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Figure 2: The separate and joint design methods for peptide vaccines. (A) In the separate method,
windowed pathogen proteomes are filtered for acceptable peptides and MHC class I and class I1
vaccine designs are chosen to optimize population coverage at specified levels of peptide-HLA hits.
(B) In the joint method, 25-mer pathogen peptides are annotated with their MHC class I and class
IT peptides, which are filtered, scored, evaluated for population coverage, and used to optimize the
selection of their parent 25-mers into a joint vaccine.
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STAR Methods

Resource Availability

Lead Contact: Further information and requests for resources should be directed
to and will be fulfilled by the Lead Contact, David K. Gifford (gifford@mit.edu).

Materials Availability: This study did not generate new materials.

Data and Code Availability: All source data for generating population cov-
erage curves have been deposited and are publicly available at https://github.
com/gifford-lab/optivax. The peptide scoring predictions and processed haplo-
type frequencies are available at https://www.dropbox.com/sh/v1jcindmh7juald/
AAB7WOY7IXtXRL8Ehlrtvft6a?d1l=0. This paper analyzes existing, publicly available
data. These datasets’ accession numbers are provided in the Key Resources Table.
All original code and the scripts used to generate the figures reported in this paper
are publicly available at https://github.com/gifford-lab/optivax.

Method Details

SARS-CoV-2 proteome and candidate peptides

The SARS-CoV-2 proteome is comprised of four structural proteins (E, M, N,
and S) and open reading frames (ORFs) encoding nonstructural proteins (Srinivasan
et al., 2020). We obtained the SARS-CoV-2 viral proteome from GISAID (Elbe and
Buckland-Merrett, 2017) sequence entry Wuhan/IPBCAMS-WH-01/2019, the first
documented case, as processed and provided by Liu et al. (2020). Nextstrain (Had-
field et al., 2018) was used to identify ORF's and translate the sequence. We use slid-
ing windows to extract all peptides of length 8-10 (MHC class I) and 13-25 (MHC
class II) inclusive from the SARS-CoV-2 proteome, resulting in 29,403 peptides for
MHC class I and 125,593 peptides for MHC class II.

For vaccine augmentation we use two different candidate sets: known immuno-
genic peptides, and all possible peptides. First, we exclusively use the set of peptides
that were observed to be immunogenic in the MIRA assay (Snyder et al., 2020;
Klinger et al., 2015). In this case we use the MIRA sets identified for MHC class
I and II separately. Second, we use the same filtered candidate peptide set as Liu
et al. (2020), in which peptides with mutation rate > 0.001 or non-zero glycosylation
probability predicted by NetNGlyc (Gupta et al., 2004) are filtered.

MIRA provides immunogenicity data with peptide-detail data that summarizes
for each individual (MIRA experiment) the peptide sets that were found to cause T
cell activation. A MIRA peptide set can be a single peptide, or a group of highly
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related peptides that are samples from slightly offset positions in the proteome. The
MIRA subject-metadata contains the HLA types for individuals. While the HLA
type of an individual provides us with the candidate HLA alleles that could display
a given peptide, it does not tell us which allele displayed the peptide. The MIRA
data used in this study includes 119 (MHC class I) or 8 (MHC class II) convalescent
HLA-typed COVID-19 patients that were queried for CD8% T cell activation for 269
peptide pools (generated from 545 peptides) or CD4™ activation for 56 peptide pools
(generated from 251 peptides). Each peptide pool contains at most 13 MHC class I
peptides or up to 6 MHC class II peptides. The patient population had 110 (MHC
class I) and 22 (MHC class II) HLA alleles (Snyder et al., 2020). We included all
MIRA immunogenic peptides for vaccine analysis and design, as to date no peptide
has been observed to cause immunopathology that exacerbates disease severity.
Since the MIRA assay does not identify the patient HLA allele that presents a
peptide and does not distinguish between individual peptides in a given pool, we
built a combined model of MIRA observations and machine learning predictions to
model peptide immunogenicity when presented by a specific HLA. We did not use
the predicted HLA restrictions from Snyder et al. (2020) Supporting Table 2 as it
identified pools of peptides, and not individual peptides and is only for MHC class 1.
For an HLA allele that appeared in the MIRA data and peptides that were tested, a
peptide was predicted to be immunogenic when displayed by that HLA allele if (1) it
was immunogenic in the MIRA data in 38% (MHC class I) or 40% (MHC class II) of
individuals that had the HLA allele, and (2) it was predicted to bind to the HLA allele
with an affinity of at least 500 nM. We used the prevalence of immunogenic peptides
across individuals as criteria (1) as it performed better than using the prevalence of
TCR sequences of immunogenic peptides. Other criteria that we explored that did
not perform as well are included in Table 1. The selected criteria maximized the
AUROC for prediction of the MIRA data that contained both positive and negative
examples of peptide pool immunogenicity for individuals with a given HLA type
(Table 1). Criteria (2) allowed us to predict the specific HLA allele(s) that displayed
a peptide since MIRA data provides all of the HLA alleles for a given individual and
does not provide information on which allele(s) displayed a peptide. We evaluate a
peptide-HLA immunogenicity model using the MIRA data, and score a MIRA pool-
individual pair positive if at least one peptide in the pool is predicted by the model
to be immunogenic when displayed by one of the HLAs of the individual. When
computing ROC or PRC curves where a variable decision boundary is employed, the
maximum score across all pool peptides and HLAs is utilized for evaluation. Our
combined model of HLA specific peptide immunogenicity predictions has a precision
of 0.581 and AUROC of 0.833 (MHC class I) and precision of 0.849 and AUROC of
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0.923 (MHC class II) (Table 1, Figure 3).

