was set to 0.7 for the changepoint condition in order to achieve optimal performance (see 272  
supplementary figure 1 at github.com/NassarLab/dynamicStatesLearning) Note that this fixed hazard rate, 273  
which maximized model performance, is considerably higher than the true rate of changepoints in the task 274  
(0.1). 275  

Mixture Model: 276  

In order to more closely match human participants’ behavior in figure 4D we simulated predictions from a 277  
model that uses context shifts intermediate between our fixed- and dynamic-context shift models. 278  
Specifically, this model shifted context according to a weighted mixture of the context shift from the best 279  
performing fixed context shift model and the network-based context shift model as follows: 280  

Context shift = m * fixed context shift + (1-m) dynamic context shift 281  

For simulations we selected m for each simulated participant at random from a uniform distribution ranging 282  
from zero to one.  283  
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 284  

Extension of network models to the oddball condition: 285  

To test our proposed models in a variation of the task where prediction errors are not indicative of a change 286  
in context i.e. oddball condition we use the same design of neural network but with a simple modification 287  
in temporal dynamics of context shifts.  288  

The task involved the same paradigm described above, but with outcomes (i.e. bag locations) determined 289  
by a different generative structure. In particular, the helicopter location gradually changed its position in 290  
the sky with a constant drift rate, and bags were occasionally sampled from a uniform distribution spanning 291  
the range of possible outcomes, rather than being “dropped” from the helicopter itself (Nassar & Troiani, 292  
2020; Nassar et al., 2021).  293  

The ground truth neural network model was modified to incorporate the alternate generative structure of 294  
the oddball condition. In particular, on each trial, input activity mean 𝑚 was changed by 1) maximally 295  

context shifting in response to oddballs at the time of feedback, 2) “returning” from the oddball induced 296  
context shift at the end of the feedback period, prior to the subsequent trial, and 3) adding a constant value 297  
(0.05) proportional to the fixed drift rate of the random walk process prior to making the prediction. (For 298  
choosing this constant drift rate, we ran simulations with different values of drift rate and chose one that 299  
produced optimal behavior) Thus after a prediction is made on trial context mean changes according to: 300  

∆𝑚1 = {
𝑚𝑎𝑥 (𝛥𝑚𝑓),                  𝑖𝑓  𝑡 𝑖𝑠 𝑜𝑑𝑑𝑏𝑎𝑙𝑙

  0                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (13) 301  

                                                                302  

𝑚𝑡+1 =  𝑚𝑡 +  𝛥𝑚1    (14) 303  

But, after the model receives the supervised signal (represented by a normal distribution which is centered 304  
on the bag position with standard deviation corresponding to standard deviation of bag drops) and stores 305  
it the new context, context transition back to: 306  

𝑚𝑡+1 =  𝑚𝑡 −  𝛥𝑚1 + 𝛥𝑚2    (15) 307  

Where Δ𝑚2 is a constant (here 0.05) is proportional to the drift rate of the random walk process. This 308  

leads the information from oddball trial to be stored in a different context that will not influence the 309  
upcoming prediction of the model. 310  

The dynamic context shift models were constructed to follow the same logic, but using subjective measures 311  
of oddball probability rather than perfect knowledge about whether a trial is an oddball. Specifically, we 312  
updated context upon observing feedback according to the probability that the feedback reflects an oddball 313  
(OP):  314  

∆𝑚1 = 𝑓(𝑂𝑃)  (16) 315  

𝑚𝑡+1 =  𝑚𝑡 +  ∆𝑚1    (17) 316  

And prior to making a prediction for the subsequent trial returned to the previous context except with a 317  
slight shift modeling to account for the drift in the helicopter position due to the random walk:  318  

𝑚𝑡+1 =  𝑚𝑡 −  𝛥𝑚1 + 𝛥𝑚2  (18) 319  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2020.08.03.231068doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.231068
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

This model captures the intuition that if an outcome is known to be an outlier, it should be partitioned from 320  
knowledge that pertains to the helicopter location, rather than combined with it. To accomplish this, the 321  

model changes the context first according to the oddball probability or ∆𝑚1 in above equation, after storing 322  
the supervised learning signal in the new context, the model transition back to its previous context by 323  
subtracting the first context shift term ∆𝑚1and move the context according to a constant shift proportional 324  

to the drift rate.∆𝑚2. The Δ𝑚1 term causes significant shifts on oddball trials, but after that the model 325  

transition back to previous context and shifts according to the Δ𝑚2 which would not be influenced by 326  
oddball trials. Similar to the changepoint condition, here, we also made a version of the dynamic Bayesian 327  
context shift model, which used network output layer activity to compute subjective measures of oddball 328  
probability. 329  

 330  

Representational similarity analysis: 331  

We computed a trial-by-trial dissimilarity matrix where each cell in the matrix represent the number 332  
corresponding to the dissimilarity between the input layer activity on two trials. The dissimilarity matrix 333  
(𝐷) of the dynamic context shifts model uses Euclidean distance and is computed by: 334  

𝐷𝑖𝑗 =  √∑ (𝐴𝑐𝑡(𝑖.𝑞) − 𝐴𝑐𝑡(𝑗.𝑞))2𝑁𝑖𝑛
𝑞=1  (19) 335  

Behavioral analysis: 336  

Behavioral analyses are aimed at understanding the degree to which we revise our behavior in response to 337  
new observations. In order to quantify this, we define an “effective learning rate” as the slope of the 338  
relationship between trial-to-trial predictions errors (i.e. the different between the bucket position and bag 339  
position) and trial-to–trial updates (i.e. the change in bucket position from one trial to the next). The 340  
adjective “effective” is chosen here so that this learning rate won’t be mistaken by the reader with two other 341  
learning rates used in this paper: 1) the fixed synaptic learning rate of the neural network 2) the normative 342  
learning rate prescribed by the reduced Bayesian model. To measure effective learning rate, we regressed 343  
updates (UP) onto the prediction errors (PE) that preceded them: 344  

𝑈𝑃 =  𝛽0  + 𝛽1 ×  𝑃𝐸  (20) 345  

The resulting slope term, β1 captures the effective learning rate, or the amount of update expected for a 346  

given prediction error. We also performed a more extensive regression analysis that included terms for 1) 347  
prediction error 2) prediction error times changepoint probability 4) prediction error times relative 348  
uncertainty (figure 4d).  349  

Comparison to P300 analysis: 350  

For analyzing the effect of trial-to-trial variability in context shifts from the dynamic context shift model 351  
on effective learning rate produced by that model, we fit the regression model above to simulated 352  
predictions for the dynamic context shift models, but did so while splitting data into quartiles according to 353  
the size of the context shift size that the model underwent on a given trial.  The corresponding figure (figure 354  
6e) of P300 signal and learning rate are from ref (Nassar, Bruckner, et al., 2019). 355  

Pupil Response Simulation: 356  

We modeled 480 trials of a predictive inference task for each of the two conditions (oddball, changepoint). 357  
We created synthetic pupil traces by defining time points for feedback-locked context shifts, which occurred 358  
400ms after oddball or changepoint, and pre-prediction context shifts at 900ms after oddball events (see eq. 359  
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10 & 13). We used measurements of context shift for the respective changepoint and oddball trials (see eq. 360  
11 & 16) at these time points and convolved these measurements with a gamma distribution to create 361  
simulated time courses of a pupil response under the assumption that the pupil signal reflects the need for 362  
a context shift. We analyzed this signal with a regression model that was applied to all synthetic data in 363  
sliding windows of time. Explanatory variables in our model included surprise (changepoint/oddball 364  
probability computed from normative model) and learning (trial-by-trial learning rate computed from the 365  
normative model). 366  

 367  

Results 368  

In order to test whether changes to latent state representations can facilitate adaptive learning behavior we 369  
modeled a predictive inference task designed to measure adaptive learning in humans (figure 1) (McGuire 370  
et al., 2014). In the task a helicopter, which is hidden behind clouds, drops visible bags containing valuable 371  
contents from the sky (figure 1a, right). On each trial, the subject moves a bucket to the location where they 372  
believe the helicopter to be, such that they can catch potentially valuable bag contents. Subjects can move 373  
the bucket to a new position on each trial to update and improve their prediction (figure 1a, left; figure 1b 374  
orange arrow). In the “changepoint” variant of the task, bag locations were sampled from a Gaussian 375  
distribution centered on the helicopter, which occasionally relocated to a new position on the screen. Such 376  
abrupt transitions in helicopter location led to changes in the statistical context defining the bag locations 377  
(context shifts), which could be inferred by monitoring the size of prediction errors (figure 1b, red arrow). 378  
Therefore, the helicopter position is a dynamic latent variable that must be inferred from noisy observations 379  
(i.e. dropped bags) on each trial to yield optimal task performance. Previous work has shown that human 380  
behavior can be captured by a normative learning model that relies on a dynamic “learning rate” adjusted 381  
from trial-to-trial according to changepoint probability (CPP) and uncertainty (figure1b&c), but failures to 382  
identify neural signals that reflect this dynamic learning rate consistently across conditions cast doubt on 383  
its biological relevance (D’Acremont & Bossaerts, 2016; Nassar, Bruckner, et al., 2019; Nassar et al., 2012; 384  
O’Reilly et al., 2013). Here we explore whether normative learning may instead be achieved in the brain 385  
by a neural network that undergoes dynamic transitions in the mental context to which associates are bound, 386  
thereby adjusting where information is stored, rather than the degree to which storage occurs. 387  

 388  

 389  

 390  
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Figure 1: Predictive inference task to measure dynamics of adaptive learning.  392  

