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Abstract 

Deep neural networks (DNNs) for object classification have been argued to provide the most 

promising model of the visual system, accompanied by claims that they have attained or even 

surpassed human-level performance. Here, we evaluated whether DNNs provide a viable model 

of human vision when tested with challenging noisy images of objects, sometimes presented at 

the very limits of visibility. We show that popular state-of-the-art DNNs perform in a qualitatively 

different manner than humans – they are unusually susceptible to spatially uncorrelated white 

noise and less impaired by spatially correlated noise. We implemented a noise-training 

procedure to determine whether noise-trained DNNs exhibit more robust responses that better 

match human behavioral and neural performance. We found that noise-trained DNNs provide a 

better qualitative match to human performance; moreover, they reliably predict human 

recognition thresholds on an image-by-image basis. Functional neuroimaging revealed that 

noise-trained DNNs provide a better correspondence to the pattern-specific neural 

representations found in both early visual areas and high-level object areas. A layer-specific 

analysis of the DNNs indicated that noise training led to broad-ranging modifications throughout 

the network, with greater benefits of noise robustness accruing in progressively higher layers. 

Our findings demonstrate that noise-trained DNNs provide a viable model to account for human 

behavioral and neural responses to objects in challenging noisy viewing conditions. Further, 

they suggest that robustness to noise may be acquired through a process of visual learning. 
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Introduction 

A central question in cognitive and computational neuroscience concerns how we detect, 

discriminate and identify stimuli by sight [1-3]. The task of object recognition is exceedingly 

complex, yet human observers can typically recognize most any object within just fractions of a 

second [4, 5]. The human visual system processes information in a hierarchically organized 

manner, progressing from the encoding of basic visual features in early visual areas to the 

representation of more complex object properties in higher visual areas [6-10]. What are the 

neural computations performed by the visual system that allow for successful recognition across 

a diversity of contexts and viewing conditions?  

 

There is growing evidence to indicate that deep neural networks (DNNs) trained on object 

classification provide the best current model of the human and non-human primate visual 

systems [11, 12]. The visual representations learned by these DNNs demonstrate a reliable 

correspondence with the neural representations found at multiple levels of the human visual 

pathway [13-16]. Moreover, DNNs trained on large datasets of object images, such as 

ImageNet [17], can reliably predict how individual neurons in the monkey inferotemporal cortex 

will respond to objects, faces, and even synthetic stimuli [18-21].  

 

Although DNNs can perform remarkably well on tasks of object recognition, with claims that they 

have achieved or even surpassed human-level performance [22, 23], a conundrum lies in the 

fact that these networks tend to lack robustness to more challenging viewing conditions. In 

particular, there is some evidence to suggest that DNNs are unusually susceptible to visual 

noise and clutter, and that human recognition performance is more robust to noisy viewing 

conditions [24-27]. Identifying potential disparities between human and DNN performance is 

necessary to understand the limitations of current DNN models of human vision [28, 29] and a 

precursor to developing better models.  
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The goal of our study was to determine whether DNNs can provide a viable model of human 

behavioral and neural performance under stress-test visual conditions. Our recognition task 

required humans and DNNs to classify objects embedded in either spatially independent noise 

or spatially correlated noise, across a wide range of signal-to-noise ratios (Figure 1a). Spatially 

independent Gaussian noise has been used to characterize attentional modulation of visual 

sensitivity and the perceptual learning of complex stimuli [30, 31]. Pixelated noise has also been 

used to characterize the robustness of visual cortical responses to objects presented in high 

levels of noise [32]. We were also interested in assessing the impact of Fourier phase-

scrambled noise on object recognition performance, as such noise preserves the 1/F amplitude 

spectrum of natural images [33] and contains spatially correlated structure that might be more 

confusing to object recognition systems.  

 

Both human and DNN systems can be stressed by lower signal-to-noise ratios, as the object 

images approach the limits of perceptual visibility. This experimental design allowed us to test 

for quantitative differences in performance, by identifying the critical noise level at which 

performance sharply declines. Moreover, it allowed us to test for qualitative differences in visual 

processing across noise type. We found that popular state-of-the-art DNNs perform in a 

qualitatively different manner than humans. Specifically, DNNs are unusually susceptible to 

pixelated Gaussian noise (i.e., white noise) and less susceptible to spatially correlated Fourier 

phase-scrambled noise (similar to ‘pink’ noise), whereas human observers show the opposite 

pattern of performance. 

 

Next, we sought to investigate whether DNNs can be trained to recognize objects in extreme 

levels of visual noise, and in particular, whether such noise-trained DNNs might provide a better 

match to human behavioral and neural performance. Although it has long been known that 

neural networks can be regularized by adding a small amount of noise to their input data [34] 
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and such procedures have proven useful in the training of DNNs [35], the impact of training 

DNNs with extreme levels of noise has only recently begun to receive attention [24-27]. Here, 

we found that noise-trained DNNs could accurately classify objects at lower noise thresholds 

than human observers, but more importantly, their qualitative pattern of performance to different 

noise types provided a better match to human performance. Moreover, noise-trained DNNs 

performed far better than standard DNNs in their ability to predict human recognition thresholds 

on an image-by-image basis. A layer-specific analysis of DNN activity patterns indicated that 

noise training led to widespread changes in the robustness of the network, with more 

pronounced differences between standard and noise-trained networks found in the middle and 

higher layers.  

 

We performed a functional neuroimaging experiment to assess the degree of correspondence 

between DNN models and human neural activity. Multivariate decoding of activity patterns in the 

human visual cortex revealed better discrimination of objects in pixelated Gaussian noise as 

compared to Fourier phase-scrambled noise, consistent with the behavioral advantage shown 

by human observers and also by noise-trained DNNs. Moreover, noise-trained DNNs provided a 

better correspondence to the patterns of object-specific responses found in both early visual 

areas and high-level object areas. We go on to show that DNNs trained to recognize objects in 

artificial noise can generalize their knowledge to some extent to other image distortions, 

including real-world conditions of visual noise. Taken together, our findings demonstrate that 

noise-trained DNNs provide a viable model of the noise-robust properties of the human visual 

system.  

 

Results 

In Experiment 1, we evaluated the performance of 8 pre-trained DNNs (AlexNet, VGG-F, VGG-

M, VGG-S, VGG-16, VGG-19, GoogLeNet, and ResNet-152 [36-39]) and 20 human observers 
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at recognizing object images presented in either pixelated Gaussian noise or Fourier phase-

scrambled noise (Figure 1a, see Methods). Object images were presented with varying levels 

of visual noise by manipulating the signal-to-signal-plus-noise ratio (SSNR), which is bounded 

between 0 (noise only) and 1 (signal only). This allowed us to quantify changes in performance 

accuracy as a function of SSNR level. Performance was assessed using images from 16 object 

categories (Figure 1b) obtained from the validation data set of the ImageNet database [17]. 

These images were novel to the participants and were never used for DNN training.  

 

Figure 2a shows the mean performance accuracy of DNNs and humans plotted as a function of 

SSNR level, with the performance of individual DNNs shown in Figure 2b. Although DNNs 

could match the performance of human observers under noise-free conditions, consistent with 

previous reports [22], DNN performance became severely impaired in the presence of moderate 

levels of noise. Most DNNs exhibited a precipitous drop in recognition accuracy as SSNR 

declined from 0.6 to 0.4, whereas human performance was much more robust across this 

range.  