MHC class | ROC curve MHC class | PRC curve MHC class Il ROC curve MHC class Il PRC curve
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Figure 3: An integrated model of MIRA data and computational predictions is the best predictor of
MIRA immunogenicity data. Receiver Operating Characteristic (ROC) and Precision Recall Curve
(PRC) plots for predicting MIRA assay detected peptide immunogenicity using machine learning
methods. The combined model curve is the performance of the integrated model of MIRA data
and computational predictions.

For HLA alleles not present or peptides not tested in MIRA data we use ma-
chine learning predictions of peptide immunogenicity. We evaluated machine learning
methods by their ability to predict MIRA peptides that are immunogenic in an indi-
vidual based upon the HLA type of the individual (Figure 3). For a given individual
we used both positive and negative sets to characterize their performance, and we pri-
oritized precision for conservative vaccine design (Table 1). We found for MHC class I
the best method utilized a 50 nM threshold from an ensemble that outputs the mean
predicted binding affinity of NetMHCpan-4.0 (Jurtz et al., 2017), PUFFIN (Zeng
and Gifford, 2019), and MHCflurry 2.0 (O’Donnell et al., 2020, 2018). We selected
this ensemble as it is more robust to errors by a single method. For MHC class 11
the method we selected used a 50 nM threshold and NetMHCIIpan-4.0 (Reynisson
et al., 2020b). Our machine learning predictions of HLA specific peptide display have
a precision of 0.447 and AUROC of 0.715 (MHC class I) and a precision of 0.869 and
AUROC of 0.701 (MHC class II) for immunogenicity (Figure 3). Other methods we
explored included NetMHCpan-4.1 (Reynisson et al., 2020a) (MHC class I), PUF-
FIN (Zeng and Gifford, 2019) (MHC class II) and NetMHCIIpan-3.2 (Jensen et al.,
2018) (MHC class II) (Table 1).

We use HLA class I and class II haplotype frequencies provided by Liu et al.
(2020). HLA haplotype frequencies were generated from previously published next-
generation sequencing data generated in the Carrington lab and their collabora-
tors (Tang et al., 2012; Ramsuran et al., 2018). All of these HLA data are based
upon genome sequencing that provides the highest resolving power for HLA typing.
For the HLA class I locus, this dataset contains 2,138 distinct haplotypes spanning
230 HLA-A, HLA-B, and HLA-C alleles. For HLA class II, this dataset contains
1,711 distinct haplotypes spanning 280 HLA-DP, HLA-DQ, and HLA-DR alleles.
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Population frequencies are provided for three populations self-reporting as having
White, Black, or Asian ancestry. We used these data for vaccine evaluation and
design as they included the HLA-DQA and HLA-DPA/DPB alleles for MHC class
IT that are not present in Gragert et al. (2013).

We also predicted MHC class I population coverage using Gragert et al. (2013).
For this analysis we used a combined immunogenicity model of peptide-HLA im-
munogenicity with an ensemble of NetMHCpan-4.0 and MHCflurry 2.0 (Jurtz et al.,
2017; O’Donnell et al., 2020, 2018) for machine learning predictions.

We consider nine subunit vaccines for SARS-CoV-2: the full envelope (E), mem-
brane (M), nucleocapsid (N), and spike (S) proteins as well as the S1, S2, receptor
binding domain (RBD), N-terminal domain (NTD), and fusion peptide (FP) domains
from S. The amino acid positions for each of the S protein subunits are shown in
Figure 4. When evaluating these subunit vaccines we include all peptides of length
8-10 (MHC class I) and 13-25 (MHC class II) spanning the corresponding regions
of the proteome.

s1 S1/52 s2

s :

018 305 330 524 684 816 855

Figure 4: Illustration of functional domains on SARS-CoV-2 S protein.

FuvalVax subunit vaccine evaluation

We evaluate population coverage of SARS-CoV-2 subunit vaccines using EvalVax-
Robust (Liu et al., 2020). EvalVax-Robust computes population coverage of a given
peptide set using the HLA haplotype frequencies in each population of individuals
self-reporting as having Black, Asian, or White ancestry. Population coverage P(n)
is defined as the fraction of individuals predicted to have > n peptide-HLA hits using
our model of peptide-HLA immunogencity. EvalVax-Robust computes the frequency
of diploid HLA genotypes, and accounts for both homozygous and heterozygous
HLA loci. We compute the average population coverage as an unweighted average
of population coverage over the three populations. Insufficient coverage of < n hits
is defined as 100% — P(n + 1).

Our subunit population coverage estimates are not lowered by discarding subunit
peptides as unsuitable. We consider all peptides that result from a windowing of
the subunit proteome, and include the redundant peptides caused by using varying
window sizes at the same proteome start position. In addition, we do not filter
peptides for mutation rate or glycosylation during evaluation.
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Design of separate MHC' class I and II peptide sets to augment subunit vaccine pop-
ulation coverage

In the separate design method we use OptiVax-Robust (Liu et al., 2020) to aug-
ment subunit vaccines with additional peptides to produce separate sets of peptides
for class I and class II augmentation (Figure 2A). The candidate peptides for vaccine
inclusion are chosen from either: (1) all peptides observed to be immunogenic in a
MIRA assay, or (2) all filtered peptides from the SARS-CoV-2 proteome. All fil-
tered peptides are selected from the remaining SARS-CoV-2 proteome (all peptides
except those spanning the subunit), excluding peptides that are likely to mutate
(have mutation rate > 0.001) or have non-zero predicted probability of glycosyla-
tion. All candidate peptides considered during augmentation must be predicted to
be immunogenic using our model of peptide-HLA immunogenicity.

The augmentation algorithm uses a starting peptide set which is extracted from
the subunit vaccine to maximize the coverage of the subunit while removing re-
dundant peptides resulting from overlapping sliding windows using the redundancy
elimination algorithm found in Liu et al. (2020). Using a non-redundant starting
peptide set ensures that augmentation does not depend upon redundant peptides
for population coverage support. OptiVax-Robust performs vaccine augmentation
by adding peptides to this starting set to improve the population coverage at each
peptide-HLA hits cutoff n. At each iteration redundant peptides are removed from
consideration, and redundancy is defined with an edit distance metric (Liu et al.,
2020). OptiVax-Robust uses a beam search algorithm that iteratively expands the
solution by one peptide and gradually optimizes population coverage from n =1 to
the targeting level of per-individual peptide-HLA hits (Liu et al., 2020). We use a
beam size of 5 for the augmentation of subunit vaccines.

