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Abstract  27 

What is the link between eye movements and sensory learning? Although some theories 28 

have argued for a permanent and automatic interaction between what we know and 29 

where we look, which continuously modulates human information- gathering behavior 30 

during both implicit and explicit learning, there exist surprisingly little evidence supporting 31 

such an ongoing interaction.  We used a pure form of implicit learning called visual 32 

statistical learning and manipulated the explicitness of the task to explore how learning 33 

and eye movements interact. During both implicit exploration and explicit visual learning 34 

of unknown composite visual scenes, eye movement patterns systematically changed in 35 

accordance with the underlying statistical structure of the scenes. Moreover, the degree 36 

of change was directly correlated with the amount of knowledge the observers acquired. 37 

Our results provide the first evidence for an ongoing and specific interaction between 38 

hitherto accumulated knowledge and eye movements during both implicit and explicit 39 

learning.  40 

   41 
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Introduction 42 

Across their lives, people make 2-3 saccades per second during their wake period, which 43 

fundamentally determines the sensory information reaching their conscious cognition. Yet, 44 

despite an extended literature on the control of eye movements(Findlay & Gilchrist, 2003; Hayhoe 45 

& Ballard, 2005; Kowler, 2011; Yarbus, 1967), we have only a rudimentary understanding of how 46 

past experiences influence the deployment of attention as indexed by eye movements(Wolfe & 47 

Horowitz, 2017). These include observations that gaze biases can emerge from a lifetime of 48 

experience, such as taking the inherent uncertainty of the visual system into consideration during 49 

visual search(Najemnik & Geisler, 2005), anticipating a ball’s trajectory in sports(Brockmole & 50 

Henderson, 2006; Land & McLeod, 2000), the tendency to perform visual search from left to 51 

right(Spalek & Hammad, 2005), using learnt semantic knowledge(Võ & Wolfe, 2013) or meaning 52 

in real world scenes (Henderson et al., 2018). At shorter time-scales, object co-53 

occurrences(Brockmole & Henderson, 2006; Mack & Eckstein, 2011) and episodic memory have 54 

been shown to guide visual search(Li et al., 2018). Past experience on an even shorter time-scale 55 

can also influence gaze selection, for example when integrating visual information in a given 56 

scene with what has been learned about stimulus statistics within minutes(Hoppe & Rothkopf, 57 

2016; Yang et al., 2017). A number of these studies investigate jointly how humans develop 58 

specific eye movement patterns based on experience with the structure of sensory input and how 59 

they use specific eye movement strategies to solve particular tasks(Brockmole & Henderson, 60 

2006; Hoppe & Rothkopf, 2016; Land & McLeod, 2000; Li et al., 2018; Mack & Eckstein, 2011; 61 

Nelson & Cottrell, 2007; Yang et al., 2017). However, all the above studies considered  specific 62 

tasks (e.g. categorization, search), and they focused on end results, that is, they showed that 63 

after practice, observers learned the identity and/or location of diagnostic features of the task, and 64 

their eye movements became more related to these features. Such studies do not clarify, which 65 

of the two competing alternatives best describes the nature of the interaction between acquired 66 
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knowledge and eye movements in everyday life. First, this interaction could emerge only within 67 

the specific context of a clearly defined task via top-down control on sensory processing by high-68 

level explicit knowledge established earlier. Alternatively, the interaction could be a general and 69 

ongoing process that modulates human information-gathering behavior all the time and 70 

continuously supports both implicit and explicit learning. These two alternatives have very 71 

different consequences on how dynamic active perception and the role of eye movements within 72 

such perception should be framed with major implications on the relationship between perception 73 

and cognition 74 

In this study, we address two questions that help evaluate these two alternatives.  First, we asked 75 

whether there is a difference between how eye movements and sensory learning interact during 76 

an explicit task vs. in a task-free observation of structured sensory stimuli. Second, we assessed 77 

whether the effect of learning on eye movements is manifested immediately and proportionally 78 

with the amount of learned knowledge regardless of this knowledge being implicit or explicit, or 79 

alternatively, the effect emerges only after the acquired knowledge becomes explicitly accessible. 80 

To explore these issues, we adapted the paradigm of spatial statistical learning(Fiser & Aslin, 81 

2001), which allows investigating the process of learning under various levels of implicitness.  We 82 

altered the paradigm in a gaze-contingent manner, where in each trial, observers saw only a small 83 

part of the composite display around their fixation point at a time, and thus through each fixation, 84 

they could access different segments of the underlying scene, which consisted of multiple abstract 85 

shapes in complex statistical relationships. We coupled this paradigm with either an explicit task 86 

(Exp. 1), in which the underlying general structure of the scenes was verbally revealed to the 87 

observer prior to the experiment, or under the typical implicit condition of visual statistical learning 88 