A) Schematic Illustration (left) and screenshots of the predictive inference task (right). Human subjects place a bucket 393  
at horizontal location on the bottom of the screen to catch a bag of coins that will be subsequently dropped from a 394  
hidden helicopter. After observing the bag location (outcome) at the end of each trial, along with their prediction error 395  
(distance between bucket and outcome), the subject could improve their response by adjusting their bucket position 396  
(update). In the changepoint condition, the helicopter typically remains stationary but occasionally moves to a 397  
completely new location. B) The sequence of bag locations (outcome; ordinate) is plotted across trials, which are 398  
segmented into discrete contexts reflecting periods with a stationary mean. Context transitions (dotted vertical lines) 399  
reflect changepoints in the position of the helicopter. Bucket placements made by a subject (pink) and normative 400  
model (navy) are shown with a representation of an example prediction error and outcome. [Prediction error = outcome 401  
(t) – estimate (t) and Update = estimate (t+1) – estimate (t)]. (C) The learning rate, which defines the degree to which 402  
the normative model updates the bucket in response to a given prediction error, depends on two factors, changepoint 403  
probability (CPP; red) and relative uncertainty (RU; blue), which combine to prescribe learning that is highest at 404  
changepoints (CPP) and decays slowly thereafter (RU). 405  

 406  

A neural network test bed for exploring adaptive learning  407  

To examine how normative updating could be implemented in a neural network, we devised a two-layer 408  
feedforward neural network in which internal representations of context are mapped onto bucket locations 409  
by learning weights using a supervised learning rule (figure 2b; see methods). Units in the output layer of 410  
the network represent different possible bucket locations in the predictive inference task and a linear readout 411  
of this layer is used to guide bucket placement, which serves as a prediction for the next trial. After each 412  
trial, a supervised learning signal corresponding to the bag location is provided to the output layer and 413  
weights corresponding to connections between input and output units are updated accordingly. 414  

The input layer of our model is designed to reflect the mental context to which learned associations are 415  
formed, and its activity is given by a Gaussian activity bump with a mean denoting the position of the 416  
neuron with the strongest activity and a standard deviation denoting the width of the activity profile. The 417  
primary goal of this work is to understand how changes to the mean of the activity bump, across trials, 418  
affect learning within our model. Since the input layer of the network reflects mental context, it does not 419  
receive any explicit sensory information, and we can manipulate its activity across trials to provide a 420  
flexible test bed for how different task representations (i.e. mental context dynamics) might affect 421  
performance of the model. In particular, we examine how displacing the mean of the activity bump in the 422  
input layer across trials affects the rate and dynamics of the networks learning behavior. In the simplest 423  
case, a non-dynamic network, the mean of the activity bump in the input layer is constant across all trials -424  
- reflecting learning onto a fixed “state”. A slightly more complex mental context might be one that drifts 425  
slowly over time, such that the mean of the activity bump changes a fixed amount from one trial to the next 426  
leading trials occurring close in time to be represented more similarly. In this case, learning would occur 427  
onto an evolving temporal state representation. In a more complex (but maybe more intuitive) case, the 428  
subset of active neurons in the input layer could correspond to the current “helicopter context” (figure 1b), 429  
or period of helicopter stability. In this case, the mean of the activity bump would only transition on trials 430  
where the helicopter changes position and thus could be thought of as representing the underlying latent 431  
state of the helicopter (e.g. this is the third unique helicopter position I have encountered) – albeit without 432  
any explicit encoding of its position.  433  

 434  

 435  
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Context shifts facilitate faster learning  436  

 437  

We first examined performance of models in which the mean of the input activity bump transitioned by 438  
some fixed amount on each trial. This set included 0 (fixed stimulus representation), small values in which 439  
nearby trials had more similar input activity profiles (timing representation) and extreme cases where there 440  
was no overlap between the input layer representations on successive trials (individuated trial 441  
representation). We defined the fixed shift in the mean of the activity profile as the “context shift” of our 442  
model. This shift is depicted in figure 2c as the nodes shown in “hot colors” (i.e. active neurons) in the 443  
input layer of the neural network moving to the right; Note how the size of rightward shift in the schematic 444  
neural network is constant in all four trials shown. We used increments starting from zero (the same input 445  
layer population) to a number corresponding to a complete shift (completely new population) in each trial. 446  
Learning leads to fine tuning of the weights by strengthening connections between active input neurons and 447  
the output neurons nearby the outcome location (bag position) on each trial. We observed that moderate 448  
shifts of in the input layer (context shifts) led to the best performance in our task (figure 2e), and that the 449  
effective learning rate describing the model’s behavior monotonically scaled with context shift (figure 2d). 450  
We also compared the performance of these models to a delta-rule equipped with learning rates matched to 451  
those empirically observed in each fixed context shift model (figure2d). Performance of fixed-context shift 452  
networks mirrored that of delta-rule models, both in terms of overall performance and the advantage 453  
conferred to moderate context shifts in the network (figure 2e, black), or learning rates in the delta rule 454  
(figure 2e, red). Together, these results support the notion that context shifts could be used to enhance the 455  
sensitivity of behavior to new observations, analogous to adjusting the learning rate in a delta rule.  456  

 457  

 458  
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 459  

Figure 2:  A neural network with fixed context shifts can approximate any constant learning rate. A-C) Network 460  
structure and weight updates for two fixed context shift models (B, C) are depicted across four example trials of a 461  
predictive inference task (A). For all networks, feedback was provided on each trial corresponding to the observed 462  
bag position (circle in panel A, red arrow in B&C) and weights of network were updated using supervised learning. 463  
Only a subset of neurons (circles) and connections between them (lines) are shown in neural network schematic. 464  
Activation in the input layer was normally distributed around a mean value that was constant in (B) and shifted by a 465  
fixed amount on each trial in (C) (context shift). Learned weights (colored lines) were all assigned to the same input 466  
neuron when context shift was set to zero (B) but assigned to different neurons when the context shift was substantial 467  
(C). D) The effective learning rate (ordinate), characterizing the influence of an unpredicted bag position on the 468  
subsequent update in bucket position, increased when the model was endowed with faster internal context shifts 469  
(abscissa). E) Mean absolute prediction error (ordinate) was minimized by neural network models (black line) that 470  
incorporated a moderate level of context shift from one trial to the next (abscissa). Mean error of a simple delta rule 471  
model using various learning rates is shown in red (x-axis values indicate the context shift equivalent to the fixed delta 472  
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rule learning rate derived from panel D). For each simulated delta rule model we plotted the x position according to 473  
the amount of context shift that yielded that learning rate from that fixed context shift model, thus the position on the 474  
x-axis reflects the same amount of average learning of the two models but the mechanics of how learning is generated 475  
differs across the two models. Note that neural networks with fixed context shifts achieve similar task performance to 476  
more standard delta-rule models that employ a constant learning rate. 477  

Dynamic context shifts can improve task performance 478  

The higher performance of moderate context shift models (figure2e) might be thought of intuitively as 479  
navigating the classic trade-off between flexibility and stability. A higher learning rate, which can be 480  
effectively produced by a larger context shift, promotes flexibility and leads to better performance in 481  
response to environmental changes that render past observations irrelevant to future ones (figure 3c). In 482  
contrast, smaller learning rates, which are effectively produced by smaller context shifts, yield stable 483  
predictions that facilitate a performance advantage in a stable but noisy environments by averaging over 484  
the noise (figure3d). More concretely, when the helicopter remains in the same location, small context shifts 485  
improve performance by pooling learning over a greater number of bag locations to better approximate 486  
their mean, but large context shifts can improve performance after changes in helicopter location by 487  
reducing the interference between outcomes before and after the helicopter relocation. Inspired by the 488  
observed relationship between context shift and accuracy, we next modified the model to dynamically 489  
adjust context shifts to optimize performance. In principle, based on the intuitions above, we might improve 490  
on our fixed context shift models by only shifting the activity profile of the input layer at a true context 491  
shift in the task (i.e. allow the input layer to represent the latent state). Since such a model requires pre-492  
existing knowledge of changepoint timings we refer to it as the ground truth model (figure 3, top). Indeed, 493  
we observed that the ground truth model performs as well as the best fixed context shift model after 494  
changepoint (figure 3c), and better than the best fixed context shift model during periods of stability (figure 495  
3d), yielding overall performance better than any fixed context shift model (figure 3e).  496  

Needless to say, the brain does not have access to perfect information regarding whether a given trial is a 497  
changepoint or not. Is it possible to make a more realistic version of this optimal model, utilizing 498  
information that the brain does have access to? To answer this question, we built models that infer 499  
changepoint probability based on experienced prediction errors. We built two versions of this model, one 500  
that computed changepoint probability (CPP) explicitly according to Bayes rule (Nassar & Gold, 2010), 501  
and one that approximated CPP according to the mismatch between output activity in the network and the 502  
observed outcome (i.e. supervised signal). In both cases, hazard rates necessary for computing CPP were 503  
optimized for performance, resulting in model hazard rates exceeding their experimental values (See 504  
Supplementary figure 1 at github.com/NassarLab/dynamicStatesLearning). Both models achieved good 505  
performance after changepoints by elevating context shifts (figure 3c) and during periods of stability by 506  
reducing context shifts (figure 3d), yielding overall performance better than any fixed context shift model, 507  
and only slightly worse than the ground truth model (figure 3e&f). These results were consistent across 508  
different noise conditions (See supplementary figure 2 at github.com/NassarLab/dynamicStatesLearning).  509  