For each desired budget of augmentation peptides, OptiVax produces an aug-
mentation set. Larger augmentation sets are not necessarily supersets of smaller
augmentation sets, as the underlying combinatorial optimization problem is com-
plex. A vaccine designer can evaluate how many peptides they wish to use to realize
a predicted population coverage. For the augmentation sets in Table S1 for n = 7 we
targeted 99.3% coverage for MHC class I augmentation and 98% coverage for MHC
class II. The exceptions were S and S1, where we targeted for MHC class T 99.9%
coverage (all peptides) or 99.7% (MIRA peptide only), and for class II 98.5% (all
peptides) or 98% (MIRA peptides). Class II is more difficult to cover with MIRA
peptides alone, and thus we accept the best coverage possible. Augmentation sets
are computed starting with non-redundant subunits to avoid peptide-hit credit for
windowing induced redundancies. For the evaluation of original and augmented sub-
unit vaccines in Table S1, we provide results for all window derived subunit peptides
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and the non-redundant set of subunit peptides. All window peptides can include the
same HLA binding epitope multiple times from its sampling by multiple windows,
and thus serves as the predicted lower bound on population insufficient coverage.
The non-redundant results are the predicted upper bound of population insufficient
coverage.

Design of a single set of peptides to mazimize MHC class I and II population coverage

We developed the OptiVax-Joint method to produce a minimal set of 25-mer
peptides to reach a target population coverage probability at a threshold of n pre-
dicted hits for each individual for both MHC class I and class II (Figure 2B). The
25-mer candidate peptides are produced by windowing the pathogen proteome that
is not part of a selected subunit, using a window step size of 8 amino acids between
candidate peptides. Each of the candidate 25-mer peptides is annotated with its
non-redundant peptides of length 8-10 (MHC class I) and 13-25 (MHC class II) and
the HLA alleles where they are predicted to be immunogenic. Peptide redundancy is
defined with an edit distance metric for the elimination of overlapping peptides (Liu
et al., 2020).

OptiVax-Joint begins with the empty set, and performs vaccine augmentation
by adding candidate 25-mer peptides to this starting set to improve both MHC
class I and class II population coverage at a target number of peptide-HLA hits
n. When OptiVax-Joint is started with an empty set of peptides it produces a de
novo peptide vaccine design without an associated subunit component. Each 25-
mer is scored based on its contained annotated class I and class II peptides for its
improvement in the number of per-individual peptide-HLA hits (Liu et al., 2020)
over the haplotypes of the target population. Contained peptides are not counted
towards population coverage if they have an observed mutation rate > 0.001 or have
a non-zero predicted probability of glycosylation. OptiVax-Joint uses a beam search
algorithm that iteratively expands the solution by one 25-mer peptide and gradually
optimizes population coverage from n = 1 peptide hit to the targeted level of per-
individual peptide-HLA hits for both MHC class I and class II (Liu et al., 2020). We
use a beam size of 5 for the augmentation of subunit vaccines.

For each desired budget of peptides, OptiVax-Joint produces a vaccine peptide
set. Larger sets are not necessarily supersets of smaller augmentation sets, as the
underlying combinatorial optimization problem is complex. A vaccine designer can
evaluate how many peptides they wish to use to realize a predicted population cov-
erage. For the joint sets in Table S1, we targeted 99% coverage at n = 7 for MHC
class I augmentation and 97% coverage at n = 7 for MHC class II augmentation.

As a point of comparison, we also computed separate MHC class I and class II
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vaccine designs using OptiVax-Robust, using candidate sets drawn either from MIRA
immunogenic peptides or all filtered peptides.

