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Abstract

Subunit vaccines induce immunity to a pathogen by presenting a component of the
pathogen and thus inherently limit the representation of pathogen peptides for cel-
lular immunity based memory. We find that SARS-CoV-2 subunit peptides may not
be robustly displayed by the Major Histocompatibility Complex (MHC) molecules
in certain individuals. We introduce an augmentation strategy for subunit vaccines
that adds a small number of SARS-CoV-2 peptides to a vaccine to improve the
population coverage of pathogen peptide display. Our population coverage estimates
integrate clinical data on peptide immunogenicity in convalescent COVID-19 patients
and machine learning predictions. We evaluate the population coverage of 9 differ-
ent subunits of SARS-CoV-2, including 5 functional domains and 4 full proteins, and
augment each of them to fill a predicted coverage gap.
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Introduction

All reported current efforts for COVID-19 vaccine design that are part of the
United States Government’s Operation Warp Speed use variants of the spike subunit
of SARS-CoV-2 to induce immune memory (Table S6). Subunit vaccines seek to re-
duce the safety risks of attenuated or inactivated pathogen vaccines by optimizing the
portion of a pathogen that is necessary to produce durable immune memory (Moyle
and Toth, 2013). Suggested coronavirus subunit vaccine components include the
spike (S) protein, the receptor binding domain (RBD) of S, the S1 domain of S,
the S2 domain of S, the nucleocapsid (N), the membrane (M), the envelope (E),
the N-terminal domain (NTD) of S, and the fusion peptide (FP) of S (Wang et al.,
2020; Yu et al., 2020; Dai et al., 2020). Subunit vaccines have been enabled by our
ability to engineer and express pathogen surface components that retain their three-
dimensional structure to induce neutralizing antibodies and a corresponding B cell
memory. However, the production of durable immune memory rests in part upon
help from T cells, which get their cues from peptides displayed by Human Leukocyte
Antigen (HLA) molecules encoded by the Major Histocompatibility Complex (MHC)
of genes. Since a subunit vaccine does not fully represent a pathogen, vaccine ex-
cluded pathogen peptides will not be observed during vaccination by an individual’s
T cells.

We find that proposed SARS-CoV-2 subunit vaccines exhibit population coverage
gaps in their ability to generate a robust number of predicted peptide-HLA hits
in every individual. A peptide-HLA hit is the potential immunogenic display of
a peptide by a single HLA allele. Subunit vaccine-based simulation of a T cell
response is limited because of their limited representation of pathogen peptides, and
the preferences of each individual’s HLA molecules for the peptides they will bind
and display. Since HLA loci exhibit linkage disequilibrium, we use the frequencies of
population haplotypes in our coverage computations. Each haplotype describes the
joint appearance of HLA alleles. Cytotoxic CD8+ T cells observe peptides displayed
by molecules encoded by an individual’s classical class I loci (HLA-A, HLA-B, and
HLA-C), and helper CD4+ T cells observe peptides displayed by molecules encoded
by an individual’s classical class II loci (HLA-DR, HLA-DQ, and HLA-DP).

Results

We model peptide-HLA immunogenicity by combining data from convalescent
COVID-19 patients as measured by the Multiplexed Identification of T cell Receptor
Antigen specificity (MIRA) assay with machine learning predictions (Snyder et al.,
2020; Klinger et al., 2015). The display of a peptide by an HLA molecule is necessary,
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but not sufficient, for the peptide to be immunogenic and cause T cell activation and
expansion. The combined model predicts which HLA molecule displayed a peptide
that was observed to be immunogenic in a MIRA experiment, and uses machine
learning predictions of peptide display for HLA alleles not observed or peptides not
tested in MIRA data (STAR Methods). We use this combined model of peptide
immunogenicity to compute our estimates of vaccine population coverage and to
propose augmentation peptides to close population coverage gaps.

We use two different candidate sets of peptides for subunit augmentation and
de novo vaccine design: known immunogenic peptides, and all possible peptides.
First, we exclusively use the set of peptides that were observed to be immunogenic
in the MIRA assay (Snyder et al., 2020; Klinger et al., 2015). Second, we utilize
peptides from the SARS-CoV-2 genome that have a mutation rate < 0.001 and a
zero glycosylation probability predicted by NetNGlyc (Gupta et al., 2004) (STAR
Methods).

For our vaccine coverage predictions we use previously reported estimates of HLA
haplotype frequencies from Liu et al. (2020) for HLA-A, HLA-B, and HLA-C (clas-
sical class I) and HLA-DR, HLA-DQ, and HLA-DP (classical class II) to score the
number of peptide-HLA hits observed for various subunits of SARS-CoV-2 with and
without additional augmentation peptides. We also evaluate subunit population cov-
erage for MHC class I using HLA haplotype frequencies from Gragert et al. (2013).
(STAR Methods)

SARS-CoV-2 subunit population coverage analysis

We first used our model of peptide immunogenicity to compute a baseline of the
predicted number of peptide-HLA hits that would result from an infection by the
SARS-CoV-2 virus using the HLA haplotype frequencies from Liu et al. (2020). For
this task we extracted all peptides of length 8–10 (MHC class I) and 13–25 (MHC
class II) inclusive from the SARS-CoV-2 proteome (STAR Methods).

We predict SARS-CoV-2 will have 318 (White), 307 (Black), and 391 (Asian)
peptide-HLA hits for MHC class I on average in the respective self-reporting human
populations. For an MHC class II redundant sampling we predict SARS-CoV-2 will
have 5180 (White), 3871 (Black), and 2070 (Asian) peptide-MHC hits. Thus the
average number of predicted SARS-CoV-2 peptide-HLA hits for MHC class I is 338
and for MHC class II 3707.

We found that all subunits of SARS-CoV-2 have gaps in their predicted human
population coverage for robust peptide MHC display using EvalVax (STAR Meth-
ods). We computed the predicted uncovered population percentage of the SARS-
CoV-2 subunits S, S1, S2, RBD, and NTD as a function of the minimum required
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predicted number of peptide-HLA hits displayed by an individual (Figure 1). An in-
dividual is uncovered if they are not predicted to have a specified number of peptide-
HLA hits. Results for the FP, M, N, and E subunits are shown in Figure S1. We
observe a negative correlation between subunit size and predicted population gap
(Pearson r = −0.65 for MHC class I and Pearson r = −0.63 for MHC class II,
Figure S2). The predicted fraction of the uncovered population was greatest for the
smallest subunits, which is a direct consequence of their elimination of the largest
number of pathogen peptides. For example, of the S protein subunits RBD is the
smallest, and has the largest predicted population coverage gap. While the signifi-
cance of the reduced immune footprint of subunit vaccines remains to be fully eluci-
dated, when no or very few peptide-HLA hits are predicted a corresponding reduction
in T cell activation, expansion, and memory function would be expected. Based on
our prediction, the receptor binding domain (RBD) subunit had no MHC class II
peptides displayed in 15.12% of the population (averaged across Asian, Black, and
White self-reporting individuals). We note that the uncovered population of RBD
with no predicted display of MHC class II peptides ranges from 0.811% for the popu-
lation self-reporting as White, to a high of 37.287% for the population self-reporting
as Asian. The high uncovered population in the Asian population is caused by the
HLA haplotype frequencies in the Asian population. Thus, clinical trials need to
carefully consider ancestry in their study designs to ensure that efficacy is measured
across an appropriate population. For the RBD subunit, 26.357% of the population
had fewer than six MHC class II peptide-HLA hits. For RBD MHC class I, the
coverage gap is 1.163% for no hits and 38.186% for fewer than six hits. EvalVax
predicted that on average for an S subunit vaccine the uncovered population would
be 0.001% (class I) and 0.721% (class II) for no display, and 0.642% (class I) and
3.610% (class II) for fewer than 6 peptide-HLA hits.

We found that predicted subunit coverage gaps for MHC class I were largely
consistent when we utilized HLA haplotype frequencies from Gragert et al. (2013)
(Figure S5) (STAR Methods).