 510  

 511  

 512  
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 514  

Figure -3: Dynamic context shifts facilitate better task performance. A) Schematic diagram of ground truth 515  
model network (left) which is provided with objective information about whether a given trial is changepoint or not 516  
(right) and uses that knowledge to shift the context only on changepoint trials. B) The dynamic context shift network 517  
uses a subjective estimate of changepoint probability based a statistical model (Bayesian) or the network output 518  
(Network-based) to adjust its context shift on each trial. All of these models shift context to a greater degree on 519  
changepoint trials (bottom row) than on non-changepoint trials (top 3 rows). C) Performance on trials immediately 520  
following a changepoint was best for models employing the largest context shifts. Mean error on trials following a 521  
changepoint (ordinate) is plotted as a function of context shift (abscissa) for fixed (line/shading) and dynamic (points) 522  
context shift models. The ground truth model (blue point) minimized error after changepoints through large context 523  
shifts, and the dynamic context shift models, which made moderately large context shifts after changepoints, also 524  
approached this level of performance (yellow & pink). Note that since the optimal policy on changepoint trials is to 525  
use a learning rate of one, any model with a large enough context shift would be able to achieve optimal performance 526  
on this subset of trials (note performance of highest fixed context shift models). D) Smallest errors on trials during 527  
periods of stability (> 5 trials after changepoint; ordinate) were achieved  by models that made smaller context shifts 528  
(abscissa). All dynamic context shift models (ground truth, Bayesian, network-based) made relatively small context 529  
shifts for stable trials, yielding good performance. E)  Across all trials, subjective dynamic context shift models yielded 530  
better average performance than the best fixed context shift model and approached the performance of the ground 531  
truth model. F) Average Error for individual simulations showing the Bayesian (yellow) and network-based (pink) 532  
context shift models beat the best fixed context shift model (blue) consistently across simulated task sessions 533  
(𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 𝑆ℎ𝑖𝑓𝑡 ∶ 𝑡 = 21.9. 𝑑𝑓 = 31. 𝑝 < 10−16Network − Based Context Shift: 𝑡 =  20.48. 𝑑𝑓 =534  
31. 𝑝 < 10−16 ).  535  

 536  

Dynamic context shifts capture key behavioral and neural signatures of adaptive learning in humans.   537  

Not only was the dynamic context shift model able to outperform fixed context shift models, it did so by 538  
capturing behaviors that are observed in people. The model updated predictions according to prediction 539  
errors, but relied more heavily on prediction errors from certain trials (figure 4a). We can quantify the 540  
effective learning rate as the slope of the relationship between the model’s bucket update and its previously 541  
observed prediction error in order to compare the behavior of different models (figure 4a). Looking at this 542  
effective learning rate in more detail, we observe that immediately after a changepoint, learning rate 543  
becomes maximal for the ground truth model and dynamic context shift models while gradually decreasing 544  
during the more stable periods (figure 4b). A regression analysis, previously used in explaining humans’ 545  
responses in a similar task, determined the contribution of changepoint probability and relative uncertainty 546  
to updates in each model (figure 4c) and indicated that, like human subjects, the dynamic context shift 547  
model learned more rapidly during periods of change or uncertainty (figure 4d). The fixed context shift 548  
model (green) does not increase learning on changepoint trials, but instead, displays more subtle dynamics 549  
that depend on the exact magnitude of the context shift employed (see supplementary figure 3 550  
github.com/NassarLab/dynamicStatesLearning). Note that most participants (gray dots in figure 4c) fall 551  
between the range of behaviors spanning from the fixed context shift model (green dot) and the network-552  
based context shift model (pink dot) suggesting that people may use a mental context representation that 553  
lie somewhere between a purely temporal one (i.e. fixed context shift) and our subjective approximation of 554  
latent state (network-based context shift). To examine this possibility, we created a mixture model that 555  
updated context as a linear mixture of those prescribed by the network-based dynamic model and those 556  
prescribed by the best fixed context shift model. Uniformly sampling mixture weights in this model 557  
produced heterogenous behaviors that reproduced basic patterns of individual differences in our subject 558  
population (figure 4D). One such behavioral pattern is that individuals with high fixed-learning coefficients, 559  
also tend to have lower values of change point driven learning (note crossover from first to second 560  
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coefficient in figure 4C). The simulated mixture model not only reproduced the range of subject coefficients 561  
for each regressor, but also produces this crossover effect (compare gray dots in 4D to those in 4C). Taken 562  
together, these results suggest that our dynamic context shift models capture the primary behavioral features 563  
of adaptive learning in changing environments – but unlike previous such models they do so by adjusting 564  
an internal context, rather than a learning rate per se.   565  

These context adjustments provide a potential explanation for rapid changes in activity patterns, or 566  
“network resets”,  that have been observed during periods of rapid learning in rodent mPFC and human 567  
OFC (Karlsson et al., 2012; Nassar, McGuire, et al., 2019). Rodent studies previously identified neural 568  
population activity changes that occurred during periods of uncertainty when animals were rapidly shifting 569  
behavioral policies (Karlsson et al., 2012). Human neuroimaging work took a similar approach to identify 570  
patterns of activity that changed more rapidly during periods of rapid learning following changepoints, after 571  
controlling for other factors(Nassar, McGuire, et al., 2019). An important open question raised by these 572  
studies is why such representations exist at all; in both cases the representations were not reflecting the 573  
behavioral policy, and their dynamics would not be necessary for implementing existing models of adaptive 574  
learning (Nassar et al., 2012, 2010). Given that our dynamic context shift model accomplishes adaptive 575  
learning by dynamically changing the context representations, we asked whether our input layer might give 576  
rise to population dynamics similar the phenomena observed in these previous studies.  577  

To do so, we used an RSA approach to create a dissimilarity matrix reflecting differences in the input layer 578  
activation across pairs of trials for our dynamic context shift model (figure 5a). By using the activity profile 579  
of the input layer the dynamic context shift model we were able to obtain a pattern of dissimilarity across 580  
all pairs of trials for each simulated task session (figure 5b). Examining this dissimilarity matrix reveals 581  
abrupt representational shifts at changepoints (dotted lines in figure 5B). To quantify the observed changes 582  
in activity pattern, we computed the dissimilarity across adjacent pairs of trials, and examined how this 583  
adjacent trial similarity was affected by changepoints in the task. Consistent with empirical data, we found 584  
that representations in our context layer shifted more rapidly immediately after a changepoint (figure 5C; 585  

mean dissimilarity for changepoint/non changepoint trials = 0.73/0.22, t = -54.54, df = 31, p <10−16). In 586  
some sense, this is not surprising, given that we built our model to achieve faster learning after changepoints 587  
by shifting the activity pattern in the input layer. Nonetheless, our model provides a potential normative 588  
explanation for why “network reset” phenomena are observed during periods of rapid learning: in our 589  
model, such changes in activity optimize behavior by providing a clean slate for learning after 590  
environmental change. 591  

 592  

 593  

 594  

 595  
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 596  

Figure 4: Dynamic context shifts facilitate adaptive learning. A) Dynamic context shift model single trial 597  
update (ordinate) is plotted against prediction error (abscissa) for each single trial of a simulated session with points 598  
colored according to the normative changepoint probability. Note that large absolute prediction errors, corresponding 599  
to high changepoint probabilities, tend to lead to updates on the unity line, corresponding to an effective learning rate 600  
of one. B) Effective learning rate (ordinate) is plotted for trials that differ in their alignment to the most recent 601  
changepoint (abscissa). Both ground truth and dynamic context shifts models show adjustments in their effective 602  
learning rate relative to changepoints, maximizing learning immediately after the changepoint, with the dynamic 603  
context shift models (yellow and pink) qualitatively matching the pattern of learning in human subjects (gray). 604  
Learning rate dynamics of the best fixed context shift model are shown in green for comparison. C) Coefficients from 605  
a regression model (top equation) fit to single trial updates to characterize the degree of overall learning (fixed LR), 606  
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adjustments in learning at likely changepoints (CPP Driven Learning), and adjustments in learning according to 607  
normative uncertainty (RU driven learning). Colored circles reflect mean coefficients fit to each model and grey circles 608  
represent fits to individual human subjects. D) Coefficients from the same regression, but fit to simulations from a 609  
model that employs a weighted mixture of a fixed context shift (the same context shift as the model shown in green) 610  
and the dynamic context shift (the network-based model shown in purple). Each gray point reflects a different 611  
simulation with a mixture weight sampled at random from a uniform distribution on the interval from zero to one. 612  
Note similarity to participant data in (C).  613  

 614  

 615  

 616  

Figure 5: Input layer representations change rapidly at changepoints. A) Dissimilarity in the input 617  
representation between pairs of trials was computed according to the Euclidean distance between those trials in the 618  
space of population activity (here exemplified in terms of three trials, where trial t is an example changepoint). Note 619  
that the cyan activity bump corresponding to trial t is shifted relative to the green bump corresponding to trial t-1 620  
(green). B) A dissimilarity matrix representing the dissimilarity in input layer activity for each pair of trials in a 621  
simulated task session. Dotted lines reflect changepoints, and thus trials between the dotted lines occurred in the same 622  
task context (helicopter position). Note that trials within the same context (i.e. trial t and trial t+1) are more similar 623  
than for consecutive trials belonging to two different contexts (trial t-1 and trial t). C) Mean/SEM (dotted line/shading) 624  
dissimilarity between adjacent trials (ordinate) is plotted across trials relative to changepoint events (abscissa) for 32 625  
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simulated sessions. Note the rapid change in input layer activity profiles (i.e. high adjacent trial dissimilarity) at the 626  
changepoint event, reminiscent of previously observed “network reset” phenomena that have been linked to periods 627  
of rapid learning in both rodents and humans.  628  