(Exps. 2&3), where observers had no task other than to explore the unknown scene without any 89 

further instructions. This setup allowed investigating, in a continuous manner, the entire process 90 

of learning the underlying structure of the scenes from the naive to the expert state, the changes 91 
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in eye movement patterns during learning, and the effect of explicitness of the knowledge that the 92 

observers gathered and relied on.    93 

We found that observers’ knowledge about the underlying structure of the scenes acquired across 94 

multiple presentations induced a specific and significant change in their eye movement patterns. 95 

This change reflected the particular spatial structure of the constituents making up the visual 96 

scenes, and it progressed proportionally to the amount of learning throughout the learning 97 

process. Remarkably, while there was a difference in learning speeds between the conditions, 98 

when observers had prior explicit vs. no explicit knowledge, there was no difference between the 99 

two conditions in terms of how much a given amount of learning altered the eye movement 100 

patterns. Because changes in learning were detectable earlier than changes in gaze patterns,  101 

this supports the view that acquired knowledge is integrated continuously into the observer’s 102 

internal representations without the need for an explicit learning context, and that this knowledge 103 

continuously contributes to the control of subsequent information gathering through influencing 104 

eye movements. 105 

  106 
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 107 
Figure 1. Experimental design and test results. A) A set of 12 abstract shapes were randomly assigned 108 

to 6 pairs (2-vertical,2-horizontal,2-diagonal) for each participant. B) One example of the 144 possible 109 

scenes that were assembled from 3 differently oriented pairs randomly arranged on a 3 by 3 grid following 110 

the method of previous studies of spatial statistical learning. C)  Example trial snapshot of the gaze-111 

contingent statistical learning paradigm applied in this paper with the underlying structure of the trial scene 112 

shown in B, while the participant’s gaze moved from the bottom middle to the bottom left cell (indicated by 113 

the arrow). D) Results of the  2-IFC familiarity test after the learning phase in the three experiments differing 114 

only in instructions and training lengths showed highly significant learning performance (N=40, each, Error 115 

bars: full range of data, ). Test performance was not different across the three experiments (F(2,117)=0.89, 116 

p=.415, ηp
2=.01). 117 

 118 

Results 119 

Explicit learning of regularities influences eye-movements. To establish whether there is an 120 

ongoing link between the acquisition of complex environmental regularities and eye-movements 121 

during learning, we explicitly revealed the rules of the underlying statistical structure of the 122 

presented scenes (but not the identity of shapes in pairs) before Exp. 1. On the 2-IFC familiarity 123 

test, participants demonstrated significantly above chance performance (Fig 1D, M=70.56% 124 

95%CI [64.94, 76.17] t(39) =7.09, p<.001, Cohen’s d=1.12), indicating that they, at least partially, 125 

acquired the underlying regularities of the training scenes. To investigate the effect of the learned 126 

underlying structure on eye-movements, we analyzed whether the exploratory and confirmatory 127 

gaze transitions were influenced by the pair structure during training through the slope of 128 

regression (β) fitted to the proportion of exploratory and confirmatory looks across trials. The 129 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2020. ; https://doi.org/10.1101/2020.08.03.234039doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.234039
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

proportion of both types of looks following the pair structures was steadily increasing over the 130 

trials (Exploratory: β=.0245, p<.001, Fig 2A; Confirmatory: β=.0301, p=.026, Fig 2B). 131 

Furthermore, both measures were predictive of the performance on the final familiarity test on 132 

average (Exploratory: r(38)=0.39, p=.013; Confirmatory r(38)=0.70, p<.001). Moreover, this 133 

predictive power of eye movement patterns on final test performance gradually emerged during 134 

the learning phase (Fig 3).To test whether beyond the overall influence, the specific content of 135 

learning could also be deciphered from the observer’s eye-movements, we used the orientation 136 

specific parameters (α1-3) of the the model-based statistical analysis to predict the observer’s 137 

performance with the differently oriented pairs during the familiarity test. This test showed clear 138 

evidence for a significant relationship between the α parameters of eye-movement modulation 139 

and learning performance with pairs in all three orientations (Fig 4 A-C). Summarizing the results 140 

of  Exp. 1, we found that explicit learning of complex regularities can influence eye-movement 141 

patterns. Previous evidence on the number of fixations until finding a target (Najemnik & Geisler, 142 

2005; Peterson & Kramer, 2001) and looking times (Hoppe & Rothkopf, 2016) suggested that 143 

eye-movements can utilize environmental regularities. Our findings extend these results by 144 

showing that, with an explicit task, the patterns of explorative eye-movements become sensitive 145 

to newly learned spatial stimulus regularities, and the change in eye-movements reflect the 146 

amount of learning. 147 

Implicit learning of spatial regularities. In Experiment 1, we demonstrated a direct link between 148 

learning complex regularities and eye-movements when an explicit instruction provided a 149 

cognitive support for learning and  visual explorations.  In Experiments 2 and 3, we investigated 150 

whether this link between learning and eye-movements persists when people are solely exposed 151 

to the stimuli without any previous knowledge or instructions about regularities within the stimuli. 152 