Quantification and Statistical Analysis

Classification performance of peptide-MHC scoring models was calculated using
scikit-learn (Pedregosa et al., 2011) in Python using the sklearn.metrics.roc_auc_score
(AUROQC), sklearn.metrics.average_precision_score (Average Precision),
sklearn.metrics.accuracy_score (Accuracy),
sklearn.metrics.precision_recall_fscore_support (Precision, Recall and F1 score), and
sklearn.metrics. classification_report (Sensitivity and Specificity) functions. AUROC
and average precision are computed using raw predictions, and the remaining metrics
are computed using binarized predictions based on the respective binding criteria.
Pearson r correlation was computed using scipy (Virtanen et al., 2020) in Python
using the scipy.stats.pearsonr function.
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— MHC Class T —
MHCHurry-2.0 predicted affinity 500nM 20757 0.297 0.833 0.506 0.438 0.700 0.412 0.407 0.000  1.000
MHCHurry-2.0 predicted affinity 50nM 9048 0.410 0.502 0.718 0.451 0.700 0.412 0.783 0.000  0.000
NetMHCpan-4.0 predicted affinity 500nM 16612 0.344 0.771 0.606 0.475 0.723 0.425 0.557 0.000  1.000
NetMHCpan-4.0 predicted affinity 50nM 8196 0.435 0.481 0.735 0.457 0.723 0.425 0.812 0.000  0.000
NetMHCpan-4.1 BA Rank 0.5% 13733 0.367 0.682 0.655 0.477 0.711 0.394 0.647 0.000  0.000
NetMHCpan-4.1 BA Rank 2.0% 21446 0.300 0.870 0.501 0.447 0.711 0.394 0.390 0.000  1.000
NetMHCpan-4.1 EL Rank 0.5% 13569 0.342 0.628 0.635 0.443 0.679 0.362 0.637 0.000  1.000
NetMHCpan-4.1 EL Rank 2.0% 21423 0.292 0.845 0.490 0.434 0.679 0.362 0.384 0.000  1.000
NetMHCpan-4.1 predicted affinity 500nM 16091 0.349 0.759 0.617 0.478 0.725 0.426 0.574 0.000  1.000
NetMHCpan-4.1 predicted affinity 50nM 8482 0.435 0.499 0.734 0.465 0.725 0.426 0.805 0.000  0.000
PUFFIN predicted affinity 500nM 17951 0.325 0.789 0.573 0.461 0.713 0.416 0.508 0.000  1.000
PUFFIN predicted affinity 50nM 7870 0.435 0.462 0.737 0.448 0.713 0.416 0.819 0.000  0.000
PUFFIN-NetMHC-MHCflurry predicted affinity 500nM 15953 0.345 0.744 0.614 0.472 0.715 0.424 0.575 0.000  1.000
PUFFIN-NetMHC-MHCHlurry predicted affinity (Our ML-only model) 50nM 7416 0.447 0.448 0.744 0.448 0.715 0.424 0.833 0.000  0.000
PUFFIN-NetMHC-MHCflurry & TCR prevalence > 0.5 500nM 10638 0.471 0.678 0.750 0.556 0.789 0.491 0.772 0.000  0.000
PUFFIN-NetMHC-MHCflurry & TCR prevalence > 0.5 50nM 5867 0.532 0.422 0.781 0.471 0.789 0.491 0.889 0.000  0.000
PUFFIN-NetMHC-MHCflurry & TCR prevalence > 1 500nM 9026 0.500 0.610 0.769 0.550 0.772 0.491 0.817 0.000  0.000
PUFFIN-NetMHC-MHCflurry & TCR prevalence > 1 50nM 5100 0.565 0.389 0.790 0.461 0.772 0.491 0.910 0.000  0.000
PUFFIN-NetMHC-MHCflurry & TCR prevalence > 1.5 500nM 7987 0.527 0.568 0.782 0.547 0.761 0.491 0.846 0.000  0.000
PUFFIN-NetMHC-MHCflurry & TCR prevalence > 1.5 50nM 4480 0.597 0.361 0.796 0.450 0.761 0.491 0.927 0.000  0.000
PUFFIN-NetMHC-MHCflurry & peptide prevalence > 0.35 500nM 8239 0.553 0.615 0.796 0.582 0.831 0.536 0.850 0.000  0.000
PUFFIN-NetMHC-MHCflurry & peptide prevalence > 0.35 50nM 4888 0.592 0.391 0.797 0.471 0.831 0.536 0.919 0.000  0.000
zgg;iN'NetMHc'MHCH“”y & peptide prevalence > 0.38 (Our combined 500nM 7388 0.581 0.580 0.806 0.581 0.833 0.549 0.874 0.000  0.000
PUFFIN-NetMHC-MHCflurry & peptide prevalence > 0.38 50nM 4445 0.615 0.369 0.801 0.462 0.833 0.549 0.930 0.000  0.000
PUFFIN-NetMHC-MHCflurry & peptide prevalence > 0.40 500nM 7074 0.592 0.566 0.810 0.579 0.831 0.554 0.883 0.000  0.000
PUFFIN-NetMHC-MHCflurry & peptide prevalence > 0.40 50nM 4280 0.624 0.361 0.802 0.457 0.831 0.554 0.935 0.000 0.000
— MHC Class IT —
NetMHCIIpan-3.2 BA Rank 10.0% 274 0.599 0.689 0.589 0.641 0.619 0.639 0.476 0.001  0.000
NetMHCIIpan-3.2 BA Rank 2.0% 84 0.607 0.214 0.509 0.317 0.619 0.639 0.843 0.000 0.431
NetMHCIIpan-3.2 predicted affinity 500nM 411 0.567 0.979 0.592 0.718 0.622 0.638 0.152 0.061  0.000
NetMHCIIpan-3.2 predicted affinity 50nM 53 0.698 0.155 0.516 0.254 0.622 0.638 0.924 0.000  0.292
NetMHCIIpan-4.0 BA Rank 10.0% 379 0.586 0.933 0.614 0.720 0.696 0.710 0.252 0.007  0.000
NetMHCIIpan-4.0 BA Rank 2.0% 165 0.691 0.479 0.609 0.566 0.696 0.710 0.757 0.000  0.000
NetMHCIIpan-4.0 EL, Rank 10.0% 279 0.649 0.761 0.654 0.700 0.726 0.739 0.533 0.000  0.000
NetMHCIIpan-4.0 EL, Rank 2.0% 72 0.847 0.256 0.580 0.394 0.726 0.739 0.948 0.000  0.001
NetMHCIIpan-4.0 predicted affinity 500nM 374 0.586 0.920 0.612 0.716 0.701 0.731 0.262 0.007  0.000
NetMHCIIpan-4.0 predicted affinity (Our ML-only model) 50nM 61 0.869 0.223 0.569 0.355 0.701 0.731 0.962 0.000 0.003
PUFFIN predicted affinity 500nM 417 0.561 0.983 0.583 0.715 0.664 0.656 0.129 0.088  0.000
PUFFIN predicted affinity 50nM 141 0.688 0.408 0.587 0.512 0.664 0.656 0.790 0.000  0.000
NetMHCIIpan-4.0 predicted affinity & TCR prevalence > 0.5 500nM 249 0.827 0.866 0.833 0.846 0.880 0.864 0.795 0.000  0.000
NetMHCIIpan-4.0 predicted affinity & TCR prevalence > 0.5 50nM 59 0.898 0.223 0.574 0.357 0.880 0.864 0.971 0.000  0.001
NetMHCIIpan-4.0 predicted affinity & TCR prevalence > 1 500nM 225 0.858 0.811 0.828 0.834 0.872 0.858 0.848 0.000  0.000
NetMHCIIpan-4.0 predicted affinity & TCR prevalence > 1 50nM 57 0.895 0.214 0.569 0.346 0.872 0.858 0.971 0.000  0.003
NetMHCIIpan-4.0 predicted affinity & TCR prevalence > 1.5 500nM 204 0.887 0.761 0.821 0.819 0.857 0.851 0.890 0.000  0.000
NetMHCIIpan-4.0 predicted affinity & TCR prevalence > 1.5 50nM 55 0.909 0.210 0.569 0.341 0.857 0.851 0.976 0.000 0.002
NetMHClIIpan-4.0 predicted affinity & peptide prevalence > 0.35 500nM 265 0.811 0.903 0.837 0.855 0.899 0.878 0.762 0.000  0.000
NetMHClIIpan-4.0 predicted affinity & peptide prevalence > 0.35 50nM 59 0.898 0.223 0.574 0.357 0.899 0.878 0.971 0.000  0.001
NetMHCIIpan-4.0 predicted affinity & peptide prevalence > 0.38 500nM 265 0.811 0.903 0.837 0.855 0.899 0.878 0.762 0.000  0.000
NetMHClIIpan-4.0 predicted affinity & peptide prevalence > 0.38 50nM 59 0.898 0.223 0.574 0.357 0.899 0.878 0.971 0.000  0.001
NetMHCIIpan-4.0 predicted affinity & peptide prevalence > 0.4 (Our 500nM 251 0.849 0.895 0.859 0.871 0.923 0.903 0.819 0.000  0.000
combined model)
NetMHClIIpan-4.0 predicted affinity & peptide prevalence > 0.4 50nM 54 0.944 0.214 0.576 0.349 0.923 0.903 0.986 0.000  0.001