SARS-CoV-2 subunit augmentation with peptide sets for MHC class I and II

We used Optivax-Robust to compute separate MHC class I and II augmentation
sets of SARS-CoV-2 peptides to be combined with each subunit to maximize the pre-
dicted population coverage for a target minimum number of MHC class I and class
II peptide hits in every individual (Figure 2). We used two sets of candidate pep-
tides for these augmentation sets: (1) peptides that were found to be immunogenic in
MIRA assay data, and (2) all filtered peptides from the entire SARS-Cov-2 proteome
(STAR Methods). The use of peptides immunogenic in MIRA data is intended to
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ensure that vaccine peptides are immunogenic, while limiting population coverage by
not considering other peptides that may cover rare MHC alleles. We predicted the
uncovered fraction of the population as a function of MHC class I or II peptide set
size for both candidate sets (Figure 1; Table S1). The computed sets of augmenta-
tion peptides were predicted to substantially reduce the populations predicted to be
insufficiently covered by each subunit. Post augmentation the predicted uncovered
population for RBD with no peptide-MHC hits is reduced to 0.003% (MHC class
I) and 4.351% (MHC class II) with MIRA positive peptides only, and 0.0% (MHC
class I) and 0.309% (MHC class II) with all filtered peptides from SARS-CoV-2.
(Table S1).

A peptide-only SARS-CoV-2 vaccine for MHC class I and II

We designed de novo peptide-only vaccines that did not assume an associated
subunit component. We proposed either peptide vaccines that separately optimize
for MHC class I and class II population coverage or a single joint peptide vaccine
that optimizes MHC class I and class II coverage simultaneously (STAR methods).
As candidates for vaccine inclusion we considered (1) only peptides that were found
to be immunogenic in the MIRA data, and (2) all peptides from the SARS-CoV-2
proteome for separate vaccine designs. For joint vaccine design we include all peptides
from the SARS-CoV-2 proteome as candidates as the MIRA positive peptides do not
overlap sufficiently to do joint optimization. We explored the predicted decrease of
the uncovered population as a function of peptide count and found that de novo
vaccine designs are predicted to simultaneously produce a large number of predicted
hits for both MHC class I and class II display (Figure 1, Table S3, Table S2). The
predicted population coverage of our peptide only designs exhibit a diverse display
of peptides across populations self-reporting as Black, White, and Asian (Figure S3).
Peptide-only vaccine designs have been found to be effective (Herst et al., 2020).

SARS-CoV-2 joint de novo designs are more compact than separate designs

We found that a joint de novo design that uses a single set of peptides for MHC
class I and class II coverage requires fewer peptides than separate vaccines for MHC
class I and class II coverage (Figure 1). With 9 jointly selected peptides more than
93% of the population was predicted to have more than 4 peptide-HLA hits. A 24
peptide joint design was predicted to produce more than 4 peptide HLA hits in more
than 99% of the population (Table S2). We set a series of population coverage goals
for MHC class I and MHC class II coverage with more than 7 peptide-HLA hits per
individual. We considered 25 evenly spaced coverage levels between 0% and 100%
coverage. We computed the total number of peptides needed to reach each set of
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MHC class I and MHC class II coverage goals simultaneously, where the number
of MHC class I and MHC class II peptides are summed for separately designed
peptide sets. We computed the total number of amino acids needed for a construct
with a typical mRNA delivery platform with 10 amino acid linkers (Sahin et al.,
2017) (Supplementary Information). We found joint designs reduce the total number
of required amino acids and peptides required to achieve each level of population
coverage (Figure S4). A single mRNA delivery construct has been demonstrated to
work for both MHC class I and class II peptides (Kreiter et al., 2008; Sahin et al.,
2017).

Discussion

We augment subunit vaccines with a compact set of peptides to improve the
display and immunogenicity of a vaccine on HLA class I and II molecules across a
population of people. Subunit vaccines offer safety advantages over inactivated or
attenuated pathogen vaccines, but their ability to fully mimic a pathogenic infection
to train cellular immunity is limited. Immunity to a pathogen may rest in part
upon T cell based adaptive immunity and corresponding T memory cells. We expect
that a vaccine that provides a diverse display of a pathogen’s peptides will create
reservoirs of CD4+ and CD8+ memory cells that will assist in establishing immunity
to the pathogen. SARS-CoV-2 infection elicits a robust memory T cell response even
in antibody-seronegative individuals, suggesting a T cell response is an important
component of immunity to COVID-19 (Sekine et al., 2020).

We found that for SARS-CoV-2 the joint optimization of predicted MHC class
I and class II pathogen peptide display achieves population coverage criteria with a
more compact vaccine design than designing separate peptide sets for MHC class I
and class II. Using a simpler design with shorter constructs may contribute to the
effectiveness of a vaccine by providing an equivalent diversity of peptide display in a
population with a less complex mixture of vaccine peptides.

Augmentation peptides can be delivered using the same vehicle as their associated
subunit vaccine or they can be delivered separately. Nucleic acid based vaccines can
incorporate RNA or DNA sequences that encode class I and class II augmentation
peptides with desired signal sequences, linkers, and protease cleavage sites (Kreiter
et al., 2008; Sahin et al., 2017) (examples in Supplementary Information, Tables S4
and S5). The peptides can be expressed as part of the subunit or separately, and
can be encoded on the same or different molecules as the primary subunit. When
augmentation peptides are added as a new subunit domain a vaccine designer can
trade-off domain complexity for additional coverage using Figure 1B. Nucleic acid
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constructs carrying augmentation peptides can be delivered by injection in lipid
nanoparticle particle carriers or directly (Dowdy, 2017; Wolff et al., 1990). Protein
based vaccines can include independent augmentation peptides into the vaccine for-
mulation. The delivery of independent augmentation peptides can be accomplished
using nanoparticles (Herst et al., 2020).

Our computational objective function encodes the two key goals of our augmenta-
tion strategy: population coverage and the display of a highly diverse set of peptides
in each individual. Our population coverage goal is ensured by optimizing predicted
display coverage over population haplotype frequencies. The display of a diverse set
of peptides is established by setting augmentation design goals for the number of
peptides that need to be displayed by each individual.

Early results from clinical studies of subunit vaccines for SARS-CoV-2 show that
some vaccine recipients did not develop positive CD8+ T cell responses (Jackson
et al., 2020). It is difficult to fully evaluate these results because the HLA types
of study participants are not provided by these early studies. Thus these study
populations may not be reflective of HLA types in the general world population.
The BNT162b1 RBD subunit vaccine produced a less robust CD8+ response than
CD4+ response (Sahin et al., 2020), and this was also noted in the mRNA-1273 S
subunit vaccine results (Jackson et al., 2020). Further clinical data is required to fully
assess the T cell immunogenicity of various subunits and delivery methods. Clinical
trials should select their participants to have representative HLA type distributions
to test for population coverage. Future studies will need to examine the durability
of immunity in individuals with minimal T cell response.

By simultaneously achieving the twin goals of coverage and diversity with pep-
tides derived from a pathogen, we effectively compress the cellular immunologic fin-
gerprint of a pathogen into a vaccine. To produce an antibody response, the subunit
component of a vaccine can encode a three-dimensional epitope to stimulate neu-
tralizing antibody production by B cells. Taken together, these two designed com-
ponents, a pathogen subunit and its augmentation, will provide both B cell and T
cell epitopes of a pathogen while permitting epitope selection to mitigate deleterious
effects and improve population coverage.