Since learning could only be assessed without interference with implicitness after the end of the 153 

exposure period (by the familiarity test), we used two different training lengths in order to assess 154 
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the link between the strength of learning and its influence on eye-movements at two different 155 

stages of learning. Participants demonstrated significant learning in the familiarity test in both 156 

experiments (Fig 1D; Exp. 2: t(39)= 6.81, p<.001, d=1.08; Exp. 3: t(39)= 7.58, p<.001, d=1.2), 157 

with the performance in Exp. 3 numerically above that in Exp. 2 (Exp. 3 69.65%, [64.64, 74.67] 158 

vs.Exp. 2 65.9% [61.38, 70.43]), but this difference was not statistically significant (t78=1.07, p= 159 

.286, d=.24,Bayes Factor= .38). 160 

Change in eye-movements during implicit learning. Analyzing the effect of the underlying 161 

structure on the eye-movements with least-square regression analysis, we found a striking 162 

contrast between the two experiments. In Exp. 2, we found no evidence conveyed by regression 163 

slopes of any increase in within-pair fixations rates either for exploratory (β=-0.0039, p=.513, Fig 164 

2C) or for confirmatory looks (β=0.007, p=.643, Fig 2D). In contrast, and more similarly to Exp. 1, 165 

observers’ changing fixation rates in Exp. 3 reflected an increasing influence of the pair structure 166 

on eye movements over time both in exploratory (β=0.0068, p=.005, Fig 2E) and confirmatory 167 

looks (β=0.0139, p=.012, Fig 2F). Compensating the potential confounding effect of variable 168 

numbers of eye movements within trials, we reanalyzed the data with a Bayesian mixed model 169 

and confirmed the significance of the regression slope in Exp 3, and the lack of such effect in Exp. 170 

2.  171 
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 172 

Figure 2: Eye-movements are progressively influenced by learned statistical regularities. Columns 173 

indicate the three experiments (Exp. 1: A,B; Exp. 2.: C,D; Exp. 3.: E,F), rows show the two measures 174 

(Exploratory and Confirmatory gaze transitions) used to quantify the relation between learned underlying 175 

spatial regularities and eye-movement patterns. Dots represent per trial proportion values for each observer 176 

for the two measurements, group performance is shown by the least squares regression line (solid) and the 177 

95% confidence interval (dashed). Black dashed horizontal line indicates chance performance. Top Row: 178 

The proportion of explorative eye-movements that were performed according to the statistical structure of 179 

the scene (moving from a shape to its pair) was increasing over-time when the instructions were explicit 180 

(Exp. 1: A, β =0.0245, p<.001) or during long implicit learning (Exp. 3: E, β=0.0068, p=.005), but it stayed 181 

non-significant during the short implicit learning  (Exp. 2: C β =-0.0039, p=.513). Bottom Row: The same 182 

conclusions are supported by the Confirmatory Gaze Transitions measure, the proportion of within trial 183 

returns to cells already visited on a given trial that were performed within shapes forming pairs. Again, there 184 

was a significant increase in Exp. 1 (B, β =0.0301, p=.026, solid line) and Exp. 3 (F, β =0.0139, p=.012), 185 

but no change in Exp. 2 (D, β =0.007, p=.643). 186 

Eye-movements predict implicit learning performance. In Exp. 2, the eye-movement 187 

measures were not predictive of the outcome of the familiarity test (Exploratory: r(38)=0.17, 188 

p=.308; Confirmatory r(38) = 0.18, p=.26). In contrast, in Exp. 3, both measures had a strong 189 

correlation with learning performance (Exploratory: r(38)=0.55, p<.001; Confirmatory r(38) =0.54, 190 
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p<.001). This relationship between learning and eye-movements in Exp. 3 emerged gradually and  191 

revealed the strong link only by the second half of the experiment (Fig 3 A-B). 192 

Figure 3: Changes in eye-movements due to acquired knowledge about the statistical structure of 193 

the stimulus have an increasingly direct link to performance in familiarity tests. Trial-by-trial eye-194 

movement measures of each participant were correlated with individual learning success measured on the 195 

familiarity test.  Single trial Pearson r values were averaged in successive 36-trial-long bins. (A) Exploratory 196 

gaze transitions successfully predicted performance on the familiarity test both in Exp. 1 and Exp. 3.  197 

Exploratory looking in all three experiments was not predictive of test performance in the initial bin, but it 198 

quickly emerged to a highly predictive level in Exp. 1, unlike in Exp. 2 and in the first half of Exp. 3, where 199 

Pearson r values remained at chance. However, in the second half of Exp. 3, a strong relationship between 200 

eye-movements and performance emerged matching that of Exp. 1. (B) Largely the same pattern of results 201 

was found with Confirmatory as with Exploratory transitions, with a faster emergence of statistical influence 202 

in Exp. 1. suggesting that returns could reflect a hypothesis testing process of learning. (Error Bars: SEM; 203 

