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Abstract

Gene regulation is an important fundamental biological process. The regulation of gene expression is
managed through a variety of methods including epigentic processes (e.g., DNA methylation).
Understanding the role of epigenetic changes in gene expression is a fundamental question of molecular
biology. Predictions of gene expression values from epigenetic data have tremendous research and clinical
potential. Despite active research, studies to date have focused on using statistical models to predict
gene expression from methylation data. In contrast, dynamical systems can be used to generate a model
to predict gene expression using epigenetic data and a gene regulatory network (GRN) which can also
serve as a mechanistic hypothesis. Here we present a novel stochastic dynamical systems model that
predicts gene expression levels from methylation data of genes in a given GRN. Software for dataset
preparation, model parameter fitting and prediction generation, and reporting are available at
https://github.com/kordk/stoch_epi_lib.

Introduction

Gene regulation is an important fundamental biological process. [1] It involves a number of complex
sub-processes that are essential for development and adaptation to the environment (e.g., cell
differentiation [2] and response to trauma [3]). Understanding gene expression patterns has broad
scientific [4] and clinical [5] potential, including providing insight into mechanisms of regulatory
control [1] (e.g., gene regulatory networks) and a patient’s response to disease (e.g., HIV infection [6]) or
treatment (e.g., chemotherapy-induced neuropathic pain [7]). The regulation of gene expression is
managed through a variety of methods, including transcription, post-transcriptional modifications, and
epigenetic processes [8]. One epigenetic process, DNA methylation, [9] occurs primarily at the cytosine
base of the molecule that is adjacent to guanine (i.e., CpG site). While evidence exists to support a
relationship between methylation and gene expression, the patterns of these associations can vary. [10]
DNA methylation of promoter and gene body regions can act to regulate gene expression by
repressing [11]) or activating [12] transcription. For example, higher gene expression can be associated
with both decreased [13] and increased [14] methylation in regulatory regions, and with decreased
methylation within the gene. [15] These associations vary with the distance from the promoter, [16] as
well as between individuals and across tissues. [17]

Predicting gene expression levels from epigenetic data is an active area of research. Recent studies
have developed models to predict gene expression levels with deep convolutional neural networks from
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genome sequence data [18] and with regression models from methylation data. [19,20] Earlier studies
developed models to predict expression status (e.g., on/off or high/low) with gradient boosting classifiers
from histone modification data [21], with machine learning classification methods from methylation
data [22], and from methylation and histone data combined. [23] However, these studies exclusively use a
statistical approach to predicting gene expression. One limitation of the deep learning approaches is in
the interpretation of the results. [24] A limitation of the linear model approaches are their inability to
provide information regarding promoter binding events and the regulatory activities of the system.
Neither of these approaches can provide a biological model to explain the expression estimates.

To address these limitations, we developed a dynamic interaction network model [25] that depends on
epigenetic changes in a gene regulatory network (GRN). Dynamical systems integrate a set of simple
interactions (i.e., transcription factor (TF) binding to a promoter region and subsequent gene expression)
across time to produce a temporal simulation of a physical process (i.e., gene regulation in a given GRN).
Therefore, the predictions of a dynamical systems model (e.g., TF binding and unbinding events, gene
expression levels) emerge from a mechanistic understanding of a process rather than the associations
between data (e.g., predicting an outcome from a set of predictor variables). A dynamical systems model
can predict gene expression using epigenetic data and a GRN by simulating hypothesized mechanisms of
transcriptional regulation. Such models provide predictions based directly on these biological hypotheses,
and provide easy to interpret mechanistic explanations for their predictions. The dynamical systems
approach offers a number of unique characteristics. First, a stochastic dynamical system provides us
with a distribution of gene expression estimates, representing the possibilities that may occur within the
cell. Next, the mechanistic nature of the approach means that the model can provide a biological
explanation of its predictions in the form of a predicted activity level of various gene-gene regulatory
interactions. Finally, a dynamical systems approach allows for the prediction of the effects of a change to
the network. To our knowledge, there are no studies that have taken a dynamical systems approach to
predicting gene expression from methylation data and a GRN.