Table 1: Performance of machine learning only models and combined models on predicting MIRA
assay immunogenicity results. The methods in bold are used for population coverage estimation

and vaccine

design.
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Supplementary Information

Average Asian Black ‘White
Augmente Augmente Augmente Augmente

. AL Non- (Al Rugmented All. Non- (All Rugmented Al Non- (Al Rugmented Al Non- (Al Augmented
Subunit . (MIRA . (MIRA . (MIRA . (MIRA

windows redundant pep- windows redundant pep- windows redundant pep- 1 windows redundant pep- Iy)

tides) only) tides) only) tides) only) tides) only

Insufficient coverage (num. peptide-HLA hits = 0, 50 nM affinity)
— MHC Class I —
FP 71.353% 74.637% 0.000% 0.003% 45.352% 45.431% 0.000% 0.000% 87.074% 91.360% 0.000% 0.009% 81.635% 87.121% 0.000% 0.000%
E 16.287% 16.342% 0.000% 0.003%  5.801% 5.801% 0.000% 0.000% 20.387% 20.387% 0.000% 0.009% 22.674% 22.838% 0.000% 0.000%
N 1.707% 1.991% 0.000% 0.003%  2.375% 2.476% 0.000% 0.000%  2.239% 2.872% 0.000% 0.008%  0.508% 0.625% 0.000% 0.000%
RBD 1.163% 2.485% 0.000% 0.003% 1.524% 1.605% 0.000% 0.000% 1.609% 3.172% 0.000% 0.009%  0.357% 2.678% 0.000% 0.000%
M 0.510% 0.527% 0.000% 0.003% 1.379% 1.402% 0.000% 0.000%  0.145% 0.167% 0.000% 0.009%  0.008% 0.012% 0.000% 0.000%

S2 0.239% 0.239% 0.000% 0.001%  0.010% 0.010% 0.000% 0.000%  0.665% 0.665% 0.000% 0.004%  0.041% 0.041% 0.000% 0.000%

NTD 0.012% 0.021% 0.000% 0.002%  0.000% 0.000% 0.000% 0.000%  0.037% 0.063% 0.000% 0.007%  0.000% 0.001% 0.000% 0.000%

S1 0.004% 0.004% 0.000% 0.002% 0.000% 0.000% 0.000% 0.000% 0.011% 0.011% 0.000% 0.007% 0.000% 0.000% 0.000% 0.000%

S 0.001% 0.001% 0.000% .001% 0.000% 0.000% 0.000% 0.000% 0.004% 0.004% 0.000% 0.004% 0.000% 0.000% 0.000% 0.000%
MHC Class 11

o

E 59.270% 59.270% 0.326% 4.375% 71.566% 71.566% 0.926% 11.058% 57.499% 57.499% 0.035% 2.035% 48.743% 48.743% 0.018% 0.031%
FP 53.993% 54.785% 0.325% 4.705% 89.371% 89.541% 0.925% 11.992% 37.366% 39.409% 0.033% 2.076% 35.243% 35.404% 0.018% 0.049%
RBD 15.123% 15.551% 0.309% 4.351% 37.287% 37.662% 0.884% 10.999% 7.271% 7.882% 0.031% 2.029% 0.811% 1.108% 0.011% 0.025%
N 6.495% 6.534% 0.326% 4.417% 16.590% 16.615% 0.926% 11.180% 2.590% 2.667% 0.035% 2.035% 0.306% 0.321% 0.018% 0.035%
NTD 4.266% 4.305% 0.309% 2.595% 12.520% 12.520% 0.884% 7.574% 0.237% 0.350% 0.031% 0.201% 0.041% 0.043% 0.011% 0.012%
M 1.159% 1.185% 0.043% 0.555% 2.107% 2.177% 0.112% 0.475% 1.346% 1.346% 0.015% 1.187% 0.023% 0.031% 0.001% 0.002%
S1 1.144% 1.712% 0.309% 0.747% 3.221% 4.884% 0.884% 2.058% 0.185% 0.214% 0.031% 0.176% 0.026% 0.039% 0.011% 0.008%
S2 1.132% 1.157% 0.252% 1.128% 2.036% 2.072% 0.723% 2.036% 1.331% 1.345% 0.028% 1.326% 0.029% 0.055% 0.007% 0.021%
S 0.721% 0.723% 0.252% 0.721% 1.981% 1.981% 0.723% 1.981% 0.174% 0.176% 0.028% 0.174% 0.008% 0.010% 0.007% 0.008%