All of our software and data are freely available as open source to allow others to
use and extend our methods.
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Figure 1: Predicted human population coverage gaps and improvement with proposed vaccines. (A)
Predicted uncovered percentage of populations as a function of the minimum number of peptide-
HLA hits in an individual. Annotated percentages are the average across populations self-reporting
as Asian, Black, and White. A redundant sampling of peptides is depicted by solid lines for popu-
lations self-reporting as Asian, Black, and White as well their average. A non-redundant sampling
of peptides is depicted by dotted lines. (B) Predicted uncovered percentage of the population for a
subunit plus augmentation peptides or for a subunit free design, MHC class I (top row) and class II
(bottom row). (C) Uncovered population for a joint class I and class II de novo vaccine design that
does not include a subunit. Dotted graph lines in (B) utilize only MIRA validated peptides. In (B)
vertical lines show the peptide count used to evaluate Table S1, dotted lines are MIRA peptides
only.
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Figure 2: The separate and joint design methods for peptide vaccines. (A) In the separate method,
windowed pathogen proteomes are filtered for acceptable peptides and MHC class I and class II
vaccine designs are chosen to optimize population coverage at specified levels of peptide-HLA hits.
(B) In the joint method, 25-mer pathogen peptides are annotated with their MHC class I and class
II peptides, which are filtered, scored, evaluated for population coverage, and used to optimize the
selection of their parent 25-mers into a joint vaccine.
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STAR Methods

Resource Availability

Lead Contact: Further information and requests for resources should be directed
to and will be fulfilled by the Lead Contact, David K. Gifford (gifford@mit.edu).

Materials Availability: This study did not generate new materials.

Data and Code Availability: All source data for generating population cov-
erage curves have been deposited and are publicly available at https://github.

com/gifford-lab/optivax. The peptide scoring predictions and processed haplo-
type frequencies are available at https://www.dropbox.com/sh/v1jcin4mh7jua14/
AAB7W0Y7IXtXRL8Ehlrtvft6a?dl=0. This paper analyzes existing, publicly available
data. These datasets’ accession numbers are provided in the Key Resources Table.
All original code and the scripts used to generate the figures reported in this paper
are publicly available at https://github.com/gifford-lab/optivax.

Method Details

SARS-CoV-2 proteome and candidate peptides

The SARS-CoV-2 proteome is comprised of four structural proteins (E, M, N,
and S) and open reading frames (ORFs) encoding nonstructural proteins (Srinivasan
et al., 2020). We obtained the SARS-CoV-2 viral proteome from GISAID (Elbe and
Buckland-Merrett, 2017) sequence entry Wuhan/IPBCAMS-WH-01/2019, the first
documented case, as processed and provided by Liu et al. (2020). Nextstrain (Had-
field et al., 2018) was used to identify ORFs and translate the sequence. We use slid-
ing windows to extract all peptides of length 8–10 (MHC class I) and 13–25 (MHC
class II) inclusive from the SARS-CoV-2 proteome, resulting in 29,403 peptides for
MHC class I and 125,593 peptides for MHC class II.

For vaccine augmentation we use two different candidate sets: known immuno-
genic peptides, and all possible peptides. First, we exclusively use the set of peptides
that were observed to be immunogenic in the MIRA assay (Snyder et al., 2020;
Klinger et al., 2015). In this case we use the MIRA sets identified for MHC class
I and II separately. Second, we use the same filtered candidate peptide set as Liu
et al. (2020), in which peptides with mutation rate > 0.001 or non-zero glycosylation
probability predicted by NetNGlyc (Gupta et al., 2004) are filtered.

MIRA provides immunogenicity data with peptide-detail data that summarizes
for each individual (MIRA experiment) the peptide sets that were found to cause T
cell activation. A MIRA peptide set can be a single peptide, or a group of highly
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related peptides that are samples from slightly offset positions in the proteome. The
MIRA subject-metadata contains the HLA types for individuals. While the HLA
type of an individual provides us with the candidate HLA alleles that could display
a given peptide, it does not tell us which allele displayed the peptide. The MIRA
data used in this study includes 119 (MHC class I) or 8 (MHC class II) convalescent
HLA-typed COVID-19 patients that were queried for CD8+ T cell activation for 269
peptide pools (generated from 545 peptides) or CD4+ activation for 56 peptide pools
(generated from 251 peptides). Each peptide pool contains at most 13 MHC class I
peptides or up to 6 MHC class II peptides. The patient population had 110 (MHC
class I) and 22 (MHC class II) HLA alleles (Snyder et al., 2020). We included all
MIRA immunogenic peptides for vaccine analysis and design, as to date no peptide
has been observed to cause immunopathology that exacerbates disease severity.

Since the MIRA assay does not identify the patient HLA allele that presents a
peptide and does not distinguish between individual peptides in a given pool, we
built a combined model of MIRA observations and machine learning predictions to
model peptide immunogenicity when presented by a specific HLA. We did not use
the predicted HLA restrictions from Snyder et al. (2020) Supporting Table 2 as it
identified pools of peptides, and not individual peptides and is only for MHC class I.
For an HLA allele that appeared in the MIRA data and peptides that were tested, a
peptide was predicted to be immunogenic when displayed by that HLA allele if (1) it
was immunogenic in the MIRA data in 38% (MHC class I) or 40% (MHC class II) of
individuals that had the HLA allele, and (2) it was predicted to bind to the HLA allele
with an affinity of at least 500 nM. We used the prevalence of immunogenic peptides
across individuals as criteria (1) as it performed better than using the prevalence of
TCR sequences of immunogenic peptides. Other criteria that we explored that did
not perform as well are included in Table 1. The selected criteria maximized the
AUROC for prediction of the MIRA data that contained both positive and negative
examples of peptide pool immunogenicity for individuals with a given HLA type
(Table 1). Criteria (2) allowed us to predict the specific HLA allele(s) that displayed
a peptide since MIRA data provides all of the HLA alleles for a given individual and
does not provide information on which allele(s) displayed a peptide. We evaluate a
peptide-HLA immunogenicity model using the MIRA data, and score a MIRA pool-
individual pair positive if at least one peptide in the pool is predicted by the model
to be immunogenic when displayed by one of the HLAs of the individual. When
computing ROC or PRC curves where a variable decision boundary is employed, the
maximum score across all pool peptides and HLAs is utilized for evaluation. Our
combined model of HLA specific peptide immunogenicity predictions has a precision
of 0.581 and AUROC of 0.833 (MHC class I) and precision of 0.849 and AUROC of
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0.923 (MHC class II) (Table 1, Figure 3).

Figure 3: An integrated model of MIRA data and computational predictions is the best predictor of
MIRA immunogenicity data. Receiver Operating Characteristic (ROC) and Precision Recall Curve
(PRC) plots for predicting MIRA assay detected peptide immunogenicity using machine learning
methods. The combined model curve is the performance of the integrated model of MIRA data
and computational predictions.

For HLA alleles not present or peptides not tested in MIRA data we use ma-
chine learning predictions of peptide immunogenicity. We evaluated machine learning
methods by their ability to predict MIRA peptides that are immunogenic in an indi-
vidual based upon the HLA type of the individual (Figure 3). For a given individual
we used both positive and negative sets to characterize their performance, and we pri-
oritized precision for conservative vaccine design (Table 1). We found for MHC class I
the best method utilized a 50 nM threshold from an ensemble that outputs the mean
predicted binding affinity of NetMHCpan-4.0 (Jurtz et al., 2017), PUFFIN (Zeng
and Gifford, 2019), and MHCflurry 2.0 (O’Donnell et al., 2020, 2018). We selected
this ensemble as it is more robust to errors by a single method. For MHC class II
the method we selected used a 50 nM threshold and NetMHCIIpan-4.0 (Reynisson
et al., 2020b). Our machine learning predictions of HLA specific peptide display have
a precision of 0.447 and AUROC of 0.715 (MHC class I) and a precision of 0.869 and
AUROC of 0.701 (MHC class II) for immunogenicity (Figure 3). Other methods we
explored included NetMHCpan-4.1 (Reynisson et al., 2020a) (MHC class I), PUF-
FIN (Zeng and Gifford, 2019) (MHC class II) and NetMHCIIpan-3.2 (Jensen et al.,
2018) (MHC class II) (Table 1).