Given the opportunity presented by dynamical systems approaches and the potential practical utility,
we present a novel stochastic dynamical systems model for predicting gene expression levels from
epigenetic data for a given GRN, along with a software package for model parameter fitting and
prediction generation (available at https://github.com/kordk/stoch_epi_lib).

Methods

Here we use a dynamical systems approach to develop and fit a model to predict gene expression levels
and transcription factor binding affinities from methylation data Fig. 1.

Model Equations

We model gene regulation using a piecewise-deterministic Markov process (PDMP) as introduced in
Davis 1984 [26] (see also [27,28]) given by the equations:

Bi(t) = Bi(0) + Y i1

(∫ t

0

(1−Bi(τ))λi
µi

µi + (αi)νi
(κi · g)dτ

)
− Y i2

(∫ t

0

λ̂iBi(τ)dτ

)
(1)

and

d

dt
gj = γj + (φj ·B)− djgj (2)

where Bi(t) ∈ {0, 1}, is a boolean random variable representing the bound/unbound state of a binding
site region of DNA and gi is the transcript amount the genes modeled. Equation (1) is given as the sum
of two Poisson jump processes Y i1 (hi1(t)) and Y2(hi2(t)) which take values in Z≥0, and are piecewise
constant between randomly spaced discrete time points (the binding and unbinding events) [29].
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Fig 1. An overview of our approach using a dynamical systems model to predict gene expression using a
gene regulatory network and methylation data. Gene expression and methylation data from training set
A is used to fit the parameters of the model. Gene expression and binding activities are predicted using
the fit model and methylation data from testing set B.

The propensities hi1(t) and hi2(t) are taken to be linear functions of the available transcription factors,
which is assumed to be the same as the transcript variables gj . We take the values κij ∈ {0, 1}; these
parameters along with the set of φji represent the structure of the underlying gene regulatory network.

We include the term
µi

µi + (αi)νi
(3)

to represent the impact of epigenetic modification on the binding propensity of transcription factors. In
this term, αi is the measured epigenetic modification to a transcription factor binding site (e.g.
percentage of methylated bases). Equation (3) is a sigmoidal function which is either strictly increasing
or strictly decreasing depending on the sign of νi.

Finally, we use a linear ODE for the value of the transcripts gj . We take φji ∈ {−1, 0, 1} based on
the structure of the underlying gene regulatory network. We include baseline transcription γj and decay
dj . Because we use a linear ODE in Eq. (2), we can solve exactly between jumps of B.

It is common practice in the study of reaction networks modeled as stochastic jump processes to
represent the process using so called “chemical master equation” [29,30] (i.e. the Kolmogorov forward
equation for the jump process), which can be used within optimization methods to learn parameters for
the system [31]. The generator for a PDMP can be defined (see Azäıs 2014 [32] for details). We define a
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density P (Bi, g(t), t) = P i(g), i = 1, ..., |B| for each possible state Bi of B such that∑|B|
i=1 P

i(g) = P (g) is the probability distribution for the vector g, and each Pi satisfies

dP i(g, t)

dt
=

|g|∑

j=1

(
γj + (φj ·Bi)− djgj

) ∂P i(g, t)
∂gj

+
∑

(j:‖Bj−Bi‖1=1)

|B|∑

k=1

[
Bik(1−Bjk)λk

µk
µk + (αk)νk

(κk · g) + λ̂kB
j
k(1−Bik)

]
P j(g, t)

−
|B|∑

k=1

[
(1−Bik)λk

µk
µk + (αk)νk

(κk · g) + λ̂kB
i
k

]
P i(g, t). (4)

Model Parameter Estimation

The parameters κij , φji and γj are determined by the structure of the underlying gene regulatory
network and the epigenetic parameter αi is assumed measurable. We estimate the parameters
λi, λ̂i, µi, νi and dj . We estimate these parameters using a negative log-likelihood minimization
procedure using stochastic gradient descent. Sample paths used to estimate the gradient of the likelihood
are generated using one of two modified forms of Gillespies stochastic simulation algorithm (SSA) [33]
which handle time-dependent jump propensities by adding an ODE to the system [27, 30] or by rejecting
jumps chosen as in the standard SSA [34]. This procedure involves approximating the gradient of the
map from parameter set to log-likelihood so that we may use a gradient descent method.

