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Abstract

Many tasks in statistical genetics involve pairwise estimation of linkage disequilibrium (LD).
The study of LD in diploids is mature. However, in polyploids, the field lacks a comprehen-
sive characterization of LD. Polyploids also exhibit greater levels of genotype uncertainty than
diploids, and yet no methods currently exist to estimate LD in polyploids in the presence of
such genotype uncertainty. Furthermore, most LD estimation methods do not quantify the level
of uncertainty in their LD estimates. Our paper contains three major contributions. (i) We
characterize haplotypic and composite measures of LD in polyploids. These composite measures
of LD turn out to be functions of common statistical measures of association. (ii) We derive
procedures to estimate haplotypic and composite LD in polyploids in the presence of genotype
uncertainty. We do this by estimating LD directly from genotype likelihoods, which may be
obtained from many genotyping platforms. (iii) We derive standard errors of all LD estima-
tors that we discuss. We validate our methods on both real and simulated data. Our methods
are implemented in the R package ldsep, available on the Comprehensive R Archive Network
https://cran.r-project.org/package=ldsep.

1 Introduction

Linkage disequilibrium (LD), the statistical association between alleles at different loci, is a funda-
mental quantity in statistical genetics. Estimates of LD have applications in association mapping
[Devlin and Risch, 1995, Jorde, 1995, Xiong and Guo, 1997, Mackay and Powell, 2007, Farh et al.,
2015, Gur et al., 2017], analyses using summary statistics from genome-wide association studies
(GWAS) [Yang et al., 2012, Benner et al., 2017, Zhu and Stephens, 2017], genomic prediction
[Wientjes et al., 2013, Sun et al., 2016], and population genetic studies [Slatkin, 2008, Zhu et al.,
2015, Van Wyngaarden et al., 2017, Griffiths et al., 2019], among other tasks [Sved and Hill, 2018].

Many of these LD tasks are now being applied to polyploid organisms. Polyploids, organisms
with more than two copies of their genome, are ubiquitous in the plant kingdom [Barker et al.,
2016], predominant in agriculture [Udall and Wendel, 2006], and important drivers of evolution
[Soltis et al., 2014]. As such, researchers started applying polyploid LD estimates to genotype
imputation [Clark et al., 2019, Matias et al., 2019], GWAS [Barreto et al., 2019, Ferrão et al., 2020],
genomic prediction [Ramstein et al., 2016, de Bem Oliveira et al., 2019, de C. Lara et al., 2019],
and various other applications.

Characterizing and estimating LD in diploids is a mature field. Since the various measures of
LD were proposed [Lewontin and Kojima, 1960, Lewontin, 1964, Hill and Robertson, 1968] and the
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basic strategies of estimation implemented [see Weir, 1996, for example], researchers have proposed
extensions spanning many directions. Methods have been created to estimate LD using genotype
data, rather than haplotype data, under the assumption of Hardy-Weinberg equilibrium (HWE)
[Hill, 1974, Weir and Cockerham, 1979, Hui and Burt, 2020]. Composite measures of LD have been
defined that are estimable using genotype data even when HWE is violated [Cockerham and Weir,
1977, Weir, 1979, Hamilton and Cole, 2004, Zaykin, 2004]. Procedures have been devised to estimate
LD in the presence of genotype uncertainty [Li, 2011, Maruki and Lynch, 2014, Bilton et al., 2018,
Fox et al., 2019]. Regularization procedures have been suggested to improve LD estimates [Wen
and Stephens, 2010].

The research on characterizing and estimating LD in polyploids is much more limited. To date,
there have basically been three approaches to estimating LD in polyploids. (i) Researchers assume
they have known haplotypes (through phasing of known genotypes or otherwise) and then estimate
LD using the empirical haplotype frequencies [Simko et al., 2006, Bradbury et al., 2007, Shen
et al., 2016]. (ii) Researchers construct two-way tables of known genotypes and run categorical
tests of association, such as Fisher’s exact test [Raboin et al., 2008, Julier, 2009, Huang et al.,
2020]. (iii) Finally, researchers use standard statistical measures of association, such as the squared
Pearson correlation, on the known genotypes between two loci [Björn et al., 2010, Ramstein et al.,
2016, Vos et al., 2017, Sharma et al., 2018, de Bem Oliveira et al., 2019].

There are many well-developed methods to obtain phased haplotypes in diploids [Scheet and
Stephens, 2006, Browning and Browning, 2007, Li et al., 2010, Swarts et al., 2014], and so method (i)
above is an appealing strategy as it allows the study of association directly at the haplotypic level.
However, similar advances in polyploids are relatively infant and are just now emerging in force
[Su et al., 2008, Shen et al., 2016, Zheng et al., 2016, Mollinari and Garcia, 2019]. An additional
limitation is that these phasing approaches usually require access to a reference genome, which is
not always available or necessary in many modern next-generation sequencing pipelines [Lu et al.,
2013].