 

Of particular interest, the DNNs appeared to be impaired by noise in a manner that qualitatively 

differed from human performance. Spatially correlated noise proved more challenging to human 

observers, whereas the DNNs were more severely impaired by pixelated Gaussian noise (in 7 

out of 8 cases). We fitted a logistic function to the performance accuracy data of each 

participant and each DNN to determine the threshold SSNR level at which performance reached 

50% accuracy. This analysis confirmed that human observers exhibited much lower SSNR 

thresholds than DNNs, outperforming the DNNs by a highly significant margin at recognizing 

objects in pixelated noise (t(26) = 15.94, p < 10-14); they also outperformed DNNs at recognizing 

objects in Fourier phase-scrambled noise (t(26) = 12.29, p < 10-11). Moreover, humans showed 

significantly lower SSNR thresholds for objects in pixelated noise as compared to spatially 
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correlated noise (0.255 vs. 0.315; t(19) = 13.41, p < 10-10), whereas DNNs showed higher 

SSNR thresholds for objects in pixelated noise as compared to spatially correlated noise (0.535 

vs. 0.446; t(7) = 3.81, p = 0.0066).  

 

The fact that spatially independent noise proved more disruptive for DNNs was unexpected, 

given that a simple spatial filtering mechanism, such as averaging over a local spatial window, 

should allow a recognition system to reduce the impact of spatially independent noise while 

preserving relevant information about the object. Instead, these DNNs are unable to effectively 

pool information over larger spatial regions in the presence of pixelated Gaussian noise.  

 

We performed additional analyses to compare the patterns of errors made by DNNs and human 

observers, plotting confusion matrices for each of four SSNR levels (Supplementary Figure 1). 

Human performance remained quite robust even at SSNR levels as low as 0.2, as the majority 

of responses remained correct, falling along the main diagonal. Also, error responses were 

generally well distributed across the various categories, though there was some degree of 

clustering and greater confusability occurred among animate categories. In contrast, DNNs 

were severely impaired by pixelated noise when SSNR declined to 0.5 or lower, and showed a 

strong bias towards particular categories such as "hare", " cat" and "couch". For objects in 

spatially correlated noise, the DNNs exhibited a preponderance of errors at SSNR levels of 0.3 

and below, with bias towards "hare", "owl" and "cat".  

 

Development of a noise-training protocol to improve DNN robustness 

We devised a noise-training protocol to determine whether it would be possible to improve the 

robustness of DNNs to noisy viewing conditions to better match human performance. For these 

computational investigations, we primarily worked with the VGG-19 network, as this pre-trained 

network performed quite favorably in comparison to much deeper networks (e.g., GoogLeNet, 
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ResNet-152), and could be trained and evaluated in an efficient manner to evaluate a variety of 

manipulations.  

 

First, we investigated the effect of training VGG-19 on images from the 16 object categories 

presented at a single SSNR level with either type of noise. After such training, the network was 

tested on a novel set of object images presented with the corresponding noise type across a full 

range of SSNR levels. We observed that training the DNN at a progressively lower SSNR level 

led to a consistent leftward shift of the recognition accuracy by SSNR curve (Figure 3a). 

However, this improvement in performance for noisy images was accompanied by a loss of 

performance accuracy for noise-free images. The latter was evident from the prominent 

downward shift in the recognition accuracy by SSNR curve. Such loss of accuracy for noise-free 

images would be unacceptable for any practical applications of this noise-training procedure, 

and clearly deviated from human performance. Next, we investigated whether robust 

performance across a wide range of SSNR levels might be attained by providing intermixed 

training with both noise-free and noisy images. Figure 3b indicates that such combined training 

was highly successful, with the strongest improvement observed for noisy images presented at 

challenging SSNR level of 0.2. When the training SSNR was reduced to levels as low as 0.1, 

the task became too difficult and the learning process suffered. 

 

Given the excellent performance of VGG-19 after training with images at 0.2 and 1.0 SSNR, we 

sought to compare noise-trained DNNs with human performance. Figure 4a shows that these 

noise-trained versions of VGG-19 performed far better than standard pre-trained DNNs at 

recognizing novel object images presented with the type of noise encountered during training. 

Moreover, noise training led to better performance for objects in pixelated Gaussian noise as 

compared to Fourier phase-scrambled noise, in a manner that better matched the qualitative 
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performance of human observers. The noise-trained networks also seemed to outperform 

human observers on average.  

 

To analyze these performance differences in detail, we fitted a logistic function to identify the 

SSNR thresholds of each DNN and human observer, separately for each noise condition. A 

histogram of SSNR thresholds revealed that both the Gaussian and Fourier noise-trained 

versions of VGG-19 outperformed all 20 human observers and all 8 original DNNs at 

recognizing objects in noise (Figure 4b). These results indicate that the noise-training protocol 

can greatly enhance the robustness of DNNs, such that they can match or surpass human 

performance when tasked to recognize objects in extreme levels of visual noise. These results 

are consistent with other recent reports [27]. However, such findings are insufficient to 

determine whether or not noise-trained DNNs have acquired visual representations that can 

account for the noise-robust nature of human vision.  

 

Image-level predictions of human behavioral performance 

The ability to predict human recognition performance at the level of specific images constitutes 

one of the most stringent tests for evaluating DNN models; however, current DNN models have 

yet to adequately account for image-specific human performance [28]. Here, we devised a 

second behavioral experiment to evaluate whether noise-trained DNNs might be capable of 

predicting the noise threshold at which people can successfully recognize objects on an image-

by-image basis.  

 

Twenty observers were presented with each of 800 object images (50 per category), which 

slowly emerged from pixelated Gaussian noise. The SSNR level gradually increased from an 

initial value of 0 in small steps of 0.025 every 400ms, until the observer pressed a key to pause 

the dynamic display in order to make a categorization decision. A reward-based payment 
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scheme provided greater reward for correct responses made at lower SSNR levels. After 

making a categorization response, participants used a mouse pointer to demarcate the portions 

of the image that they relied on for their recognition judgment. The resulting data allowed us to 

compare the similarity of humans and DNNs in their SSNR thresholds, as well as the portions of 

each image that were diagnostic for recognition judgments.  

 

Mean performance accuracy was high (90.3%), and human SSNR thresholds for each image 

were calculated based on responses for correct trials only. Accordingly, SSNR thresholds were 

calculated for standard and noise-trained VGG-19 by requiring accuracy to reach 90%. Here, 

the standard DNN consisted of pre-trained VGG-19 that received an equal number of training 

examples from the 16 object categories using noise-free images only.  

 

Although the standard DNN could predict human SSNR thresholds to some degree (see Figure 

5a, slope = 0.32, r = 0.27, t(713) = 7.44, p < 10-12), the Gaussian noise-trained DNN provided a 

significantly better fit of human thresholds for individual images (slope = 0.67, r = 0.55, t(730) = 

17.77, p < 10-16, comparison of noise-trained vs. standard DNN, z = 6.50, p < 10-10). These 

findings indicate that noise-trained DNNs provide a better model for predicting the critical noise 

level at which humans can recognize individual objects. That said, it should be noted that 

human-to-human similarity was greater still (mean r = 0.94, based on a split-half correlation 

analysis), indicating that further improvements can be made by future DNN models to account 

for human recognition performance.  