We use HLA class I and class II haplotype frequencies provided by Liu et al.
(2020). HLA haplotype frequencies were generated from previously published next-
generation sequencing data generated in the Carrington lab and their collabora-
tors (Tang et al., 2012; Ramsuran et al., 2018). All of these HLA data are based
upon genome sequencing that provides the highest resolving power for HLA typing.
For the HLA class I locus, this dataset contains 2,138 distinct haplotypes spanning
230 HLA-A, HLA-B, and HLA-C alleles. For HLA class II, this dataset contains
1,711 distinct haplotypes spanning 280 HLA-DP, HLA-DQ, and HLA-DR alleles.
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Population frequencies are provided for three populations self-reporting as having
White, Black, or Asian ancestry. We used these data for vaccine evaluation and
design as they included the HLA-DQA and HLA-DPA/DPB alleles for MHC class
II that are not present in Gragert et al. (2013).

We also predicted MHC class I population coverage using Gragert et al. (2013).
For this analysis we used a combined immunogenicity model of peptide-HLA im-
munogenicity with an ensemble of NetMHCpan-4.0 and MHCflurry 2.0 (Jurtz et al.,
2017; O’Donnell et al., 2020, 2018) for machine learning predictions.

We consider nine subunit vaccines for SARS-CoV-2: the full envelope (E), mem-
brane (M), nucleocapsid (N), and spike (S) proteins as well as the S1, S2, receptor
binding domain (RBD), N-terminal domain (NTD), and fusion peptide (FP) domains
from S. The amino acid positions for each of the S protein subunits are shown in
Figure 4. When evaluating these subunit vaccines we include all peptides of length
8–10 (MHC class I) and 13–25 (MHC class II) spanning the corresponding regions
of the proteome.

NTD RBD FPN C

0 18 305 330 524 684 816 855

S1 S2S1/S2

Figure 4: Illustration of functional domains on SARS-CoV-2 S protein.

EvalVax subunit vaccine evaluation

We evaluate population coverage of SARS-CoV-2 subunit vaccines using EvalVax-
Robust (Liu et al., 2020). EvalVax-Robust computes population coverage of a given
peptide set using the HLA haplotype frequencies in each population of individuals
self-reporting as having Black, Asian, or White ancestry. Population coverage P (n)
is defined as the fraction of individuals predicted to have ≥ n peptide-HLA hits using
our model of peptide-HLA immunogencity. EvalVax-Robust computes the frequency
of diploid HLA genotypes, and accounts for both homozygous and heterozygous
HLA loci. We compute the average population coverage as an unweighted average
of population coverage over the three populations. Insufficient coverage of ≤ n hits
is defined as 100% − P (n + 1).

Our subunit population coverage estimates are not lowered by discarding subunit
peptides as unsuitable. We consider all peptides that result from a windowing of
the subunit proteome, and include the redundant peptides caused by using varying
window sizes at the same proteome start position. In addition, we do not filter
peptides for mutation rate or glycosylation during evaluation.
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Design of separate MHC class I and II peptide sets to augment subunit vaccine pop-
ulation coverage

In the separate design method we use OptiVax-Robust (Liu et al., 2020) to aug-
ment subunit vaccines with additional peptides to produce separate sets of peptides
for class I and class II augmentation (Figure 2A). The candidate peptides for vaccine
inclusion are chosen from either: (1) all peptides observed to be immunogenic in a
MIRA assay, or (2) all filtered peptides from the SARS-CoV-2 proteome. All fil-
tered peptides are selected from the remaining SARS-CoV-2 proteome (all peptides
except those spanning the subunit), excluding peptides that are likely to mutate
(have mutation rate > 0.001) or have non-zero predicted probability of glycosyla-
tion. All candidate peptides considered during augmentation must be predicted to
be immunogenic using our model of peptide-HLA immunogenicity.

The augmentation algorithm uses a starting peptide set which is extracted from
the subunit vaccine to maximize the coverage of the subunit while removing re-
dundant peptides resulting from overlapping sliding windows using the redundancy
elimination algorithm found in Liu et al. (2020). Using a non-redundant starting
peptide set ensures that augmentation does not depend upon redundant peptides
for population coverage support. OptiVax-Robust performs vaccine augmentation
by adding peptides to this starting set to improve the population coverage at each
peptide-HLA hits cutoff n. At each iteration redundant peptides are removed from
consideration, and redundancy is defined with an edit distance metric (Liu et al.,
2020). OptiVax-Robust uses a beam search algorithm that iteratively expands the
solution by one peptide and gradually optimizes population coverage from n = 1 to
the targeting level of per-individual peptide-HLA hits (Liu et al., 2020). We use a
beam size of 5 for the augmentation of subunit vaccines.

For each desired budget of augmentation peptides, OptiVax produces an aug-
mentation set. Larger augmentation sets are not necessarily supersets of smaller
augmentation sets, as the underlying combinatorial optimization problem is com-
plex. A vaccine designer can evaluate how many peptides they wish to use to realize
a predicted population coverage. For the augmentation sets in Table S1 for n = 7 we
targeted 99.3% coverage for MHC class I augmentation and 98% coverage for MHC
class II. The exceptions were S and S1, where we targeted for MHC class I 99.9%
coverage (all peptides) or 99.7% (MIRA peptide only), and for class II 98.5% (all
peptides) or 98% (MIRA peptides). Class II is more difficult to cover with MIRA
peptides alone, and thus we accept the best coverage possible. Augmentation sets
are computed starting with non-redundant subunits to avoid peptide-hit credit for
windowing induced redundancies. For the evaluation of original and augmented sub-
unit vaccines in Table S1, we provide results for all window derived subunit peptides
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and the non-redundant set of subunit peptides. All window peptides can include the
same HLA binding epitope multiple times from its sampling by multiple windows,
and thus serves as the predicted lower bound on population insufficient coverage.
The non-redundant results are the predicted upper bound of population insufficient
coverage.

Design of a single set of peptides to maximize MHC class I and II population coverage

We developed the OptiVax-Joint method to produce a minimal set of 25-mer
peptides to reach a target population coverage probability at a threshold of n pre-
dicted hits for each individual for both MHC class I and class II (Figure 2B). The
25-mer candidate peptides are produced by windowing the pathogen proteome that
is not part of a selected subunit, using a window step size of 8 amino acids between
candidate peptides. Each of the candidate 25-mer peptides is annotated with its
non-redundant peptides of length 8–10 (MHC class I) and 13–25 (MHC class II) and
the HLA alleles where they are predicted to be immunogenic. Peptide redundancy is
defined with an edit distance metric for the elimination of overlapping peptides (Liu
et al., 2020).

OptiVax-Joint begins with the empty set, and performs vaccine augmentation
by adding candidate 25-mer peptides to this starting set to improve both MHC
class I and class II population coverage at a target number of peptide-HLA hits
n. When OptiVax-Joint is started with an empty set of peptides it produces a de
novo peptide vaccine design without an associated subunit component. Each 25-
mer is scored based on its contained annotated class I and class II peptides for its
improvement in the number of per-individual peptide-HLA hits (Liu et al., 2020)
over the haplotypes of the target population. Contained peptides are not counted
towards population coverage if they have an observed mutation rate > 0.001 or have
a non-zero predicted probability of glycosylation. OptiVax-Joint uses a beam search
algorithm that iteratively expands the solution by one 25-mer peptide and gradually
optimizes population coverage from n = 1 peptide hit to the targeted level of per-
individual peptide-HLA hits for both MHC class I and class II (Liu et al., 2020). We
use a beam size of 5 for the augmentation of subunit vaccines.

For each desired budget of peptides, OptiVax-Joint produces a vaccine peptide
set. Larger sets are not necessarily supersets of smaller augmentation sets, as the
underlying combinatorial optimization problem is complex. A vaccine designer can
evaluate how many peptides they wish to use to realize a predicted population cov-
erage. For the joint sets in Table S1, we targeted 99% coverage at n = 7 for MHC
class I augmentation and 97% coverage at n = 7 for MHC class II augmentation.