** p<.01 after Bonferroni correction).  204 

Eye-movements specifically predict the content of learning. There was a similar difference 205 

between the two experiments in terms of the link between the orientation-specific changes of eye-206 

movements (model α1-3) and familiarity test performance. Predictive relationships were absent in 207 

Exp. 2 (Fig 4 D-F), while in Exp. 3, there was a very strong relationship between the magnitude 208 

of orientation-specific influence on observer’s eye-movements and their pair-specific test 209 

performance. For both horizontal and vertical pairs, this effect was strong and highly significant 210 

(Fig 4 G-H), while for diagonal pairs, it was weaker and marginally significant (Fig 4 I).  We 211 
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confirmed that these correlations in Exp 3 were not due to general learning effects, but they were 212 

highly specific to the particular features the participants learned. 213 

Figure 4.  Familiarity test performance is predicted by eye-movement changes due to both implicit 214 

and explicit learning of stimulus regularities. On the x axes, parameters of the model-based analysis 215 

individually fitted to all gaze-transition data are shown, indicating how strongly a particular pair structure 216 

influenced eye-movements relative to the average exploration behavior of the participant. The model had 217 

three parameters, corresponding to Horizontal- (α1,Top Row), Vertical- (α2, Middle Row), Diagonal-pairs 218 

(α3 Bottom Row), representing the relative increase in the number of looks that were in agreement with the 219 

spatial arrangement of the pairs. On the y axes, performance on the familiarity test trials containing true 220 

pairs from the corresponding orientation is presented. Pearson r and p and Least Square regression line 221 

are shown for each condition. The specific link between eye-movements and the content of learning was 222 

especially strong in Exp. 3 (Right Column), both for horizontal and vertical pairs. The same two directions 223 

also showed a significant relationship in Exp. 1 (Left Column), with a weaker relationship for diagonal pairs 224 

due to a stronger ceiling effect. None of the links were significant in Exp. 2  (Middle Column). 225 

Test similarity of learning influences. Although our results so far demonstrated that learning 226 

both explicitly and implicitly changed eye-movement patterns  (Figure 2), it is unclear if these 227 

changes in eye-movement were linked only to the amount of learning regardless of whether this 228 
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knowledge was acquired in an explicit or implicit manner. We hypothesized that, while eye-229 

movements in Experiments 2 and the first half of Experiment 3 were obviously similar, in the 230 

second half of Experiment 3, when participants already gained some implicit knowledge of the 231 

structure of the input comparable to the gain from explicit instructions in Experiment 1, the eye-232 

movement pattern changes would be indistinguishable for those in Experiment 1. To test this 233 

hypothesis, we performed four analyses of covariance (ANCOVA) comparing within-pair eye-234 

movements between Exps 1 or 2 and the two halves of Exp 3, while controlling for the amount of 235 

learning. In these analyses, the Average rate of within-pair eye-movements of each participant 236 

combined across exploratory and confirmatory looks was the dependent variable. The Type of 237 

the experiment was the independent categorical variable, and Test performance indicating the 238 

amount of learning was the covariate with an interaction term between the covariate and the 239 

independent variable.  240 

The relationship of learning & eye-movements across experiments. Confirming the results 241 

in the sections above, the comparisons between Exps 1 and 3 showed that the “Test performance” 242 

covariate had a very strong influence on eye-movements (Exp1/Exp3-First half: F(1,76)=29.22, 243 

p<.001,  ηp
2=.28; Exp1/Exp3-Second Half: F(1,76)=45.67, p<.001,  ηp

2=.38). Comparing the first 244 

half of Exp 3 and Exp 1 (Fig 5A), we found that this influence of test performance had a significant 245 

interaction with the Type of experiment (F(1,76)=5.36, p=.023, ηp
2=.07), which rendered the lack 246 

of overall main effect of Type of experiment (F(1,76)=1.64, p=.204,  ηp
2=.02) uninterpretable. By 247 

the second half of Exp. 3 (Fig5C), neither the slope F(1,76)=1.05, p=.31,  ηp
2=.01), nor the overall 248 

eye-movements were dependent on the Type of the experiment (F(1,76)=2.04  p=.158,  ηp
2=.03).  249 

Thus, gaze-patterns were strongly influenced by the learned knowledge and became 250 

indistinguishable between the explicit and implicit experimental conditions.The same analysis for 251 

Exp. 3 vs. Exp. 2 showed the opposite pattern. When comparing Exp 2 to the first half of Exp 3 252 

(Fig5B), the Type of experiment had neither a significant main effect  (F(1,76)=1.33, p=.253,  253 
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ηp
2=.02) nor an interaction (F(1,76)=0.51, p=.477,  ηp