 

To complement the diagnostic regions reported by human observers, we used layer-wise 

relevance propagation [40] to determine what portions of each image were important for the 

decisions of DNNs (see Figure 5b). We calculated the spatial correlation and amount of overlap 

between the diagnostic regions of humans and DNNs across a range of SSNR levels. Both 
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standard and noise-trained DNNs performed quite well at predicting the diagnostic regions used 

by human observers at high SSNR levels of 0.8 or greater (Figure 5c). However, only the 

noise-trained DNN could reliably predict the diagnostic regions used by human observers in 

noisy viewing conditions. The above findings demonstrate that noise-trained DNNs can capture 

the fine-grained behavioral performance patterns of human observers when tasked to recognize 

objects in challenging noisy conditions.  

 

Characterizing network changes caused by noise training  

Given that noise-trained DNNs provide an effective model for predicting human recognition of 

objects in noise, we sought to identify the stages of DNN processing that are most affected by 

training with a specific type of noise. We devised a layer-specific noise susceptibility analysis 

that required calculating the correlation strength between the layer-specific pattern of activity 

evoked by a noise-free image and the pattern of activity evoked by that same image when 

presented at varying SSNR levels (Figure 6a). Here, correlation strength should monotonically 

increase with increasing SSNR level (from an expected R value of 0 to 1.0), and the threshold 

SSNR level needed to reach a correlation value of 0.5 can then be identified. A lower threshold 

SSNR indicates greater robustness, whereas a higher threshold SSNR indicates greater noise 

susceptibility. We confirmed that the correlational similarity between layer-specific responses to 

a noise-free image and noisy image did indeed increase as a monotonic function of latter’s 

SSNR level (Supplementary Figure 2), and observed greater robustness in noise-trained than 

standard DNNs, especially in the higher layers.  

 

As can be seen in Figure 6b, the standard and noise-trained DNNs exhibit quite similar SSNR 

thresholds in the first few layers but thereafter performance begins to diverge. For the standard 

DNNs, noise susceptibility gradually increases in progressively higher layers for both types of 

noise, implying that the contaminating effects of image noise tend to become amplified across 
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successive stages of feedforward processing. After noise training, however, the network shows 

considerable improvement, especially in the middle and higher layers where the difference 

between standard and noise-trained networks most clearly diverges. For pixelated Gaussian 

noise, SSNR thresholds actually decrease across successive layers. In effect, the convolutional 

processing that occurs across successive stages of the noise-trained network leads to a type of 

de-noising process. This finding is consistent with the notion that the disruptive impact of 

spatially independent noise can be curtailed if signals over progressively larger spatial regions 

are pooled together in an appropriate manner to dampen the impact of random, spatially 

independent noise. This can be contrasted with the results for the DNN trained on objects in 

Fourier phase-scrambled noise. Here, the SSNR thresholds of the noise-trained network remain 

quite stable across successive layers, whereas the standard DNN becomes more susceptible to 

noise across successive layers.  

 

As a complementary analysis, we measured classification-based SSNR thresholds by applying 

a multi-class support vector machine (SVM) classifier to the activity patterns of each layer of a 

given network. Each SVM was trained on activity patterns evoked by noise-free training images, 

and then tested on its ability to predict the object category of test stimuli presented at varying 

SSNR levels. The SSNR level at which classification accuracy reached 50% was identified as 

the classification-based SSNR threshold. For standard DNNs, we found that classification 

accuracy for noise-free test images gradually improved across successive layers of the network 

due to increased sensitivity to category information (Supplementary Figure 3), and this trend 

largely accounted the gradual improvement in classification-based SSNR threshold from one 

layer to the next (Figure 6c). Of greater interest, the divergence between standard and noise-

trained networks became more pronounced in the middle and higher layers due to the benefits 

of noise training. These findings favor the notion that acquisition of noise robustness involves  

considerable modification of representations in the middle and higher layers of the noise-trained 
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network. Consistent with this notion, a study of DNNs trained on auditory stimuli, specifically 

spoken words and music in the presence of real-world background noise, found that robustness 

to auditory noise was more pronounced in the higher layers of the DNN [41].  

 

We further evaluated the extent to which the feature representations or weights in each layer 

changed as a consequence of noise training. This was done by performing canonical correlation 

between the weight matrices of the pre-trained DNN and the noise-trained DNN to assess their 

multivariate similarity. As can be seen in Figure 6d, training with Gaussian noise led to 

negligible change to the representations in layer 1, whereas progressively greater change was 

observed in the subsequent convolutional layers of the network. However, layers 18 and 19, 

which are fully connected and tend to represent more semantic rather than visual information, 

exhibited negligible change in their structured representations after noise training. For the DNN 

trained with Fourier phase-scrambled noise, we observed exhibited negligible changes in layer 

1 and moderate changes in layers 2 through 17. Taken together, these analyses indicate that 

noise training leads to modifications to all convolutional layers of the DNN, with the exception of 

layer 1. Presumably, these changes account for the greater robustness to noise that was 

observed in our layer-wise measures of noise susceptibility (Figure 6b,c).  

 

Comparison of DNNs and human visual cortical responses to objects in noise 

We conducted an fMRI study at 7 Tesla to measure human cortical responses to objects in 

noise and to assess their degree of correspondence with DNN object representations. 

Observers were shown 16 object images (2 images from 8 selected categories) in each of 3 

viewing conditions: without noise (SSNR 1.0), in pixelated Gaussian noise (SSNR 0.4) and in 

Fourier phase-scrambled noise (SSNR 0.4). During each image presentation, observers were 

instructed to perform an animate/inanimate discrimination task. Behavioral accuracy was high 
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overall (97.1% for clean objects, 98.5% for Gaussian noise, 95.5% for Fourier phase-scrambled 

noise) and did not significantly differ between conditions (F(2, 21) = 1.27, p = .30). 

 

First, we sought to determine whether the human visual cortex is more readily disrupted by 

spatially correlated noise than by spatially independent noise, as one might expect from our 

behavioral results from Experiment 1. We evaluated object discrimination performance of 

individual visual areas by training a multi-class SVM classifier on fMRI responses to clean object 

images and testing the classifier’s ability to predict the object category of both clean and noisy 

images using cross validation (see Methods). In early visual areas V1 through V4, object 

classification of cortical responses was most accurate for clean images, intermediate for objects 

in pixelated Gaussian noise, and poorest for objects in Fourier phase-scrambled noise (Figure 

7a). Planned comparisons indicated that classification accuracy was significantly higher for 

clean objects than for objects in pixelated noise, and also higher for objects in pixelated noise 

as compared to Fourier phase-scrambled noise (t(7) > 4.7 in all cases, p < 0.0025). These fMRI 

results concur with the better behavioral performance that human observers exhibited for 

objects in pixelated noise as compared to Fourier phase-scrambled noise.  

 

Classification accuracy for high-level object-sensitive areas was lower overall than was 

observed for early visual areas; this pattern of results is often found in studies of fMRI decoding.  