 629  

Dynamic context shifts can reduce learning from oddballs  630  

In order to understand how dynamic context shifts might be employed to improve learning in an alternate 631  
statistical environment we considered a set of “oddball” generative statistics that have recently been 632  
employed to investigate neural signatures of learning (D’Acremont & Bossaerts, 2016; Nassar, Bruckner, 633  
et al., 2019). In the oddball condition, the mean of the output distribution does not abruptly change but 634  
instead gradually drifts according to a random walk. However, on occasion a bag is dropped at a random 635  
location uniformly sampled across the width of the screen with no relationship to the helicopter, constituting 636  
an outlier unrelated to both past and future outcomes. In the presence of such oddballs, large prediction 637  
errors should lead to less, rather than more, learning. This normative behavior has been observed in adult 638  
human subjects (D’Acremont & Bossaerts, 2016; Nassar, Bruckner, et al., 2019; Nassar & Troiani, 2020). 639  

To examine whether dynamic context transitions could afford adaptive learning in the oddball condition 640  
we created a network analogous to the ground truth model described above, but active input units were 641  
adjusted according to the oddball condition transition structure (figure 6a)). Specifically, on each trial, the 642  
model would shift the context with a small constant rate, corresponding to the drift rate in the generative 643  
process (i.e. the helicopter position slowly drifting from trial to trial). On oddball trials, the model would 644  
undergo a large context shift, ensuring that the oddball outcome would be associated with a non-overlapping 645  
set of input layer neurons, in much the same way as for changepoint observations in our previous model. 646  
However, the model was also endowed with knowledge of the transition structure of the task, which 647  
includes that oddballs are typically followed by non-oddball trials, and as such, the input layer activity 648  
bump would transition to its previous non-oddball location subsequent to learning from the oddball outcome 649  
(L. Q. Yu et al., 2021). Consequently, the learned associations from oddball trials would not be stored in 650  
the same context as the ordinary trials, and predictions were always made from the previous “non-oddball” 651  
context – thereby minimizing the degree to which oddballs contribute to behavior.  652  

Like in the changepoint condition, we also created versions of the model in which oddballs were inferred 653  
probabilistically using either a Bayesian inference model or the activity profile of the output units. Oddball 654  
probabilities (computed either from the normative model or the network’s output activity itself) were then 655  
used to guide transitions of the active input layer units (figure 6b). In these models the probability of an 656  
oddball event drove immediate transitions of the active input layer units to facilitate storage of information 657  
related to oddballs in a separate location, but subsequent predictions were always made from the input units 658  
corresponding to the most recent non-oddball event (plus a constant expected drift). These models achieved 659  
significantly better overall performance than the best fixed context shift model and similar performance to 660  
the ground truth context shift model (figure 6c&d). The advantage conferred through dynamic context shifts 661  
was specific to the oddball structural assumptions, as a model that employed dynamic context shifts based 662  
on the changepoint generative structure yielded worse performance than fixed context shift models (figure 663  
6c&d, red).  It is noteworthy that, given the appropriate structural representation, the dynamic context shift 664  
model produced normative behavior in changepoint condition, where it increased learning by sustaining the 665  
newly activated context, but produced normative learning in the oddball context (decreasing learning on 666  
oddball trials) by immediately abandoning the new context in favor of the more “typical” one. 667  
 668  

 669  
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Dynamic context shifts explain bidirectional learning signals observed in the brain  670  

A primary objective in this study was to identify the missing link between the algorithms that afford 671  
adaptive learning in dynamic environments and their biological implementations. One key challenge to 672  
forging such a link has been the contextual sensitivity of apparent “learning rate” signals observed in the 673  
brain. For example, in EEG studies the P300 associated with feedback onset positively predicts behavioral 674  
adjustments in static or changing environments (Fischer & Ullsperger, 2013; Jepma et al., 2018, 2016), but 675  
negatively predicts behavioral adjustments in the oddball condition that we describe above (Nassar, 676  
Bruckner, et al., 2019). These bidirectional relationships are strongest in people who adjust their learning 677  
strategies most across conditions, and persist even after controlling for a host of other factors related to 678  
behavior, suggesting that they are actually playing a role in learning, albeit a complex one (Nassar, 679  
Bruckner, et al., 2019). 680  

Here we propose an alternative mechanistic role for the P300: that it reflects the need for a context shift. 681  
Our model provides an intuition for why such a signal might yield the previously observed bidirectional 682  
relationship to learning. A stronger P300 signal, corresponding to a larger context shift, would result in a 683  
stronger partition between current learning and previously learned associations. In changing environments, 684  
this could effectively increase learning, as it would decrease the degree to which prior experience is 685  
reflected in the weights associated with the currently active input units. In the oddball environment, where 686  
context changes prevent oddball events from affecting weights of the relevant input layer units, we would 687  
make the opposite prediction. We tested this idea directly in our model by measuring the effective learning 688  
rate in the dynamic context shift model for bins of trials sorted according to the magnitude of context shift 689  
that was used for them. The results of this analysis revealed a positive relationship between the context shift 690  
employed by the model and its effective learning rate in the changepoint condition, but a negative 691  
relationship between context shift and learning rate in the oddball condition (figure 6e). This result is 692  
qualitatively similar to empirically observed bidirectional relationships between learning and the P300 693  
(figure 6f). Thus, our results are consistent with the possibility that the P300 relates to learning indirectly, 694  
by signaling or promoting transitions in a mental context representation that effectively partition learning 695  
across context boundaries, including changepoints and oddballs. 696  

Relationship between context shifts and pupil diameter response: 697  

One major theory of learning has suggested that adaptive learning is facilitated by fluctuations in arousal 698  
mediated by the LC/NE system (A. J. Yu & Dayan, 2005). This idea has been supported by evidence from 699  
transient pupil dilations, which in animals are linked to LC/NE signaling (Joshi & Gold, 2020; Reimer et 700  
al., 2016), and are positively related to learning in changing environments (Nassar et al., 2012). 701  
Nonetheless, these results are difficult to interpret in light of another study that employed both changepoints 702  
and oddballs and observed the opposite relationship between pupil dilation and learning (O’Reilly et al., 703  
2013). The contextual link between pupil diameter and learning may have a common biological origin to 704  
that of the P300 signal explored above, as the signals share a host of common antecedents and have both 705  
been proposed to reflect transient LC/NE signaling (Joshi & Gold, 2020; Nieuwenhuis, De Geus, & Aston-706  
Jones, 2011; Vazey & Aston-Jones, 2014). In contrast to learning theories, another prominent theory has 707  
suggested that the LC/NE system plays a role in resetting ongoing context representations (Network reset 708  
hypothesis; Bouret & Sara, 2005), which maps well onto the context shift signals that our model requires 709  
to adjust effective learning rates.  710  

Here we formalize the network reset hypothesis in terms of context transitions in our model, and explore 711  
the predictions of this formalization for the relationship between pupil diameter and learning. Specifically, 712  
we consider the possibility that LC/NE system is related to the instantaneous context shifts in our model, 713  
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and that pupil dilations occur as a delayed and temporally smeared version of this LC/NE signal (see 714  
methods). In this framework we might consider two distinct influences on the pupil diameter. First, the 715  
context shifts elicited by observations that deviate substantially from expectations, which might reflect 716  
either changepoints or oddballs depending on the statistical context (figure 7a, purple observation 717  
highlighted in green box). Second, the context shift required to “return” to the previous context after a likely 718  
oddball event, which must occur after processing feedback from a given trial, but before the start of the 719  
next trial (figure 7a, red box). Jointly considering transitions at these two discrete timepoints yields the 720  
prediction both changepoints and oddball events should lead to pupil dilations, but that these dilations 721  
should be prolonged in the oddball condition (figure 7b). We regressed these pupil signals onto an 722  
explanatory matrix that included model-derived measures of learning (trial-wise empirically derived 723  
learning rate) and surprise (estimated changepoint/oddball probability) to better understand their 724  
relationship to behavior. The results from this simulation yielded a positive relationship between our 725  
modeled pupil signal and surprise, but a late negative relationship between pupil diameter and learning (Fig 726  
7c). These results are generally in agreement with O’Reilly 2013, and support the possibility that pupil 727  
diameter reflects a temporally extended indicator of the context transitions predicted by our model.   728  