2=.01) with the covariate Test performance 254 

confirming high similarity across the two conditions. In contrast, when comparing Exp 2 to the 255 

second half of Exp. 3  (Fig5D), although the Type of experiment had a significant main effect 256 

(F(1,76)= 10.67, p=.002,  ηp
2=.12), it also had a significant interaction F(1,76)= 10.58, p=.002,  257 

ηp
2=.12) with Test performance indicating that very different causes shaped the gaze-patterns in 258 

the two experiments. Importantly, the influence of the Test performance covariate was significant 259 

already when the first half of Exp 3 was compared to Exp. 2 (F(1,76)=8.18, p=.005,  ηp
2=.1), but 260 

as expected, it became stronger when the second half of Exp 3 was considered (F(1,76)=21.66,  261 

p<.001,  ηp
2=.22). These analyses indicate that while initially the (relatively weak) relationship 262 

between eye-movements and the learning of the underlying structure was very similar between 263 

the first half of Exp. 3 and Exp 2, as implicit knowledge accumulated further in Exp 3, it started to 264 

influence eye-movements more strongly, and the eye-movement patterns in Exp 3 were 265 

influenced in the same way as in the completely explicit  learning context of Exp. 1. Thus, these 266 

results confirm our hypothesis that in our experiments, the amount of the acquired knowledge is 267 

the main driving force behind the changes in eye-movements patterns regardless of the explicit 268 

or implicit nature of the experimental conditions. 269 

  270 
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 271 

Figure 5. The relationship between learning and eye-movements during implicit and explicit learning 272 

becomes very similar over time. Scatter plots between familiarity test performance (x-axis) and the ratio 273 

of within-pair eye-movements (y-axis) across the three different experiments with Exp 3 splitted to two 274 

halves. Top Row: Comparison of the first half of Exp 3 to Exp 1 (A) and Exp 2 (B). Bottom Row: Comparison 275 

of the second half of Exp 3 to Exp 1 (C) and Exp 2 (D). Dots represent mean pair rate combined across 276 

Exploratory and Confirmatory looks and the corresponding test performance of individual participants. The 277 

lines indicate results of multiple linear regression corresponding to the ANCOVA described in the main text. 278 

Stars (*) in the bottom right corners mark a significant interaction between test performance and the 279 

covariate Experiment type (A,D), the main focus of this analysis.  The main effect of test-performance was 280 

significant in all four analyses.  281 

Statistical influence on eye-movements is automatic, but only emerges after sufficient 282 

learning. In Exp. 3, we found that, given sufficiently long exposure, learning regularities implicitly 283 

and learning them by explicit instructions (Exp. 1) influence visual exploration very similarly.  284 

Importantly, the relationship between acquired knowledge and gaze patterns was 285 
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indistinguishable between the explicit and long implicit conditions. This suggests that the influence 286 

of learned knowledge of environmental statistics on eye-movements is automatic, and it does not 287 

require a well-defined task or cognitive awareness to emerge.  We also found that this effect was 288 

tightly linked to the specific knowledge acquired about the statistics of the input. Meanwhile, in 289 

the shorter implicit experiment (Exp. 2), we found comparably large learning in the familiarity test 290 

without any detectable influence of this learning on eye movements. This provides evidence about 291 

the complex relationship between learning and eye movements indicating that precise 292 

assessment of the acquired knowledge and good sensitivity in measuring changes in eye-293 

movement patterns will be needed for an ultimate characterization of their relation. 294 

Discussion 295 

Using a novel gaze-contingent statistical learning paradigm, we clarified three aspects of how 296 

sensory learning and eye movement patterns interact. First, we confirmed that acquiring 297 

knowledge about the underlying structure of the visual environment accumulated by sensory 298 

learning can have an effect on the patterns of eye movements even on the short run.  Second, 299 

we showed that this effect is highly specific to the statistical composition of the incoming sensory 300 

input as the knowledge acquired by learning and characterized by different orientations of the 301 

underlying chunks could be reliably identified by the individual looking patterns. Finally, we found 302 

that, apart from the learning speed, the effect of knowledge on eye movements was independent 303 

of whether the observers gained it using explicit instruction about the underlying structure of the 304 

input or they obtained it by exploring the scenes without any specific prior information.  305 

Previous studies investigating the relationship between environmental regularities and eye-306 

movements fall roughly into two groups investigating complementary aspects of the phenomenon. 307 

Studies in the first group focused on the interaction between explicitly or implicitly defined but 308 

already available internal knowledge and eye movements in various tasks by investigating the 309 
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number and position of fixations necessary for finding a target in a display or making a 310 

decision(Chukoskie et al., 2013; Hoppe & Rothkopf, 2019; Morvan & Maloney, 2012; Najemnik & 311 

Geisler, 2005; Peterson & Kramer, 2001; Yang et al., 2017). Studies in the other group 312 

investigated the effect of learning on eye movements but only in terms of learning temporal 313 

regularities and adjusting the timing of fixations accordingly(Glimcher, 2003; Hoppe & Rothkopf, 314 

