1 Illumina iSeq 100 and MiSeq exhibit similar performance in freshwater fish

2 environmental DNA metabarcoding

- 3 Running title: Fish eDNA metabarcoding using iSeq and MiSeq
- 4 Ryohei Nakao¹, Ryutei Inui², Yoshihisa Akamatsu¹, Masuji Goto³, Hideyuki Doi⁴,

5 Shunsuke Matsuoka⁴

- ⁶ ¹Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1,
- 7 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan.
- ⁸ ²Faculty of Socio-Environmental Studies, Fukuoka Institute of Technology, 3-30-1,
- 9 Wajiro-higashi, Higashi-Ku, Fukuoka, 811-0295, Japan.
- ¹⁰ ³Research and Development Center of Nippon Koei Co. Ltd., 2304, Inarihara, Tsukuba,
- 11 Ibaraki, 300-1259, Japan.
- ⁴Graduate School of Simulation Studies, University of Hyogo, 7-1-28,
- 13 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.

14 Correspondence

- 15 Ryohei Nakao, Graduate School of Science and Technology for Innovation, Yamaguchi
- 16 University, 2-16-1, Tokiwadai, Ube, Yamaguchi, 755-8611, Japan.
- 17 E-mail: lineck92@yahoo.co.jp
- 18

19 Abstract

20	Environmental DNA (eDNA) analysis is a method of detecting DNA from environmental
21	samples, and it is used as a biomonitoring tool. In recent studies, Illumina MiSeq has been the
22	most extensively used tool for eDNA metabarcoding, one of the eDNA analysis approaches.
23	The Illumina iSeq 100 (hereafter, iSeq) is one of the numerous high-throughput sequencers
24	(HTS). It has a relatively simple workflow and is potentially more affordable than other
25	sequencers for deployment in HTS environments. However, to date, only a few studies have
26	adopted iSeq, and its utility in eDNA metabarcoding has still not been investigated
27	comprehensively. In the present study, we applied fish eDNA metabarcoding to river and lake
28	environmental samples using iSeq and MiSeq approaches. We also assessed differences in fish
29	species detectability among iSeq, MiSeq, and conventional approaches. Twenty-seven river
30	and 13 lake samples were amplified using MiFish primers and sequenced with iSeq and
31	MiSeq, respectively. The iSeq and MiSeq metabarcoding achieved high detectability for fish
32	taxa in the ecosystems. Species numbers and compositions in each river detected using iSeq
33	were almost consistent with those of MiSeq, indicating detectability of both techniques was
34	comparable. The comparison of the species compositions of the two HTSs with those of
35	conventional methods showed that the common species between each HTS and the
36	conventional methods were exactly similar. According to the results, if the same amplicon

- 37 library were used for sequencing, there would be negligible detectability differences between
- iSeq and MiSeq based on eDNA metabarcoding.
- 39 Keywords: environmental DNA, metabarcoding, MiFish, iSeq 100, MiSeq
- 40
- 41

42 Introduction

43	Environmental DNA (eDNA) analysis methods can detect the DNA fragments shed from
44	macro-organisms in environmental samples (water, sediment, or air). The eDNA methods can
45	provide information on the distribution, abundance, seasonal change, and migration of species
46	(Takahara et al., 2012; Doi et al., 2017; Stockle et al., 2017; Wu et al., 2019) and can facilitate
47	biodiversity monitoring activities (Tabarlet et al., 2012; Barns & Turner, 2016). Furthermore,
48	eDNA methods use environmental samples for DNA detection, permitting non-invasive and
49	non-destructive surveys in target species, habitats, and ecosystems (Jerde et al., 2011). One of
50	the eDNA methods, eDNA metabarcoding, can detect multiple species from an environmental
51	sample simultaneously using high-throughput sequencing (HTS) (Thomsen et al., 2012; Miya
52	et al., 2015; Yamamoto et al., 2017; Deiner et al., 2017). eDNA metabarcoding has been
53	applied to detect both vertebrate (Port et al., 2016; Closek et al., 2019; Ushio et al., 2017;
54	2018, Miya et al., 2015) and invertebrate (Komai et al., 2019; Thomsen & Sigsgaard 2019;
55	Mychek-Londer et al., 2019) compositions in communities. In addition, eDNA metabarcoding
56	can detect higher levels of species diversity (Olds et al., 2016; Shaw et al., 2016) or
57	complementary species diversity compared to conventional monitoring methods (Yamamoto
58	et al., 2017; Hänfling et al., 2016).
59	Illumina MiSeq is the mainstream HTS platform for the detection species composition