A greater concern is that all of the polyploid LD estimation approaches listed above assume
genotypes are known without error. In polyploids, this assumption is incorrect. Even though there
have been gains in the accuracy of genotyping methods [Voorrips et al., 2011, Serang et al., 2012,
Mollinari and Serang, 2015, Maruki and Lynch, 2017, Schmitz Carley et al., 2017, Blischak et al.,
2018, Gerard et al., 2018, Clark et al., 2019, Gerard and Ferrão, 2019, Zych et al., 2019] the issue
of genotype uncertainty in polyploids is still severe and much more so than in diploids. In Gerard
et al. [2018], we found that genotyping error rates in diploids can be reduced to less than 0.05 at
a read-depth of around 5×, but similar error rates could not be achieved for hexaploids in some
scenarios until one had read-depths in the many-thousands, an unrealistic scenario for most applied
researchers.

In this paper, we provide various methods to estimate LD. After reviewing measures of haplotypic
LD in Section 2.1, in Section 2.2 we derive a procedure to estimate haplotypic LD in autopolyploids
in the presence of genotype uncertainty under the assumption of HWE. We do this by estimating
LD directly using genotype likelihoods. In allopolyploids, organisms that exhibit partial preferential
pairing, or populations that violate the random-mating assumption, these estimates are not appro-
priate. Thus, in Section 2.3 we define various “composite” measures of LD that generalize the com-
posite measures proposed in Cockerham and Weir [1977]. These measures turn out to be functions of
the statistical moments of the genotypes. In Section 2.4 we provide methods to estimate these com-
posite measures of LD in the presence of genotype uncertainty by directly using genotype likelihoods.
To reduce the number of parameters we estimate, we propose a novel and flexible class of distribu-
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tions over the genotypes. We validate our methods both in simulations (Section 3.1) and on real data
(Section 3.3). All analyses are reproducible (https://doi.org/10.6084/m9.figshare.12765803)
and all methods are available in the ldsep R package on the Comprehensive R Archive Network
(https://cran.r-project.org/package=ldsep).

2 Materials and Methods

Notation: The following contains the notation conventions used throughout this manuscript. We
will denote scalars by non-bold letters (a or A), vectors by bold lower-case letters (a), and matrices
by bold upper-case letters (A). We let Latin letters denote haplotypic measures of LD (D, D′,
and r), while we let Greek letters denote composite measures of LD (∆, ∆′, and ρ). Estimates of
population parameters will be denoted with a hat (D̂).

2.1 Measures of haplotypic LD

The original definitions of LD quantify the statistical association between alleles located at different
loci on the same haplotype. In diploids, since only a single haplotype is present in a gamete, such
associations are sometimes referred to as “gametic LD” [Hedrick et al., 1978]. However, in au-
topolyploids, a single gamete might contain multiple haplotypes (on the multiple homologues), and
so a more appropriate term for such LD in polyploids might be “haplotypic”. For this manuscript,
we will use the terminology “haplotypic LD” to refer to what is known in the diploid literature as
“gametic LD”.

Various measures of haplotypic LD have been proposed in the literature, each possessing relative
strengths and weaknesses for interpreting the association between loci [Hedrick, 1987, Devlin and
Risch, 1995]. In this section, we briefly review these common measures of haplotypic LD.

Perhaps the three most commonly used measures are the LD coefficientD [Lewontin and Kojima,
1960], the standardized LD coefficient D′ [Lewontin, 1964], and the Pearson correlation r [Hill and
Robertson, 1968]. In this manuscript, we will explore these measures of LD only in the context of
biallelic loci, and leave for future work the task of generalizing multiallelic loci methods to polyploids
from diploids [Thomson and Single, 2014, Okada, 2018, e.g.]. To define these terms, let A and a be
the reference and alternative alleles, respectively, at locus 1. Similarly let B and b be the reference
and alternative alleles at locus 2. The LD coefficient is defined to be the difference between the
true haplotype frequency and the haplotype frequency under independence:

D := pAB − pApB, (1)

where pAB denotes the frequency of haplotype AB, pA denotes the allele frequency of A, and pB
denotes the allele frequency of B. Note that this definition necessarily implies that

pAB = pApB +D, pAb = pApb −D, paB = papB −D, and pab = papb +D. (2)

The range of D is constrained by the allele frequencies [Lewontin, 1964] by

−min{pApB, (1− pA)(1− pB)} ≤ D ≤ min{pA(1− pB), (1− pA)pB}, (3)
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and so Lewontin [1964] suggested the standardized LD coefficient:

D′ := D/Dmax, where (4)

Dmax :=

{
min{pApB, (1− pA)(1− pB)} if D < 0,

min{pA(1− pB), (1− pA)pB} if D > 0.
(5)

The D′ coefficient is free to vary between -1 and 1, though it still depends on the loci-specific allele
frequencies [Lewontin, 1988]. Finally, the Pearson correlation between loci is

r :=
D√

pA(1− pA)pB(1− pB)
. (6)

It is common to report not D, D′, and r, but rather their absolute values or their squares. This
is because the sign of the LD between loci depends on the mostly arbitrary labels of the alternative
and reference alleles.

