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 2 

Abstract 31 

Electroencephalography (EEG) has long been used to index brain states, from early studies 32 

describing activity during visual stimulation to modern work employing complex perceptual tasks. 33 

These studies shed light on brain-wide signals but lacked explanatory power at the single neuron 34 

level. Similarly, single neuron studies can suffer from inability to measure brain-wide signals. Here, 35 

we combined these techniques while monkeys performed a change detection task and discovered a 36 

link between EEG and a signal embedded in spiking responses. This ‘slow drift’ was associated with 37 

arousal: decreases in pre-stimulus a power/increases in P1 amplitude were accompanied by :1) 38 

increases in false alarm rate and saccade velocity; and 2) decreases in microsaccade rate and reaction 39 

time. These results show that brain-wide EEG signals can be used to index modes of activity acquired 40 

from direct neural recordings, that in turn reflect global changes in brain state that influence 41 

perception and behavior. 42 

 43 

Introduction 44 

For decades, researchers have investigated how the spiking responses of single cortical 45 

neurons relate to performance on decision-making (Britten et al., 1996), attention (Moran and 46 

Desimone, 1985) and working memory (Fuster and Alexander, 1971) tasks. Interactions between 47 

pairs of neurons have also been studied extensively since technological advances in neural recording 48 

systems (e.g. microelectrode arrays and two-photon imaging) made it possible to monitor the activity 49 

of neural populations simultaneously (Cohen and Maunsell, 2009; Leavitt et al., 2017; Zohary et al., 50 

1994). At the same time, it is becoming increasingly apparent that major insight about the 51 

neurobiological basis of cognition can be gained if one goes beyond studying single and pairwise 52 

statistics (Harvey et al., 2012; Khanna et al., 2019; Mante et al., 2013; Murray et al., 2017; Remington 53 

et al., 2018; Sadtler et al., 2014; Sohn et al., 2018; Wang et al., 2018). Furthermore, it has been 54 

suggested that low-dimensional neural activity patterns can be used to index global brain states, which 55 

influence performance on cognitive tasks. For example, Stringer et al. (2019) applied principal 56 
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component analysis (PCA) to data recorded from more than 10,000 neurons in the mouse and found 57 

that fluctuations in the first principal component were associated with a host of arousal-related 58 

variables including whisking, pupil size, and running speed. Musall et al. (2019) found that 59 

uninstructed movements, which themselves may occur at varying frequency based on arousal, were 60 

related to brain-wide activity in the mouse. In our own work in macaque monkeys, we have reported 61 

a brain wide ‘slow drift’ of neural activity (Cowley et al., 2020) which is correlated with a distinctive 62 

pattern of eye metrics that is strongly indicative of changes in arousal (Johnston et al., 2020). 63 

However, it is unknown if they are associated with other arousal-related variables that can be 64 

measured in a rapid, accurate and non-invasive manner.  65 

Spontaneous (i.e., pre-stimulus) oscillations in the a frequency band (~8 – 12Hz) are 66 

associated with global changes in brain state. For example, research in humans using EEG and 67 

magnetoencephalography (MEG) has shown that the likelihood of detecting a near-threshold visual 68 

stimulus increases when pre-stimulus oscillations in the a band decrease (Babiloni et al., 2006; Busch 69 

et al., 2009; Ergenoglu et al., 2004; Hanslmayr et al., 2007; Mathewson et al., 2009; Romei et al., 70 

2010; Thut et al., 2006; Van Dijk et al., 2008). The principles of signal detection theory (Green and 71 

Swets, 1966) dictate that changes in behavior on detection tasks can arise due to changes in sensitivity 72 

or response criterion (Crapse et al., 2018; Luo and Maunsell, 2018, 2015). To that end, recent work 73 

has shown that a decrease in pre-stimulus a power is associated with increased hit rate and false alarm 74 

rate (Iemi et al., 2017; Limbach and Corballis, 2016). These results point to link between pre-stimulus 75 

a power and response criterion, a key component of signal detection theory, which is modulated, at 76 

least in part, by subcortical structures that control arousal levels (de Gee et al., 2017; Iemi et al., 77 

2017). In addition, pre-stimulus a power is known to be correlated with eye metrics including pupil 78 

size (Hong et al., 2014; Van Kempen et al., 2019) and reaction time (Bompas et al., 2015; Kelly and 79 

O’Connell, 2013; Van Kempen et al., 2019; Zhang et al., 2008) such that decreased pre-stimulus a 80 

power is accompanied by increased pupil size and decreased reaction time. These findings raise the 81 
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possibility that other EEG signals such as the P1 component of the visually evoked potential (VEP) 82 

might also be associated with arousal. 83 

Several studies have established a link between early components of the VEP and changes in 84 

global brain state. In contrast to pre-stimulus a oscillations, P1 amplitude is significantly larger on 85 

trials in which a weak visual stimulus is detected in comparison to when it is not detected (Del Cul et 86 

al., 2007; Ergenoglu et al., 2004; Mathewson et al., 2009; Pourtois et al., 2006). Furthermore, studies 87 

that have explored the effects of spatial attention on early components of the VEP have shown that 88 