We can compute a log-likelihood for a set of paired epigenetic and transcription samples by time
averaging a sample path against a Gaussian kernel. We estimate the likelihood of a sample of transcript
data g of d genes using a model realization B(t), gθ,α(t) as follows:

Lg,α(θ) =
1

T

n−1∑

k=0

∫ tk+1

tk

1

(2π)d/2hd
e−

1
2‖(gθ,α(t)−g)‖2dt (5)

where h is some smoothing parameter, θ is an n-dimensional vector of model parameters where n is the
sum of the sizes of sets of λi, λ̂i, µi, νi, and α represents the epigenetic parameters αi used by the model.
For a dataset D consisting of n sets of matched pairs of transcription and epegenetic data gl,αl, we
define the negative log-likelihood as:

L̂D(θ) = −
n∑

l=1

log(Lgl,αl(θ)). (6)

We note that L̂D(θ) depends on computing gθ,α(t) from a realization of the stochastic process, and so
depends on a set ω of random numbers. So that we are minimizing a deterministic map, we choose ω
once and use this same random vector to generate every realization needed in computing the estimate
L̂D(θ). We make this explicit with the notation LD,ω(θ).

In Fig. 2, we give a schematic representation of how L̂D is estimated from a set of realizations of the
model, each realization corresponding to a single data sample. Details of the gradient estimation are
given in supplemental file S1.

Evaluation

Gene Regulatory Network

Gene to gene interactions were defined using the Discriminant Regulon Expression Analysis (DoRothEA)
framework. [35] Transcription factor (TF) to target interactions were identified as those with the
DoRothEA highest confidence interaction classification and scored as 1 or -1 for upregulating and
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For each binding site i

αl
i

κi

λi λ̂i µi νi

Bi(t)

For each gene j

φj

dj γjglj

gj(t)

Ll =
1
Tl

∫ Tl

0
K(g(t), gl)dt

For each data point l

L̂D = −∑|DataSet|
l=1 ln(Ll)

Fig 2. Plate diagram of the process to estimate total likelihood of a data set according to our model.
Parameters in diamonds are read from data, parameters in hexagons are determined by the structure of
the network, parameters in circles must be fit to the model by maximizing likelihood over a training data
set, and parameters in stars are the state variables of the dynamical model. Notice that the dynamical
model implies that the stat variables depend on each other, meaning this network of dependence is not
acyclic. The kernel K(x, y) used to estimate likelihood is Gaussian.

downregulating, respectively. Binding site to target edges (φ) were defined by CpG methylation sites
which were associated with changes in transcript expression (eCpG). [36]

Dataset

Matched epigenetic and gene expression data were obtained from whole blood from participants in the
Grady Trauma Project (GTP) study (n=243 participants). Methylation data were obtained from the
NCBI Gene Expression Omnibus (GEO) (GSE72680) and measured using the HumanMethylation450
BeadChip (Illumina, San Diego, CA). Methylation status was quantified as a beta score. A total of
19,258 eCpG probes were identified. Beta scores for CpG sites within the same region for a gene (i.e.,
classified as either ‘Promoter’ or ‘TSS’ [36]) were aggregated together as the mean. Gene regions where
no DNA methylation data were collected were excluded. A total of 1,885 regions were identified.

Gene expression data were obtained from GEO (GSE58137) measured with the HumanHT-12
expression beadchip V3.0 (Illumina, San Diego, CA). Intensity scores were log2-transformed (mean
expression intensity = 189.96, IQR = 49.88 to 106.60). Gene expression probes were first annotated to
ENTREZ ID and then annotated to the symbol using the HUGO database. [37]

For evaluation, we identified a set of genes previously identified as deferentially expressed in
individuals with PTSD as compared to controls (n=524). [38] Of these, we identified 278 TF to target
mappings using the DoRothEA framework. We then used this list of genes to identify additional targets
to include beyond initial list. The final set included 252 TF to target relationships comprised of 303
unique target genes. A GRN was built using these 303 genes as input producing a final network with 74
genes with 65 sites (Fig. 3). Of these 74 genes, 29 had sufficient data and regulatory information (i.e.,
methylation and gene expression data for all individuals, an eCpG binding site, and a TF to gene
relationship) for which parameters could be estimated and expression distributions generated.