2.2 Pairwise haplotypic LD estimation in autopolyploids under HWE

In this section, we consider estimating haplotypic LD from a population of autopolyploid individu-
als under HWE in a species that exhibits only bivalent pairing (though we note that the following
methods are rather robust to the bivalent assumption, Section S12). We will begin by deriving
the joint distribution of genotypes at two loci conditional on the LD coefficient and the allele fre-
quencies at both loci. These genotype distributions will then be used, along with user-provided
genotype likelihoods, to develop a procedure to estimate LD in the presence of genotype uncer-
tainty. Genotype likelihoods, the probability of the data given the genotypes, may be obtained
from many genotyping programs (at least up to a proportional constant which does not depend on
any parameters, which may be used in what follows; see Section S14) [McKenna et al., 2010, Gerard
et al., 2018, Clark et al., 2019, Gerard and Ferrão, 2019, e.g.]. Maximum likelihood theory will be
used to derive standard errors of these estimators.

Let XiAB, XiAb, XiaB, and Xiab be the number of AB, Ab, aB, and ab haplotypes (respectively)
in individual i. If each autopolyploid individual is K-ploid, then under HWE we have

(XiAB, XiAb, XiaB, Xiab) ∼ Multinomial(K; pAB, pAb, paB, pab). (7)

Researchers typically do not have access to individual haplotypes as in (7). Rather, most methods
assume that researchers have available the dosages of each allele, which we call the genotypes. Let
GiA := XiAB + XiAb and GiB := XiAB + XiaB be the number of reference alleles at loci 1 and 2,
respectively, in individual i. Then we may sum over the X’s to obtain the joint distribution of GiA

and GiB (Supplementary Section S1).

Pr(GiA = gA, GiB = gB|D, pA, pB) =

min(gA,gB)∑
z=max(0,gA+gB−K)

K!pK+z−gA−gB
ab pgA−zAb pgB−zaB pzAB

(K + z − gA − gB)!(gA − z)!(gB − z)!z!
.

(8)

Equation (8) is conditional on D, pA, and pB due to the relations in (2). Equation (8) contains the
distribution of the genotypes under HWE, conditional on D and allele frequencies, and generalizes
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the formulas in Table 1 of Hill [1974] to autopolyploids.
If the genotypes were known without error, then we could estimate D (along with pA and pB)

by maximum likelihood estimation (MLE) using the following log-likelihood:

L(D, pA, pB|G) = Pr(G|D, pA, pB) =
n∑

i=1

logPr(giA, giB|D, pA, pB), (9)

where G = (g1, . . . ,gn) and gi = (giA, giB) are the observed genotypes for individual i. Since D′

and r are both functions of D, pA, and pB (4)–(6), this would also yield the MLEs of D′ and r.
We have implemented maximizing (9) in our software using gradient ascent. We call the resulting
MLEs D̂g, D̂′g, and r̂g for “genotypes”.

However the genotypes are not known without error [Gerard et al., 2018]. Maruki and Lynch
[2014] and Bilton et al. [2018] accounted for this in diploid sequencing data by adaptively estimating
the sequencing error rate at each locus. However, their models ignore important features concerning
polyploid sequencing data, particularly allele bias and overdispersion [Gerard et al., 2018]. Li [2011]
and Fox et al. [2019] take the more modular approach of allowing the input of genotype likelihoods
for diploids derived from any genotyping software. Letting the input be genotype likelihoods allows
the use of different genotyping platforms and software that may account for different features of
the data. This also results in greater generalizability since different data types (e.g., microarrays
[Fan et al., 2003], next-generation sequencing [Baird et al., 2008, Elshire et al., 2011], or mass
spectrometry [Oeth et al., 2009]) can all result in genotype likelihoods that may then be fed into
these LD estimation applications. We thus take this approach and consider estimating LD from
genotype likelihoods.

We will now describe a procedure to estimate LD while integrating over genotype uncertainty
using genotype likelihoods. Let us denote the data for individual i at loci 1 and 2 by yiA and yiB,
respectively. Let p(yiA|gA) and p(yiB|gB) be the probabilities of the data at loci 1 and 2 given
genotypes gA and gB. These probabilities are the genotype likelihoods and are assumed to be
provided by the user. All of the results in this manuscript use the genotype likelihoods from the
updog software [Gerard et al., 2018, Gerard and Ferrão, 2019], but we do not require this in the
methods below and any genotyping software may be used as long as it returns genotype likelihoods
[McKenna et al., 2010, Clark et al., 2019, e.g.]. The log-likelihood of D, pA, and pB given the data
is:

L(D, pA, pB|y) = Pr(y|D, pA, pB)

=

n∑
i=1

log

 K∑
gB=0

K∑
gA=0

p(yiA|gA)p(yiB|gB)Pr(gA, gB|D, pA, pB)

 .
(10)

We developed an expectation-maximization (EM) algorithm [Dempster et al., 1977] to maximize
(10) and estimate haplotype frequencies and, thus, LD (Section S2). For diploids (K = 2), this
estimation procedure reduces down to that proposed in Li [2011] and implemented in the ngsLD

software [Fox et al., 2019] (Figure S1). However, we found it more efficient to maximize likelihood
(10) using gradient ascent. Details of this optimization are also presented in Section S2.