P1 amplitude is negatively correlated with reaction time (Mangun and Hillyard, 1991). In light of 89 

these results, and the well-known involvement of oscillatory brain activity in stimulus-evoked 90 

responses (Zoefel et al., 2018), one might expect a negative relationship between pre-stimulus a 91 

oscillations and early VEP components. There is some evidence to suggest that this is the case. For 92 

example, Iemi et al. (2019) found that the amplitude of the C1 and N150 increased when pre-stimulus 93 

power in the a frequency band decreased. These results suggest that pre-stimulus a power and early 94 

components of the VEP (e.g. P1 amplitude) can be used to index global changes in arousal. However, 95 

it is currently unclear how to link these EEG signals to underlying patterns of neural activity in the 96 

cortex. 97 

In this study, we explored if pre-stimulus oscillations in the a frequency band and P1 98 

amplitude are associated with slow drift in visual cortex. We simultaneously recorded EEG from the 99 

scalp and spiking activity from populations of neurons in V4 of two monkeys while they performed 100 

an orientation-change detection task (Figure 1A). Results showed that neural slow drift was 101 

associated with a pattern that is indicative of changes in the subjects’ arousal levels over time. For 102 

example, decreases in pre-stimulus power specifically in the a band (i.e., not other frequencies) and 103 

increases in P1 amplitude were accompanied by 1) increases in false alarm rate and saccade velocity; 104 

and 2) decreases in microsaccade rate and reaction time. These findings are important because they 105 

reveal that spontaneous/evoked components of the EEG signal recorded non-invasively on the scalp 106 

index low-dimensional patterns of neural activity acquired from microelectrode array recordings in 107 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.03.235283doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.235283


 5 

the brain. They support previous research (Cowley et al., 2020; Johnston et al., 2020) showing that 108 

slow drift is associated with gradual changes in arousal over time, and provide a strong link between 109 

global measurements made across recording modalities and species. 110 

 111 

Results 112 

To determine if spontaneous and evoked components of the EEG signal can provide insight 113 

into the internal brain state associated with slow drift, we trained two macaque monkeys to perform 114 

an orientation change-detection task in which pairs of stimuli were repeatedly presented (Figure 1A). 115 

Spiking responses of populations of neurons in visual cortex (V4) were recorded using 100-channel 116 

“Utah” arrays as well as EEG on the scalp (Figure 1B). On each trial, we calculated: 1) the mean 117 

amplitude of oscillations in different frequency bands during each pre-stimulus period (300-500ms) 118 

using a fast Fourier transform (FFT); and 2) the VEP during each 400ms stimulus period (see 119 

Methods). Previous research has shown that pre-stimulus a power  and stimulus-evoked P1 amplitude 120 

across a wide range of frontal, midline and occipital electrode sites are associated with improved 121 

performance on detection tasks (Busch et al., 2009; Ergenoglu et al., 2004; Iemi et al., 2017). Hence, 122 

the signals from all 8 EEG electrodes (referenced online to the head post, see Methods) were averaged 123 

prior to computing the FFTs and VEPs. We focused primarily on pre-stimulus power in the a 124 

frequency band and P1 amplitude as they capture spontaneous (i.e., pre-stimulus) and evoked aspects 125 

of the EEG signal and have been linked to global changes in brain state. However, we also measured 126 

pre-stimulus beta (b) and gamma (g) oscillations to exclude the possibility that slow drift was 127 

associated with aperiodic (i.e. broadband) changes in spectral power over time (1/f noise) (Haller et 128 

al., 2018; Iemi et al., 2019; Peterson et al., 2017; Voytek et al., 2015). 129 
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 153 
Figure 1. Experimental methods. (A) Orientation-change detection task. After an initial fixation period, a sequence 154 
of stimuli (orientated Gabor pairs separated by fixation periods) was presented. The subjects’ task was to detect an 155 
orientation change in one of the stimuli and make a saccade to the changed stimulus. (B) Electrophysiological 156 
recordings. We simultaneously recorded: 1) spiking responses of populations of neurons in V4 using 100-channel 157 
microelectrode (‘Utah’) arrays; and 2) EEG from 8 electrodes positioned on the scalp. 158 
 159 
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Correlation between pre-stimulus a power and P1 amplitude 160 

First, we explored the relationship between pre-stimulus a power and the amplitude of the P1 161 

component of the VEP. As described above, these two signals appear to operate in an antagonistic 162 

manner on detection tasks with decreases in pre-stimulus a power/increases in P1 amplitude being 163 

associated with improved performance (Babiloni et al., 2006; Busch et al., 2009; Del Cul et al., 2007; 164 

Ergenoglu et al., 2004; Hanslmayr et al., 2007; Mathewson et al., 2009; Pourtois et al., 2006; Romei 165 

et al., 2010; Thut et al., 2006; Van Dijk et al., 2008). Hence, we hypothesized that these two large-166 

scale EEG signals would be negatively correlated over time. To investigate the relationship between 167 

pre-stimulus a power and P1 amplitude, EEG data for each session was binned using a 30-minute 168 

sliding window stepped every 6 minutes (Figure 2A and Figure 2B). The width of the window, and 169 

the step size, were chosen to isolate slow changes over time based on previous studies we performed 170 