As a point of comparison, we also computed separate MHC class I and class II
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vaccine designs using OptiVax-Robust, using candidate sets drawn either from MIRA
immunogenic peptides or all filtered peptides.

Quantification and Statistical Analysis

Classification performance of peptide-MHC scoring models was calculated using
scikit-learn (Pedregosa et al., 2011) in Python using the sklearn.metrics.roc auc score
(AUROC), sklearn.metrics.average precision score (Average Precision),
sklearn.metrics.accuracy score (Accuracy),
sklearn.metrics.precision recall fscore support (Precision, Recall and F1 score), and
sklearn.metrics.classification report (Sensitivity and Specificity) functions. AUROC
and average precision are computed using raw predictions, and the remaining metrics
are computed using binarized predictions based on the respective binding criteria.
Pearson r correlation was computed using scipy (Virtanen et al., 2020) in Python
using the scipy.stats.pearsonr function.
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Model Cutoff
Predicted
Positive

Preci-
sion

Recall
Accur-

acy
F1

score
AUC

Average
Preci-
sion

Speci-
ficity

p-value
(preci-
sion)

p-value
(accu-
racy)

— MHC Class I —
MHCflurry-2.0 predicted affinity 500nM 20757 0.297 0.833 0.506 0.438 0.700 0.412 0.407 0.000 1.000
MHCflurry-2.0 predicted affinity 50nM 9048 0.410 0.502 0.718 0.451 0.700 0.412 0.783 0.000 0.000
NetMHCpan-4.0 predicted affinity 500nM 16612 0.344 0.771 0.606 0.475 0.723 0.425 0.557 0.000 1.000
NetMHCpan-4.0 predicted affinity 50nM 8196 0.435 0.481 0.735 0.457 0.723 0.425 0.812 0.000 0.000
NetMHCpan-4.1 BA Rank 0.5% 13733 0.367 0.682 0.655 0.477 0.711 0.394 0.647 0.000 0.000
NetMHCpan-4.1 BA Rank 2.0% 21446 0.300 0.870 0.501 0.447 0.711 0.394 0.390 0.000 1.000
NetMHCpan-4.1 EL Rank 0.5% 13569 0.342 0.628 0.635 0.443 0.679 0.362 0.637 0.000 1.000
NetMHCpan-4.1 EL Rank 2.0% 21423 0.292 0.845 0.490 0.434 0.679 0.362 0.384 0.000 1.000
NetMHCpan-4.1 predicted affinity 500nM 16091 0.349 0.759 0.617 0.478 0.725 0.426 0.574 0.000 1.000
NetMHCpan-4.1 predicted affinity 50nM 8482 0.435 0.499 0.734 0.465 0.725 0.426 0.805 0.000 0.000
PUFFIN predicted affinity 500nM 17951 0.325 0.789 0.573 0.461 0.713 0.416 0.508 0.000 1.000
PUFFIN predicted affinity 50nM 7870 0.435 0.462 0.737 0.448 0.713 0.416 0.819 0.000 0.000
PUFFIN-NetMHC-MHCflurry predicted affinity 500nM 15953 0.345 0.744 0.614 0.472 0.715 0.424 0.575 0.000 1.000
PUFFIN-NetMHC-MHCflurry predicted affinity (Our ML-only model) 50nM 7416 0.447 0.448 0.744 0.448 0.715 0.424 0.833 0.000 0.000
PUFFIN-NetMHC-MHCflurry & TCR prevalence > 0.5 500nM 10638 0.471 0.678 0.750 0.556 0.789 0.491 0.772 0.000 0.000
PUFFIN-NetMHC-MHCflurry & TCR prevalence > 0.5 50nM 5867 0.532 0.422 0.781 0.471 0.789 0.491 0.889 0.000 0.000
PUFFIN-NetMHC-MHCflurry & TCR prevalence > 1 500nM 9026 0.500 0.610 0.769 0.550 0.772 0.491 0.817 0.000 0.000
PUFFIN-NetMHC-MHCflurry & TCR prevalence > 1 50nM 5100 0.565 0.389 0.790 0.461 0.772 0.491 0.910 0.000 0.000
PUFFIN-NetMHC-MHCflurry & TCR prevalence > 1.5 500nM 7987 0.527 0.568 0.782 0.547 0.761 0.491 0.846 0.000 0.000
PUFFIN-NetMHC-MHCflurry & TCR prevalence > 1.5 50nM 4480 0.597 0.361 0.796 0.450 0.761 0.491 0.927 0.000 0.000
PUFFIN-NetMHC-MHCflurry & peptide prevalence > 0.35 500nM 8239 0.553 0.615 0.796 0.582 0.831 0.536 0.850 0.000 0.000
PUFFIN-NetMHC-MHCflurry & peptide prevalence > 0.35 50nM 4888 0.592 0.391 0.797 0.471 0.831 0.536 0.919 0.000 0.000
PUFFIN-NetMHC-MHCflurry & peptide prevalence > 0.38 (Our combined
model)

500nM 7388 0.581 0.580 0.806 0.581 0.833 0.549 0.874 0.000 0.000

PUFFIN-NetMHC-MHCflurry & peptide prevalence > 0.38 50nM 4445 0.615 0.369 0.801 0.462 0.833 0.549 0.930 0.000 0.000
PUFFIN-NetMHC-MHCflurry & peptide prevalence > 0.40 500nM 7074 0.592 0.566 0.810 0.579 0.831 0.554 0.883 0.000 0.000
PUFFIN-NetMHC-MHCflurry & peptide prevalence > 0.40 50nM 4280 0.624 0.361 0.802 0.457 0.831 0.554 0.935 0.000 0.000

— MHC Class II —
NetMHCIIpan-3.2 BA Rank 10.0% 274 0.599 0.689 0.589 0.641 0.619 0.639 0.476 0.001 0.000
NetMHCIIpan-3.2 BA Rank 2.0% 84 0.607 0.214 0.509 0.317 0.619 0.639 0.843 0.000 0.431
NetMHCIIpan-3.2 predicted affinity 500nM 411 0.567 0.979 0.592 0.718 0.622 0.638 0.152 0.061 0.000
NetMHCIIpan-3.2 predicted affinity 50nM 53 0.698 0.155 0.516 0.254 0.622 0.638 0.924 0.000 0.292
NetMHCIIpan-4.0 BA Rank 10.0% 379 0.586 0.933 0.614 0.720 0.696 0.710 0.252 0.007 0.000
NetMHCIIpan-4.0 BA Rank 2.0% 165 0.691 0.479 0.609 0.566 0.696 0.710 0.757 0.000 0.000
NetMHCIIpan-4.0 EL Rank 10.0% 279 0.649 0.761 0.654 0.700 0.726 0.739 0.533 0.000 0.000
NetMHCIIpan-4.0 EL Rank 2.0% 72 0.847 0.256 0.580 0.394 0.726 0.739 0.948 0.000 0.001
NetMHCIIpan-4.0 predicted affinity 500nM 374 0.586 0.920 0.612 0.716 0.701 0.731 0.262 0.007 0.000
NetMHCIIpan-4.0 predicted affinity (Our ML-only model) 50nM 61 0.869 0.223 0.569 0.355 0.701 0.731 0.962 0.000 0.003
PUFFIN predicted affinity 500nM 417 0.561 0.983 0.583 0.715 0.664 0.656 0.129 0.088 0.000
PUFFIN predicted affinity 50nM 141 0.688 0.408 0.587 0.512 0.664 0.656 0.790 0.000 0.000
NetMHCIIpan-4.0 predicted affinity & TCR prevalence > 0.5 500nM 249 0.827 0.866 0.833 0.846 0.880 0.864 0.795 0.000 0.000
NetMHCIIpan-4.0 predicted affinity & TCR prevalence > 0.5 50nM 59 0.898 0.223 0.574 0.357 0.880 0.864 0.971 0.000 0.001
NetMHCIIpan-4.0 predicted affinity & TCR prevalence > 1 500nM 225 0.858 0.811 0.828 0.834 0.872 0.858 0.848 0.000 0.000
NetMHCIIpan-4.0 predicted affinity & TCR prevalence > 1 50nM 57 0.895 0.214 0.569 0.346 0.872 0.858 0.971 0.000 0.003
NetMHCIIpan-4.0 predicted affinity & TCR prevalence > 1.5 500nM 204 0.887 0.761 0.821 0.819 0.857 0.851 0.890 0.000 0.000
NetMHCIIpan-4.0 predicted affinity & TCR prevalence > 1.5 50nM 55 0.909 0.210 0.569 0.341 0.857 0.851 0.976 0.000 0.002
NetMHCIIpan-4.0 predicted affinity & peptide prevalence > 0.35 500nM 265 0.811 0.903 0.837 0.855 0.899 0.878 0.762 0.000 0.000
NetMHCIIpan-4.0 predicted affinity & peptide prevalence > 0.35 50nM 59 0.898 0.223 0.574 0.357 0.899 0.878 0.971 0.000 0.001
NetMHCIIpan-4.0 predicted affinity & peptide prevalence > 0.38 500nM 265 0.811 0.903 0.837 0.855 0.899 0.878 0.762 0.000 0.000
NetMHCIIpan-4.0 predicted affinity & peptide prevalence > 0.38 50nM 59 0.898 0.223 0.574 0.357 0.899 0.878 0.971 0.000 0.001
NetMHCIIpan-4.0 predicted affinity & peptide prevalence > 0.4 (Our
combined model)