Standard errors are important for hypothesis testing [Brown, 1975], read-depth suggestions
[Maruki and Lynch, 2014], and hierarchical shrinkage (a statistical technique to borrow strength
between SNPs and improve estimation performance) [Dey and Stephens, 2018]. However, most LD
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estimation methods do not return standard error estimates. In Section S8, we provide a description
for how to obtain such estimates using standard maximum likelihood theory. Our software returns
these standard errors.

2.3 Composite measures of LD

The methods in Section 2.2 were developed under the assumption of HWE in autopolyploids. The
goal in this section is to develop measures of LD that are (i) valid measures of association when this
autopolyploid HWE assumption is violated (e.g. in the case of allopolyploids), (ii) estimable even
when only genotype information is provided, and (iii) reduced to the haplotypic measures of LD
(Section 2.1) when HWE is satisfied in autopolyploids. These measures will be called “composite”
measures of LD, as they account for associations not just at the haplotypic level.

The easiest composite measure to obtain that satisfies our goals is that which generalizes r (6).
Let the random variables GA and GB be the genotypes of a randomly selected K-ploid individual
at loci 1 and 2. Then, quite simply, the composite measure of correlation is the Pearson correlation
between genotypes:

ρ := cor(GA, GB). (11)

We prove in Section S3 that ρ equals r when HWE is satisfied in autopolyploids.
In diploids, Cockerham and Weir [1977] (attributing their result to Peter Burrows’ unpublished

work) suggested a composite measure of LD which they defined as the sum of haplotypic LD and
non-haplotypic LD. This sum depends only on genotype frequencies, not the haplotype frequencies,
and is thus estimable even under general violations from HWE. Under HWE, this composite LD
measure was equal to D, and so Weir [1979] suggested its use also when HWE was satisfied. Let qij
denote the probability of a randomly selected individual containing genotype i ∈ {0, 1, 2} on locus
1 and j ∈ {0, 1, 2} on locus 2. Then the coefficient as defined in Cockerham and Weir [1977] is

2q22 + q12 + q21 +
1

2
q11 − 2pApB, (12)

where pA = 1
2

∑2
gA=0 gA(qgA0 + qgA1 + qgA2) and pB = 1

2

∑2
gB=0 gB(q0gB + q1gB + q2gB ) are the

frequencies of the A allele at locus 1 and B allele at locus 2, respectively. It is easy to show that
(12) is actually 1/2 the covariance of the genotypes [Weir, 2008, Rogers and Huff, 2009, Section S4].
This immediately suggests a generalized composite LD coefficient for polyploids:

∆ :=
1

K
cov(GA, GB)

=
1

K
E[GAGB]− 1

K
E[GA]E[GB]

=
1

K

K∑
gA=0

K∑
gB=0

gAgBqgAgB −KpApB,

(13)

where

pA =
1

K

K∑
i=0

i

K∑
j=0

qij =
1

K
E[GA] and pB =

1

K

K∑
j=0

j

K∑
i=0

qij =
1

K
E[GB]. (14)
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In Section S3, we show that under HWE in autopolyploids, ∆ (13) equals D (1). We provide a
decomposition of ∆ in Section S7 that generalizes the decomposition in Cockerham and Weir [1977].

We will now discuss how to define a composite measure that generalizes D′ for polyploids.
Recall that D′ = D/Dmax, where Dmax is the maximum value of D while fixing the observed allele
frequencies at both loci. We could define ∆′ = ∆/∆max, where ∆max is the maximum value of
∆. However, it is not immediately clear what observed property of the genotype distributions we
should fix during this maximization. When we are finding D′, fixing the allele frequencies can be
considered both (i) fixing the distributions of alleles and (ii) fixing the expected numbers of alleles.
And so, for our generalization, we will consider in turn fixing both (i) the marginal probabilities of
genotypes and (ii) the expected genotypes, while finding the maximum value of ∆.

This first approach generalizes that of Zaykin [2004] and Hamilton and Cole [2004] from diploids
to polyploids. They found the maximum value of ∆ in closed-form for diploids while conditioning
on the marginal distributions of genotypes at both loci. For our generalization, we note that we can
formulate this maximization problem as a linear program [Nocedal and Wright, 2006] and so can
solve it efficiently for any ploidy level. Specifically, we seek to find the qij ’s that solve the following
maximization problem:

maximize
K∑
i=0

K∑
j=0

ijqij (15)

subject to
K∑
i=0

K∑
j=0

qij = 1,
K∑
j=0

qij = ci for all i ∈ {0, 1 . . . ,K},

K∑
i=0

qij = dj for all j ∈ {0, 1, . . . ,K}, and qij ≥ 0 for all i, j ∈ {0, 1, . . . ,K},

(16)

where ci and dj are the provided marginal probabilities of genotype i at locus 1 and genotype j at
locus 2, respectively. Since (15)–(16) formulates a standard linear program, many out-of-the-box
optimization software packages may be used to solve it [Berkelaar et al., 2016, e.g.]. The optimal
values of the qij ’s may then be used to find the maximum value of ∆ using (13), which can then
be used to normalize ∆. If ∆ is negative then we instead minimize (15) and normalize ∆ by the
absolute value of the minimum. Specifically, let ∆m be the maximum of value of (13) when ∆ > 0,
or the absolute value of the minimum of (13) when ∆ < 0, where we use constraints (16). Then we
define

∆′g := ∆/∆m, (17)

where the subscript is for “genotype frequency”. See Section S6 for a discussion on a different
algorithm to obtain ∆m.