(Cowley et al., 2020; Johnston et al., 2020). An example session is shown in Figure 2C. In support of 171 

our hypothesis, pre-stimulus power in the a frequency band was negatively associated with P1 172 

amplitude.  173 

 174 

 175 
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 207 
 208 
Figure 2. Isolating slow fluctuations in spontaneous and evoked EEG signals. (A) Spontaneous EEG signals. On 209 
each trial, we calculated the mean amplitude of oscillations in distinct frequency bands for each pre-stimulus period 210 
using a FFT. The data was then binned using a 30-minute sliding window stepped every 6 minutes. Each bin is 211 
represented by a shaded grey line. Note that the duration of the fixation period was held constant at 300ms in this 212 
plot for illustration purposes only. In our analysis, we used the full duration of the fixation period, which was 213 
randomized between 300 to 500ms. (B) Evoked EEG signals. On each trial, we calculated a VEP for each stimulus 214 
presentation. The data was then binned using the same 30-minute sliding window so that direct comparisons could 215 
be made between spontaneous and evoked EEG signals. Each bin is represented by a shaded grey line. (C) Example 216 
session from Monkey 1 showing that pre-stimulus a power was negatively correlated with P1 amplitude over time. 217 
Each metric has been z-scored for illustration purposes. (D) Histogram showing distributions of Pearson’s r values 218 
(black) across sessions between pre-stimulus a power and P1 amplitude. Actual distributions were compared to 219 
shuffled distributions (grey) using two-sided permutation tests (difference of medians). Median r values are 220 
indicated by dashed lines. p < 0.05*, p < 0.01**, p < 0.001***. See Figure 2 – supplement 1 for additional example 221 
sessions from both monkeys. 222 

 223 
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Next, we explored if a similar pattern was present across sessions. We computed correlations 224 

(Pearson product-moment correlation coefficient) between pre-stimulus power in the a band and the 225 

amplitude of the P1 component for each session and compared the distribution of Pearson’s r values 226 

obtained to shuffled distributions using permutation tests (two-sided, difference of medians). 227 

Consistent with the pattern of results observed in several individual sessions for Monkey 1 and 228 

Monkey 2 (Figure 2 – supplement 1), we found that pre-stimulus a power was significantly and 229 

negatively correlated with P1 amplitude (Figure 2D, median r = -0.36, p = 0.024). These results 230 

motivated us to ask if pre-stimulus a power and P1 amplitude are correlated with other task 231 

performance and eye metrics that are often taken to be hallmarks of arousal e.g. hit rate, false alarm 232 

rate, pupil size, microsaccade rate, reaction time and saccade velocity. A direct prediction of our 233 

results is that an opposite pattern should emerge when these measures are correlated with pre-stimulus 234 

a power and P1 amplitude. 235 

Correlating pre-stimulus a power/P1 amplitude with other arousal-related variables 236 

In order to directly compare pre-stimulus a power and P1 amplitude with a host of arousal-237 

related variables we binned the task performance (hit rate and false rate) and eye metrics (pupil size, 238 

microsaccade rate, reaction time, saccade velocity) in the manner described above using a 30-minute 239 

sliding window stepped every six minutes. We computed Pearson product-moment correlations 240 

between these metrics for each session and we compared the subsequent distributions of Pearson’s r 241 

values to shuffled distributions using permutation tests (two-sided, difference of medians). First, we 242 

found that the amplitude of pre-stimulus oscillations in the a band was negatively correlated with 243 

false alarm rate (Figure 3A, median r = -0.39, p < 0.001). No significant correlation was found 244 

between pre-stimulus a power and hit rate (median r = 0.04; p = 0.783) but false alarm rate was itself 245 

positively correlated with hit rate across sessions (Figure 3 – supplement 1, median r = 0.49, p < 246 

0.001). Hence, our results support an emerging body of work showing that the amplitude of pre-247 

stimulus a oscillations is associated with changes in response criterion as opposed to sensitivity (Iemi 248 

et al., 2019; Limbach and Corballis, 2016). Furthermore, we found positive correlations of pre-249 
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stimulus a power with reaction time (Figure 3A, median r = 0.26, p = 0.012), and P1 amplitude with 250 

saccade velocity (Figure 3B, median r = 0.21, p = 0.026). Negative correlations of pre-stimulus a 251 

power with saccade velocity (median r = -0.27, p = 0.002), and P1 amplitude with microsaccade rate 252 

(median r = -0.38, p = 0.008) were also observed. No significant correlation was found between P1 253 

amplitude and reaction time (median r = 0.08, p = 0.728), but reaction time was itself negatively 254 

correlated with saccade velocity across sessions (Figure 3 – supplement 1, median r = -0.52, p < 255 

0.001). Taken together, these results demonstrate that slow time scale changes in spontaneous and 256 

evoked EEG signals were accompanied by changes in the subjects’ arousal levels over time. In 257 

particular, decreases in pre-stimulus a power and increases in P1 amplitude were accompanied by 258 

increases in false alarm rate and saccade velocity as well as decreases in microsaccade rate and 259 

reaction time.  260 

 261 

 262 

 263 

 264 
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 269 
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 284 
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 286 

 287 

 288 

Figure 3. Correlations between EEG signals and other arousal-related variables. (A) Pre-stimulus a power. Each 289 
blue point corresponds to the median r value across sessions between pre-stimulus a power and a given metric. In 290 
contrast, grey pints represent median r values computed using shuffled data. Actual distributions of r values were 291 
compared to shuffled distributions using two-sided permutation tests (difference of medians). Asterisks indicative a 292 
significant effect with a p value at least < 0.05. See Figure 3 – supplement 1 for histograms showing distributions 293 
of r values (black) across sessions between: A) hit rate and false alarm rate; and B) reaction time and saccade 294 
velocity. 295 
 296 

Correlations between pre-stimulus a power, P1 amplitude and slow drift 297 

 As described above, we and others have shown that pre-stimulus a power and P1 298 

amplitude are related to global changes in arousal. Therefore, we were keen to explore if these indirect 299 

and non-invasive measures of neural activity are associated with low-dimensional modes of neural 300 
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activity acquired directly from the spiking activity of a population of neurons. Previously, we reported 301 

a co-fluctuation of neural activity in macaque visual and prefrontal cortex (Cowley et al., 2020). This 302 