500nM 251 0.849 0.895 0.859 0.871 0.923 0.903 0.819 0.000 0.000

NetMHCIIpan-4.0 predicted affinity & peptide prevalence > 0.4 50nM 54 0.944 0.214 0.576 0.349 0.923 0.903 0.986 0.000 0.001

Table 1: Performance of machine learning only models and combined models on predicting MIRA
assay immunogenicity results. The methods in bold are used for population coverage estimation
and vaccine design.
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Supplementary Information

Average Asian Black White

Subunit
All-

windows
Non-

redundant

Augmented
(All
pep-
tides)

Augmented
(MIRA
only)

All-
windows

Non-
redundant

Augmented
(All
pep-
tides)

Augmented
(MIRA
only)

All-
windows

Non-
redundant

Augmented
(All
pep-
tides)

Augmented
(MIRA
only)

All-
windows

Non-
redundant

Augmented
(All
pep-
tides)

Augmented
(MIRA
only)

Insufficient coverage (num. peptide-HLA hits = 0, 50 nM affinity)
— MHC Class I —
FP 71.353% 74.637% 0.000% 0.003% 45.352% 45.431% 0.000% 0.000% 87.074% 91.360% 0.000% 0.009% 81.635% 87.121% 0.000% 0.000%
E 16.287% 16.342% 0.000% 0.003% 5.801% 5.801% 0.000% 0.000% 20.387% 20.387% 0.000% 0.009% 22.674% 22.838% 0.000% 0.000%
N 1.707% 1.991% 0.000% 0.003% 2.375% 2.476% 0.000% 0.000% 2.239% 2.872% 0.000% 0.008% 0.508% 0.625% 0.000% 0.000%
RBD 1.163% 2.485% 0.000% 0.003% 1.524% 1.605% 0.000% 0.000% 1.609% 3.172% 0.000% 0.009% 0.357% 2.678% 0.000% 0.000%
M 0.510% 0.527% 0.000% 0.003% 1.379% 1.402% 0.000% 0.000% 0.145% 0.167% 0.000% 0.009% 0.008% 0.012% 0.000% 0.000%
S2 0.239% 0.239% 0.000% 0.001% 0.010% 0.010% 0.000% 0.000% 0.665% 0.665% 0.000% 0.004% 0.041% 0.041% 0.000% 0.000%
NTD 0.012% 0.021% 0.000% 0.002% 0.000% 0.000% 0.000% 0.000% 0.037% 0.063% 0.000% 0.007% 0.000% 0.001% 0.000% 0.000%
S1 0.004% 0.004% 0.000% 0.002% 0.000% 0.000% 0.000% 0.000% 0.011% 0.011% 0.000% 0.007% 0.000% 0.000% 0.000% 0.000%
S 0.001% 0.001% 0.000% 0.001% 0.000% 0.000% 0.000% 0.000% 0.004% 0.004% 0.000% 0.004% 0.000% 0.000% 0.000% 0.000%
— MHC Class II —
E 59.270% 59.270% 0.326% 4.375% 71.566% 71.566% 0.926% 11.058% 57.499% 57.499% 0.035% 2.035% 48.743% 48.743% 0.018% 0.031%
FP 53.993% 54.785% 0.325% 4.705% 89.371% 89.541% 0.925% 11.992% 37.366% 39.409% 0.033% 2.076% 35.243% 35.404% 0.018% 0.049%
RBD 15.123% 15.551% 0.309% 4.351% 37.287% 37.662% 0.884% 10.999% 7.271% 7.882% 0.031% 2.029% 0.811% 1.108% 0.011% 0.025%
N 6.495% 6.534% 0.326% 4.417% 16.590% 16.615% 0.926% 11.180% 2.590% 2.667% 0.035% 2.035% 0.306% 0.321% 0.018% 0.035%
NTD 4.266% 4.305% 0.309% 2.595% 12.520% 12.520% 0.884% 7.574% 0.237% 0.350% 0.031% 0.201% 0.041% 0.043% 0.011% 0.012%
M 1.159% 1.185% 0.043% 0.555% 2.107% 2.177% 0.112% 0.475% 1.346% 1.346% 0.015% 1.187% 0.023% 0.031% 0.001% 0.002%
S1 1.144% 1.712% 0.309% 0.747% 3.221% 4.884% 0.884% 2.058% 0.185% 0.214% 0.031% 0.176% 0.026% 0.039% 0.011% 0.008%
S2 1.132% 1.157% 0.252% 1.128% 2.036% 2.072% 0.723% 2.036% 1.331% 1.345% 0.028% 1.326% 0.029% 0.055% 0.007% 0.021%
S 0.721% 0.723% 0.252% 0.721% 1.981% 1.981% 0.723% 1.981% 0.174% 0.176% 0.028% 0.174% 0.008% 0.010% 0.007% 0.008%