60	using eDNA metabarcoding (Miya et al., 2015; Port et al., 2016; Deiner et al., 2016; Stoeckle
61	et al., 2017; Komai et al., 2019). In early 2019, the Illumina iSeq 100 (iSeq), which is a
62	simpler and more affordable HTS system, was released (Illumina, 2019a). The differences
63	between iSeq and MiSeq are as follows. First, iSeq and MiSeq have different base-calling
64	systems, with iSeq sequencing in a single-color signal, while MiSeq has four-color signals
65	corresponding to each sequence (Illumina, 2019a). Secondly, the structure of the flow cell for
66	loading the sequencing library varies between iSeq and MiSeq, with iSeq being a patterned
67	flow cell, while MiSeq is a random flow cell. Finally, the sequencing workflow between the
68	iSeq and MiSeq is different. The iSeq is simpler and requires less preparation using the
69	cartridge, while the MiSeq requires relatively more preparation steps, including pre- and
70	post-run wash of the flow channel. Such differences between the two sequencing approaches
71	could influence species detectability and the sequencing quality during eDNA metabarcoding.
72	However, to the best of our knowledge, no eDNA studies have been conducted using iSeq,
73	and no comparative studies between iSeq and MiSeq have been performed.
74	In the present study, we compared the sequence quality and taxonomic assignment of
75	eDNA metabarcoding between iSeq and MiSeq using the fish-specific primer set (MiFish
76	primers; Miya et al. 2015). In addition, to evaluate the capacity of iSeq and MiSeq to detect
77	species based on eDNA metabarcoding, we compared fish species compositions between

- eDNA metabarcoding (iSeq and MiSeq) and conventional methods.
- 79

80 Materials and Methods

81 Sample collection and filtration

82	We used 40 water samples for eDNA metabarcoding from 27 sites in 9 rivers and 13 lakes
83	in Japan from 2016 to 2018 (Fig. 1). Sampling ID and detailed information for each site are
84	listed in Supplementary Table S1. In the river water sampling, 1-L water samples were
85	collected from the surface of at the shore of each river using bleached plastic bottles. In the
86	field, a 1-ml Benzalkonium chloride solution (BAC, Osuban S, Nihon Pharmaceutical, Tokyo,
87	Japan; Yamanaka et al., 2017) was added to each water sample to suppress eDNA
88	degeneration before filtering the water samples. We did not include field negative control
89	samples in the HTS library, considering the aim of the presents study. The lake samples were
90	provided by Doi et al. (2020) as DNA extracted samples. In the lake samples, 1-L water
91	samples were collected from the surface at shore sites at each lake. The samples were then
92	transported to the laboratory in a cooler at 4°C. Each of the 1-L water samples was filtered
93	through GF/F glass fiber filter (normal pore size = $0.7 \ \mu m$; diameter = $47 \ mm$; GE Healthcare
94	Japan Corporation, Tokyo, Japan) and divided into two parts (maximum 500-ml water per 1
95	GF/F filter). To prevent cross-contamination among the water samples, the filter funnels, and

- 96 the measuring cups were bleached after filtration. All filtered samples were stored at $-20\Box$ in
- 97 the freezer until the DNA extraction step.
- 98
- 99 DNA extraction and library preparation