Cross Validation

Matched gene expression and methylation data from participants measured for expression (n=243) were
used for evaluation. This primary dataset was split into training and testing datasets, containing
80%/20% (n=195, n=48 samples, respectively). To avoid the impact of a particular split, we repeated
the shuffle process 100 times. [39] For each split of the data, parameter estimation was performed on the
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Fig 3. Bipartite network corresponding to the gene regulatory network based on differential expression
in individuals with PTSD. This network contains seventy-four genes and sixty-five sites. Of these,
twenty-nine genes had sufficient regulatory information (i.e., an associated binding site and transcription
factor) for which parameters could be estimated and expression distributions generated. Blue circles are
genes, grey boxes are binding sites. Green arrows are activating and red ’T’s are inhibitory. Black arrows
point to AK3 and IRF1.

training set and equilibrium distributions of the predicted expression levels were generated using the
testing set. For every round of cross-validation, the error in prediction was evaluated as the root mean
square error (RMSE) [40] between the observed and the estimated expression from our model. To rank
methods, the RMSEs (mRMSE) was averaged for each method across the 100 shuffles.

Model Comparison

To evaluate the performance of our gene expression predictions we generated linear regression models
using the scikit-learn software package for python [41]. Based on previous studies that developed
prediction models for gene expression using methylation data, [19,20] we generated prediction models
using LASSO, Multi-task LASSO, Elastic Net, and Multi-Task Elastic Net. The structural parameters
for these models (i.e. penalty parameter and l1-ratio parameter) were determined using scikit-learn’s
cross-validation methods with the entire data set. Finally, we fit a null model that is the average of the
expression values from the training set. It is the prediction of expression values without any other
variables in the model. Models were generated for each of the 100 data train/test shuffles used in our
fitted model.

To evaluate the performance of our fitting procedure on gene expression predictions we generated
predictions using a randomly generated parameter set a for each of the previously generated splits. Ten
random estimates were generated for each shuffle giving 1000 predictions for each gene generated using
random parameters. Parameters were estimated for all genes using the procedure detailed in
Supplemental File 1.
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Results

Across the final models, our fitted parameter model performed the best (Table 1, Fig. 4). Across all 29
genes, our model outperformed the null model as well as the four linear regression models Fig. 5. On
average, our model outperformed the best performing linear regression model (i.e., ElasticNet) by a
factor of 2.16 after parameter fitting. The average root mean square errors for each gene across the 100
shuffles is reported in Table 2. We observed the highest performance for AK3 (average RSME = 1.101)
and lowest for SCP2 (average RSME = 2.697). In this evaluation, our model biases towards
underestimating the expression levels (see supplemental file).

Table 1. Summary of Average mRMSE of 100 splits of training and testing data across 29 genes for
seven prediction models (i.e., our fitted model, multitask (MT) elastic net, elastic net, multitask LASSO,
LASSO, our model with random parameters, and training data transcript average value (null)).

Model MT ElasticNet ElasticNet MT LASSO LASSO Null (Mean) Random

count 29.000 29.000 29.000 29.000 29.000 29.000 29.000
mean 2.059 4.479 4.477 4.485 4.474 4.473 8.750
std 0.571 0.898 0.879 0.899 0.870 0.897 1.444
min 1.101 3.354 3.361 3.359 3.364 3.349 6.114
25% 1.657 3.739 3.738 3.744 3.739 3.733 7.631
50% 2.060 4.254 4.254 4.259 4.255 4.248 8.767
75% 2.564 5.162 5.180 5.168 5.186 5.156 9.658
max 3.172 6.410 6.254 6.418 6.163 6.405 12.030

Fig 4. Histogram of all RMSEs across 29 genes and 100 distinct train/test data splits for each model.

Comparing the model with randomly generated parameters and fitted parameters reveals that our
fitting procedure was effective. We see a 4.24-fold improvement in model performance on average after
the fitting procedure. In fact, Fig. 4 demonstrates that, with random parameters, our model is
unsurprisingly worse than a linear regression, but our fitting procedure returns a model that outperforms
linear regression. Examples of the equilibrium distributions generated from the random parameter for
the most accurate predicted gene (i.e., AK3) for two individual patients from different shuffles are shown
in Fig. 6.
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Fig 5. Comparison of average RMSE of our fitted model with four linear regression models for each
gene.