‘slow drift’ was related to the subject’s tendency to make impulsive decisions in a change detection 303 

task, ignoring sensory evidence (false alarms), and multiple eye metrics that together are indicative 304 

of global changes in brain state (Johnston et al., 2020). Here we sought to determine if pre-stimulus 305 

a power and P1 amplitude are associated with slow drift.  306 

To calculate slow drift, we binned spike counts in V4 using the same 30-minute sliding 307 

window described above and used in previous research (Figure 4A, see Methods). We then applied 308 

principal component analysis (PCA) to the data and estimated slow drift by projecting the binned 309 

residual spike counts along the first principal component (i.e. the loading vector that explained the 310 

most variance in the data). Because the sign of the loadings in PCA is arbitrary (Jollife and Cadima, 311 

2016), the correlation between slow drift and a given variable can be positive or negative. This would 312 

not affect the overall pattern of results if one were solely interested in total variance explained. 313 

However, we were interested in whether slow drift was associated with a characteristic pattern of 314 

EEG activity that we and others have shown to be indicative of changes in the subjects’ arousal levels 315 

over time i.e. decreased pre-stimulus a power and increased P1 amplitude (Figure 2 and Figure 3). 316 

Hence, the sign of the correlation between slow drift and the spontaneous/evoked EEG signals was 317 

critical. In order to establish a common frame of reference across sessions, and preserve the sign of 318 

the correlations, we constrained the slow drift for each session to have the same relationship to the 319 

spontaneous and evoked activity of the neurons. That is, the slow drift was flipped if the mean 320 

projection value for evoked responses recorded during stimulus periods was less than that for 321 

spontaneous responses recorded during pre-stimulus periods i.e., if the relationship that was naturally 322 

observed for unprojected data did not hold true (Johnston et al., 2020). This served to align the data 323 

across sessions such that relatively large slow drift values were associated with higher firing rates. To 324 

put it another way, a negative correlation between pre-stimulus a power and slow drift would be 325 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.03.235283doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.235283


 13 

indicative of a pattern in which decreased pre-stimulus a power would lead to higher firing rates. Our 326 

hypothesis predicts that the opposite should be true for P1 amplitude. 327 

We computed the slow drift of the neuronal population in each session using the above-328 

mentioned method, and then compared it to our two spontaneous and evoked EEG measures: pre-329 

stimulus a power and P1 amplitude. An example session is shown in Figure 4B (same sessions as in 330 

Figure 2C). In support of our hypothesis, a characteristic pattern was found in which slow drift was 331 

negatively associated with pre-stimulus a power and positively associated with P1 amplitude. Next, 332 

we investigated if a similar pattern was found across sessions. 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 
 341 
 342 
Figure 4. Calculating slow drift. (A) Three example neurons from a single session (Monkey 1). Each point represents 343 
the mean residual spike count during a 400ms stimulus period. The data was then binned using a 30-minute sliding 344 
window stepped every six minutes (solid line) so that direct comparisons could be made with the EEG signals. PCA 345 
was used to reduce the dimensionality of the data and slow drift was calculated by projecting binned residual spike 346 
counts along the first principal component. (B) Example session from Monkey 1 showing that slow drift was 347 
negatively correlated with pre-stimulus a power and positively correlated with P1 amplitude. Each metric has been 348 
z-scored for illustration purposes.  349 

 350 

We computed the Pearson product-moment correlation coefficient between pre-stimulus a 351 

power/P1 amplitude and slow drift for each session. We then compared the actual distribution of 352 

Pearson’s r values to shuffled distributions using permutation tests (two-sided, difference of medians). 353 

Because the slow drift was aligned across sessions based on the neural activity alone and not the EEG 354 

metrics, the shuffled distributions were centered on a correlation value of zero. We also computed 355 
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correlations between slow drift and pre-stimulus oscillations in the beta (b) and gamma (g) frequency 356 

bands to rule out the possibility that slow drift was associated with aperiodic (i.e. broadband) changes 357 

in spectral power over time (1/f noise) (Haller et al., 2018; Iemi et al., 2019; Peterson et al., 2017; 358 

Voytek et al., 2015). If this was the case, one might expect a significant correlation between slow drift 359 

and the amplitude of pre-stimulus oscillations in the a, b and g frequency bands.  360 

Consistent with the pattern of results observed in several individual sessions for Monkey 1 361 

and Monkey 2 (Figure 2 – supplement 1), we found that slow drift was negatively correlated with 362 

pre-stimulus a power (median r = -0.38, p = 0.004), whereas it was positively correlated with P1 363 

amplitude (median r = 0.31, p = 0.027). No significant correlation was found between slow drift and 364 

the amplitude of pre-stimulus power in the b (median r = 0.04, p = 0.078) or g (median r = 0.09, p = 365 

0.621) bands. Although these findings suggest that slow drift was not associated with changes in 1/f 366 

noise over time (Haller et al., 2018; Iemi et al., 2019; Peterson et al., 2017; Voytek et al., 2015) we 367 

carried out an additional analysis in which aperiodic signals were removed prior to computing mean 368 

oscillatory power in different frequency bands. Importantly, the overall pattern of results remained 369 

the same when slow drift was correlated with aperiodic-adjusted power in the a (median r = -0.18 , p 370 

= 0.016), b (median r = - 0.04 , p = 0.145) and g (median r = 0.07, p = 0.773) bands (Figure 5 – 371 

supplement 1). Therefore, we found that spontaneous and evoked EEG signals are associated with 372 

slow drift even after controlling for changes in 1/f noise (Haller et al., 2018; Iemi et al., 2019; Peterson 373 

et al., 2017; Voytek et al., 2015).  374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 
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 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