2016). Our study is the first to combine these two aspects by investigating the ongoing process 315 

of developing an internal representation of the input’s spatial structure and showing how the 316 

momentary result of this learning process continuously interacts with the pattern of eye 317 

movements.   318 

Our design also allowed addressing directly the controversial issue regarding the role of explicit 319 

vs. implicit knowledge in controlling eye movements. Some studies found that only explicit 320 

memories have an influence on eye-movements(Hannula et al., 2012; Smith et al., 2006), while 321 

others reported that eye-movements can be used to detect memory traces that are not yet 322 

amenable to conscious report(Hannula et al., 2012; Hannula & Ranganath, 2009).  Although our 323 

findings do not decisively resolve this controversy, we show in a unified setup how eye-324 

movements can reflect memory traces as an outcome of both an explicit and a sufficiently long 325 

implicit learning process. While there is an ongoing semantic debate about the definition of explicit 326 

vs. implicit memory(Batterink et al., 2015; Greenwald & Banaji, 2017; Roediger, 1990), our results 327 

provide two important observations pertinent to the issue.  First, the majority of the implicit 328 

observers even in the long implicit experiment (Exp 3) did not have explicit access to the gained 329 

knowledge about the underlying scene, as indicated by their verbal post-test report. Nevertheless, 330 

they showed a monotonic increase in correlation between their implicitly-acquired knowledge and 331 

effects on their eye movements.  Moreover, even after removing subjects, who performed 332 

perfectly on the familiarity test in Exp 3, in a control measure, our conclusion remained the same. 333 

Second, the nature of changes in the eye movements in the implicit and explicit conditions were 334 
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very similar as measured by the rate of exploratory and confirmatory gaze switches, suggesting 335 

that the underlying processes were also shared across the two conditions. These two 336 

observations indicate that the phenomenon we uncovered is, indeed, a general and automatic 337 

process that is driven by knowledge regardless of whether this knowledge is acquired implicitly 338 

or explicitly. Moreover, this automatic process influences information collection during perception 339 

continuously and in proportion to the amount of acquired knowledge.  340 

While the correlational nature of our findings does not allow the assessment of the causal 341 

relationship between eye-movements and learning, our results have implications for the suitable 342 

framework for capturing the interplay between learning new information and selective data 343 

acquisition due to eye movements constrained by internal knowledge. The continuous ongoing 344 

nature of the emerging knowledge-based effect on eye movements and the independence of this 345 

knowledge of explicitness does not support frameworks positing that eye-movements are affected 346 

in an attention-like manner only when the underlying structure of the environment has been 347 

learned and it is explicitly accessible. Based on our results, it is more parsimonious to assume an 348 

ongoing bi-directional relationship, in which learning influences eye-movements and eye-349 

movements scaffold learning, reflecting a continuous intertwined link between new sensory input 350 

and top-down memory related control(Chun & Turk-Browne, 2007; Gottlieb, 2012). 351 

Computationally, this process is better represented by dynamically evolving hierarchical inference 352 

making(Lake et al., 2015), in which prior knowledge and momentarily collected information is 353 

jointly handled for continuously interpreting and controlling sensory input than by two-stage 354 

schemes with an initial sweep of bottom-up process followed by specific top-down cognitive 355 

filtering(Itti & Baldi, 2009; Schütz et al., 2012). 356 

Finally, the method we used in this study can also improve our understanding of the computations 357 

involved in statistical learning.  Despite being considered as a fundamental form of human 358 

knowledge gathering, statistical learning is still not well understood at the process level. This is 359 
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due to the fact that the majority of studies use the early methodology established in classical 360 

papers (Fiser & Aslin, 2001; Saffran et al., 1999), in which the effect of learning  is measured on 361 

a separate test phase following exposure and this provides only limited information about 362 

characteristics of learning (Siegelman et al., 2017).  Although recently, different methods were 363 

proposed to deal with this problem by tracking the ongoing processes of learning visual 364 

regularities (Karuza et al., 2014; Siegelman et al., 2017, 2018), these methods are restricted to 365 

temporal statistical learning and raise new concerns due to using explicit instructions instead of 366 

truly implicit learning, and increased number of test trials that could interfere with learning. In 367 

contrast, our method can be used to track the learning of complex spatial regularities in a natural 368 

manner as in the classical experiments, since it relies on an independent and unconscious 369 

behavioral measure -eye movement patterns- that does not require changing the original setup 370 

of statistical learning and still provides information continuously about the characteristics of the 371 

emerging representation. 372 

In conclusion, we provided evidence for the first time for a continuous and tight link between 373 

human visual information sampling strategies manifested by eye movements and the emerging 374 

internal knowledge of environmental regularities. Our results frame natural vision as a process, in 375 

which active selection from the incoming information and internal knowledge jointly determine 376 

both the interpretation of the input and further changes in internal knowledge. 377 