Interestingly, discrimination accuracy for objects in pixelated noise was not significantly different 

from that of clean objects in any of the high-level areas. These findings are consistent with the 

notion that greater spatial pooling of information by higher visual areas may attenuate the 

detrimental effects of spatially independent noise [32]. By contrast, classification accuracy was 

significantly better for objects in pixelated Gaussian noise as compared to Fourier phase-

scrambled noise in the lateral occipital cortex (LOC, t(7) = 3.38, p < 0.025) and the 

parahippocampal place area (PPA, t(7) = 2.54, p < 0.05), though not in the fusiform face area 
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(FFA, t(7) = 1.09, p = 0.31). Our findings indicate that object processing in both low- and high-

level visual areas is more readily disrupted by spatially correlated noise than by spatially 

uncorrelated noise. 

 

We evaluated the correspondence between human cortical responses and DNN representations 

by performing representational similarity analysis [13]. This involved calculating a correlation 

matrix of the responses to each of the 48 images (16 object images × 3 viewing conditions), 

separately for each visual area and for each layer of a DNN. After excluding the main diagonal, 

the resulting matrices reflected the similarity (or confusability) of responses to all possible pairs 

of object images. The similarity of the object representational spaces across humans and DNNs 

could then be determined by calculating the Pearson correlation between matrices obtained 

from human visual areas and DNNs. The noise-trained DNN consisted of VGG-19 trained on 

the 16 categories of objects presented with the both types of noise as well as noise-free images. 

The standard DNN consisted of pre-trained VGG-19 that received an equal number of training 

examples with noise-free images only. 

 

Figure 7b shows the results of standard and noise-trained DNNs in terms of their layer-specific 

ability to predict the patterns of responses in human visual areas. In the lowest layers 1-3, 

standard DNNs exhibited a modest advantage over noise-trained DNNs. However, from 

convolutional layer 4 and above, noise-trained DNNs exhibited a clear advantage over standard 

DNNs at predicting the similarity structure of human cortical responses, while performing better 

overall. For early visual areas, the correspondence with noise-trained VGG-19 remained high 

throughout convolutional layers 4 through 16, and then exhibited a sharp decline in the fully 

connected layers 17-19. These fMRI results concur with the fact that the later fully connected 

layers of DNNs tend to represent more abstracted object information rather than visual 

information [14]. A different pattern of results was observed in high-level object-sensitive areas 
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(LOC, FFA, PPA). Here, the correspondence with noise-trained DNNs remained high or tended 

to rise in the fully connected layers. Taken together, these results demonstrate that noise-

trained DNNs provide an effective model to account for the pattern of visual cortical responses 

to objects in noise, whereas standard DNNs do not.  

 

Generalization of noise training to other DNNs and to other stimulus conditions 

We conducted a series of studies with DNNs to assess whether noise training was effective at 

improving their performance across a wider range of conditions. Although the benefits of noise 

training were specific to the noise type encountered during training (Supplementary Figure 4), 

we found that it was possible to train a single DNN to acquire robustness to both pixelated 

Gaussian noise and Fourier phase-scrambled noise concurrently (Supplementary Figure 5). 

Likewise, we confirmed that other networks (e.g., ResNet-152) showed similar improvements in 

robustness after noise training with these 16 object categories (Supplementary Figure 6). We 

evaluated the impact of training VGG-19 on the full 1000-category image set from ImageNet 

with both types of noise, and found that the network was capable of recognizing objects in noise 

when discerning among a large number of categories (Supplementary Figure 7). These 

studies confirm that noise training is effective for much deeper networks and for large-scale 

image datasets. Further, they indicate that robustness to both spatially independent noise and 

spatially correlated noise can be learned concurrently by a single DNN.  

 

We also investigated whether our noise-trained DNNs might show evidence of successful 

generalization to other types of image distortion, such as salt-and-pepper noise as well as low-

pass and high-pass filtering. These analyses were motivated by a related study that reported 

extremely poor generalization whenever a DNN was trained on one type of image distortion and 

then tested with another [27]. In Figure 8, it can be seen that DNNs trained on pixelated 

Gaussian noise, or both Gaussian and Fourier phase-scrambled noise, can generalize well to 
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object images corrupted by salt-and-pepper noise, outperforming standard pre-trained DNNs. 

By contrast, the DNN trained with Fourier phase-scrambled noise showed better performance at 

recognizing high-pass filtered images than the standard DNN, but with some cost in 

performance for low-pass filtered images. The DNN trained on both types of noise showed a 

similar improvement at recognizing high-pass filtered images, with no associated cost in 

recognizing low-pass filtered images. Thus, in contrast to earlier reports, we find that DNNs 

trained with noisy object images can generalize to other types of image distortions to some 

extent. 

 

Expanding on this question, we sought to ask whether DNNs, trained on objects in artificial 

noise, might show successful generalization to real world conditions of noise. Weather 

conditions such as rain, snow or fog are among the major causes of poor visibility for human 

observers. Using the 1000-category noise-trained VGG-19, we devised a test to determine 

whether noise training might have improved its ability to recognize novel real-world examples of 

objects in noisy weather. We focused on classification performance for 8 types of vehicles in the 

ImageNet data set. A web-based search protocol was used to gather candidate images of 

vehicles in noisy weather conditions, and test images were selected based on the ratings of 

three independent observers. The final test set consisted of 102 noisy vehicle images and 102 

noise-free vehicle images (see Supplementary Figure 8 for examples). Figure 9a shows that 

both standard and noise-trained versions of VGG-19 performed equally well at recognizing 

noise-free images of vehicles. By contrast, noise-trained VGG-19 outperformed the standard 

DNN at recognizing vehicles in noisy weather conditions. Performance was further analyzed 

according to the human-rated noise level of individual vehicle images. This analysis indicated 

that noise-trained VGG-19 performed significantly better with images rated as containing 

moderate or strong noise (Figure 9b). Thus, DNNs trained on images with artificially generated 
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noise can successfully generalize, to some extent, to real-world examples of noisy viewing 

conditions, presumably due to shared statistical properties across real and artificial noise types.   

 

Discussion 

Human vision is known to be robust across diverse contexts and viewing conditions. Here, we 

evaluated whether DNNs can provide a viable model of human visual processing when tested 

with challenge images consisting of objects embedded in randomly generated noise patterns. 

Our experiments revealed that well-known DNNs process visual information in a qualitatively 

different manner than human observers. They are disproportionately impaired by pixelated 

noise and are unable to spatially integrate relevant information in the presence of such noise. 

By contrast, noise-trained DNNs are more robust to spatially independent noise than to spatially 

correlated noise, consistent with our behavioral and fMRI results from human observers.  