For diploids, Zaykin [2004] noted that normalizing by the maximum covariance conditional on
the marginal distributions of genotypes at each locus did not result in D′ when when the population
was in HWE. The same is true for polyploids, though we note that under HWE there appears to
be a simple piecewise-linear relationship between D′ and ∆′g (Figure S2). As such, Zaykin [2004]
in diploids also recommended the second approach of maximizing the covariance conditional on the
expected genotype. We could also formulate these bounds as a linear program. However, we can
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actually represent the bounds on ∆ (13) in closed-form (Theorem S2):

−K min(pApB, (1− pA)(1− pB)) ≤ ∆ ≤ K min(pA(1− pB), (1− pA)pB). (18)

Equation (18) would suggest dividing ∆ by K min(pApB, (1−pA)(1−pB)) when ∆ < 0, and dividing
∆ by K min(pA(1 − pB), (1 − pA)pB) when ∆ > 0. This would result in a composite measure of
LD that is bounded within [−1, 1]. However, the resulting measure would still not equal D′ when
HWE is satisfied. Thus, we prefer the following composite measure of LD

∆′a :=
1
K cov(GA, GB)

∆e
=

∆

∆e
, where (19)

∆e :=

{
min{pApB, (1− pA)(1− pB)} if ∆ < 0,

min{pA(1− pB), (1− pA)pB} if ∆ > 0.
(20)

We prove in Section S3 that this ∆′a (for “allele frequency”) is equal to D′ under HWE in autopoly-
ploids but is still estimable when HWE is violated. For the rest of this manuscript, we will only
consider ∆′a and not ∆′g.

Though a perceived disadvantage of (19) would be that it is constrained to fall within [−K,K]
rather than [−1, 1], we find it compelling that ∆′a can be viewed as a direct generalization of D′ and
is equal to D′ when HWE is satisfied in autopolyploids. However, a researcher may always divide
(19) by K to obtain a measure that is constrained to be within [−1, 1].

2.4 Estimating composite measures of LD

When genotypes are known, it would be appropriate to use the sample moments of genotypes to
estimate ρ (11), ∆ (13), and ∆′a (19). When genotypes are not known, it is natural to plug-in
a good estimator of the genotypes, such as the posterior means, into the sample moments. The
typical methods of covariance and correlation standard errors may then be used (Section S10). This
is fast and so the sample correlation of posterior genotypes has been used in the literature [Clark
et al., 2019, Fox et al., 2019] (though not with the capability of returning standard errors). We will
denote such estimators by ρ̂mom, ∆̂mom, and ∆̂′mom for “moment-based”.

However, as we will see in Section 3.1, using the posterior mean in such moment-based estimators
results in LD estimates that are biased low. We can explain this by the law of total covariance:

cov(GA, GB) = cov(E[GA|Y ], E[GB|Y ]) + E[cov(GA, GB|Y )], (21)

where Y contains the data. The covariance of posterior means is only the first term on the right
hand side of (21), and so does not account for the posterior covariance of genotypes. Thus, the
covariance of the posterior means is necessarily a biased estimator for ∆.

When genotypes are not known we can still estimate these composite LD measures by first
estimating the qij ’s in (13) using maximum likelihood and then using these estimates to obtain the
MLEs for ρ, ∆, and ∆′a. The likelihood to be maximized is

n∏
`=1

K∑
i=0

K∑
j=0

p(y`A|i)p(y`B|j)qij (22)
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One EM step to maximize (22) consists of

w`ij =
p(y`A|i)p(y`B|j)q

(old)
ij∑

ij p(y`A|i)p(y`B|j)q
(old)
ij

, qij =
1

n

n∑
`=1

w`ij . (23)

We will call the resulting MLEs ρ̂gc, ∆̂gc and ∆̂gc for “general categorical”, as the qij ’s are allowed
to vary over the space of general categorical distributions. Descriptions of obtaining standard errors
for these estimators are provided in Section S8.

Equation (22) uses a general categorical distribution with support over the possible genotype
pairs. This distribution over genotype pairs is the most flexible possible, but yields (K + 1)2 −
1 parameters to estimate. Adding constraints over the space of possible genotype distributions
can improve estimation performance as long as the genotype frequencies follow these constraints.
Gerard and Ferrão [2019] introduced the proportional normal distribution, a very flexible class of
distributions with support over genotypes at one locus. We now generalize this distribution to
include support over the genotypes at two loci. Let µ ∈ R2 and let Σ ∈ R2×2 be a positive definite
matrix. Then the proportional bivariate normal distribution with support over {0, 1, . . . ,K}2 is:

Pr(gA, gB|µ,Σ) =
N(
(
gA
gB

)
|µ,Σ)∑K

i=0

∑K
j=0N(

(
i
j

)
|µ,Σ)

, (24)

where N(x|µ,Σ) is the bivariate normal density evaluated at x with mean µ and covariance matrix
Σ. This distribution, though seemingly ad hoc, can be seen as a generalization of the distribution of
genotypes under HWE (Figure S3). Though its use for modeling genotypes when HWE is violated
can be rationalized by the flexible shapes of genotype distributions it is capable of representing
(Figure S4).