Fig 6. Equilibrium distribution plots generated from random parameters for AK3 for (a) individual ID
6522 for random parameter set 0 in shuffle 0, and (b) individual ID 8331 random parameter set 7 in
shuffle 13.

Discussion

In this study, we demonstrate that gene expression levels can be accurately predicted from methylation
state of a promoter region and a GRN. Our model successfully uses quantitative data describing
epigenetic modification of transcription factor binding sites to generate a probability distribution which
describes the possible level of transcript. To our knowledge, this is the first study to develop and
evaluate a stochastic dynamical systems model predicting gene expression levels from epigenetic data for
a given GRN.

Overall our model outperforms linear regression approaches in the predictions of the model with
fitted parameters (e.g., Fig. 7 a & b) and dramatic improvements to prediction relative to a randomly
generated set of parameters (e.g., Fig. 7 c & d). We were able to accurately predict gene expression
based on the structure of the GRN which allows for the identification of TF and binding sites that are
associated with gene expression levels. For example, our model accurately predicted gene expression
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Table 2. Average root mean square errors for each gene across the 100 shuffles for 7 models - our fitted
model, multitask elastic net, elastic net, multitask LASSO, LASSO, training data transcript average
value (Null), our model with random parameters.

Model MT ElasticNet ElasticNet MT LASSO LASSO Null (Mean) Random

LDHA 1.917 5.698 5.712 5.709 5.719 5.688 10.680
NR1D2 2.215 4.095 4.107 4.100 4.111 4.090 7.602
SREBF1 2.863 4.058 4.071 4.063 4.075 4.053 6.783
CD4 1.711 4.768 4.786 4.776 4.792 4.762 8.794
RRM2B 2.060 3.659 3.677 3.663 3.682 3.655 8.195
SLC20A1 1.614 5.687 5.688 5.697 5.691 5.679 10.787
RPL39L 2.235 3.354 3.361 3.359 3.364 3.349 8.169
AK3 1.101 4.166 4.179 4.174 4.167 4.159 9.617
MT1X 1.128 4.254 4.254 4.259 4.255 4.248 9.675
ZNF654 2.620 3.739 3.738 3.744 3.739 3.733 7.789
ALOX5 2.911 3.524 3.523 3.527 3.523 3.522 7.071
CD19 1.414 5.789 5.619 5.795 5.555 5.783 9.092
FBXO32 1.673 4.749 4.755 4.757 4.720 4.741 8.906
SCP2 2.697 3.444 3.446 3.448 3.447 3.440 7.625
CCM2 1.620 3.932 3.948 3.936 3.953 3.929 10.344
CTSH 2.064 4.064 4.086 4.071 4.094 4.058 8.158
FCER1A 1.446 5.995 5.994 6.003 5.998 5.988 9.658
ICAM4 2.732 3.570 3.567 3.573 3.567 3.566 7.746
VWA5A 2.805 3.534 3.534 3.539 3.535 3.529 7.452
CYP27A1 1.172 5.352 5.374 5.359 5.385 5.345 8.767
BAG3 2.564 4.545 4.569 4.552 4.576 4.538 7.179
GSTM1 1.657 5.766 5.794 5.772 5.805 5.761 10.950
LTA4H 2.298 5.162 5.180 5.168 5.186 5.156 12.030
SURF6 1.708 4.603 4.610 4.611 4.613 4.596 8.937
IRF1 2.264 4.469 4.485 4.474 4.490 4.465 10.887
CXCR5 2.057 3.773 3.799 3.779 3.806 3.768 7.631
AHR 3.172 3.393 3.396 3.397 3.397 3.389 6.114
OAS1 1.869 6.410 6.254 6.418 6.163 6.405 9.057
BAK1 2.123 4.330 4.337 4.337 4.341 4.324 8.042

levels for both AK3 and IRF1, yet the GRN has different numbers of TF for each (i.e., a single TF for
AK3 versus multiple TF for IRF1)(Fig. 3). From our initial list of 302 genes for inquiry, our TF to target
and binding site reference data produced a gene regulatory network with 74 genes, of which 29 had
sufficient regulatory information to be predicted. Although we were unable to evaluate a more
complicated GRN from all reference regulatory data due to computational constraints, we expect that
model predictions will improve with additional regulatory information. Future work is needed to improve
the computational performance of the implementation to support larger and more complicated GRNs.