Insufficient coverage (num. peptide-HLA hits ≤ 5, 50 nM affinity)
— MHC Class I —
FP 100.000%100.000% 0.054% 0.241% 100.000%100.000% 0.004% 0.004% 100.000%100.000% 0.156% 0.696% 100.000%100.000% 0.003% 0.024%
E 60.620% 93.911% 0.135% 0.253% 63.905% 91.005% 0.026% 0.007% 67.162% 95.237% 0.352% 0.721% 50.792% 95.490% 0.026% 0.033%
RBD 38.186% 60.911% 0.097% 0.187% 24.215% 44.223% 0.003% 0.004% 43.773% 68.566% 0.271% 0.545% 46.570% 69.944% 0.017% 0.011%
N 29.965% 60.636% 0.117% 0.188% 28.029% 60.716% 0.019% 0.004% 41.711% 68.692% 0.311% 0.533% 20.155% 52.501% 0.020% 0.027%
S2 7.719% 12.527% 0.104% 0.165% 4.667% 5.981% 0.007% 0.004% 12.029% 18.032% 0.285% 0.478% 6.460% 13.568% 0.021% 0.012%
NTD 7.527% 21.328% 0.079% 0.136% 5.798% 14.459% 0.004% 0.004% 14.061% 33.982% 0.226% 0.388% 2.722% 15.543% 0.007% 0.016%
M 5.565% 13.470% 0.157% 0.227% 2.908% 10.612% 0.000% 0.001% 9.821% 17.547% 0.463% 0.661% 3.965% 12.252% 0.009% 0.018%
S1 1.261% 2.718% 0.027% 0.082% 1.657% 2.619% 0.003% 0.003% 1.980% 4.045% 0.077% 0.239% 0.145% 1.491% 0.002% 0.004%
S 0.642% 0.769% 0.023% 0.072% 1.328% 1.330% 0.000% 0.001% 0.586% 0.941% 0.068% 0.213% 0.010% 0.036% 0.001% 0.002%
— MHC Class II —
FP 84.170% 100.000% 1.314% 11.995% 97.154% 100.000% 3.499% 30.779% 80.048% 100.000% 0.368% 4.895% 75.307% 100.000% 0.075% 0.312%
E 79.568% 98.697% 1.064% 12.088% 95.689% 99.978% 2.575% 29.647% 83.965% 99.520% 0.476% 6.291% 59.050% 96.594% 0.140% 0.325%
RBD 26.357% 40.006% 1.113% 11.237% 52.055% 57.318% 2.364% 30.118% 17.387% 41.002% 0.919% 3.420% 9.629% 21.698% 0.057% 0.173%
N 18.762% 33.370% 0.920% 6.885% 40.350% 64.996% 2.384% 17.522% 6.874% 19.635% 0.318% 2.903% 9.063% 15.480% 0.057% 0.231%
NTD 9.735% 18.811% 0.861% 5.363% 25.412% 40.726% 2.294% 14.491% 3.246% 13.667% 0.258% 1.524% 0.548% 2.040% 0.030% 0.075%
S1 8.533% 14.721% 0.793% 5.048% 23.701% 35.571% 2.133% 13.612% 1.770% 7.918% 0.229% 1.475% 0.128% 0.673% 0.018% 0.056%
M 7.037% 23.481% 0.831% 2.450% 14.779% 46.663% 2.256% 5.582% 3.628% 11.857% 0.204% 1.708% 2.704% 11.925% 0.033% 0.059%
S2 6.281% 10.474% 0.641% 3.632% 14.313% 22.548% 1.604% 9.324% 3.683% 7.233% 0.283% 1.521% 0.846% 1.642% 0.037% 0.051%
S 3.610% 6.393% 0.571% 3.453% 9.593% 16.326% 1.491% 9.199% 1.202% 2.705% 0.209% 1.131% 0.035% 0.148% 0.014% 0.029%

Table S1: Percentage of a population that is insufficiently covered by subunit vaccines and the improvement
after adding MHC class I and MHC class II augmentation peptides. Results are shown for both separate and
joint designs of augmentation peptides. The list is sorted by decreasing insufficient coverage of unaugmented
subunits. We chose the set with the minimal number of peptides that achieves the targeting criteria specified
by OptiVax-Joint.
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Figure S1: Predicted uncovered percentage of populations as a function of the minimum number of peptide-
HLA hits in an individual for E, M, N protein and fusion peptide (FP). Annotated percentages are the
average across populations self-reporting as Asian, Black, and White. A redundant sampling of peptides is
depicted by solid lines for populations self-reporting as Asian, Black, and White as well their average. A
non-redundant sampling of peptides is depicted by dotted lines.

Figure S2: Correlation between subunit size and the predicted population gap in percent of population with
less than six peptide-HLA hits per individual for MHC class I (blue) and MHC class II (red).
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25-mer
Peptide
Count

MHC
Class

Extracted
non-

redundant
pep-
tides

EvalVax-
Robust
(n ≥ 1)

EvalVax-
Robust
(n ≥ 5)

EvalVax-
Robust

(n ≥ 10)

Exp
#peptide-
HLA hits

(Asian)

Exp
#peptide-
HLA hits

(Black)

Exp
#peptide-
HLA hits

(White)

Protein origin

4
MHC1 11 99.843% 64.613% 2.416% 5.420 4.604 5.933

ORF1b, S2, S1
MHC2 16 98.780% 69.374% 36.635% 5.503 8.247 10.131

9
MHC1 31 99.992% 93.955% 66.358% 12.901 9.960 11.932

ORF1b, S1, ORF1a, S2, ORF10
MHC2 29 99.574% 94.053% 75.476% 11.407 14.966 17.972

14
MHC1 53 99.996% 98.380% 86.729% 17.502 14.189 16.358

ORF1a, ORF1b, M, S1, S2
MHC2 43 99.610% 96.558% 86.641% 14.906 20.042 23.785

19
MHC1 70 99.999% 99.551% 92.853% 22.164 17.699 19.730

ORF1b, M, ORF1a, S1, S2, ORF3a
MHC2 58 99.630% 98.182% 90.724% 19.677 25.248 31.562

24
MHC1 80 99.999% 99.706% 95.197% 24.722 19.356 21.625

ORF1b, M, ORF1a, S1, S2, ORF3a
MHC2 67 99.684% 98.654% 92.741% 21.211 29.457 35.659

Table S2: Predicted population coverage of a peptide-only vaccine jointly optimized for MHC class I and
class II coverage with 4, 9, 14, 19, and 24 25-mer peptides.

Candidates
MHC
Class

Peptide
Count

EvalVax-
Robust
(n ≥ 1)

EvalVax-
Robust
(n ≥ 5)

EvalVax-
Robust

(n ≥ 10)

Exp
#peptide-
HLA hits

(Asian)

Exp
#peptide-
HLA hits

(Black)

Exp
#peptide-
HLA hits

(White)

Protein origin

MIRA
peptides

MHC1 36 99.997% 99.832% 96.614% 22.987 20.017 21.957
M, N, ORF10, ORF1a,
ORF1b, ORF3a, ORF7a, S1,
S2

All peptides MHC1 31 100.000% 99.949% 96.366% 18.959 17.026 18.821
M, N, ORF10, ORF1a,
ORF1b, ORF3a, S1, S2

MIRA
peptides

MHC2 40 95.625% 88.796% 81.923% 16.560 26.818 39.001
M, N, ORF3a, ORF7a, ORF8,
S1, S2

All peptides MHC2 38 99.691% 99.042% 92.767% 19.041 26.220 29.402
M, N, ORF1a, ORF1b,
ORF3a, S1, S2

Table S3: Predicted population coverage of peptide-only vaccines optimized separately for MHC class I and
class II coverage, using either MIRA positive peptides only or all filtered peptides in SARS-CoV-2.

Figure S3: Predicted coverage in populations self-reporting as White, Black, and Asian with a peptide-only
vaccine comprising 24 25-mer peptides jointly optimized for MHC class I and MHC class II coverage. The
red dotted vertical line shows the expected number of hits.
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Figure S4: Comparison of the number of amino acids and total number of peptides used by separate and
joint designs and their respective predicted population coverage with more than 7 peptide-HLA hits per
individual. The predicted population coverage is shown for the peptide-only de novo vaccine designs.