 

We sought to determine whether noise-trained DNNs can provide a suitable model to predict 

human behavioral and neural responses to individual object images. Our behavioral results 

revealed that noise-trained DNNs can reliably predict the threshold noise level at which 

individual images can be recognized by humans. Moreover, these noise-trained DNNs rely on 

similar diagnostic regions of images as human observers to make their decisions. fMRI data 

obtained from multiple levels of the human visual pathway revealed that the representational 

similarity structure of cortical responses to different object images bore a significant 

correspondence with the representational similarity of layer-specific responses in the noise-

trained DNNs. Our findings indicate that noise-trained DNNs provide a suitable neural model for 

predicting both human behavior and neural responses to noisy, perceptually challenging images 

of objects.  
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One might ask what types of neural modifications are necessary to attain robustness to visual 

noise? A layer-specific analysis of the DNN models indicated that noise training led to 

widespread changes in the robustness of the network. The benefits of noise training tend to 

become magnified across successive stages of processing, presumably because the network 

learns to better leverage or readout relevant information from the lower layer while discounting 

irrelevant information associated with the noise sources. With respect to spatially independent 

noise, visual representations actually became more noise-robust across successive stages of 

processing, akin to a hierarchical denoising process, with the greatest benefit observed at 

higher levels of the network. These findings deviate from traditional notions of image 

processing, which typically rely on the modification of low-level visual filters to achieve noise 

filtering [42]. Here, we found negligible evidence of changes in noise robustness in the first few 

layers of the DNN. Instead, a divergence in performance between standard and noise-trained 

DNNs did not emerge until convolutional layer 4 (Figure 6b). Given that max-pooling occurs 

between convolutional layers 2 and 3, the visual representations in layer 4 would be more akin 

to complex cell than simple cell responses [6]. These findings imply that acquisition of noise 

robustness involves the modification of visual representations that occur after early stage 

filtering. In agreement with this DNN analysis, we found that the representational similarity of 

fMRI responses in the human visual cortex corresponded much better with noise-trained than 

standard DNNs, and that this advantage took place for noised-trained DNN representations in 

layer 4 and above.  

 

Based on these findings, we speculate that robustness to visual noise is acquired, at least in 

part, through learning and experience. Consistent with this notion, research has shown that 

young children improve considerably in their ability to recognize objects in pixelated noise from 

ages 3 to 5, and that adults outperform children [43]. Studies of perceptual learning have further 

shown that adults can dramatically improve in their ability to discriminate faces in noise across 
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training sessions, and that improvements in noise threshold are attributable to the learning of a 

more effective representation of the face stimuli [30]. Just as an experienced driver may feel 

more confident driving in rainy or snowy conditions, our experiences with suboptimal viewing 

conditions may have the unsought benefit of improving the robustness with which we see.  

 

Previous studies of DNNs have shown that object classification can be disrupted by a small 

amount of non-random adversarial noise [44, 45]. More recent studies have shown that DNNs 

are also impaired by randomly generated pixelated noise, and can benefit from training with 

noisy object images [24, 25, 27]. For example, Geirhos et al. (2018) reported that DNNs can 

greatly improve after training with a particular type of image distortion or noise type, often 

exceeding human-level performance, albeit this study used the same object images for training 

and testing DNN performance. Despite these gains in performance, the researchers found that 

training with a particular type of noise, such as Gaussian noise, led to poor generalization to 

other types of noise, such as salt-and-pepper noise. By contrast, here we found that our 

Gaussian noise-trained network generalized quite well to salt-and-pepper noise. Also, training 

with Fourier phase-scrambled noise led to better performance for high-pass filtered images. Our 

findings are consistent with another recent report of improvements in generalization 

performance after training with noisy object images [46].  

 

While these previous studies sought to measure the limitations of standard DNNs and the 

performance gains that can be achieved by training with noisy images, they did not directly 

address whether noise-trained DNNs might provide a suitable model of human behavioral 

performance, nor did they attempt to account for human neural data. By contrast, the goal of the 

present study was to determine whether DNNs can provide a suitable model to account for 

human behavioral and neural responses, especially when examined at a finer grain. We found 

that standard DNNs, commonly used in neuroscience research, process objects in noise in a 
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qualitatively different manner than human observers. By contrast, noise-trained DNNs do indeed 

provide a viable model to account for the noise-robust nature of the human visual system.  

 

It should be acknowledged that even though we could track the layer-wise changes in noise-

trained DNNs and quantify their gains in noise robustness, a full understanding of how noise 

robustness is attained will require further research. Although DNNs are not black boxes and 

their computations are fully available to scrutiny and repeated interrogation, it remains a 

challenge for researchers to characterize how a series of non-linear computations performed by 

DNNs work to achieve a particular computational goal [23].  

 

Although our study of DNNs was primarily focused on understanding biological vision, the noise 

training methods reported here may also be of relevance for applications in computer vision and 

artificial intelligence, including the development of autonomous vehicles, visually guided robots, 

and the analysis of real world images with adverse viewing conditions. For example, we found 

that DNNs can concurrently acquire robustness to both spatially independent noise and spatially 

correlated noise. Such noise-trained DNNs could perform better at recognizing objects in 

suboptimal viewing conditions, such as those caused by poor weather conditions, low light 

levels and/or sensor noise. Indeed, we found that noise-trained DNNs outperformed standard 

DNNs at recognizing vehicles in real-world noise conditions. Since it may be difficult to acquire 

large amounts of image data obtained under poor viewing conditions, the training of DNNs with 

high levels of artificial noise could prove useful as a method of data augmentation, to improve 

the robustness of DNN performance.  

 

Finally, our study may contribute to future work by providing a paradigm for comparing human 

and DNN performance under stress-test visual conditions. Both human observers and DNNs 

perform at near-ceiling levels of accuracy with clean object images, limiting the ability to discern 
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differences in performance. By contrast, objects in noise can be rendered progressively more 

challenging by reducing the SSNR level; this can allow one to obtain a sensitive measure of the 

critical SSNR threshold at which individual object images can be recognized. Given that we now 

know that standard DNNs are more impaired by spatially independent noise than correlated 

noise, unlike human observers, these measures can serve as a useful benchmark for evaluating 

whether future DNN models process visual information in a human-like manner. In particular, it 

will be of particular interest for future studies to investigate whether other types of DNN 

architectures, such as those that incorporate lateral or top-down connections [16, 47, 48], are 

capable of conferring greater robustness to DNNs, either with or without direct training on noisy 

images.   
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Materials and Methods 

 

Participants 

We recruited 23 participants in behavioral experiment 1 (18 females, 5 males), with 20 

participants successfully completing both sessions of the study. A separate group of 23 

participants were recruited in behavioral experiment 2 (14 females, 9 males), with 20 

participants completing all 4 sessions of the study. Ages ranged from 19 to 33 years old.  

An fMRI experiment was also carried out with a total of 11 participants (5 females), ages 21-49; 

data from 3 participants were excluded due to poor MR data quality. All participants reported 

having normal or corrected-to-normal visual acuity, and provided informed written consent using 

electronic consent forms (REDCap). The study was approved by the Institutional Review Board 

of Vanderbilt University (IRB #040945). Participants were compensated monetarily or through a 

combination of course credit and monetary payment.  