100 The total eDNA was extracted from each filtered sample using the DNeasy Blood and

- 101 Tissue Kit (QIAGEN, Hilden, Germany). Extraction methods were according to Uchii et al.
- 102 (2016), with a few modifications. A filtered sample was placed in the upper part of a Salivette
- 103 tube and 440 μ L of a solution containing 400 μ L Buffer AL and 40 μ L Proteinase K added.
- 104 The tube with the filtered sample was incubated at 56°C for 30 min. Afterward, the tube was
- 105 centrifuged at 5000 $\times g$ for 3 min, and the solution at the bottom part of the tube was collected.
- 106 To increase eDNA yield, 220-µL Tris-EDTA (TE) buffer was added to the filtered sample and
- 107 the sample re-centrifuged at 5000 $\times g$ for 1 min. Subsequently, 400 μ L of ethanol was added to
- 108 the collected solution, and the mixture was transferred to a spin column. Afterward, the total
- 109 eDNA was eluted in 100-µL buffer AE according to the manufacturer's instructions. All
- eDNA samples were stored at -20°C until the library preparation step.
- 111 In the present study, we used a universal primer set "MiFish" (Miya et al. 2015) for eDNA
- 112 metabarcoding. The amplicon library was prepared according to the following protocols. In
- 113 the first PCR, the total reaction volume was 12 μ L, containing 6.0 μ L 2× KOD buffer, 2.4 μ L

114 dNTPs, 0.2 μL KOD FX Neo (TOYOBO, Osaka, Japan), 0.35 μL MiFish-U-F (5'-

115 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNGTCGGTAAAACTCGTGCCA

116 GC -3'), MiFish-U-R (5'-

117 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNCATAGTGGGGTATCTAAT

118 CCCAGTTTG -3'), MiFish-E-F (5'-

119 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNRGTTGGTAAATCTCGTGCC

- 120 AGC -3') and MiFish-E-R (5'-
- 121 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGCATAGTGGGGTATCTAA
- 122 TCCTAGTTTG -3') primers with Illumina sequencing primer region and 6-mer Ns, and 2 µL
- template DNA. The thermocycling conditions were $94\square$ for 2 min, 35 cycles of $98\square$ for 10 s,
- 124 $65\square$ for 30 s, $68\square$ for 30 s, and $68\square$ for 5 min. The first PCR was repeated four times for
- 125 each sample, and the replicated samples were pooled as a single first PCR product for use in
- the subsequent step. The pooled first PCR products were purified using the Solid Phase
- 127 Reversible Immobilization select Kit (AMPure XP; BECKMAN COULTER Life Sciences,
- 128 Indianapolis, IN, USA) according to the manufacturer's instructions. The DNA concentrations
- 129 of purified first PCR products were measured using a Qubit dsDNA HS assay kit and a Qubit
- 130 3.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). All purified first PCR
- 131 products were diluted to 0.1 ng/ μ L with H₂O, and the diluted samples were used as templates

132	for the second PCR. In the first PCR step, the PCR negative controls (four replicates) were
133	included in each experiment. A total of three PCR negative controls were included in the
134	library (PCR Blank 1–3 samples in Supplementary Table S1, S2, S4, and S5).
135	The second PCR was performed to add HTS adapter sequences with 8-bp dual indices. The
136	total reaction volume was 12 μ L, containing 6.0 μ L 2× KAPA HiFi HotStart ReadyMix, 1.4
137	μL forward and reverse primer (2.5 μM), 1 μL purified first PCR product, and 2.2 μL H ₂ O.
138	The thermocycling conditions were 95 \square for 3 min, 12 cycles of 98 \square for 20 s, 72 \square for 15 s,
139	and $72\square$ for 5 min.
140	Each Indexed second PCR product was pooled in the equivalent volume, and 25 μL of the
141	pooled libraries were loaded on a 2% E-Gel SizeSelect agarose gels (Thermo Fisher
142	Scientific), and a target library size (ca. 370 bp) was collected. The quality of the amplicon
143	library was checked using an Agilent 2100 Bioanalyzer and Agilent 2100 Expert (Agilent
144	Technologies Inc., Santa Clara, CA, USA), and the DNA concentrations of the amplicon
145	library were measured using Qubit dsDNA HS assay Kit using a Qubit 3.0 fluorometer.
146	
147	High-throughput sequencing

Amplicon library was sequenced using iSeq and MiSeq platforms (Illumina, San Diego,
 CA, USA). To normalize the percentage of pass-filtered read numbers, the sequencing runs

