
Bashing irreproducibility with shournal

Tycho Kirchner1, Konstantin Riege1, Steve Hoffmann∗1

1Computational Biology Group, Leibniz Institute on Aging — Fritz
Lipmann Institute (FLI), Jena, 07745, Germany

Received on XXXXX; accepted on XXXXX

∗Corresponding Author: steve.hoffmann@leibniz-fli.de

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 5, 2020. ; https://doi.org/10.1101/2020.08.03.232843doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.232843


Abstract

Arguably, one of the most important tools for computer science is the Linux shell.
Processing steps carried out there are critical for many analyses and software devel-
opment projects. However, manual documentation of the work is time-consuming
and error-prone. To remedy this problem, shournal tightly integrates with the shell
and automatically records all shell commands along with associated file events. For
any file, shournal allows the reconstruction of the command history and is able
to create detailed reports for whole project directories. shournal is based on the
fanotify API and mount namespaces and allows the efficient monitoring of entire
process trees.

Availability: The code for shournal is freely available at
https://github.com/tycho-kirchner/shournal under the GNU General Public License
v3.0 or later
Contact: steve.hoffmann@leibniz-fli.de

1 Introduction

The daily work of many computer scientists involves the Linux shell. Despite its
limited graphic capabilities and the complex syntax, its unmatched flexibility makes
it the tool of choice for many file operations such as sorting or concatenation as
well as for writing small scripts and pipelines. Especially the pipe, allowing the
user to combine various Linux tools and scripts into a single pipeline substantially
increases the shell’s usability. However, in order to keep track of the work process,
e.g., in the context of larger analysis projects, it quickly becomes necessary to
maintain README files with great diligence to ensure reproducibility. In cases
where such documentation is incomplete or not available, the shell’s history might
be used to manually reconstruct the chain of commands that have been used to
create and modify individual files. However, this process is rather time-consuming,
error-prone, and leaves some critical blind spots. A reconstruction of the work can
quickly become impossible if the programs that were used to create or modify the
files in question are not available anymore or have been changed without proper
version control. For smaller ad-hoc shell, awk, perl, or python scripts such version
control is often omitted, inherently posing a threat to the reproducibility of the work.
Several workflow engines such as Snakemake or Nextflow (Köster and Rahmann,
2012; Di Tommaso, 2017) have been proposed to alleviate this vital problem for the
scientific process. For practical or motivational reasons, however, analysis projects
are not always directly initiated or consequently carried out within these frameworks.
Thus, building such a workflow just prior to data publication can quickly become
a nightmare. To reduce this blind spot and to remedy some of the shortcomings
of the shell, we have developed shournal, a Linux program that makes use of the
Linux kernel’s fanotify module to document and summarize the work process for
user-defined project paths.

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 5, 2020. ; https://doi.org/10.1101/2020.08.03.232843doi: bioRxiv preprint 

https://github.com/tycho-kirchner/shournal
steve.hoffmann@leibniz-fli.de
https://doi.org/10.1101/2020.08.03.232843


a)

b)

shournal

• command: cat foo > bar
• read file: foo
• written file: bar

Figure 1: shournal’s architecture and output options. (a) Schematic illustration
of a shell-session observed by shournal. The concerned processes of the shell-
command cat foo > bar join a unique mount namespace where file operations
are observed by fanotify. Metadata and checksums of the read file (foo), as well as
the written file (bar), are stored in the database alongside the corresponding shell-
command. (b) Visualization of the shell command history. shournal can export the
command history into an interactive Html-plot. Commands, which were executed
within a given shell session, are marked with the same color, parallel shell sessions
are vertically stacked.

2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 5, 2020. ; https://doi.org/10.1101/2020.08.03.232843doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.232843


2 Materials and Methods

2.1 Logging the command history

shournal deterministically tracks file events by using low-level operating-system ca-
pabilities of the Linux-kernel. Specifically, file access events can be exposed to
the user-space by fanotify. The fanotify API allows subscribing for file-events of a
specific mount-point. The unshare system call detaches a process from its parent
mount namespace. Since mount namespaces are inherited by new processes and
can be joined by other processes, fanotify can be used to subscribe to file-events
of a group of processes. Using shournal’s shell-integration, realized via a shared
library which can be loaded into a shell’s process, it is ensured that all processes
created during the execution of a command join the same mount namespace, which
is observed by fanotify (Fig. 1a). Similarly, also file redirections occurring within
the shell-process refer to the new mount namespace. This approach enables shour-
nal to systematically track reading and writing events that were triggered by the
shell or any of its spawned processes. Therefore, journaling includes all such events
irrespective of whether they are triggered by shell commands, programmes with
graphical user interfaces (GUIs), or scripts. In the latter case, controlled by user-
defined size restrictions and file extensions such as .sh or .pl, shournal also archives
the entire script. This facilitates the reproduction of results obtained from smaller
scripts where a version control was initially deemed unnecessary.