Using the proportional bivariate normal distribution, the log-likelihood to be maximized is:

n∑
`=1

log

 K∑
i=0

K∑
j=0

p(y`A|i)p(y`B|j)Pr(i, j|µ,Σ)


=

n∑
`=1

log

 K∑
i=0

K∑
j=0

p(y`A|i)p(y`B|j)N(
(
i
j

)
|µ,Σ)

− n log

 K∑
i=0

K∑
j=0

N(
(
i
j

)
|µ,Σ)

 (25)

We can maximize (25) using gradient ascent. Asymptotic standard errors may be obtained using
standard results from maximum likelihood theory (Section S8). We will denote the resulting MLEs
by ρ̂pn, ∆̂pn and ∆̂′pn for “proportional normal”.

A summary of the various estimators we have proposed in this paper are presented in Table 1.

3 Results

3.1 Pairwise LD simulations under HWE

In this section we run simulations where genotypes are generated for autopolyploids that exhibit
bivalent pairing under HWE. Under HWE for autopolyploids, both the haplotypic (Section 2.2) and
the composite (Section 2.4) estimators are valid estimators of haplotypic LD.
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These are the steps of a single simulation replication. Given the major allele frequencies (pA
and pB) and Pearson correlation r (6), the haplotype frequencies (pAB, pAb, paB, pab) are uniquely
identified. For individual i ∈ {1, 2, . . . , n = 100} at a given ploidy level K, we simulated the number
of each haplotype they contained (XiAB, XiAb, XiaB, Xiab) given the haplotype frequencies using
(7). Genotypes were calculated by GiA := XiAB + XiAb and GiB := XiAB + XiaB. Given these
genotypes, read-counts were simulated using updog’s rflexdog() function at a specified read-depth,
a 0.01 sequencing error rate, no allele bias, and an overdispersion value of 0.01. Updog was then
used to generate genotype likelihoods, posterior mode genotypes, and posterior mean genotypes.
These outputs were fed into ldsep to provide the estimators listed in Table 1. The parameters that
varied within the simulation were: the read depth ∈ {1, 5, 10, 50, 100}, the ploidy K ∈ {2, 4, 6, 8},
the major allele frequencies (pA, pB) ∈ {(0.5, 0.5), (0.5, 0.75), (0.9, 0.9)}, and the Pearson correlation
r ∈ {0, 0.5, 0.9}. When pA = 0.5 and pB = 0.75, r is constrained to be less than 1/

√
3 ≈ 0.58, and

so in this scenario the r = 0.9 setting was omitted. Each unique combination of parameters was
replicated 200 times.

The conclusions for estimating r2 and ρ2 when pA = pB = 0.5 are presented in Figures 1, S5, and
S6. Mean-squared error performance for estimating D and D′ when pA = pB = 0.5 are presented in
Figures S7 and S8, respectively. Results for other scenarios are similar and are available on Figshare
(https://doi.org/10.6084/m9.figshare.12765803). We see that the moment-based estimators
of composite LD (∆̂mom, ∆̂′mom, ρ̂mom) have a strong bias toward 0 until a large read-depth is
attained (Figure S5). This bias makes these estimators look like they perform very well when
LD is close to zero, but they consequently perform very poorly for large levels of LD. Furthermore,
maximum likelihood estimation of haplotypic LD using genotype likelihoods (D̂gl, D̂

′
gl, r̂gl) generally

has better mean squared error (MSE) and bias performance in all scenarios compared to maximum
likelihood estimation of haplotypic LD using posterior mode genotypes (D̂g, D̂′g, r̂g) (Figures S5 and
1). Maximum likelihood estimation using the genotype likelihoods is also generally unbiased (Figure
S5). It pays for this lower bias by having a larger standard error (Figure S6), but it also produces
lower MSE in non-zero LD regimes (Figure 1). Using genotype likelihoods is mostly important in
settings of high ploidy. All methods behave rather similarly in diploids, but the genotype likelihood
approaches perform much better at higher ploidy levels in high LD regimes (Figure 1). Finally,
even though these data were simulated under HWE, estimators of composite measures of LD using
genotype likelihoods generally perform as well as the estimators of haplotypic LD when estimating
r2 (Figure 1). The HWE assumption helps when estimating D and D′ (Figures S7 and S8).

Figures 2 and S9 highlight that our standard errors for the LD estimators are generally accurate
except when the read-depth is 1. Computation time for each method is presented in Figure S11. We
see there that ploidy is the major cause of computation time increases and that genotype likelihood
methods tend to be much slower than methods that use estimated genotypes. However, all methods
take less than half a second on average.