 394 
 395 
 396 
 397 
Figure 5. Correlations between EEG signals and slow drift in visual cortex. Histogram showing distributions of r 398 
values (colors) across sessions between slow drift and spontaneous/evoked EEG signals. Actual distributions were 399 
compared to shuffled distributions (grey) using two-sided permutation tests (difference of medians). Median r values 400 
are indicated by dashed lines. p < 0.05*, p < 0.01**, p < 0.001***. See Figure 5 – supplement 1 for histograms 401 
showing distributions of r values across sessions between slow drift and aperiodic-adjusted power in different frequency 402 
bands. 403 
 404 

Discussion  405 

In this study, we investigated if pre-stimulus a oscillations and the amplitude of the P1 406 

component of the VEP could be utilized as an external signature of an internal brain state, a recently 407 

discovered neural activity pattern called slow drift (Cowley et al., 2020). We know from previous 408 

work that slow drift in macaque visual and prefrontal cortex is significantly associated with a host of 409 

eye metrics that are strongly indicative of changes in arousal (Johnston et al., 2020). Since pre-410 

stimulus a power and P1 amplitude are also related to arousal, we wondered if a link could be 411 
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established between a neural measure of an internal brain state acquired directly from the spiking 412 

activity of populations of neurons (i.e., slow drift) and indirect signals recorded non-invasively using 413 

EEG. Results showed that slow drift was significantly associated with a pattern that is indicative of 414 

changes in the subjects’ arousal levels over time. When pre-stimulus a power was low and P1 415 

amplitude was high, false alarm rate and saccade velocity increased, whereas microsaccade rate and 416 

reaction time decreased. 417 

A variety of studies have shown that pre-stimulus a power and P1 amplitude are related to a 418 

behavioral pattern that is associated with arousal level. For example, decreases in the amplitude of 419 

pre-stimulus a oscillations are typically accompanied by improved performance on detection tasks 420 

(Babiloni et al., 2006; Busch et al., 2009; Ergenoglu et al., 2004; Hanslmayr et al., 2007; Mathewson 421 

et al., 2009; Romei et al., 2010; Thut et al., 2006; Van Dijk et al., 2008) and decreased reaction time 422 

(Bompas et al., 2015; Kelly and O’Connell, 2013; Van Kempen et al., 2019; Zhang et al., 2008), 423 

whereas the opposite is true of P1 amplitude (Del Cul et al., 2007; Ergenoglu et al., 2004; Mangun 424 

and Hillyard, 1991; Mathewson et al., 2009; Pourtois et al., 2006). This motivated us to ask if pre-425 

stimulus a power was negatively associated with P1 amplitude. In support of previous research (Iemi 426 

et al., 2019), we found that decreases in pre-stimulus a power were accompanied by increases in P1 427 

amplitude. This antagonistic effect might be related to functional inhibition. Evidence suggests that 428 

neuronal excitability is reduced when pre-stimulus a oscillations are relatively strong (Haegens et al., 429 

2011; Harvey et al., 2013; Jensen, 2002; Klimesch et al., 1999; Mayhew et al., 2013; Van Kerkoerle 430 

et al., 2014). Since early VEP components are thought to be generated in an additive manner on top 431 

of spontaneous activity (Bijma et al., 2003; Mäkinen et al., 2005; Mazaheri and Jensen, 2006; Shah 432 

et al., 2004) inhibition of low-level sensory areas might lead to a reduction in P1 amplitude. 433 

Regardless of the underlying mechanism, a direct prediction of our results is that pre-stimulus a 434 

oscillations and P1 amplitude should be correlated in an opposite manner with a constellation of 435 

arousal-related variables. 436 
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In this study, we explored if pre-stimulus a oscillations and P1 amplitude were associated 437 

with various task performance and eye metrics that have been strongly linked to global changes in 438 

brain state. Results showed that pre-stimulus a power was negatively correlated with false alarm rate 439 

and saccade velocity, whereas it was positively correlated with reaction time. In contrast, P1 440 

amplitude was negatively correlated with saccade velocity and microsaccade rate. Taken together, 441 

these findings suggest that the subjects’ arousal levels were changing slowly over time. As described 442 

above, decreases in pre-stimulus a power and increases in P1 amplitude are known to be associated 443 

with improved performance on detection tasks (Babiloni et al., 2006; Busch et al., 2009; Del Cul et 444 

al., 2007; Ergenoglu et al., 2004; Hanslmayr et al., 2007; Mathewson et al., 2009; Pourtois et al., 445 

2006; Romei et al., 2010; Thut et al., 2006; Van Dijk et al., 2008). That these metrics were also 446 

coupled with increases in false alarm rate and saccade velocity as well as decreases in microsaccade 447 

rate and reaction time suggests that they can be taken as external measures of heightened arousal 448 

levels. In addition, our findings extend recent work in humans (Iemi et al., 2017; Limbach and 449 

Corballis, 2016) showing that pre-stimulus a power is associated with changes in response criterion 450 

as opposed to sensitivity.  451 

The principles of signal detection theory (Green and Swets, 1966) dictate that improved 452 

performance on detection tasks can arise due to changes in sensitivity or response criterion (Crapse 453 

et al., 2018; Luo and Maunsell, 2018, 2015). Recent work has shown that decreased pre-stimulus a 454 

power is associated with increased hit rate and false alarm rate, which suggests that performance 455 

improvements linked to decreased pre-stimulus a power might occur due to changes in response 456 

criterion (Iemi et al., 2017; Limbach and Corballis, 2016). Our results support this hypothesis, as pre-457 

stimulus a power was negatively associated with false alarm rate. Furthermore, we found that slow 458 

drift was positively correlated with hit rate (median r = 0.41, p < 0.001) and false alarm rate (median 459 

r = 0.53, p < 0.001) across sessions, consistent with previous research (Cowley et al., 2020). Luo and 460 