Insufficient coverage (num. peptide-HLA hits < 5, 50 nM affinity)
— MHC Class I —

FP  100.000%100.000% 0.054% 0.241% 100.000%100.000% 0.004% 0.004% 100.000%100.000% 0.156% 0.696% 100.000% 100.000% 0.003% 0.024%
E 60.620% 93.911% 0.135% 0.253% 63.905% 91.005% 0.026% 0.007% 67.162% 95.237% 0.352% 0.721% 50.792% 95.490% 0.026% 0.033%
RBD 38.186% 60.911% 0.097% 0.187% 24.215% 44.223% 0.003% 0.004% 43.773% 68.566% 0.271% 0.545% 46.570% 69.944% 0.017% 0.011%
N 29.965% 60.636% 0.117% 0.188% 28.029% 60.716% 0.019% 0.004% 41.711% 68.692% 0.311% 0.533% 20.155% 52.501% 0.020% 0.027%
S2 7.719% 12.527% 0.104% 0.165%  4.667% 5.981% 0.007% 0.004% 12.029% 18.032% 0.285% 0.478% 6.460% 13.568% 0.021% 0.012%
NTD 7.527% 21.328% 0.079% 0.136% 5.798% 14.459% 0.004% 0.004% 14.061% 33.982% 0.226% 0.388% 2.722% 15.543% 0.007% 0.016%
M 5.565% 13.470% 0.157% 0.227% 2.908% 10.612% 0.000% 0.001% 9.821% 17.547% 0.463% 0.661% 3.965% 12.252% 0.009% 0.018%
S1 1.261% 2.718% 0.027% 0.082% 1.657% 2.619% 0.003% 0.003% 1.980% 4.045% 0.077% 0.239% 0.145% 1.491% 0.002% 0.004%
S 0.642% 0.769% 0.023% 0.072% 1.328% 1.330% 0.000% 0.001% 0.586% 0.941% 0.068% 0.213% 0.010% 0.036% 0.001% 0.002%

— MHC Class II —
FP 84.170% 100.000%
E 79.568% 98.697%

.499% 30.779% 80.048% 100.000% 0.368% 4.895% 75.307% 100.000% 0.075% 0.312%
575% 29.647% 83.965% 99.520% 0.476% 6.291% 59.050% 96.594% 0.140% 0.325%
RBD 26.357% 40.006% 1.113% 11.237% 52.055% 57.318% 2.364% 30.118% 17.387% 41.002% 0.919% 3.420% 9.629% 21.698% 0.057% 0.173%
N 18.762% 33.370% 0.920% 6.885% 40.350% 64.996% 2.384% 17.522% 6.874% 19.635% 0.318% 2.903% 9.063% 15.480% 0.057% 0.231%

1.314% 11.995% 97.154% 100.000% 3
1 2
1 2
0 2
NTD 9.735% 18.811% 0.861% 5.363% 25.412% 40.726% 2.294% 14.491% 3.246% 13.667% 0.258% 1.524% 0.548% 2.040% 0.030% 0.075%
0 2
0 2
0 1
0 1

.064% 12.088% 95.689% 99.978%

S1 8.533% 14.721% 0.793% 5.048% 23.701% 35.571% 2.133% 13.612% 1.770% 7.918% 0.229% 1.475% 0.128% 0.673% 0.018% 0.056%
M 7.037% 23.481% 0.831% 2.450% 14.779% 46.663% 2.256% 5.582% 3.628% 11.857% 0.204% 1.708% 2.704% 11.925% 0.033% 0.059%
S2 6.281% 10.474% 0.641% 3.632% 14.313% 22.548% 1.604% 9.324% 3.683% 7.233% 0.283% 1.521% 0.846% 1.642% 0.037% 0.051%
S 3.610% 6.393% 0.571% 3.453% 9.593% 16.326% 1.491% 9.199% 1.202% 2.705% 0.209% 1.131% 0.035% 0.148% 0.014% 0.029%

Table S1: Percentage of a population that is insufficiently covered by subunit vaccines and the improvement
after adding MHC class I and MHC class II augmentation peptides. Results are shown for both separate and
joint designs of augmentation peptides. The list is sorted by decreasing insufficient coverage of unaugmented
subunits. We chose the set with the minimal number of peptides that achieves the targeting criteria specified
by OptiVax-Joint.
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Figure S1: Predicted uncovered percentage of populations as a function of the minimum number of peptide-
HLA hits in an individual for E; M, N protein and fusion peptide (FP). Annotated percentages are the
average across populations self-reporting as Asian, Black, and White. A redundant sampling of peptides is
depicted by solid lines for populations self-reporting as Asian, Black, and White as well their average. A
non-redundant sampling of peptides is depicted by dotted lines.
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Figure S2: Correlation between subunit size and the predicted population gap in percent of population with
less than six peptide-HLA hits per individual for MHC class I (blue) and MHC class II (red).
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Extracted Exp Exp Exp
25-mer non- EvalVax- EvalVax- EvalVax- R . .
Peptide MHC redundant Robust Robust Robust #peptl(.ie— #pepthe— #peptl(.ie_ Protein origin
Count Class on (n>1) (n>5 (n>10) HLA hits HLA hits HLA hits
bep = = = (Asian) (Black)  (White)
tides
MHC1 11 99.843%  64.613% 2.416% 5.420 4.604 5.933
4 MHC2 16 98.780%  69.374%  36.635% 5.503 8.247 10.131 ORF1b, 52, S1
MHC1 31 99.992%  93.955%  66.358% 12.901 9.960 11.932
9 MHC2 29 99.574% 94.053% 75.476% 11.407 14.966 17.972 ORF1b, 51, ORFla, 52, ORF10
MHC1 53 99.996%  98.380%  86.729% 17.502 14.189 16.358
14 MHC2 43 99.610%  96.558%  86.641% 14.906 20.042 23.785 ORFla, ORF1b, M, 81, 52
MHC1 70 99.999%  99.551%  92.853% 22.164 17.699 19.730
19 MHC2 58 99.630%  98.182%  90.724%  19.677  25.248 31562 Ont 1P M, ORFla, S1, 52, ORF3a
MHC1 80 99.999%  99.706%  95.197% 24.722 19.356 21.625
2 MHC2 67 99.684%  98.654% = 92.741% 21.211 29.457 35.659 ORF1b, M, ORFla, 51, 52, ORF3a