 

Visual stimuli 

Object images were obtained from the ImageNet database [17], which is commonly used to 

train and test convolutional neural networks on object classification. We selected images from 

16 categories for our experiments, which included a mixture of animate and inanimate object 

categories that would be recognizable to participants (Figure 1b). Both humans and DNNs were 

tested using images from the validation data set of ImageNet, with 50 images per category or 

800 images in total. The test images were converted to grayscale to remove color cues that 

otherwise might boost the ability to recognize certain object categories in severe noise. DNNs 

were trained using images from the training set (1300 images per category), so the images used 

for testing were novel to both humans and DNNs.  
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In Experiment 1, objects were presented using two different types of visual noise: pixelated 

Gaussian noise and Fourier phase-scrambled noise (Figure 1a). To create each Gaussian 

noise image, the intensity of every pixel was randomly and independently drawn from a 

Gaussian distribution centered at 127.5, assuming that the range of possible pixel intensities (0 

to 255) spanned ±3 standard deviations. For Fourier phase-scrambled noise, we calculated the 

average amplitude spectrum of the 800 images, generated a set of randomized phase values 

and performed the inverse Fourier transform to create each noise image. Such spatially 

correlated noise has some coherent structure that preserves the original power spectrum (close 

to a 1/F amplitude spectrum) but lacks strong co-aligned edges, due to the phase 

randomization, and can be described as having a cloud-like appearance. We avoided using the 

Fourier power spectrum of individual images to generate noise patterns, as residual category 

information could persist in this case, assuming that the categories differ to some extent in their 

overall power spectra.   

 

To investigate the effect of noise on object visibility, we manipulated the proportion of object 

signal (w) contained in the object-plus-noise images. We describe the proportional weighting of 

this object information as the signal-to-signal-plus-noise ratio (SSNR), which has a lower bound 

of 0 when no object information is present (i.e., noise only) and an upper bound of 1 when the 

image consists of the source object only. SSNR differs from the more conventional measure of 

signal-to-noise ratio (SNR), which has no upper bound. Given a source object image defined by 

matrix S and a noise image N, we can create a target image T with SSNR level of w as follows: 

 

  T = w × S  +  (1 – w) × N  
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After the contrast-adjusted original image and the noise pattern were summed, any intensity 

values that fell beyond the 0-255 range were clipped. Clipping was modest as the standard 

deviation of the Gaussian noise distribution was 255/6.  

 

Behavioral experiment 1 

Participants were tested with either pixelated Gaussian noise or Fourier phase-scrambled noise, 

in two separate behavioral sessions. To control for order effects, half of the participants were 

presented with pixelated Gaussian noise in the first session and while the other half were first 

presented with Fourier phase-scrambled noise.  

 

In each session, participants were briefly presented with each of 800 object images for 200ms 

at a specified SSNR level, and had to make a 16-alternative categorization response thereafter 

using a keyboard. Noisy object images were presented at 10 possible SSNR levels (0.05, 0.1, 

0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, and 0.75). The highest SSNR level was informed by a pilot 

study that indicated that human accuracy reached ceiling levels of performance by an SSNR 

level of 0.75. Five images per category were assigned to each SSNR level, and image 

assignment across SSNR levels was counterbalanced across participants. The order of image 

presentation was randomized. The experiment was implemented using MATLAB and the 

Psychophysics Toolbox (http://psychtoolbox.org/).  

 

Behavioral experiment 2 

This study measured participants’ SSNR thresholds for each of 800 object images over a series 

of 4 behavioral sessions. For this experiment, only pixelated Gaussian noise was evaluated. On 

each trial, a single noise image was generated and combined with a source object image, and 

the target image gradually increased in SSNR level by 0.025 every 400ms, until the participant 

felt confident enough to press a key on a number pad to halt the image sequence and then 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2021. ; https://doi.org/10.1101/2020.08.03.234625doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.234625
http://creativecommons.org/licenses/by-nc-nd/4.0/


   26 

make a 16-alternative categorization response. Next, participants used a mouse pointer to 

“paint” the portions of the image that they found to be most informative for their recognition 

response.  

 

After each trial, participants received visual feedback, based on a point scheme designed to 

encourage both fast and accurate responses. For correct responses, up to 200 points could be 

earned at the beginning of the image sequence (SSNR = 0), and this amount decreased with 

increasing SSNR, dropping to just 6 points at an SSNR level of 1. Incorrect responses were 

assigned 0 points. The participants received monetary payment scaled according to the total 

number of points earned across the 4 sessions.  

 

MRI scanning parameters 

MRI data were collected using a 7-Tesla Philips Achieva scanner with a 32-channel head coil at 

the Vanderbilt University Institute for Imaging Science. We collected fMRI data using single-shot 

T2*-weighted gradient echo echo-planar imaging at a 2mm isotropic voxel resolution (TR 2s; TE 

25ms; flip angle 63°; SENSE acceleration factor 2.9, FOV 224×224 mm; 46 slices with no gap; 

phase-encoding in AP direction). To mitigate image distortions caused by inhomogeneity, an 

image-based shimming technique was used. A T1-weighted 3D-MPRAGE anatomical scan was 

collected in the same session at 1mm isotropic resolution. Separately, retinotopic data were 

acquired using a 3-Telsa Philips Intera Achieva MRI scanner equipped with a 32-channel head 

coil, with fMRI data acquired at 3mm isotropic resolution (TR 2s; TE 35ms; flip angle 80°; FOV 

240×240 mm; 36 slices).  

 

fMRI experiment 

For the fMRI experiment, we selected 16 object images to characterize neural response 

patterns to objects in visual noise. The images included 2 examples drawn from 8 categories 
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(bear, bison, elephant, hare, jeep, sports car, table lamp, teapot) whose difficulty levels were 

closely matched based on the reported SSNR levels from Experiment 2. Each object image was 

presented noise-free, embedded in pixelated Gaussian noise, and embedded in Fourier phase-

scrambled noise. For the noise conditions, we chose an SSNR level of 0.4 as human 

performance dropped significantly by this noise level but was still accurate enough to be 

expected to lead to reliable neural responses. To control for potential order effects, the images 

were divided into two sets. In the first half of the experiment, one set was presented noise-free 

while the other set of object images appeared in each of the two types of noise. In the second 

half of the experiment, the assignment to noisy and noise-free conditions was reversed. Across 

participants, we counterbalanced how the objects were assigned to noisy and noise-free 

conditions across the two halves of the experiment. Each fMRI run consisted of 8 clean images, 

8 Gaussian noise images, and 8 images of objects in Fourier phase-scrambled noise, presented 

in randomized order. On average, participants performed a total of 10 experimental runs with 

each image shown 5 times for a given condition.  

 

Participants were instructed to maintain fixation on a central fixation point throughout each 

experimental run and to report whether each presented image was animate or inanimate using 

an MRI-compatible button box in the scanner. Each image from a stimulus set was centrally 

presented in a 9 × 9° window for 4 seconds, flashing on and off every 250ms, and followed by a 

6-second fixation rest period. The order of the 24 images was randomized every run, and each 

run lasted approximately 4.4 minutes. We additionally ran 2 runs of a functional localizer, in 

which participants viewed blocked presentations of grayscale images of faces, objects, houses, 

and scrambled objects. A subset of the participants were scanned on a separate day for 

retinotopic mapping which used a standard phase-encoded measurement with rotating wedges 

and expanding rings [49]. 
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fMRI data preprocessing and analysis 

Data were preprocessed and analyzed using FSL, Freesurfer, and custom MATLAB scripts. The 

following standard preprocessing was applied: motion correction using MCFLIRT [50], slice-time 

correction, and high-pass temporal filtering with a cutoff frequency of 0.01 Hz. No spatial 

smoothing was applied. Functional images were then registered to each participant’s 3D-

MPRAGE anatomical scan using Freesurfer’s bbregister [51].  