Maunsell (2015) found that changes in sensitivity, not response criterion were related to single-neuron 461 

and pairwise statistics in V4. In contrast, our results suggest that V4 activity is related to a shift in 462 
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response criterion that was indexed by decreased pre-stimulus a power. One possible explanation for 463 

this discrepancy is that Luo and Maunsell (2015) manipulated response criterion in a spatially 464 

selective manner to avoid shifts arising due to global changes in arousal. In our study, response 465 

criterion was not manipulated directly, so shifts are likely to have occurred spontaneously due to 466 

global changes in the subjects’ arousal levels. In addition, we averaged across electrode sites because 467 

decreases in pre-stimulus a power/increases in P1 amplitude are associated with improved 468 

performance on detection tasks across large swathes of cortex (Busch et al., 2009; Ergenoglu et al., 469 

2004; Iemi et al., 2017). These findings suggest that spatially selective and global shifts in response 470 

criterion might be governed by distinct neural mechanisms. This is an important issue to address, not 471 

just because it has the potential to resolve a discrepancy in the literature, but it also might explain 472 

why pre-stimulus a power on spatial attention tasks is associated with a pattern that is more akin to 473 

changes in sensitivity i.e. decreased/increased pre-stimulus a power over electrodes 474 

contralateral/ipsilateral to the attended hemifield (Foxe and Snyder, 2011). 475 

In summary, we found that two commonly used metrics of cognitive state in human EEG 476 

studies, pre-stimulus a power and P1 amplitude, are associated with gradual shifts in the underlying 477 

population structure of neural activity throughout the brain. Together, these measures at the scalp, and 478 

in the cortex, were predictive of changes in the monkeys’ arousal levels over time. These findings 479 

show that indirect measures of neural activity can be used to index a global signature of arousal. They 480 

support recent work showing that pre-stimulus a power is associated with response criterion (Samaha 481 

et al., 2020). Finally, by linking a vast EEG literature in humans with simultaneous 482 

scalp/microelectrode array recordings in macaques our results bridge the gap between large-scale 483 

signals and the responses of single cortical neurons. 484 

 485 

Methods 486 

Subjects 487 
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Two adult rhesus macaque monkeys (Macaca mulatta) were used in this study. Surgical 488 

procedures to chronically implant a titanium head post (to immobilize the subjects’ heads during 489 

experiments) and microelectrode arrays were conducted in aseptic conditions under isoflurane 490 

anesthesia, as described in detail by Smith and Sommer (2013). Opiate analgesics were used to 491 

minimize pain and discomfort during the perioperative period. Neural activity was recorded using 492 

100-channel "Utah" arrays (Blackrock Microsystems) in V4 (Monkey 1 = right hemisphere; Monkey 493 

2 = left hemisphere). The arrays comprised a 10x10 grid of silicon microelectrodes (1 mm in length) 494 

spaced 400 µm apart. Experimental procedures were approved by the Institutional Animal Care and 495 

Use Committee of the University of Pittsburgh and were performed in accordance with the United 496 

States National Research Council’s Guide for the Care and Use of Laboratory Animals. 497 

Microelectrode array recordings 498 

Signals from each microelectrode in the array were amplified and band-pass filtered (0.3–499 

7500 Hz) by a Grapevine system (Ripple). Waveform segments crossing a threshold (set as a multiple 500 

of the root mean square noise on each channel) were digitized (30KHz) and stored for offline analysis 501 

and sorting. First, waveforms were automatically sorted using a competitive mixture decomposition 502 

method (Shoham et al., 2003). They were then manually refined using custom time amplitude window 503 

discrimination software (code available at https://github.com/smithlabvision/spikesort), which takes 504 

into account metrics including (but not limited to) waveform shape and the distribution of interspike 505 

intervals (Kelly et al., 2007). A mixture of single and multiunit activity was recorded, but we refer 506 

here to all units as “neurons”. The mean number of V4 neurons across sessions was 70 (SD = 11) for 507 

Monkey 1 and 31 (SD = 16) for Monkey 2. 508 

EEG recordings 509 

We recorded EEG from 8 Ag/AgCl electrodes (Grass Technologies) adhered to the scalp with 510 

electrically conductive paste. The electrodes were positioned roughly at the following locations: Fz, 511 

Iz, CP3, CP4, F5, F6, PO7, and PO8 (see Fig. 1B). Signals were referenced online to a steel screw on 512 

the titanium head post, digitized at 1 kHz and amplified by a Grapevine system (Ripple) and low-513 
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pass filtered online at 250 Hz. Segments of EEG data (a segment is defined as a 400ms stimulus 514 

period or a 300-500ms pre-stimulus period) were considered excessively noisy and removed if any 515 

of the channels had a standard deviation 10 times greater than the mean of the entire session. We also 516 

removed segments of data if any of the channels exhibited a flat signal defined as a standard deviation 517 

less than 300 nanovolts.  518 

Visual stimuli 519 

Visual stimuli were generated using a combination of custom software written in MATLAB 520 

(The MathWorks) and Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 1997; Kleiner et al., 521 