  378 
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 379 

Methods 380 

Participants 381 

Altogether 120 participants naïve about the purpose of the study and about statistical learning 382 

were recruited via a local student organization and received monetary compensation for their 383 

participation. 40 participants were assigned to each of the three experiments (Exp. 1: age: 25.5 384 

+/- 4.6 years, 13 male; Exp. 2: age: 22.1 +/- 2.8 years, 13 male; Exp. 3: age: 23 +/- 5.5 years, 10 385 

male). We chose a sample size larger than most previous statistical learning studies(Batterink et 386 

al., 2015; Fiser & Aslin, 2001; Turk-Browne et al., 2005) based on power analysis, as we wanted 387 

to assess the variability in the individual learning performances. One additional participant 388 

completed Exp. 2 but was excluded from the final sample, because upon completing the study 389 

revealed not being naïve about visual statistical learning. 390 

Procedure 391 

In Experiment 1, after calibration and practice, but before the start of the main experiment, 392 

participants were instructed to explore the scenes and find pairs of shapes that always appear 393 

next to each other in a horizontal, vertical or diagonal arrangement. They were also told that they 394 

would be questioned about the identity of the pairs afterwards (Explicit instructions). Participants 395 

had 6 seconds to explore each of the 144 scenes, presented in a random order, resulting in a 396 

total training time of approximately 16 minutes. 397 

All aspects of Experiments 2 and 3 were identical to those in Experiment 1 except for the lack of 398 

explicit instructions. After calibration and practice, but before the start of the main experiment, 399 

participants were told to explore the scenes and pay attention to what they see. They were also 400 

told that they will be tested on what they had seen after the exploration phase, however, they 401 
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were not told about any potential regularity or structure in the stimuli nor about the nature of the 402 

subsequent test.  These are the canonical conditions of implicit visual statistical learning used in 403 

previous studies(Fiser & Aslin, 2001; Turk-Browne et al., 2005). Exp. 2 was the same length as 404 

Exp. 1 (~16 mins), but in Exp. 3, the learning phase was double in length: each one of the 144 405 

unique scenes were presented once in each half of the experiment in a different random order. In 406 

Exp. 3, completing the learning phase took approximately 32 mins, with a short break in the 407 

middle, where participants were kindly asked to continue paying attention. 408 

All experiments were conducted in a dimly lit and sound attenuated room. A Tobii EyeX 60Hz 409 

eye-tracker was calibrated using a seven-point calibration from a viewing distance of 60 cm. After 410 

calibration, participants completed ten 6-second-long practice trials, where randomly selected 411 

images of dogs were revealed in a gaze-contingent manner within the 3 x 3 grid: the content of 412 

each cell was visible only when the observer’s gaze fell within the central 5.7 x 5.7 degrees of the 413 

cell in two subsequent eye position samples (taken approx. 15 ms apart), otherwise the given cell 414 

was shown empty. The trials in the learning phase of each experiment were also 6-second-long 415 

and they followed the same gaze contingent rule as during practice. 416 

Each trial started by a fixation cross appearing in one of the empty grid cells, where the observer 417 

had to fixate to initiate the trial. The position of the fixation cross was uniformly distributed across 418 

trials, appearing at the center of each cell of the 3 x 3 grid an equal number of times during the 419 

experiment in a random order.  Unlike previous spatial statistical learning studies, the full scenes 420 

in these trials were never visible at once. Instead, individual shapes were revealed in a gaze-421 

contingent manner, when the participants’ gaze was inside the mid-region of a cell. When 422 

participants looked at a cell containing the shape, the shape appeared at full contrast as long as 423 

the participant’s gaze was in the given cell, but gradually faded away becoming invisible within 424 

1.5 sec when the participant looked away to a different cell. This way, maximally two shapes of 425 

the scene were displayed at any given time and only one of them at full contrast. If the observer’s 426 
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gaze was in the mid-region of a cell not containing a shape in a given trial, a gray rectangle was 427 

revealed indicating that the cell was empty in order to reduce the observer’s uncertainty whether 428 

s/he managed to fixate on the cell. These gray rectangles remained visible until the trial was over, 429 

thereby ensuring that the end of each trial was easily noticeable. Participants were free to visit or 430 

revisit with their gaze any of the cells during the trial. When the trial was over after 6 seconds, all 431 

shapes and gray rectangles disappeared, and after a 500ms inter-trial-interval, the next fixation-432 

cross appeared at one of the cells to initiate the start of the next trial.  433 

At the end of the learning phase, after a short break, a two-interval-forced-choice (2-IFC) test 434 

session followed, with trials in which participants were told to select the more familiar of the two 435 

pair combinations presented based on what they had seen during the learning phase.  For the 436 

test, 6 foil pairs (with two shapes that never appear in the presented arrangement during learning) 437 

were created from the original shapes and those were tested in a fully counterbalanced manner 438 

against each of the real pairs of the inventory, resulting in 36 test trials presented in a random 439 

order. The within-test trial order of the real versus foil pair was pseudo-randomly balanced across 440 

the test. On each trial, participants used the left and right arrow keys for the 1st and 2nd pair, 441 

respectively,  to indicate which pair was more familiar. 442 

Data Analysis & Measures 443 

All data were analyzed in Python, and statistics were calculated using the SciPy, scikit-learn, 444 