3.2 Additional simulations under deviations from HWE

Additional simulation results, evaluating the performance of the various LD estimators when HWE is
violated, are presented in Sections S11 and S12. The simulations in Section S11 generate genotypes
under the proportional bivariate normal distribution in order to observe general deviations from
HWE. The simulations in Section S12 generate genotypes using the PedigreeSim software [Voorrips
and Maliepaard, 2012] under specific deviations from HWE, namely partial preferential pairing
and double reduction. We see in both sections that the composite measures of LD perform better
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when the assumptions of HWE are not appropriate. Though the haplotypic methods are robust to
instances of double reduction and moderate levels of preferential pairing.

3.3 LD estimates using data from Solanum tuberosum

We evaluated all pairwise LD estimators discussed in this paper on the genotyping-by-sequencing
data from Uitdewilligen et al. [2013b]. These data come from a diversity panel of autotretraploid
Solanum tuberosum (2n = 4x = 48). We randomly selected two regions of size 40 SNPs each,
obtained their genotype estimates and genotype likelihoods using updog [Gerard et al., 2018, Gerard
and Ferrão, 2019], and filtered out SNPs that were mostly monoallelic (had one dosage with an
estimated prior probability of more than 0.9). These genotypes and genotype likelihoods were
then used to estimate the LD between all SNPs within and between both regions. Though these
regions were arbitrarily chosen, the results we present below are robust to the region selection
and the reader is encouraged to change the random seed in our reproducible scripts on Figshare
(https://doi.org/10.6084/m9.figshare.12765803).

A pairs plot comparing the estimates of r2 (or ρ2) between pairs of SNPs within each region
is presented in Figure 3, and between pairs of SNPs between regions in Figure 4. We would
expect well-performing methods to (i) have high LD estimates within each region and (ii) low LD
estimates between regions. The estimators that do not use genotype likelihoods, r̂2g and ρ̂2mom,
generally produce the smallest LD estimates within each region (Figure 3), indicating that using
genotype likelihoods generally produced better results. This is without sacrificing LD estimation
between regions, where all methods generally produced small LD estimates (Figure 4). Generally,
the composite methods produced larger LD estimates within regions. This might be because these
data come from a diversity panel, and so they are likely not in HWE (Figure S32). Heatmaps of
LD estimates of r2 or ρ2 are presented in Figures S26–S30.

Additional empirical evaluations using a dataset with a lower read-depth [McAllister and Miller,
2016] are presented in Section S13.

4 Discussion

In this manuscript, we reviewed haplotypic measures of LD and then derived generalizations of
Burrows’ composite measures of LD to polyploids. For the composite generalizations of Lewontin’s
D′, this involved deriving novel bounds on the covariance between genotypes. We provided a
collection of methods to estimate both haplotypic LD and composite LD in the presence of genotype
uncertainty by directly using genotype likelihoods. For composite LD, this involved developing a
novel class of distributions over the genotypes. We validated our methods both in simulations and
on real data.

We found that not accounting for genotype uncertainty results in underestimating LD, particu-
larly between pairs of SNPs in high LD. Our LD estimation procedures, using genotype likelihoods
to account for this genotype uncertainty, help reduce this bias. This has the potential to impact
many downstream applications of LD. For example, pairwise LD is often used to estimate effective
population size [Hill, 1981, Waples, 2006], and attenuation bias of LD estimates would result in over-
estimating the effective population size. Using our LD estimators should correct this bias. Pairwise
LD estimates are also often used to estimate the extent LD decays with genetic distance. This
has applications in determining the density of markers necessary to successfully map a quantitative
trait locus [Vos et al., 2017]. Attenuation bias of LD estimates would result in believing LD decays
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faster than in reality, and thus result in overestimating the number of required markers. Using our
LD estimators should provide more accurate LD decay estimates. Another example comes from
new approaches that use summary statistics to run multiple SNP GWAS [Zhu and Stephens, 2017].
These create likelihoods that critically depend on accurate estimates of LD, and using poor LD
estimates would result in decreased performance.

Our estimation procedures contain the following assumptions. First, we assume that the geno-
type likelihoods are well-calibrated. That is, misspecification of the genotype likelihood would result
in bias in the LD estimates that use these genotype likelihoods. Accurately calibrating genotype
likelihoods is a non-trivial problem in polyploids due to the many features of polyploid sequencing
data that make modeling difficult [Gerard et al., 2018]. Such calibration is particularly difficult at
very low sequencing depth, which might explain why most methods behave similarly on the data
from McAllister and Miller [2016] (Section S13). This is an ongoing research problem and improved
calibration will likely improve our LD estimates. Our model further assumes that the probability
of the data given the genotypes at both loci are independent. This is also an assumption of Li
[2011], Maruki and Lynch [2014], Bilton et al. [2018], Fox et al. [2019] and, as mentioned by Bilton
et al. [2018] could be violated if SNPs were close enough to each other to be located on the same
sequencing reads. As long as SNPs are on separate reads, this assumption is mostly reasonable. We
also assume that individuals were sampled randomly from the population of interest. Bias in the
sampling scheme could result in biased LD estimates, which might be influenced by the structure
of any subpopulation being overly represented in the sample.