 729  

 730  

 731  

 732  

 733  

 734  

 735  
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Figure 6 – Dynamic context shifts facilitate adaptive learning in presence of oddballs. A) Schematic 737  
representation of the ground truth model for the oddball environment, which has a constant context shift proportionate 738  
to the environmental drift. On oddball trials (third row) there is a large context shift, but context on next trial returns 739  
to its pre-oddball activity pattern. B) Schematic of the dynamic context shift model for the oddball task, which on each 740  
trial shifts the context according to oddball probability (OBP),  but after receiving the supervised learning signal from 741  
the outcome, returns to its pre-oddball context, plus a small shift to account for the constant drift in helicopter position.   742  
Thus, context representations drift slowly on each trial, much as the helicopter position drifts. However, a trial with 743  
high oddball probability will cause the supervised signal to be stored in a completely separate context, and since 744  
context is reset to the previous value before the subsequent trial, any learning done from probable oddball events will 745  
not affect behavior on the subsequent trial. C) Example predictions of the two dynamic context shift models (pink & 746  
yellow) across 60 trials of the oddball condition compared to with the changepoint version of dynamic context shift 747  
model (red). Note that the oddball dynamic context shift models (pink &yellow) do not react to deviant outcomes 748  
(gray points) whereas the model that employs changepoint generative assumption (red) completely adjusts predictions 749  
after experiencing a deviant outcome. D) The dynamic context shift models had better aggregate performance than 750  
the best fixed context shift model (𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 𝑆ℎ𝑖𝑓𝑡 𝑀𝑜𝑑𝑒𝑙: 𝑡 = 9.22.  𝑑𝑓 = 31.  𝑝 = 2.13 ×751  
10−10. 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 − 𝐵𝑎𝑠𝑒𝑑 𝑀𝑜𝑑𝑒𝑙: 𝑡 = 7.85.  𝑑𝑓 = 31.  𝑝 = 7.2 × 10−9), and approached the performance of the 752  
ground truth model. E) Effective learning rate for the network-based context shift model (ordinate) was computed for 753  
subsets of simulated trials selected according to the magnitude of context shifts on those trials (abscissa) separately 754  
for changepoint (yellow) and oddball (blue) tasks. Note that larger context shifts in the changepoint condition 755  
correspond with greater learning, but in the oddball correspond with less learning. F) Effective learning rate computed 756  
for human participants (ordinate; Nassar 2019) in binned according to the magnitude of feedback-locked P300 EEG 757  
signal on that trial (abscissa) separately for changepoint (blue) and oddball (yellow) task conditions. Note qualitative 758  
similarity between the empirical observations related to the P300 signal and our models predictions regarding context 759  
shift magnitude.  760  

 761  

 762  

 763  

 764  

 765  
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Figure 7 -- Pupil responses simulated to reflect context shifts at multiple timepoints within a trial positively 767  
reflect surprise and negatively reflect learning across changepoint and oddball conditions. A) An example set of 768  
outcomes (ordinate) over trials (abscissa) is depicted to demonstrate the key difference between the changepoint 769  
(orange) and oddball (cyan) generative structures. Based our dynamic and network-based context shift models 770  
predictions, a surprising outcome is accompanied by a context shift in both the changepoint and oddball conditions 771  
(green box). A second context shift is predicted to happen only in the oddball condition in the inter-trial interval after 772  
experiencing an oddball event (red box), corresponding to the expected return to the more typical context (cyan points). 773  
B) Predicted pupil responses (ordinate) are plotted over time (abscissa) for three trial types (colors). Pupil responses 774  
were simulated as the convolution of a gamma function with the expected context shift on each trial at two discrete 775  
time points. The first occurred at 400 ms after observing the outcome, and context shifts at this time point were 776  
proportional to changepoint probability/oddball probability in our model; the second time point was at 900ms after 777  
the outcome when subjects would be expected to begin preparing a prediction for the next trial outcome, the context 778  
shifts at this time point were proportional to the inter-trial-interval context shifts necessary to return to the “typical” 779  
context after an oddball trial. Based on predictions of our model, a context shift should occur at the first time point in 780  
both changepoint and oddball trials while a context shift at the second timepoint should only to happen at the oddball 781  
condition. C) Simulated pupil responses positively reflect surprise early after feedback (light gray) but negatively 782  
reflect learning during a later time window (dark gray). Coefficients for learning and surprise were obtained by 783  
regressing simulated pupil responses onto an explanatory matrix that contained regressors capturing surprise 784  
(changepoint/oddball probability) and learning (dynamic trial-by-trial learning rate) as estimated by a reduced 785  
Bayesian model.  786  
 787  
 788  

Discussion 789  

Existing models of adaptive learning have failed to capture the range of behaviors in humans across 790  
different statistical environments and their underlying neural correlates. Here we developed a neural 791  
network framework and demonstrated that internal context shifts within this framework provide a flexible 792  
mechanism through which learning rate can be adjusted. Within this test bed we demonstrate that abrupt 793  
transitions in context, triggered by unexpected outcomes, can facilitate improved performance in two 794  
different statistical environments that differ in the sort of adaptive learning that they require, and do so in a 795  
manner that mimics human behavior. Context representations from this dynamic model provide a 796  
mechanistic interpretation of activity patterns previously observed in orbitofrontal cortex that abruptly 797  
change during periods of rapid learning. The context shift signal, which allows the model to adjust context 798  
representations dynamically in order to afford adaptive learning behaviors, provides a mechanistic 799  
interpretation for feedback locked P300 signals that conditionally predict learning, and may also resolve a 800  
contradiction in different studies examining the relationship between pupil dilation and learning. Taken 801  
together, our results provide a mechanistic explanation for adaptive learning behavior and the signals that 802  
give rise to it, and furthermore suggest that apparent adjustments in “how much” to learn may actually 803  
reflect the dynamics controlling “where” learning takes place.  804  

The input layer that our model employs for flexible learning builds on the notion of latent states for 805  
representation learning. Through this lens, our work can be thought of as an extension to a larger body of 806  
research on structure learning, much of which has focused on identifying commonalities across stimulus 807  
categories (A. G. E. Collins & Frank, 2013; Gershman & Niv, 2010). In cases where temporal dynamics 808  
have been explored, the focus has been on the degree to which latent states allow efficient pooling of 809  
information across similar contexts that are separated in time (A. G. E. Collins & Frank, 2013; Gershman, 810  
Blei, & Niv, 2010; Wilson, Takahashi, Schoenbaum, & Niv, 2014). Here we highlight another advantage 811  
of using temporal dynamics to control active state representations: efficient partitioning of information in 812  
time to prevent interference. In addition to highlighting this advantage, our results highlight a shared 813  
anatomical basis for state representations across different types of tasks. Patterns of input layer activity in 814  
our model transition rapidly after changepionts to facilitate adaptive learning, much like network reset 815  
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phenomena that have been observed in medial prefrontal cortex in rodents and orbitofrontal cortex (OFC) 816  
in humans(Karlsson et al., 2012; Nassar, Bruckner, et al., 2019). Rapid transitions in OFC are particularly 817  
interesting given that this area has been suggested to represent latent states for sharing knowledge across 818  
common structures (Schuck, Cai, Wilson, & Niv, 2016; Wilson et al., 2014). The existence of coordinated 819  
changes in neural activity patterns in brain regions thought to reflect provides support for our assumption 820  
that associations are controlled through changes in the pattern of active input units over time (e.g. figure 3), 821  
rather than alternative accounts in which associations are selectively attributed to only a subset of active 822  
units through synchronization (Verbeke & Verguts, 2019), although these two mechanisms need not be 823  
mutually exclusive.  824  

Our model description shares some mechanistic similarities with temporal context models (TCM) of 825  
episodic and sequential memory recall. (DuBrow, Rouhani, Niv, & Norman, 2017; Franklin et al., 2020; 826  
Howard & Kahana, 2002; Kornysheva et al., 2019; Polyn, Norman, & Kahana, 2009; Shankar, Jagadisan, 827  
& Howard, 2009). In temporal context models, there is a gradual change in context activity that occurs 828  
through passage of time or a through learned linear mapping of the stimuli to contexts, however our dynamic 829  
model relies on discontinuous changes in context more analogous to the underlying latent state dynamics 830  
and provides a normative rationale for such abrupt transitions at surprising events, namely that such 831  
transitions promote pooling of relevant information within a context (figure 3d) and partitioning of 832  
information across contexts (figure 3c) in order to improve inference in complex and dynamic environments 833  
(figure 3e & figure 6d). These modeling assumptions allowed us to capture prediction behavior in 834  
changepoint and oddball conditions – but to capture a more general set generative statistics – our model 835  
would also need to incorporate the possibility of returning to a previous context, and thus considering a 836  
hybrid between the assumptions in our model and those of the temporal context models might be an 837  
interesting avenue for future study.  838  

More recently, extensions of the temporal context models have suggested the existence of event boundaries 839  
which cause discontinuity in temporal context (Zacks, Speer, Swallow, Braver, & Reynolds, 2007). The 840  
emergence of these boundaries has been attributed to errors in predictions which, analogous to detected 841  
outliers in our model, cause the subsequent observations to be stored in a different context (DuBrow & 842  
Davachi, 2013; Rouhani, Norman, Niv, & Bornstein, 2020). Such segmented events also lead to more 843  
dissociable representations in fMRI (Antony et al., 2020; Baldassano et al., 2017; Lositsky et al., 2016). 844  
While these interpretations of discontinuity in memory are closely related to our model, we take a step 845  
further by assigning a key role to such segmentations. In particular, our model shows that it is useful to 846  
segment internal context representation after a surprising event in order to improve predictions. 847  

An important question here is how to quantitatively control the transition to new contexts, particularly when 848  
such context transitions are not overtly signaled. In previous computational models of event segmentation, 849  
surprise has been suggested as the main factor controlling such transition probabilities (Schapiro, Rogers, 850  
Cordova, Turk-Browne, & Botvinick, 2013). Our dynamic context shift model uses surprise, as indexed by 851  
the probability of an unexpected event (changepoint/oddball), to control context shifts. Such probabilities 852  
can be inferred using a Bayesian learning model calibrated to the environmental structure, however, we 853  
show that they could also be estimated from output layer of our network itself. Previous work has suggested 854  
that changepoint and oddball probability are reflected by BOLD activations in both cortical and subcortical 855  
regions (D’Acremont & Bossaerts, 2016; Kao et al., 2020; McGuire et al., 2014; Meyniel & Dehaene, 2017; 856  
Nassar, McGuire, et al., 2019; Nassar et al., 2012; O’Reilly et al., 2013; A. J. Yu & Dayan, 2005). While 857  
such signals have previously been interpreted as early-stage computations performed in the service of 858  
computing a learning rate, our work suggests that they serve another purpose, namely in signaling the need 859  
to change the active context representation. This interpretation would be consistent with the observation 860  
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that in at least one case, BOLD responses to surprising events look quite similar across behavioral contexts 861  
in which such events should be either learned from, or ignored (D’Acremont & Bossaerts, 2016).  862  