Pingouin and statsmodels libraries.  Bayes factors were calculated using the method proposed 445 

by Rouder et al (Rouder et al., 2009)  with an uninformative prior.  Since the exact gaze position 446 

within the central region of each cell had no functional consequence, eye-movement data was 447 

analyzed based on whether or not the fixation samples were within the gaze contingent central 448 

region of one of the cells. On average, participants made more than seven (7.2 +/- 1) transitions 449 

between the central regions of different cells in a trial. From these transition events, we focused 450 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2020. ; https://doi.org/10.1101/2020.08.03.234039doi: bioRxiv preprint 

https://paperpile.com/c/VwliFa/Hq3C
https://doi.org/10.1101/2020.08.03.234039
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

on the ones that were potentially related to learning by using a method detailed below. Since the 451 

number of transitions could also change as the learning session progressed, we focused on 452 

proportions and not on the absolute number of events. 453 

Eye-movement transition data was separated into two different measures that could indicate 454 

different behaviors: exploratory transitions and confirmatory returns. An exploratory transition was 455 

defined as a gaze transition to a cell for the first time during a trial, while a confirmatory return 456 

was defined as transition to a cell that had already been visited on the current trial. The difference 457 

between these events is important, since in case of a return, the participant could be more certain 458 

what s/he would see at a given location, as s/he had already seen the content within the last few 459 

seconds. In case of an exploratory transition, no such information was available, therefore, the 460 

content of the cell could be predicted/expected only if 1) the cell contained a member of a shape 461 

pair whose other member the participant already saw during the current trial, AND 2) only if the 462 

participant had already learned about the spatial relationships between shapes during the 463 

previous trials. Within the exploratory and confirmatory measures, we calculated the proportion 464 

of looks that were performed from a shape to its pair, and used this calculation for the assessment 465 

of whether the underlying statistical structure had an effect on the transitions. Finally, as a 466 

combined measure, we used the rate of within pair eye-movements, which was defined as the 467 

proportion of gaze transitions when participants looked from a shape to the cell containing its pair 468 

as opposed to other cells.  469 

For the analysis of temporal changes in the gaze data across trials, we used regression to predict 470 

the eye-movement data with trial number as a predictor. We analyzed the results with two different 471 

regression methods, and found support with both of them for the same conclusions. The first 472 

method was a simple linear regression predicting the average eye-movement measures across 473 

participants (Fig 2). The second was a linear mixed model, predicting a slope for eye-movements 474 

across participants, but including a random intercept for each observer. 475 
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To analyze whether temporal changes in looking behavior across trials were linked to learning 476 

(Fig 3), we calculated the Pearson correlation between our eye-movement measures on each trial 477 

and the performance in the final familiarity test. Next, we divided the obtained r values in 36 trial-478 

long consecutive bins (yielding 4 bins in Exps. 1 & 2 and 8 bins in Exp. 3), and analyzed whether 479 

the r values in each bin were different from zero using a standard one sample t-test. For statistical 480 

correction of multiple comparisons, the Bonferroni method was used. 481 

  482 

Computational Analysis 483 

Our goal was to quantify how much participants' gaze trajectories changed from random 484 

exploration to a pattern determined by statistical regularities over the duration of the experiment. 485 

We used a model-based analysis to obtain a measure that could be fitted to all gaze transitions 486 

without relying on the selection of particular events. For each participant, the model measured 487 

the increase of alignment between looking behavior and the statistical structure of the stimuli 488 

compared to the average behavior as quantified by the distribution of  transition probability across 489 

the cells of the grid. Since there were three types of regularities in the stimuli (link across 490 

horizontal, vertical, and diagonal orientations), the model had three parameters (α1-3), 491 

representing increased gaze transitions between shapes forming pairs in each of the three 492 

orientations. For example, the value of α1 represented an increased probability of looking from 493 

shape1, which was a member of a horizontal pair, to the position of shape2, the other shape in 494 

the pair. For each observer, the values of the three parameters were fitted trial-by-trial using the 495 

maximum likelihood method. To test whether these orientation-specific changes in eye movement 496 

behavior during the learning phase could predict performance in the test session, we separated 497 

the 36 test trials based on the orientation of the true pair in the trial, yielding 12 test trials for each 498 
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orientation. Next, we used Pearson correlation to predict orientation specific test performance 499 

based on the fitted model parameters of each participant (Fig 4). 500 

 501 
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