2007). They were displayed on a CRT monitor (resolution = 1024 X 768 pixels; refresh rate = 100Hz), 522 

which was viewed at a distance of 36 cm and gamma-corrected to linearize the relationship between 523 

input voltage and output luminance using a photometer and look-up-tables. 524 

Behavioral task 525 

Subjects fixated a central point (diameter = 0.6°) on the monitor to initiate a trial (Figure 1A). 526 

Each trial comprised a sequence of stimulus periods (400ms) separated by fixation periods (duration 527 

drawn at random from a uniform distribution spanning 300-500ms). The 400ms stimulus periods 528 

comprised pairs of drifting full-contrast Gabor stimuli. One stimulus was presented in the aggregate 529 

receptive field (RF) of the recorded V4 neurons, whereas the other stimulus was presented in the 530 

mirror-symmetric location in the opposite hemifield. Although the spatial (Monkey 1 = 0.85cycles/°; 531 

Monkey 2 = 0.85cycles/°) and temporal frequencies (Monkey 1 = 8cycles/s; Monkey 2 = 7cycles/s) 532 

of the stimuli were not optimized for each individual V4 neuron they did evoke a strong response 533 

from the population. The orientation of the stimulus in the aggregate RF was chosen at random to be 534 

45 or 135°, and the stimulus in the opposite hemifield was assigned the other orientation. There was 535 

a fixed probability (Monkey 1 = 30%; Monkey 2 = 40%) that one of the Gabors would change 536 

orientation by ±1, ±3, ±6, or ±15° on each stimulus presentation. The sequence continued until the 537 

subject) made a saccade to the changed stimulus within 400ms (“hit”); 2) made a saccade to an 538 

unchanged stimulus (“false alarm”); or 3) remained fixating for more than 400ms after a change 539 
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occurred (“miss”). If the subject correctly detected an orientation change, they received a liquid 540 

reward. In contrast, a time-out occurred if the subject made a saccade to an unchanged stimulus 541 

delaying the beginning of the next trial by 1s. It is important to note that the effects of spatial attention 542 

were also investigated (although not analyzed in this study) by cueing blocks of trials such that the 543 

orientation change was 90% more likely to occur in one hemifield relative to the other hemifield.  544 

Eye tracking 545 

 Eye position and pupil diameter were recorded monocularly at a rate of 1000Hz using an 546 

infrared eye tracker (EyeLink 1000, SR Research). 547 

Microsaccade detection 548 

Microsaccades were defined as eye movements that exceeded a velocity threshold of 6 times 549 

the standard deviation of the median velocity for at least 6ms (Engbert and Kliegl, 2003; Loughnane 550 

et al., 2018; Scholes et al., 2015). They were required to be separated in time by at least 100ms. In 551 

addition, we removed microsaccades with an amplitude greater than 1° and a velocity greater than 552 

100°/s. To assess the validity of our microsaccade detection method, the correlation (Pearson product-553 

moment correlation coefficient) between the amplitude and peak velocity of detected microsaccades 554 

(i.e., the main sequence) was computed for each session. The mean correlation between these two 555 

metrics across sessions was 0.86 (SD = 0.07) indicating that our detection algorithm was robust 556 

(Zuber et al., 1965).  557 

Pre-stimulus power 558 

To calculate the mean amplitude of oscillations in different frequency bands during pre-559 

stimulus periods the signals from all 8 EEG electrodes were averaged together. We adopted this 560 

approach because previous research has shown that pre-stimulus a power across a wide range of 561 

frontal, midline and occipital locations is associated with performance on detection tasks (Busch et 562 

al., 2009; Ergenoglu et al., 2004; Iemi et al., 2017). Furthermore, the overall pattern of results did not 563 

change when signals were averaged across frontal, midline and posterior electrodes. We then 564 

computed a FFT of the Hanning-windowed segment of data spanning the entire duration of the pre-565 
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stimulus period (300 - 500ms) and computed mean power in the a, b and g bands. To isolate slow 566 

changes, the data for each trial and power band was binned using a 30-minute sliding window stepped 567 

every 6 minutes (Figure 2A).  568 

P1 amplitude 569 

To calculate the VEP during stimulus periods the signals from all 8 EEG electrodes were 570 

averaged together. We adopted this approach for similar reasons to those described above i.e., because 571 

P1 amplitude across a wide range of frontal, midline and occipital locations is associated with 572 

performance on detection tasks (Ergenoglu et al., 2004). In addition, the overall pattern of results 573 

remained the same when signals were averaged across frontal, midline and posterior electrodes. We 574 

then computed the VEP for the period spanning 200ms before to 200ms after stimulus onset, filtered 575 

the segment between 1 and 25Hz, and baseline-corrected by subtracting the average voltage for the 576 

period spanning 200ms before stimulus onset. To isolate slow changes over time, we divided the 577 

session into 30-minute bins stepped every 6 minutes and computed the mean VEP for each time bin. 578 

We were interested in whether slow drift was associated with the amplitude of the P1 component. 579 

Hence, we calculated the maximum amplitude of the peak occurring ~100ms after stimulus onset 580 

from the VEP for each time bin (Figure 2B). Note that we were only able to reliably compute VEPs 581 

in 3 sessions for Monkey 2, which means the majority of evoked EEG data is from Monkey 1 (17 582 

sessions).   583 

Aperiodic-adjusted pre-stimulus power 584 

We wanted to rule out the possibility that slow drift was associated with gradual changes in 585 

1/f noise (Haller et al., 2018; Iemi et al., 2019; Peterson et al., 2017; Voytek et al., 2015). Therefore, 586 

we carried out a supplementary analysis in which slow drift was correlated with aperiodic-adjusted 587 

power in different frequency bands. As before, signals from all 8 EEG electrodes were averaged 588 

together. We then computed a FFT of the Hanning-windowed segment of data spanning the first 589 