Table S2: Predicted population coverage of a peptide-only vaccine jointly optimized for MHC class I and
class II coverage with 4, 9, 14, 19, and 24 25-mer peptides.

Exp Exp Exp
. EvalVax- EvalVax- EvalVax- R R -
Candidates MHC  Peptide Robust Robust Robust #pepthe- #peptl('ie- #peptu'ie- Protein origin
Class Count (n>1) (n>5) (n>10) HLA hits HLA hits HLA hits
= = = (Asian)  (Black) (White)
MIRA M, N, ORF10, ORF1a,
. MHC1 36 99.997%  99.832%  96.614% 22.987 20.017 21.957 ORF1b, ORF3a, ORF7a, S1,
peptides 92
. M, N, ORF10, ORF1la,
All peptides MHC1 31 100.000%  99.949%  96.366% 18.959 17.026 18.821 ORF1b, ORF3a, S1, 2
MIR.A MHC2 40 95.625% 88.796% 81.923% 16.560 26.818 39.001 M, N, ORF3a, ORF7a, ORFS,
peptides S1, S2
All peptides MHC2 38 99.691%  99.042%  92.767% 19.041 26.220 29.402 M, N, ORFla, ORF1b,

ORF3a, S1, S2

Table S3: Predicted population coverage of peptide-only vaccines optimized separately for MHC class I and
class IT coverage, using either MIRA positive peptides only or all filtered peptides in SARS-CoV-2.
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Figure S3: Predicted coverage in populations self-reporting as White, Black, and Asian with a peptide-only
vaccine comprising 24 25-mer peptides jointly optimized for MHC class I and MHC class II coverage. The
red dotted vertical line shows the expected number of hits.
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Figure S4: Comparison of the number of amino acids and total number of peptides used by separate and
joint designs and their respective predicted population coverage with more than 7 peptide-HLA hits per
individual. The predicted population coverage is shown for the peptide-only de novo vaccine designs.

Design Sequence

MHC Class I  MRVTAPRTLILLLSGALALTETWAGS GGSGGGGS GG ATSRTLSYYGGSGGGG S GGFAYANRNRFGGSGGGG
S Augmenta- SGGFLNRFTTTLGGSGGGGSGGFTYASALWEIGGSGGGGSGGSINFVRIIMRGGSGGGGSGGSPRWYFYYL
tion Construct GGSGGGGSGGTVYSHLLLVGGSGGGGSGGYIFFASFYYGGSGGGGS GG YLDAYNMMIGGSLGGGGSG
(OptiVax-Robust) IVGIVAGLAVLAVVVIGAVVATVMCRRKSSGGKGGSYSQAASSDSAQGSDVSLTA
MRVTAPRTLILLLSGALALTETWAGSGGSGGGGSGGAVFQSASKIITLKKRWQLAGGSGGGGSGGDGVKHVYQLRARSVSPKLFIGGS
GGGGSGGDNKFALTCFSTQFAFACPDGGGSGGGGSGGDQVILLNKHIDAYKTFPPTGGSGGGGSGGEHVTFFIYNKIVDEPEEHVGGS
MHC Class II  GGGGSGGHQPYVVDDPCPIHFYSKWYIGGSGGGGSGGIITLKKRWQLALSKGVHFVGGSGGGGSGGMDLFMRIFTIGTVTLKQGEGGS
S Augmenta- GGGGSGGMWLSYFIASFRLFARTRSMGGSGGGGSGGNGGDAALALLLLDRLNQLEGGSGGGGSGGPKEITVATSRTLSYYKLGAGGSG
tion Construct  GGGSGGPRQKRTATKAYNVTQAFGRGGSGGGGSGGPSDFVRATATIPIQASLPFGGSGGGGSGGRWYFYYLGTGPEAGLPYGAGGSGG
(OptiVax-Robust) GGSGGSFRLFARTRSMWSFNPETNGGSGGGGSGGSYFTSDYYQLYSTQLSTDTGGSGGGGSGGTGPEAGLPYGANKDGIIWVGGSGGG
GSGGTSPARMAGNGGDAALALLLGGSGGGGSGGTYTGAIKLDDKDPNFKDQVGGSGGGGSGGVKDCVVLHSYFTSDYYQLYGGSLGGG
GSGIVGIVAGLAVLAVVVIGAVVATVMCRRKSSGGKGGSYSQAASSDSAQGSDVSLTA

Table S4: Example protein constructs for augmentations to S subunit vaccines optimized for either MHC
class T or MHC class IT by OptiVax-Robust. Constructs contain a secretion signal sequence (red), peptides
(bold) joined by non-immunogenic glycine/serine linkers, and an MHC class I trafficking signal (blue). The
augmentation peptides encoded are the same as those evaluated in Table S1. Peptides are prepended with a
secretion signal sequence at the N-terminus and followed by an MHC class I trafficking signal (MITD) (Kreiter
et al., 2008; Sahin et al., 2017). The MITD has been shown to route antigens to pathways for HLA class
I and class IT presentation (Kreiter et al., 2008). Here we combine all peptides of each MHC class into a
single construct using a non-immunogenic glycine/serine linkers from Sahin et al. (2017), though it is also
plausible to construct individual constructs containing single peptides with the same secretion and MITD
signals as demonstrated by Kreiter et al. (2008).