The need for knowledge of transition structure in our model also raises the question of where this 863  
information comes from. We speculate that, in the brain, this transition structure might be provided by a 864  
separate set of neural systems that includes the medial temporal lobe (MTL). This speculation is based on 865  
1) the observation that our context representations mirror the dynamics of representations in orbitofrontal 866  
cortex (figure 5), 2) that OFC receives strong inputs from the medial temporal lobe (MTL) (Wikenheiser 867  
& Schoenbaum, 2016), and 3) the important role played by the MTL in model based learning and 868  
planning (Mattar & Daw, 2018; Schuck & Niv, 2019; Vikbladh et al., 2019). However, future work 869  
examining adaptive learning behavior in the face of ambiguous transition structures may help to tease 870  
apart the functional roles of different brain signals that occur at surprising task events (Bakst & McGuire, 871  
2020).  872  

Of particular interest in this regard is the feedback-locked P300 signal, an EEG-based correlate of surprise 873  
in humans (Kolossa, 2016; Kopp et al., 2016; Mars et al., 2008).  A recent study showed that this signal 874  
positively related to learning in a changing environment and negatively related to learning in one containing 875  
oddballs (Nassar, Bruckner, et al., 2019). Here we show that the context shift variable in our dynamic model 876  
has the exact same bidirectional relationship to learning. In our model this reflects a causal relationship, 877  
whereby context transitions that persist in the changepoint condition lead new observations to have greater 878  
behavioral impact (i.e. more learning; figure 6e), and transient context transitions in the oddball condition 879  
limit the behavioral impact of oddball events by associating them with a different context from the one in 880  
which predictions are generated (i.e. less learning; figure 6e). We note that this distinction relies in part on 881  
our definition of learning. In reality, our model makes the same sorts of weight adjustments for both 882  
situations, yet the situations differ in the degree to which those weight adjustments impact future 883  
predictions.  884  

This bidirectional adjustment of learning rate is a key prediction of our model. We also predict that other 885  
physiological measures of surprise that have previously been related to learning, such as pupil diameter, 886  
should also provide similar results in environments with different sources of surprising outcomes. However, 887  
a key difference of pupil dilation predictions is that given the slow time course of the pupil signal, we 888  
predict that it will aggregate multiple state transitions that can occur on an oddball trial (i.e. the transition 889  
away from the original state to a new one, and the transition back to the original state). This aspect of the 890  
signaling predicts heightened pupil dilations on oddball relative to changepoint trials, which agrees 891  
qualitatively with previous observations (O’Reilly et al., 2013), and may help to resolve confusion in the 892  
existing literature regarding the relationship between pupil dilations and behavioral adjustment (Nassar et 893  
al., 2012; O’Reilly et al., 2013). Our model predicts that such a signal should also drive changes in state 894  
representations in OFC. This prediction, at least in part, is consistent with another recent experiment on 895  
neuromodulatory control of uncertainty (Muller et al., 2019), in which the strength of pupil dilation predicts 896  
the level of uncertainty regarding the current state of the environment, represented in medial orbitofrontal 897  
cortex. Our model predicts that these relationships should also depend on the task structure, with state 898  
transitions driving OFC representations toward an alternative state in reversal tasks (Muller et al., 2019) 899  
toward a completely new persisting state in changepoint tasks (Nassar, McGuire, et al., 2019) and toward 900  
a transient state after oddball events. These relationships between state transition signals and neural 901  
representations have yet to be measured across the range of contexts that would be necessary to fully test 902  
our models predictions, and thus is an interesting avenue for future empirical work.  903  

A major implication of our findings is that behavioral markers of learning rate adjustment may be produced 904  
by a network that relies on a fixed learning rate (the rate of synaptic weight changes), so long as that network 905  
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adjusts its own internal representations according to the structure of the environment.  This is also what 906  
distinguishes our model from other accounts of behavior (Nassar et al., 2012, 2010) that adjust learning rate 907  
directly, or from computational models  that have used surprise detection signals to control learning rate at 908  
the synaptic level (Iigaya, 2016).  By introducing context shifts in our model we were able to build a 909  
mechanistic role for surprise in a learning algorithm that can explain the conditional nature of heretofore 910  
identified learning rate signals: they are actually signaling state transitions, rather than learning per se.  911  

Our model opens the door for a number of future investigations. We catered our analysis to the behavioral 912  
experiments of Nassar et al 2019 (Nassar, Bruckner, et al., 2019; Nassar, McGuire, et al., 2019), and 913  
therefore only considered changepoint and oddball conditions but did not study the case where context 914  
could either shift to a new context or return to a previous context it has learned before. Recognizing that a 915  
new observation actually comes from a previously learned context would involve additional pattern 916  
recognition and memory retrieval mechanisms (Redish, Jensen, Johnson, & Kurth-nelson, 2007), which 917  
might be thought of as part of a more general model-based inference framework as described above 918  
(Franklin, Norman, Ranganath, Zacks, & Gershman, 2020; Whittington et al., 2019). That is to say, in order 919  
to solve all types of real-world problems, our model would be required to know not only that an observation 920  
is different from the recent past, but also which previously encountered state would provide the best 921  
generalization to this new situation. Doing so effectively would require organization of states based on 922  
similarity, such that similar states shared learning to some degree, in the same way that states which occur 923  
nearby in time pool learning in our current model. 924  

Model limitations 925  

The design of our network has several limitations that would need to be overcome to fully realize the 926  
potential of our overarching framework. The first is that our network was endowed with knowledge of the 927  
task transition structure – raising an important question for future work as to how this structure could be 928  
learned directly from observations. In our tasks the transition structure differed between changepoints and 929  
oddballs, with changepoints promoting persisting state representations and oddballs promoting an 930  
immediate transition back to the previous state, however real-world learning occurs in a much more 931  
diverse set of environments, where simultaneously learning transition structure and applying it to guide 932  
behavioral adjustment would be challenging to say the least.  933  

A second set of limitations stems from our simplified ring organization of the input (context) layer of our 934  
network. This simplification causes potential issues for the oddball condition we model, in that future 935  
contexts could rely on the same input units that were previously associated with oddball events. In our 936  
simplified network we solved this problem through slow weight decays that slowly turn unused input 937  
units into blank slates for future learning. However, we suspect that the brain uses a different solution, 938  
namely a more complex organization of context representations – for example if the input layer were two 939  
dimensional, with one dimension corresponding to slow drifts and the other corresponding to oddball 940  
events, an oddball context could never be encountered with any amount of drift.  941  

Another set of limitations would emerge if our model were required to re-use previously encountered 942  
input representations to transfer knowledge about a repeated context. This situation would present two 943  
main challenges to our current network design. The first is that the weight decay mechanisms in our 944  
network would erase memories from previously visited contexts. This limitation could be overcome by 945  
eliminating weight decay mechanisms and instead equipping the network with a relatively large number 946  
of input units to prevent interference (see supplementary figure 4 at 947  
github.com/NassarLab/dynamicStatesLearning). Although increasing the number of input units provides 948  
a reasonable solution for our toy problems, this solution may not scale for life-long learning, where the 949  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2020.08.03.231068doi: bioRxiv preprint 

https://github.com/NassarLab/dynamicStatesLearning
https://doi.org/10.1101/2020.08.03.231068
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

number of unique contexts may approach the number of unique mental context representations – raising 950  
an important question for future research. A second challenge for our model in repeating contexts would 951  
be to identify the input units that should be active in response to a previously encountered state. Our 952  
model was given transition structure for the environments we examined (changepoints/oddballs), and this 953  
transition structure controlled how input layer activations were updated in each environment.  In 954  
principle, state update rules could be derived for repeating contexts in much the same way, by first 955  
deriving Bayesian estimates of context probability(A. Collins & Koechlin, 2012) and then approximating 956  
these values using the network output (analogous to our network-based context shift model). We hope 957  
that our model inspires future work to examine this idea in more detail.  958  

 959  

Summary 960  

 961  

In summary, we suggest that flexible learning emerges from dynamic internal context representations that 962  
are updated in response to surprising observations in accordance with task structure. Our model requires 963  
representations consistent with those that have previously been observed in orbitofrontal cortex as well as 964  
state transition signals necessary to update them. We suggest that biological signals previously thought to 965  
reflect “dynamic learning rates” actually signal the need for internal state transitions, and our model 966  
provides the first mechanistic explanation for the context-dependence with which these signals relate to 967  
learning. Taken together, our results support the notion that adaptive learning behaviors may arise through 968  
dynamic control of representations of task structure  969  

 970  

Data Availability 971  

All analysis and modeling code (including code for generating the figures) has been made available on 972  
GitHub: github.com/NassarLab/dynamicStatesLearning. 973  

 974  

  975  

References: 976  

Adams, R. P., & MacKay, D. J. C. (2007). Bayesian Online Changepoint Detection. Retrieved from 977  
http://arxiv.org/abs/0710.3742 978  

Antony, J. W., Hartshorne, T. H., Pomeroy, K., Gureckis, T. M., Hasson, U., McDougle, S. D., & 979  
Norman, K. A. (2020). Behavioral, physiological, and neural signatures of surprise during 980  
naturalistic sports viewing. BioRxiv, 2020.03.26.008714. https://doi.org/10.1101/2020.03.26.008714 981  