The estimated fit of the model to training data improved over iterations of the procedure. However,
the means and standard deviations from the equilibrium distributions do not converge as quickly as we
would like (data not shown). This slow convergence, and the necessity for repeated estimations, mean
that computational time is a limiting factor. Future analyses should simulate longer to identify the
appropriate cut offs given the data used, and thus improve the fit of the model parameters.

While the use of a stochastic dynamical system offers distinct advantages over more
statistically-driven methods, a number of limitations of the our approach warrant discussion. First, our
model is based on the assumption that epigenetic modification effects the propensity of the random
process of transcription factor binding and unbinding. As seen in other studies, gene expression is a
complex mechanisms that involves other epigenetic (e.g., histone modifications and non-coding RNAs)
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(a) (b)

(c) (d)

Fig 7. (a) Predicted versus observed expression values and (b) residuals for the test samples for all 100
shuffles for AK3 using fitted parameters. (c) Predicted versus observed expression values and (d)
residuals for the test samples for all 100 shuffles for AK3 using random parameters. Each shuffle is
colored.

and genetic (e.g., DNA sequence variations) factors and varies across tissues and with age. Next, our
model assumes that DNA transcription is a comparatively fast (and so approximated as deterministic)
process that depends on transcription factor binding. Finally, our model implicitly assumes that
processes of transcription of DNA to RNA and translation from RNA to the functional protein products
are immediate. Finally, we limit the scope of our testing to linear production of DNA transcript,
depending on transcription factor binding status. Future efforts will be focused on improving the
prediction accuracy, improving prediction robustness across training sets, improving computational
efficiency, and evaluating across other gene regulatory networks, gene sets, and datasets.

By using a dynamical systems approach, our model generates an estimation of gene expression given
DNA methylation based on the mechanistic hypothesis of differential binding affinity of a transcription
factor caused by epigenetic modification. Our model provides predictions based directly on the biological
hypotheses presented by the GRN thereby providing an easy to identify potential mechanistic hypotheses
for their predictions (i.e., the binding of TF to specific sites). In addition to gene expression predictions,
the characteristics of the dynamical systems approach offers multiple additional opportunities for future
evaluation. First, the dynamical systems approach allows study of complex regulatory networks,
including those which contains cycles. The GRN used for evaluation was acyclic. Next, in predicting
gene expression our model also predicts gene regulatory activity in the form of the boolean variables
Bi(t), which may be interpreted as the bound/unbound state of a regulatory protein at some DNA
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binding site. Using this information, we expect that our model will provide insight beyond gene
expression prediction by identifying specific differential regulatory activity (e.g., which regulatory sites
are bound and to what extent). Finally, our model can also be used to predict the effects of changes in
methylation states at particular sites on gene expression levels. By perturbing one area of the network
(e.g., a binding site), the effects on the rest of the network can be predicted (e.g., differences in
regulatory activity due to epigenetic characteristics of tumor versus normal tissues).

In conclusion, we developed a dynamical system model for predicting gene expression using a gene
regulatory network and epigenome data. To our knowledge, this is the first study to develop and evaluate
a stochastic dynamical systems model predicting gene expression levels from epigenetic data for a given
GRN. Using our model, we were able to accurately predict gene expression levels from methylation data
and outperformed linear regression models. Future applications of our method will include an evaluation
of the additional opportunities offered by the characteristics of a dynamical systems approach including:
(1) acyclic GRNs, (2) gene regulatory activity (i.e., binding), and (3) prediction of network perturbations.

Supporting information

S1 File. Further details of the method. Available on Zenodo
https://doi.org/10.5281/zenodo.4441111.

S2 Code Repository. Method source code & sample data. Available at GitHub
https://github.com/kordk/stoch_epi_lib with demonstration data available from Synapse
https://www.synapse.org/#!Synapse:syn22255244/files.
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