 

Boundaries between early visual areas V1-V4 were manually delineated from a separate 

retinotopic mapping session, using FSL and Freesurfer software. For those who did not perform 

retinotopic scanning, areas V1-V4 were predicted from the anatomically defined retinotopy 

template [52]. A general linear model analysis was used to identify visually responsive voxels 

corresponding to the stimulus location, as well as category-selective voxels.  

In conjunction with the retinotopic maps, a statistical map of the stimulus versus rest contrast of 

our functional localizer was used to define functionally active voxels in V1-V4 using a threshold 

of t > 7 uncorrected. The fusiform face area (FFA) was identified by contrasting faces versus all 

other stimulus conditions (objects, houses, scrambled stimuli) and identifying voxels in the 

fusiform gyrus that exceeded a threshold of t > 3 uncorrected. Similarly, the parahippocampal 

place area (PPA) consisted of voxels in the parahippocampal gyrus that responded more 

strongly to houses than to all other stimulus conditions (t > 3 uncorrected). Finally, the lateral 

occipital cortex (LOC) was defined by contrasting objects versus scrambled objects (t > 3 

uncorrected). 

 

Each voxel’s time series was first converted to percent signal change, relative to the mean 

intensity across the run, and the averaged response of TRs 3 to 5 post-stimulus onset was used 

to estimate stimulus responses. Response amplitudes to each stimulus were then normalized 

by run to obtain an overall mean of 0 and standard deviation of 1. For each visual area, the 
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multivariate response pattern to a given stimulus was converted into a data vector with 

associated category label, to be used for training or testing a classifier. We trained a multi-class 

linear SVM classifier to predict the object category of each stimulus, separately for each region 

of interest and viewing condition, using the LIBSVM MATLAB toolbox with the default parameter 

settings [53]. The trained SVM was then tested on independent test runs, using a leave-one-

run-out cross-validation procedure [7]. (Note that the object category decoding analysis is 

sensitive to consistency of fMRI responses at both the image level and category level, and we 

confirmed that essentially the same pattern of classification results was found in early visual 

areas when decoding was performed to predict the specific image.) We required that 

classification accuracy for V1, the most reliable visual area for decoding, exceed a minimum of 

20% (chance level 12.5%) when averaged across all 3 viewing conditions; otherwise, the data 

from that participant were excluded due to poor reliability. Data from three participants were 

excluded based on these criteria, and reported results are based on the data of 8 participants.  

 

To compare the representations of DNNs to those in the human visual cortex, we analyzed the 

responses of all units within each layer of the DNN to each object image. The responses of a 

given unit to the set of object images were normalized and converted to z-scores. Next, we 

calculated the correlational similarity of the responses to all possible pairs of images by 

computing a 48 × 48 correlation matrix. After setting the main diagonal values to 0, the 

remaining values solely reflected the correlational similarity of responses to different object 

images for that layer. The representational structure of these object responses of the DNN could 

then be compared to the representational structure of object responses obtained from human 

visual areas by calculating the Pearson correlation coefficient between the correlation matrices. 

For statistical testing, the Fisher z-transform was applied to these correlation values obtained 

from each participant when comparing a visual area to a specific layer of a DNN, and t-tests 

were used to test for significant differences between Pearson correlation values. 
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Deep neural networks 

We evaluated the performance of 8 pre-trained convolutional neural networks (CNNs) using the 

MatConvNet toolbox [54]: AlexNet, VGG-F, VGG-M, VGG-S, VGG-16, VGG-19, GoogLeNet, 

and ResNet-152 [36-39]. All networks were pre-trained on the ImageNet 1000-category 

classification task. Performance on the 16-category classification task was evaluated by 

determining which of the 16 categories had the highest softmax response to a given image.  

The training of CNNs with noisy object images was primarily performed using MatConvNet 

(version 1.0-beta25), with ancillary analyses performed using PyTorch (version 1.6.0). The 

majority of noise training experiments were performed using VGG-19, although we also 

confirmed that similar benefits of noise training were observed for AlexNet and ResNet-152.  

 

For 16-category training, all DNNs were trained using stochastic gradient descent over a period 

of 20 epochs with a fixed learning rate of 0.001, batch size of 24, weight decay of 0.0005, and 

momentum of 0.9. All weights in all layers of the network were initialized from pre-trained 

models and were allowed to vary during the training, using backpropagation of the multinomial 

logistic loss across all 1000 classes. For our first set of analyses, pre-trained VGG-19 was 

trained with noisy object images presented at a single SSNR level (Figure 3a), using images 

from the 16 categories in the ImageNet training set (20,800 images in total). Separate networks 

were trained with either pixelated Gaussian noise or Fourier phase-scrambled noise. Training at 

a single SSNR level led to better performance for noisy object images but poorer performance 

for noise-free objects. Subsequently, we trained VGG-19 using a combination of noise-free and 

noisy images, typically using an SSNR level of 0.2 for most experiments. The VGG-19 model 

used to approximate human SSNR thresholds in Experiment 2 was trained with objects in 

pixelated Gaussian noise across a full range of SSNR levels from 0.2 to 1. The standard DNN 

used to fit human SSNR thresholds consisted of pre-trained VGG-19 that received the same 

number of training examples from the 16 categories using noise-free images only. 
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For training examples, we used the standard data augmentation pipeline provided by 

MatConvNet. Training images were derived from the original images by randomly cropping a 

rectangular region (with width-to-height aspect ratios that randomly varied from 66.67% to 

150%) that subtended 87.5% of the length of the original image. The cropped image was 

resized to 224 × 224 pixels to fit most of the DNN models (except for AlexNet, which used 227 × 

227 pixels). Additionally, the intensity of each of the RGB channels was shifted by a small offset, 

randomly sampled from a Gaussian distribution with a standard deviation of about 3. The 

images were then converted to grayscale. Finally, after the SSNR manipulation was applied (as 

described in Visual stimuli), the average pixel intensity across training samples was calculated 

and subtracted from each training image.  

 

We trained a 1000-category version of VGG-19 with the full set of training images from 

ImageNet; these were presented either noise-free, with pixelated Gaussian noise (SSNR 0.2) or 

with Fourier phase-scrambled noise (SSNR 0.2).	Color information from these images was 

preserved but the same achromatic noise pattern was added to all 3 RGB channels for noise 

training. The network was trained over 10 epochs using a batch size of 64. All other training 

parameters were the same as those used in training the 16-category-trained VGG-19.  

 

We quantified the accuracy of standard and noise-trained DNNs at each of 20 SSNR levels 

(0.05, 0.1, 0.15, … 1). Unlike the human behavioral experiments, DNN performance could be 

repeatedly evaluated tested without concerns about potential effects of learning, as network 

weights were frozen during the test phase. The DNN was presented with all 800 object test 

images at every SSNR level to calculate the accuracy by SSNR performance curve. A 4-

parameter logistic function was fitted to the accuracy by SSNR curve and the SSNR level at 

which accuracy reached 50% was identified as the SSNR threshold for Experiment 1.  
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For the layer-specific noise susceptibility analysis, we evaluated the stability of the activity 

patterns evoked by objects presented in progressively greater levels of noise, by calculating the 

Pearson correlation coefficient between responses to each noise-free test image and to that 

same image presented at varying SSNR levels. Analyses were performed on each convolutional 

layer after rectification, the fully connected layers and the softmax layer of VGG-19. A logistic 

function was fitted to the correlation by SSNR data for each layer, and the SSNR level at which 

the correlation strength reached 0.5 was identified as the SSNR threshold. If some positive 

correlation was still observed when SSNR level was 0, then the range of correlation values were 

linearly rescaled to span a range of 0 to 1, prior to calculating the SSNR threshold.  