2.2 Querying and visualizing the command history

shournal allows flexible queries by using a sqlite database to store the data about
file operations as well as the scripts. For instance, for a given file, it can be queried
what shell-command created or modified it. Other options include the query for
individual files modified during a given period, the command-history at a designated
project directory, or commands executed during a specific shell session. To make
the command history more accessible and in addition to an output on the console,
shournal generates an interactive graphical map of commands for user-specified
files, directoriesi, and/or dates (Fig. 1b). The map displays each shell session in
an individual row and thus allows to better identify specific chains of subsequently
executed commands. Clicking on a command displayed in the interactive map
gives supplementary information on the exact time of execution, archived scripts,
or checksums. Further miscellaneous statistics are displayed in bar-plots, e.g., the
commands with most file-modifications. The collected data can be shared with other
programs using the JSON output format. Due to the low-level nature of the data,
it can be used as a basis for higher-level systems such as workflow managers. For
instance, an observed shell-command-series can be directly transformed into rules
for the Snakemake workflow engine (Köster and Rahmann, 2012) using the software
at https://github.com/snakemake/shournal-to-snakemake. The input- and output-
section of a rule is generated from the captured file-events.

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 5, 2020. ; https://doi.org/10.1101/2020.08.03.232843doi: bioRxiv preprint 

https://github.com/snakemake/shournal-to-snakemake
https://doi.org/10.1101/2020.08.03.232843


3 Requirements

shournal depends on the Linux kernel’s fanotify and mount namespaces; thus, it
runs on Linux systems only. For Debian- and Ubuntu-based distributions, deb-
packages are available on the release-page. In order to unshare or join mount
namespaces and to initialize fanotify, shournal needs to be run as a set-user-ID
(setuid) program (Kerrisk, 2010, chap. 9.3). However, setuid privileges are only
used during startup. All other operations are done with effective user rights. Further
information is provided on shournal’s github page.

4 Conclusion

shournal allows to comprehensively record, search and visualize the work carried
out on the Linux shell. Therefore, it can play an essential role in facilitating the
reproducibility of work carried out on the linux shell, e.g. during bioinformatic
analyses, by allowing to summarize, review, and to resume older projects quickly.
By implementing the shournal-to-snakemake converter, we demonstrate that the
shournal output may be used as a basis for the creation of pipelines with Snake-
make. In principle, similar converters may be written for other workflow managers,
e.g., via the JSON or YAML-based Common Workflow Language (CWL) (Amstutz,
2016). Alternatively, the CWL-described workflow may be run directly within other
managing systems such as Nextflow (Di Tommaso, 2017). By narrowing the gap
between the often poorly documented ad-hoc work on the shell and the generation
of sophisticated workflows, shournal can help to improve the scientific practice.

Funding

This work has been supported by the BMBF project de.STAIR (031L0106D).

References

Di Tommaso, P. et al. (2017) Nextflow enables reproducible computational workflows. Nature Biotech., 35,

316319

Kerrisk, M. (2010) The Linux Programming Interface. No Starch Press, Inc., San Francisco.

Köster, J., and Rahmann, S. (2012) Snakemakea scalable bioinformatics workflow engine. Bioinformatics, 28,

25202522.

Amstutz, P. et al. (2016): Common Workflow Language, v1.0. Specification, Common Workflow Language

working group. https:/w3id.org/cwl/v1.0/ doi:10.6084/m9.figshare.3115156.v2

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 5, 2020. ; https://doi.org/10.1101/2020.08.03.232843doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.232843


a)

b)

shournal

• command: cat foo > bar
• read file: foo
• written file: bar

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 5, 2020. ; https://doi.org/10.1101/2020.08.03.232843doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.232843