All of our haplotypic LD estimators assume that we are working with a population of autopoly-
ploid individuals under HWE that exhibit polysomic inheritance and bivalent non-preferential pair-
ing. Though we note that these methods are rather robust to the bivalent pairing assumption
(Section S12). However, all of our composite LD estimators are applicable more generally to vi-
olations in both the random mating and the mode of inheritance assumptions. In particular, our
composite estimators are applicable for allopolyploids, for autopolyploids that exhibit double re-
duction, and for polyploids have have intermediate inheritance modes, variously labeled segmental
allopolyploidy [Stebbins, 1947], partial preferential pairing [Wu et al., 1992], incomplete polysomy
[Guimarães et al., 1997], heterosomy [Roux and Pannell, 2015], or mixosomy [Soltis et al., 2016]. In
Section S7, we provide an interpretable decomposition of ∆ in the case of allopolyploids. For general
violations of HWE, for intermediate forms of polyploidy, or for cases of extensive double reduction,
the interpretation is more difficult. However, because these composite measures of LD are functions
of usual statistical measures of association (the correlation and covariance), one should interpret
these composite measures as one would usually interpret such statistical measures of association:
as describing the strength of the linear association between dosages at two loci.

We briefly used covariance shrinkage in this manuscript (Section S13). Shrinkage is a statistical
technique to reduce variability and improve estimation performance by adjusting estimates toward
some known or estimated value. Typically, the direction and strength of the shrinkage is derived
by assuming a common distribution of the parameters, where the estimation of said distribution is
weighted inversely to the variance of the estimates. And so instances of shrinkage are sometimes
termed “borrowing strength” because low variance estimators provide information on how much to
shrink high variance estimators to improve overall performance. Covariance shrinkage has a long
history, dating back at least to James and Stein [1961] and has shown great promise in improv-
ing covariance estimates in high dimensional regimes, including in genomic studies [Schäfer and
Strimmer, 2005]. Yet, most LD estimators do not use any form of regularization or shrinkage (with
the exception of Wen and Stephens [2010]). An off-the-shelf approach that we have used in this
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manuscript is “adaptive shrinkage” on the Fisher-z transformed correlation matrix [Stephens, 2016,
Dey and Stephens, 2018] (Figures S38–S41). This shrinkage estimator is not purpose-built for LD
estimation, and so there are many avenues for improvement (e.g., by accounting for known physical
locations of SNPs). Research on LD shrinkage estimation is now more accessible with the accurate
standard errors that we derived in this manuscript.
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5 Tables and figures

Estimators Type Input Notes

D̂g, D̂′
g, r̂g Haplotypic Genotypes

D̂gl, D̂
′
gl, r̂gl Haplotypic

Genotype
Likelihoods

A Dirichlet(2, 2, 2, 2) prior is placed on the
haplotype frequencies.

∆̂mom, ∆̂′
mom, ρ̂mom Composite Genotypes

Can accept continuous genotypes as in-
put.

∆̂gc, ∆̂′
gc, ρ̂gc Composite

Genotype
Likelihoods

Uses the general categorical class of geno-
type distributions.

∆̂pn, ∆̂′
pn, ρ̂pn Composite

Genotype
Likelihoods

Uses the proportional bivariate normal
class of genotype distributions.

Table 1: Summary of LD estimators. The ∆̂′ estimators all estimate ∆′a (19), not ∆′g (17).
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Figure 1: Mean-squared error of r2 estimators (y-axis) stratified by read-depth (x-axis), estimation
method (color), ploidy (row-facets), and true r2 (column-facets) for the simulations from Section
3.1. Except in low-LD regimes, the MLE using genotype likelihoods has the smallest MSE. The
moment-based estimator has a lower MSE in low-LD regimes because of its strong bias toward 0.
Simulations were performed with pA = 0.5 and pB = 0.5.
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Figure 2: Standard errors (x-axis) of haplotypic (first row) and composite (second row) LD estima-
tors when using genotype likelihoods from the simulations in Section 3.1. The y-axis contains the
median of the estimated standard errors. Each point is a different simulation setting. The line is
the y = x line and points above that line indicate that the estimated standard errors are typically
larger than the true standard errors. Standard errors are reasonably unbiased except when the
read-depth is 1 (color and shape).
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Figure 3: Pairs plot of within-region LD estimates of SNPs obtained from two regions from the
Solanum tuberosum data of Uitdewilligen et al. [2013b]. Each point is a pair of SNPs. The red
dashed line is the y = x line, and any points above this line indicates the estimator on the y-axis
produced a larger LD estimate than the estimator on the x-axis. We would generally expect better-
performing estimators to produce larger LD estimates within each region. The diagonal plots are
density plots for LD estimates.
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Figure 4: Pairs plot of between-region LD estimates of SNPs obtained from two regions from the
Solanum tuberosum data of Uitdewilligen et al. [2013b]. Each point is a pair of SNPs. The red
dashed line is the y = x line, and any points above this line indicates the estimator on the y-axis
produced a larger LD estimate than the estimator on the x-axis. The diagonal plots are density
plots for LD estimates. We would generally expect most LD estimates to be near 0 between regions.
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