 

For the layer-specific classification analysis, multi-class support vector machines (SVM) were 

trained on the activity patterns evoked by noise-free objects from each of the 16 categories, 

using data obtained from individual layers of the DNN. After training, the SVMs were tested 

using the 800 novel test images presented at varying SSNR levels. The SSNR level at which 

classification accuracy reached 50% (chance level performance, 1/16 or 6.25%) was identified 

by fitting a logistic function, and served as the classification-based SSNR threshold.  

 

Layer-wise relevance propagation 

Layer-wise relevance propagation is a method that identifies diagnostic features that contribute 

to the prediction of a network [40]. To do so, the method decomposes the network’s output with 

respect to contributions of individual units, termed relevance scores R as defined below, and 

back-propagated the scores to the input layer: 

"#
(%) = (#)#*

(#)#*#*
"*
(%+,), 

where "#
(%) is the relevance score of the unit . at layer /, (# is the response of the unit . at layer /, 

and )#* is the weight connecting the unit . at layer / to unit 0 at layer /+1. Layer-wise relevance 
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propagation differs from other gradient-based methods in that it takes into account both 

gradients and unit activations, and may thereby better capture the set of features that are 

responsible for the network’s classification response. In addition to the original implementation 

(i.e., LRP-0), several variants have been suggested including LRP-ε, LRP-γ, and LRP-zβ [55]. 

Following the guidance of Montavon et al. (2019), we implemented a VGG19-based custom 

PyTorch script as follows: LRP-0 from the 15th to 19th layers, LRP-ε (ε = 0.25) from the 9th to 14th 

layers, LRP-γ (γ = 0.05) from the 2nd and 8th layers, and LRP-zβ (lower bound = -1.99 and upper 

bound = 2.44) for the 1st layer. To create pixel-wise heatmaps, the relevance scores in the pixel 

space were summed over the rgb channels. Only positive values were taken into account in 

order to focus on the category-relevant features of a selected object.  

 

Data availability 

The experimental code, code for noise training of DNNs, as well as the human behavioral and 

neural data will be made available on open science framework upon publication of this work. 
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Pixelated Gaussian noise

Figure 1. a Examples of an object image in pixelated Gaussian noise or Fourier phase-scrambled noise, shown at varying SSNR levels. b 
Example images from the 16 object categories used in this study: bear, bison, elephant, hamster, hare, lion, owl, tabby cat, airliner, couch, 
jeep, schooner, speedboat, sports car, table lamp, teapot.
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Figure 2. a Mean performance accuracy in a 16-alternative object classification task plotted as a function of SSNR level for human observers (black 

curves) and 8 standard pre-trained DNNs (red curves) with ± 1 standard deviation in performance indicated by the shaded area around each curve. 

Separate curves are plotted for pixelated Gaussian noise (solid lines with closed circles) and Fourier phase-scrambled noise (dashed lines with open 

circles). b Classification accuracy plotted as a function of SSNR level for individual pre-trained DNN models. 
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Figure 3. a Impact of training VGG-19 with object images presented at a single SSNR level (1.0, 0.7, 0.5, 0.3, 0.2, or 0.1) when evaluated with 

novel test images presented at multiple SSNR levels. Accuracy of pre-trained VGG-19 (red curve) serves as a reference in each plot. b Impact of 

training VGG-19 with a combination of noise-free images (SSNR 1.0) and noisy images at a specified SSNR level. 
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Figure 4. a Mean classification accuracy of noise-trained VGG-19 (blue), human observers (gray), and pre-trained DNNs (red) for objects 

in pixelated Gaussian noise (solid lines, closed circles) and Fourier phase-scrambled noise (dashed lines, open circles). b Frequency 

histograms comparing the SSNR thresholds of noise-trained VGG-19 (blue), individual human observers (gray), and 8 standard 

pre-trained DNNs (red). 
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VGG-19 (blue). Each data point depicts SSNR thresholds for an individual object image. Examples of two object images, shown at the 
SSNR threshold obtained from standard or noise-trained networks. b Examples of diagnostic object features from human observers, 
standard VGG-19, and noise-trained VGG-19. The mean SSNR level at which human observers correctly recognized the objects is 
indicated. c Correlational similarity and overlap ratio of the spatial profile of diagnostic features reported by human observers and those 
measured in DNNs across a range of SSNR levels. Gray dashed lines indicate ceiling-level performance based on human-to-human 
correspondence. 
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Figure 6. a Depiction of method used for layer-specific noise susceptibility analysis. b Correlation-based SSNR thresholds for pre-trained (red) and noise-

trained (blue) versions of VGG-19 plotted by layer for objects shown in pixelated Gaussian noise or Fourier phase-scrambled noise. Higher SSNR thresholds 

indicate greater susceptibility to noise. c Classification-based SSNR thresholds plotted by layer for pre-trained and noise-trained networks. Multi-class support 

vector machines were used to predict object category from layer-specific activity patterns. d Similarity of feature representations for pre-trained and noise-

trained versions of VGG-19, calculated using canonical correlation analysis (CCA).
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a b

Figure 7. a Classification accuracy for fMRI responses in individual visual areas for clean objects (black filled circles), objects in pixelated Gaussian noise 
(gray filled circles) and Fourier phase-scrambled noise (gray open circles). Error bars indicate ±1 standard error of the mean (n = 8). Chance-level perfor-
mance is 12.5%. b Correlational similarity of object representations obtained from human visual areas and individual layers of DNNs when comparing 
standard versus noise-trained networks (red vs. blue, respectively). Color-coded horizontal lines at the top of each plot indicate a statistically significant 
advantage (p < .01 uncorrected) for a given DNN at predicting human neural representations of the object images.
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Figure 8. a Examples of images used to test the impact of salt-and-pepper noise, low-pass filtering and high-pass filtering on DNN performance. 

Image manipulations followed the methods described in [27]. b Performance accuracy of pre-trained and noise-trained versions of VGG-19 at 

recognizing images with different types and levels of image distortion.
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Figure 9. a Top1 and top5 accuracies of pre-trained VGG-19 (red) and noise-trained VGG-19 (blue) at classifying vehicles in noise-free or noisy weather 
conditions. Noise-trained VGG-19 outperformed pre-trained VGG-19 at recognizing noisy vehicle images (top1 accuracy, χ2 = 10.29, p = .0013; χ2 = 
10.26, p = .0014). b Top1 and top5 accuracies sorted by noise-level rating. A statistical difference in performance was observed between models when 
the noise level was moderate or strong (χ2 > 4.5, p < .05 in all cases). Asterisks indicate * p < .05, ** p < .01.
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