Bakst, L., & McGuire, J. (2020). Eye movements reflect adaptive predictions and predictive precision. 982  
Journal of Experimental Psychology: General. https://doi.org/10.1037/xge0000977 983  

Baldassano, C., Chen, J., Zadbood, A., Pillow, J. W., Hasson, U., & Norman, K. A. (2017). Discovering 984  
Event Structure in Continuous Narrative Perception and Memory. Neuron, 95(3), 709-721.e5. 985  
https://doi.org/10.1016/j.neuron.2017.06.041 986  

Behrens, T. E. J., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. S. (2007). Learning the value of 987  
information in an uncertain world. 10(9), 1214–1221. https://doi.org/10.1038/nn1954 988  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2020.08.03.231068doi: bioRxiv preprint 

https://github.com/NassarLab/dynamicStatesLearning
https://doi.org/10.1101/2020.08.03.231068
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

Bernacchia, A., Seo, H., Lee, D., & Wang, X.-J. (2011). A reservoir of time constants for memory traces 989  
in cortical neurons. Nature Neuroscience, 14(3), 366–372. https://doi.org/10.1038/nn.2752 990  

Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring 991  
and cognitive control. Psychological Review, Vol. 108, pp. 624–652. https://doi.org/10.1037/0033-992  
295X.108.3.624 993  

Bouret, S., & Sara, S. J. (2005). Network reset: a simplified overarching theory of locus coeruleus 994  
noradrenaline function. Trends in Neurosciences, 28(11), 574–582. 995  
https://doi.org/10.1016/j.tins.2005.09.002 996  

Browning, M., Behrens, T. E., Jocham, G., O’Reilly, J. X., & Bishop, S. J. (2015). Anxious individuals 997  
have difficulty learning the causal statistics of aversive environments. Nature Neuroscience, 18(4), 998  
590–596. https://doi.org/10.1038/nn.3961 999  

Cockburn, J., & Frank, M. (2013). Reinforcement Learning, Conflict Monitoring, and Cognitive Control: 1000  
An Integrative Model of Cingulate-Striatal Interactions and the ERN. Neural Basis of Motivational 1001  
and Cognitive Control, 310–331. https://doi.org/10.7551/mitpress/9780262016438.003.0017 1002  

Collins, A. G. E., & Frank, M. J. (2013). Cognitive control over learning: creating, clustering, and 1003  
generalizing task-set structure. Psychological Review, 120(1), 190–229. 1004  
https://doi.org/10.1037/a0030852 1005  

Collins, A., & Koechlin, E. (2012). Reasoning, learning, and creativity: Frontal lobe function and human 1006  
decision-making. PLoS Biology, 10(3). https://doi.org/10.1371/journal.pbio.1001293 1007  

D’Acremont, M., & Bossaerts, P. (2016). Neural Mechanisms behind Identification of Leptokurtic Noise 1008  
and Adaptive Behavioral Response. Cerebral Cortex, 26(4), 1818–1830. 1009  
https://doi.org/10.1093/cercor/bhw013 1010  

Donahue, C. H., & Lee, D. (2015). Dynamic routing of task-relevant signals for decision making in 1011  
dorsolateral prefrontal cortex. Nature Neuroscience, 18(2), 295–301. 1012  
https://doi.org/10.1038/nn.3918 1013  

DuBrow, S., & Davachi, L. (2013). The influence of context boundaries on memory for the sequential 1014  
order of events. Journal of Experimental Psychology: General, 142(4), 1277–1286. 1015  
https://doi.org/10.1037/a0034024 1016  

Farashahi, S., Donahue, C. H., Hayden, B. Y., Lee, D., & Soltani, A. (2019). Flexible combination of 1017  
reward information across primates. Nature Human Behaviour, 3(11), 1215–1224. 1018  
https://doi.org/10.1038/s41562-019-0714-3 1019  

Farashahi, S., Donahue, C. H., Khorsand, P., Seo, H., Lee, D., & Soltani, A. (2017). Metaplasticity as a 1020  
Neural Substrate for Adaptive Learning and Choice under Uncertainty. Neuron, 94(2), 401-414.e6. 1021  
https://doi.org/10.1016/j.neuron.2017.03.044 1022  

Fischer, A. G., & Ullsperger, M. (2013). Real and Fictive Outcomes Are Processed Differently but 1023  
Converge on a Common Adaptive Mechanism. Neuron, 79(6), 1243–1255. 1024  
https://doi.org/10.1016/j.neuron.2013.07.006 1025  

Franklin, N. T., Norman, K. A., Ranganath, C., Zacks, J. M., & Gershman, S. J. (2020). Structured Event 1026  
Memory: A neuro-symbolic model of event cognition. Psychological Review, 127(3), 327–361. 1027  
https://doi.org/10.1037/rev0000177 1028  

Gershman, S. J., Blei, D. M., & Niv, Y. (2010). Context, Learning, and Extinction. Psychological Review, 1029  
Vol. 117, pp. 197–209. Retrieved from 1030  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2020.08.03.231068doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.231068
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 
 

https://nivlab.princeton.edu/sites/default/files/nivlab/files/gershmanetal2009.pdf 1031  

Gershman, S. J., & Niv, Y. (2010). Learning latent structure: Carving nature at its joints. Current Opinion 1032  
in Neurobiology, 20(2), 251–256. https://doi.org/10.1016/j.conb.2010.02.008 1033  

Iigaya, K. (2016). Adaptive learning and decision-making under uncertainty by metaplastic synapses 1034  
guided by a surprise detection system. ELife, 5, e18073. https://doi.org/10.7554/eLife.18073 1035  

Jepma, M., Brown, S. B. R. E., Murphy, P. R., Koelewijn, S. C., de Vries, B., van den Maagdenberg, A. 1036  
M., & Nieuwenhuis, S. (2018). Noradrenergic and Cholinergic Modulation of Belief Updating. 1037  
Journal of Cognitive Neuroscience, 30(12), 1803–1820. https://doi.org/10.1162/jocn_a_01317 1038  

Jepma, M., Murphy, P. R., Nassar, M. R., Rangel-Gomez, M., Meeter, M., & Nieuwenhuis, S. (2016). 1039  
Catecholaminergic Regulation of Learning Rate in a Dynamic Environment. PLOS Computational 1040  
Biology, 12(10), e1005171. Retrieved from https://doi.org/10.1371/journal.pcbi.1005171 1041  

Joshi, S., & Gold, J. I. (2020). Pupil Size as a Window on Neural Substrates of Cognition. Trends in 1042  
Cognitive Sciences, 24(6), 466–480. https://doi.org/10.1016/j.tics.2020.03.005 1043  

Kao, C.-H., Khambhati, A. N., Bassett, D. S., Nassar, M. R., McGuire, J. T., Gold, J. I., & Kable, J. W. 1044  
(2020). Functional brain network reconfiguration during learning in a dynamic environment. Nature 1045  
Communications, 11(1), 1682. https://doi.org/10.1038/s41467-020-15442-2 1046  

Karlsson, M. P., Tervo, D. G. R., & Karpova, A. Y. (2012). Network Resets in Medial Prefrontal Cortex 1047  
Mark the Onset of Behavioral Uncertainty. Science, 338(6103), 135 LP – 139. 1048  
https://doi.org/10.1126/science.1226518 1049  

Kolossa, A. (2016). A New Theory of Trial-by-Trial P300 Amplitude Fluctuations. 1050  
https://doi.org/10.1007/978-3-319-32285-8_3 1051  

Kopp, B., Seer, C., Lange, F., Kluytmans, A., Kolossa, A., Fingscheidt, T., & Hoijtink, H. (2016). P300 1052  
amplitude variations, prior probabilities, and likelihoods: A Bayesian ERP study. Cognitive, 1053  
Affective, & Behavioral Neuroscience, 16(5), 911–928. https://doi.org/10.3758/s13415-016-0442-3 1054  

Li, Y. S., Nassar, M. R., Kable, J. W., & Gold, J. I. (2019). Individual Neurons in the Cingulate Cortex 1055  
Encode Action Monitoring, Not Selection, during Adaptive Decision-Making. The Journal of 1056  
Neuroscience, 39(34), 6668 LP – 6683. https://doi.org/10.1523/JNEUROSCI.0159-19.2019 1057  

Lositsky, O., Chen, J., Toker, D., Honey, C. J., Shvartsman, M., Poppenk, J. L., … Norman, K. A. (2016). 1058  
Neural pattern change during encoding of a narrative predicts retrospective duration estimates. 1059  
ELife, 5, e16070. https://doi.org/10.7554/eLife.16070 1060  

Mars, R. B., Debener, S., Gladwin, T. E., Harrison, L. M., Haggard, P., Rothwell, J. C., & Bestmann, S. 1061  
(2008). Trial-by-Trial Fluctuations in the Event-Related Electroencephalogram Reflect Dynamic 1062  
Changes in the Degree of Surprise. The Journal of Neuroscience, 28(47), 12539 LP – 12545. 1063  
https://doi.org/10.1523/JNEUROSCI.2925-08.2008 1064  

Massi, B., Donahue, C. H., & Lee, D. (2018). Volatility Facilitates Value Updating in the Prefrontal 1065  
Cortex. Neuron, 99(3), 598-608.e4. https://doi.org/https://doi.org/10.1016/j.neuron.2018.06.033 1066  

Mathys, C., Daunizeau, J., Friston, K. J., & Stephan, K. E. (2011). A bayesian foundation for individual 1067  
learning under uncertainty. Frontiers in Human Neuroscience, 5, 39. 1068  
https://doi.org/10.3389/fnhum.2011.00039 1069  