300ms of the pre-stimulus period. To isolate slow changes over time, we divided the session into 30-590 

minute bins stepped every 6 minutes and computed the mean FFT for each time bin. We then 591 
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subtracted the aperiodic signal from the FFT for each time bin, which was computed by fitting an 592 

exponential function (Haller et al., 2018). Finally, mean pre-stimulus power in the a, b and g bands 593 

was calculated from the aperiodic-adjusted FFT for each time bin. Note that the frequency axis of the 594 

FFT for each pre-stimulus interval had to be identical in this analysis so as to reliably estimate the 595 

aperiodic signal. Since accounting for broadband changes in 1/f noise did not change the overall 596 

pattern of results (Figure 5 – supplement 1) we decided to correlate slow drift with pre-stimulus power 597 

in different frequency bands using the full duration of the pre-stimulus interval (300-500ms) to 598 

enhance frequency resolution. 599 

Task performance metrics 600 

 Hit rate was defined as the number of saccades toward a stimulus that changed orientation 601 

divided by the total number of stimuli presented that changed orientation. False alarm rate was the 602 

number of saccades toward a stimulus that did not change orientation divided by the total number of 603 

stimuli presented that did not change orientation. To isolate slow changes, hit rate and false alarm rate 604 

were calculated in 30-minute bins stepped every 6 minutes. The width of the bins and step size were 605 

chosen based on previous research to ensure reliable estimates over a relatively small number of trials 606 

(Cowley et al., 2020). 607 

Eye metrics  608 

Mean pupil diameter was measured during stimulus periods, whereas microsaccade rate was 609 

measured during fixation periods between the visual stimulus presentations (Johnston et al., 2020). 610 

We did not include the initial fixation period when measuring microsaccade rate as there was an 611 

increase in eye position variability during this period resulting from fixation having been established 612 

a short time earlier (300-500ms). Such variability was not present in subsequent fixation periods. 613 

Reaction time and saccade velocity were measured on trials in which the subjects were rewarded for 614 

correctly detecting an orientation change. Reaction time was defined as the time from when the 615 

change occurred to the time at which the saccade exceeded a velocity threshold of 100°/s. Saccade 616 

velocity was the peak velocity of the saccade to the changed stimulus. To isolate slow changes in the 617 
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eye metrics over time the data for each session was binned using a 30-minute sliding window stepped 618 

every 6 minutes. 619 

Calculating slow drift 620 

The spiking responses of populations of neurons in V4 were measured during a 400ms period 621 

that began 50ms after stimulus presentation (Figure 4A). To control for the fact that some neurons 622 

had a preference for one orientation (45 or 135°) over the other residual spike counts were calculated. 623 

We subtracted the mean response for a given orientation across the entire session from individual 624 

responses to that orientation. To isolate slow changes in neural activity over time, residual spike 625 

counts for each V4 neuron were binned using a 30-minute sliding window stepped every 6 minutes 626 

(Figure 4A). PCA was then performed to reduce the high-dimensional residual data to a smaller 627 

number of latent variables (Cunningham and Yu, 2014). Slow drift in V4 was estimated by projecting 628 

the binned residual spike counts for each neuron along the first principal component.  629 

Aligning slow drift across sessions 630 

As described above, slow drift was calculated by projecting binned residual spike counts along 631 

the first principal component. The weights in a PCA can be positive or negative (Jollife and Cadima, 632 

2016), which meant the sign of the correlation between slow drift and a given metric was arbitrary. 633 

Preserving the sign of the correlations was particularly important in this study because we were 634 

interested in whether slow drift was associated with a pattern that is indicative of changes in the 635 

subjects’ arousal levels over time i.e., decreased pre-stimulus  a power and increased P1 amplitude. 636 

The method for aligning slow drift across sessions is described in detail by Johnston et al. (2020). 637 

Briefly, we projected evoked responses acquired during stimulus periods and spontaneous responses 638 

acquired during pre-stimulus periods onto the first principal component. The sign of the slow drift 639 

was flipped if the mean projection value for the evoked responses was less than that for the 640 

spontaneous responses i.e., if the relationship that was naturally observed for unprojected data did not 641 

hold true. 642 

 643 
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 662 
Figure 2 – figure supplement 1. Relationships between slow drift, pre-stimulus a power and P1 amplitude (A) Example 663 
sessions from Monkey 1. Each metric has been z-scored for illustration purposes. (B) Same as (A) but for Monkey 2. 664 
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 685 
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 688 
 689 
 690 
 691 
 692 
Figure 3 – figure supplement 1. (A) Histogram showing distributions of r values (black) across sessions between hit 693 
rate and false alarm rate. (B) Same as (A) but for r values computed between reaction time and saccade velocity. In 694 
(A) and (B) actual distributions were compared to shuffled distributions (grey) using two-sided permutation tests 695 
(difference of medians). Median r values are indicated by dashed lines. p < 0.05*, p < 0.01**, p < 0.001***. 696 
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 720 
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 723 
 724 
Figure 5 - figure supplement 1. Correlations between aperiodic-adjusted power and slow drift. Histograms showing 725 
distributions of r values (colors) across sessions between slow drift and EEG power in different frequency bands. Actual 726 
distributions were compared to shuffled distributions (grey) using two-sided permutation tests (difference of medians). 727 
Median r values are indicated by dashed lines. p < 0.05*, p < 0.01**, p < 0.001***. 728 
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