Design Sequence

MHC Class I
S Augmenta-
tion Construct
(OptiVax-Robust)

MRVTAPRTLILLLSGALALTETWAGS G G S G G G G S G G ATSRTLSYY G G S G G G G S G G FAYANRNRF G G S G G G G

S G G FLNRFTTTL G G S G G G G S G G FTYASALWEI G G S G G G G S G G SINFVRIIMR G G S G G G G S G G SPRWYFYYL

G G S G G G G S G G TVYSHLLLV G G S G G G G S G G YIFFASFYY G G S G G G G S G G YLDAYNMMI G G S L G G G G S G

IVGIVAGLAVLAVVVIGAVVATVMCRRKSSGGKGGSYSQAASSDSAQGSDVSLTA

MHC Class II
S Augmenta-
tion Construct
(OptiVax-Robust)

MRVTAPRTLILLLSGALALTETWAGSGGSGGGGSGGAVFQSASKIITLKKRWQLAGGSGGGGSGGDGVKHVYQLRARSVSPKLFIGGS

GGGGSGGDNKFALTCFSTQFAFACPDGGGSGGGGSGGDQVILLNKHIDAYKTFPPTGGSGGGGSGGEHVTFFIYNKIVDEPEEHVGGS

GGGGSGGHQPYVVDDPCPIHFYSKWYIGGSGGGGSGGIITLKKRWQLALSKGVHFVGGSGGGGSGGMDLFMRIFTIGTVTLKQGEGGS

GGGGSGGMWLSYFIASFRLFARTRSMGGSGGGGSGGNGGDAALALLLLDRLNQLEGGSGGGGSGGPKEITVATSRTLSYYKLGAGGSG

GGGSGGPRQKRTATKAYNVTQAFGRGGSGGGGSGGPSDFVRATATIPIQASLPFGGSGGGGSGGRWYFYYLGTGPEAGLPYGAGGSGG

GGSGGSFRLFARTRSMWSFNPETNGGSGGGGSGGSYFTSDYYQLYSTQLSTDTGGSGGGGSGGTGPEAGLPYGANKDGIIWVGGSGGG

GSGGTSPARMAGNGGDAALALLLGGSGGGGSGGTYTGAIKLDDKDPNFKDQVGGSGGGGSGGVKDCVVLHSYFTSDYYQLYGGSLGGG

GSGIVGIVAGLAVLAVVVIGAVVATVMCRRKSSGGKGGSYSQAASSDSAQGSDVSLTA

Table S4: Example protein constructs for augmentations to S subunit vaccines optimized for either MHC
class I or MHC class II by OptiVax-Robust. Constructs contain a secretion signal sequence (red), peptides
(bold) joined by non-immunogenic glycine/serine linkers, and an MHC class I trafficking signal (blue). The
augmentation peptides encoded are the same as those evaluated in Table S1. Peptides are prepended with a
secretion signal sequence at the N-terminus and followed by an MHC class I trafficking signal (MITD) (Kreiter
et al., 2008; Sahin et al., 2017). The MITD has been shown to route antigens to pathways for HLA class
I and class II presentation (Kreiter et al., 2008). Here we combine all peptides of each MHC class into a
single construct using a non-immunogenic glycine/serine linkers from Sahin et al. (2017), though it is also
plausible to construct individual constructs containing single peptides with the same secretion and MITD
signals as demonstrated by Kreiter et al. (2008).
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Design Sequence

Joint MHC Class
I and Class II
S Augmenta-
tion Construct
(OptiVax-Joint)

MRVTAPRTLILLLSGALALTETWAGSGGSGGGGSGGASEFSSLPSYAAFATAQEAYEQAVAGGSGGGGSGGDTDFVNEFYAYLRKH

FSMMILSDDAGGSGGGGSGGDYPKCDRAMPNMLRIMASLVLARKHGGSGGGGSGGEKVNINIVGDFKLNEEIAIILASFSGGSGG

GGSGGESPFVMMSAPPAQYELKHGTFTCASGGSGGGGSGGFGLVAEWFLAYILFTRFFYVLGLAAGGSGGGGSGGFKIYSKHTPI

NLVRDLPQGFSALEPGGSGGGGSGGFRNARNGVLITEGSVKGLQPSVGPKGGSGGGGSGGGAGAALQIPFAMQMAYRFNGIGVTQ

GGSGGGGSGGGIATVREVLSDRELHLSWEVGKPRPGGSGGGGSGGGLMWLSYFIASFRLFARTRSMWSFNGGSGGGGSGGGVSFS

TFEEAALCTFLLNKEMYLKLGGSGGGGSGGGVYDYLVSTQEFRYMNSQGLLPPKNGGSGGGGSGGGWTAGAAAYYVGYLQPRTFL

LKYNEGGSGGGGSGGIICISTKHFYWFFSNYLKRRVVFNGGGSGGGGSGGIPKDMTYRRLISMMGFKMNYQVNGYGGSGGGGSGG

LDISASIVAGGIVAIVVTCLAYYFMGGSGGGGSGGLQSLQTYVTQQLIRAAEIRASANLAGGSGGGGSGGNNLVVMAYITGGVVQ

LTSQWLTNIFGGSGGGGSGGPLIQPIGALDISASIVAGGIVAIVVGGSGGGGSGGQPTESIVRFPNITNLCPFGEVFNATGGSGG

GGSGGSIKNFKSVLYYQNNVFMSEAKCWTEGGSGGGGSGGSQSIIAYTMSLGAENSVAYSNNSIAGGSGGGGSGGTDTPKGPKVK

YLYFIKGLNNLNRGMGGSGGGGSGGTFCAGSTFISDEVARDLSLQFKRPIGGSGGGGSGGTFYLTNDVSFLAHIQWMVMFTPLVP

GGSGGGGSGGTITQMNLKYAISAKNRARTVAGVSIGGSGGGGSGGTITSGWTFGAGAALQIPFAMQMAYRGGSGGGGSGGTSQWL

TNIFGTVYEKLKPVLDWLEEGGSGGGGSGGVRKIFVDGVPFVVSTGYHFRELGVVGGSGGGGSGGVVFVLWAHGFELTSMKYFVK

IGPERGGSGGGGSGGWESGVKDCVVLHSYFTSDYYQLYSTGGSGGGGSGGYESLRPDTRYVLMDGSIIQFPNTYLGGSLGGGGSG

IVGIVAGLAVLAVVVIGAVVATVMCRRKSSGGKGGSYSQAASSDSAQGSDVSLTA

Table S5: Example protein construct for augmentations to S subunit vaccines jointly optimized for both
MHC class I and class II by OptiVax-Joint. Constructs contain a secretion signal sequence (red), 33 25-mer
peptides (bold) joined by non-immunogenic glycine/serine linkers, and an MHC class I trafficking signal
(blue). The augmentation peptides encoded are the same as those evaluated in Table S1.

Figure S5: Comparison of predicted human population coverage gaps using MHC class I HLA haplotype
frequencies from Gragert et al. (2013) and Liu et al. (2020). Predicted uncovered percentage of populations
as a function of the minimum number of peptide-HLA hits in an individual. HLA haplotype frequencies are
from Gragert et al. (2013) (dotted lines) or Liu et al. (2020) (solid lines). Annotated numeric percentages
are the average population gaps across populations self-reporting as Black/AFB with haplotype frequencies
from Gragert et al. (2013) and Liu et al. (2020). All data are for the redundant sampling of subunits.
Peptide scoring is based upon MIRA data as elaborated by machine learning predictions by an ensemble of
NetMHCpan4.0 and MHCflurry 2.0.
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Organization Vaccine Subunit Delivery Method Reference

Janssen (Johnson &
Johnson)

Ad26COVS1 S1 Adenoviral vector Belgian Biosafety Server (2020)

AstraZeneca + Univer-
sity of Oxford

AZD1222
(ChAdOx1
nCoV-19)

S Adenoviral vector Folegatti et al. (2020)

Pfizer + BioNTech
BNT162b1 RBD mRNA Mulligan et al. (2020)
BNT162b2 S mRNA BioNTech (2020)

Moderna mRNA-1273 S mRNA Jackson et al. (2020)

Merck + IAVI — S VSV chimeric virus Cohen (2020)

Merck + Themis — S Attenuated measles virus Cohen (2020)

Novavax
NVX-
CoV2373

S Protein subunit (nanoparticle) Tian et al. (2020)

Sanofi + GlaxoSmithK-
line

— S Protein subunit World Health Organization (2020)

Table S6: Overview of SARS-CoV-2 vaccines in development by Operation Warp Speed participants. See
World Health Organization (2020) for additional COVID-19 candidate vaccines.

Table S7: Detailed augmentation designs for optimized peptide sets in Table S1. See
AugmentationPeptides.xlsx.

Table S8: List of uncovered genotypes with zero predicted peptide-HLA hits for each SARS-CoV-2 subunit.
Columns indicate genotype frequency in each population. See UncoveredGenotypes.xlsx.
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