Mattar, M. G., & Daw, N. D. (2018). Prioritized memory access explains planning and hippocampal 1070  
replay. Nature Neuroscience, 21(11), 1609–1617. https://doi.org/10.1038/s41593-018-0232-z 1071  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2020.08.03.231068doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.231068
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 
 

McGuire, J. T., Nassar, M. R., Gold, J. I., & Kable, J. W. (2014). Functionally dissociable influences on 1072  
learning rate in a dynamic environment. Neuron, 84(4), 870–881. 1073  
https://doi.org/10.1016/j.neuron.2014.10.013 1074  

Meyniel, F., & Dehaene, S. (2017). Brain networks for confidence weighting and hierarchical inference 1075  
during probabilistic learning. Proceedings of the National Academy of Sciences of the United States 1076  
of America, 114(19), E3859–E3868. https://doi.org/10.1073/pnas.1615773114 1077  

Muller, T. H., Mars, R. B., Behrens, T. E., & O’Reilly, J. X. (2019). Control of entropy in neural models 1078  
of environmental state. ELife, 8, 1–30. https://doi.org/10.7554/eLife.39404 1079  

Nassar, M. R., Bruckner, R., & Frank, M. J. (2019). Statistical context dictates the relationship between 1080  
feedback-related EEG signals and learning. ELife, 8, 1–26. https://doi.org/10.7554/eLife.46975 1081  

Nassar, M. R., & Gold, J. I. (2010). Supplementary Material for : Bayesian On-line Learning of the 1082  
Hazard Rate in Change-Point Problems. 22(9), 2452–2476. 1083  

Nassar, M. R., McGuire, J. T., Ritz, H., & Kable, J. W. (2019). Dissociable forms of uncertainty-driven 1084  
representational change across the human brain. Journal of Neuroscience, 39(9), 1688–1698. 1085  
https://doi.org/10.1523/JNEUROSCI.1713-18.2018 1086  

Nassar, M. R., Rumsey, K. M., Wilson, R. C., Parikh, K., Heasly, B., & Gold, J. I. (2012). Rational 1087  
regulation of learning dynamics by pupil-linked arousal systems. Nature Neuroscience, 15(7), 1040–1088  
1046. https://doi.org/10.1038/nn.3130 1089  

Nassar, M. R., & Troiani, V. (2020). The stability flexibility tradeoff and the dark side of detail. 1090  
Cognitive, Affective, & Behavioral Neuroscience. https://doi.org/10.3758/s13415-020-00848-8 1091  

Nassar, M. R., Waltz, J. A., Albrecht, M. A., Gold, J. M., & Frank, M. J. (2021). All or nothing belief 1092  
updating in patients with schizophrenia reduces precision and flexibility of beliefs. Brain. 1093  
https://doi.org/10.1093/brain/awaa453 1094  

Nassar, M. R., Wilson, R. C., Heasly, B., & Gold, J. I. (2010). An approximately Bayesian delta-rule 1095  
model explains the dynamics of belief updating in a changing environment. Journal of 1096  
Neuroscience, 30(37), 12366–12378. https://doi.org/10.1523/JNEUROSCI.0822-10.2010 1097  

Nieuwenhuis, S., De Geus, E. J., & Aston-Jones, G. (2011). The anatomical and functional relationship 1098  
between the P3 and autonomic components of the orienting response. Psychophysiology, 48(2), 1099  
162–175. https://doi.org/10.1111/j.1469-8986.2010.01057.x 1100  

O’Reilly, J. X. (2013). Making predictions in a changing world-inference, uncertainty, and learning. 1101  
Frontiers in Neuroscience, 7(7 JUN), 1–10. https://doi.org/10.3389/fnins.2013.00105 1102  

O’Reilly, J. X., Schüffelgen, U., Cuell, S. F., Behrens, T. E. J., Mars, R. B., & Rushworth, M. F. S. 1103  
(2013). Dissociable effects of surprise and model update in parietal and anterior cingulate cortex. 1104  
Proceedings of the National Academy of Sciences of the United States of America, 110(38). 1105  
https://doi.org/10.1073/pnas.1305373110 1106  

Redish, A. D., Jensen, S., Johnson, A., & Kurth-nelson, Z. (2007). Reconciling Reinforcement Learning 1107  
Models With Behavioral Extinction and Renewal : Implications for Addiction , Relapse , and 1108  
Problem Gambling. 114(3), 784–805. https://doi.org/10.1037/0033-295X.114.3.784 1109  

Reimer, J., McGinley, M. J., Liu, Y., Rodenkirch, C., Wang, Q., McCormick, D. A., & Tolias, A. S. 1110  
(2016). Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. 1111  
Nature Communications, 7(1), 13289. https://doi.org/10.1038/ncomms13289 1112  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2020.08.03.231068doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.231068
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
 

Rouhani, N., Norman, K. A., Niv, Y., & Bornstein, A. M. (2020). Reward prediction errors create event 1113  
boundaries in memory. Cognition, 203, 104269. 1114  
https://doi.org/https://doi.org/10.1016/j.cognition.2020.104269 1115  

Schapiro, A. C., Rogers, T. T., Cordova, N. I., Turk-Browne, N. B., & Botvinick, M. M. (2013). Neural 1116  
representations of events arise from temporal community structure. Nature Neuroscience, 16(4), 1117  
486–492. https://doi.org/10.1038/nn.3331 1118  

Schuck, N. W., Cai, M. B., Wilson, R. C., & Niv, Y. (2016). Human Orbitofrontal Cortex Represents a 1119  
Cognitive Map of State Space. Neuron, 91(6), 1402–1412. 1120  
https://doi.org/10.1016/j.neuron.2016.08.019 1121  

Schuck, N. W., & Niv, Y. (2019). Sequential replay of nonspatial task states in the human hippocampus. 1122  
Science, 364(6447), eaaw5181. https://doi.org/10.1126/science.aaw5181 1123  

Soltani, A., & Izquierdo, A. (2019). Adaptive learning under expected and unexpected uncertainty. 1124  
Nature Reviews Neuroscience, 20(10), 635–644. https://doi.org/10.1038/s41583-019-0180-y 1125  

Vazey, E. M., & Aston-Jones, G. (2014). Designer receptor manipulations reveal a role of the locus 1126  
coeruleus noradrenergic system in isoflurane general anesthesia. Proceedings of the National 1127  
Academy of Sciences of the United States of America, 111(10), 3859–3864. 1128  
https://doi.org/10.1073/pnas.1310025111 1129  

Verbeke, P., & Verguts, T. (2019). Learning to synchronize: How biological agents can couple neural 1130  
task modules for dealing with the stability-plasticity dilemma. PLOS Computational Biology, 15(8), 1131  
e1006604. Retrieved from https://doi.org/10.1371/journal.pcbi.1006604 1132  

Vikbladh, O. M., Meager, M. R., King, J., Blackmon, K., Devinsky, O., Shohamy, D., … Daw, N. D. 1133  
(2019). Hippocampal Contributions to Model-Based Planning and Spatial Memory. Neuron, 102(3), 1134  
683-693.e4. https://doi.org/10.1016/j.neuron.2019.02.014 1135  

Whittington, J. C. R., Muller, T. H., Mark, S., Chen, G., Barry, C., Burgess, N., & Behrens, T. E. J. 1136  
(2019). The Tolman-Eichenbaum Machine: Unifying space and relational memory through 1137  
generalisation in the hippocampal formation. BioRxiv, 770495. https://doi.org/10.1101/770495 1138  

Wikenheiser, A., & Schoenbaum, G. (2016). Over the river, through the woods: cognitive maps in the 1139  
hippocampus and orbitofrontal cortex. Nature Reviews Neuroscience, 17. 1140  
https://doi.org/10.1038/nrn.2016.56 1141  

Wilson, R. C., Nassar, M. R., & Gold, J. I. (2010). Bayesian online learning of the hazard rate in change-1142  
point problems. Neural Computation, 22(9), 2452–2476. https://doi.org/10.1162/NECO_a_00007 1143  

Wilson, R. C., Nassar, M. R., & Gold, J. I. (2013). A mixture of delta-rules approximation to bayesian 1144  
inference in change-point problems. PLoS Computational Biology, 9(7), e1003150–e1003150. 1145  
https://doi.org/10.1371/journal.pcbi.1003150 1146  

Wilson, R. C., Takahashi, Y. K., Schoenbaum, G., & Niv, Y. (2014). Orbitofrontal cortex as a cognitive 1147  
map of task space. Neuron, 81(2), 267–279. https://doi.org/10.1016/j.neuron.2013.11.005 1148  

Yu, A. J., & Dayan, P. (2005). Uncertainty, neuromodulation, and attention. Neuron, 46(4), 681–692. 1149  
https://doi.org/10.1016/j.neuron.2005.04.026 1150  

Yu, L. Q., Wilson, R. C., & Nassar, M. R. (2021). Adaptive learning is structure learning in time. 1151  
Neuroscience & Biobehavioral Reviews, 128, 270–281. 1152  
https://doi.org/https://doi.org/10.1016/j.neubiorev.2021.06.024 1153  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2020.08.03.231068doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.231068
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 
 

Yu, L., Wilson, R., & Nassar, M. (2020). Adaptive learning is structure learning in time. 1154  
https://doi.org/10.31234/osf.io/r637c 1155  

Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S., & Reynolds, J. R. (2007). Event perception: A 1156  
mind-brain perspective. Psychological Bulletin, Vol. 133, pp. 273–293. 1157  
https://doi.org/10.1037/0033-2909.133.2.273 1158  

 1159  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2020.08.03.231068doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.231068
http://creativecommons.org/licenses/by-nc-nd/4.0/