https://doi.org/10.1101/2020.08.04.200691

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.04.200691; this version posted October 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Design Sequence

MRVTAPRTLILLLSGALALTETWAGSGGSGGGGSGGASEFSSLPSYAAFATAQEAYEQAVAGGSGGGGSGGDTDFVNEFYAYLRKH
FSMMILSDDAGGSGGGGSGGDYPKCDRAMPNMLRIMASLVLARKHGGSGGGGSGGEKVNINIVGDFKLNEEIAIILASFSGGSGG
GGSGGESPFVMMSAPPAQYELKHGTFTCASGGSGGGGSGGFGLVAEWFLAYILFTRFFYVLGLAAGGSGGGGSGGFKIYSKHTPI
NLVRDLPQGFSALEPGGSGGGGSGGFRNARNGVLITEGSVKGLQPSVGPKGGSGGGGSGGGAGAALQIPFAMQMAYRFNGIGVTQ
GGSGGGGSGGGIATVREVLSDRELHLSWEVGKPRPGGSGGGGSGGGLMWLSYFIASFRLFARTRSMWSFNGGSGGGGSGGGVSFS
Joint MHC Class TFEEAALCTFLLNKEMYLKLGGSGGGGSGGGVYDYLVSTQEFRYMNSQGLLPPKNGGSGGGGSGGGWTAGAAAYYVGYLQPRTFL
I and Class II LKYNEGGSGGGGSGGIICISTKHFYWFFSNYLKRRVVFNGGGSGGGGSGGIPKDMTYRRLISMMGFKMNYQVNGYGGSGGGGSGG

S Augmenta- LDISASIVAGGIVAIVVTCLAYYFMGGSGGGGSGGLQSLQTYVTQQLIRAAEIRASANLAGGSGGGGSGGNNLVVMAYITGGVVQ
tion Construct  LTSQWLTNIFGGSGGGGSGGPLIQPIGALDISASIVAGGIVAIVVGGSGGGGSGGQPTESIVRFPNITNLCPFGEVFNATGGSGG
(OptiVax-Joint) GGSGGSIKNFKSVLYYQNNVFMSEAKCWTEGGSGGGGSGGSQSITAYTMSLGAENSVAYSNNSIAGGSGGGGSGGTDTPKGPKVK

YLYFIKGLNNLNRGMGGSGGGGSGGTFCAGSTFISDEVARDLSLQFKRPIGGSGGGGSGGTFYLTNDVSFLAHIQWMVMFTPLVP
GGSGGGGSGGTITQMNLKYAISAKNRARTVAGVSIGGSGGGGSGGTITSGWTFGAGAALQIPFAMQMAYRGGSGGGGSGGTSQWL
TNIFGTVYEKLKPVLDWLEEGGSGGGGSGGVRKIFVDGVPFVVSTGYHFRELGVVGGSGGGGSGGVVFVLWAHGFELTSMKYFVK
IGPERGGSGGGGSGGWESGVKDCVVLHSYFTSDYYQLYSTGGSGGGGSGGYESLRPDTRYVLMDGSIIQFPNTYLGGSLGGGGSG
IVGIVAGLAVLAVVVIGAVVATVMCRRKSSGGKGGSYSQAASSDSAQGSDVSLTA

Table S5: Example protein construct for augmentations to S subunit vaccines jointly optimized for both
MHC class I and class 1T by OptiVax-Joint. Constructs contain a secretion signal sequence (red), 33 25-mer
peptides (bold) joined by non-immunogenic glycine/serine linkers, and an MHC class I trafficking signal
(blue). The augmentation peptides encoded are the same as those evaluated in Table S1.
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Figure S5: Comparison of predicted human population coverage gaps using MHC class I HLA haplotype
frequencies from Gragert et al. (2013) and Liu et al. (2020). Predicted uncovered percentage of populations
as a function of the minimum number of peptide-HLA hits in an individual. HLA haplotype frequencies are
from Gragert et al. (2013) (dotted lines) or Liu et al. (2020) (solid lines). Annotated numeric percentages
are the average population gaps across populations self-reporting as Black/AFB with haplotype frequencies
from Gragert et al. (2013) and Liu et al. (2020). All data are for the redundant sampling of subunits.
Peptide scoring is based upon MIRA data as elaborated by machine learning predictions by an ensemble of
NetMHCpan4.0 and MHCflurry 2.0.
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Organization Vaccine Subunit  Delivery Method Reference
Janssen  (Johnson & . . .
Ad26COVS1  S1 Adenoviral vector Belgian Biosafety Server (2020)
Johnson)
. AZD1222
A.straZeneca + Univer- (ChAdOx1 S Adenoviral vector Folegatti et al. (2020)
sity of Oxford
nCoV-19)
. BNT162bl RBD mRNA Mulligan et al. (2020)
Pfizer + BioNTech BNT162b2 S mRNA BioNTech (2020)
Moderna mRNA-1273 S mRNA Jackson et al. (2020)
Merck + IAVI — S VSV chimeric virus Cohen (2020)
Merck + Themis — S Attenuated measles virus Cohen (2020)
Novavax NVX- S Protein subunit (nanoparticle)  Tian et al. (2020)
vay CoV2373 st P '
Sanofi + GlaxoSmithK- S Protein subunit World Health Organization (2020)

line

Table S6: Overview of SARS-CoV-2 vaccines in development by Operation Warp Speed participants. See
World Health Organization (2020) for additional COVID-19 candidate vaccines.

Table S7: Detailed augmentation designs for optimized peptide sets in Table SI. See
AugmentationPeptides.xlsx.

Table S8: List of uncovered genotypes with zero predicted peptide-HLA hits for each SARS-CoV-2 subunit.
Columns indicate genotype frequency in each population. See UncoveredGenotypes.xlsx.
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