150	using the same libraries were performed using iSeq i1 Reagent and MiSeq Reagent Kit v2
151	Micro. Both sequencing was performed with 8 million pair-end reads and 2×150 bp read
152	lengths. Each library was spiked with approximately 20% PhiX control (PhiX Control Kit v3,
153	Illumina, San Diego, CA, USA) before sequencing runs according to the recommendation of
154	Illumina. The wells of cartridges in the iSeq run were loaded with 20 μL of 50 pM library
155	pool, and sequencing performed at Yamaguchi University, Yamaguchi, Japan. The wells of
156	cartridges for MiSeq runs were loaded with 600 μ L of 16 pM library pool, and sequencing
157	performed at Illumina laboratories (Minato-ku, Tokyo, Japan). Subsequently, the sequencing
158	dataset outputs from iSeq and MiSeq were subjected to pre-processing and taxonomic
159	assignments. All sequence data are registered in the DNA Data Bank of Japan (DDBJ)
160	Sequence Read Archive (DRA, Accession number: DRA10593).
161	
162	Pre-processing and taxonomic assignments
163	We used the USEARCH v11.0667 (Edger, 2010) for all data pre-processing activities and
164	taxonomic assignment of the HTS datasets obtained from the iSeq and MiSeq platforms
165	(Komai et al., 2019; Takeuchi et al., 2019). First, pair-end reads (R1 and R2 reads) generated
166	from iSeq and MiSeq platforms were assembled using the "fastq_mergepairs" command
167	(overlapped reads are not written). In the process, the low-quality tail reads with a cut-off

168	threshold at a Phred score of 2, and the paired reads with too many mismatches (> 5 positions)
169	in the aligned regions were discarded. Secondly, the primer sequences were removed from the
170	merged reads using the "fastx_truncate" command. Afterward, read quality filtering was
171	performed using the "fastq_filter" command with thresholds of max expected error > 1.0 and
172	> 50 bp read length. The pre-processed reads were dereplicated using the "fastx_uniques"
173	command, and the chimeric reads and less than 10 reads were removed from all samples as
174	the potential sequence errors. Finally, an error-correction of amplicon reads, which checks and
175	discards the PCR errors and chimeric reads, was performed using the "unoise3" command in
176	the unoise3 algorithm (Edger & Flyvbjerg, 2016). Before the taxonomic assignment, the
177	processed reads from the above steps were subjected to sequence similarity search using the
178	"usearch_global" command against reference databases of fish species that had been
179	established previously (MiFish local database v34). The sequence similarity and cut off
180	E-value were 99% and 10^{-5} , respectively. If there was only one species with ≥ 99 % similarity,
181	the sequence was assigned to the top-hit species. Conversely, sequences assigned to two or
182	more species in the \geq 99 % similarity were merged as species complex and listed in the
183	synonym group. Generally, the species complexes were assigned to the genus level (e.g. Asian
184	crucian carp Carassius spp.). Species that were unlikely to inhabit Japan were excluded from
185	the candidate list of species complexes. For example, the sequence of one of bitterling

186	Acheilignathus macropterus included other different two species, Acheilognathus barbatus
187	and Acheilignathus chankaensis, as the species of the 2nd hit candidate; however, the two
188	species are not currently found in Japan. Therefore, the sequence was assigned to A.
189	macropterus in the present study. Because we used only freshwater fish species, we removed
190	the OTUs assigned to marine and brackish fishes from each sample. Finally, sequence reads
191	of each fish species were arranged into the matrix, with the rows and columns representing
192	the number of sites and fish species (or genus), respectively.
193	
194	Comparing sequence quality and fish fauna between iSeq and MiSeq
195	We evaluated sequence quality based on 1) the percentage of clustering passing filter (%
195 196	We evaluated sequence quality based on 1) the percentage of clustering passing filter (% PF) and 2) sequencing quality score \geq % Q30 (Read1 and Read2) between iSeq and MiSeq
196	PF) and 2) sequencing quality score $\geq \%$ Q30 (Read1 and Read2) between iSeq and MiSeq
196 197	PF) and 2) sequencing quality score \geq % Q30 (Read1 and Read2) between iSeq and MiSeq platforms. The % PF value is an indicator of signal purity for each cluster. When an HTS
196 197 198	PF) and 2) sequencing quality score \geq % Q30 (Read1 and Read2) between iSeq and MiSeq platforms. The % PF value is an indicator of signal purity for each cluster. When an HTS library with higher DNA concentrations is loaded, flow cells typically have high numbers of
196 197 198 199	PF) and 2) sequencing quality score \geq % Q30 (Read1 and Read2) between iSeq and MiSeq platforms. The % PF value is an indicator of signal purity for each cluster. When an HTS library with higher DNA concentrations is loaded, flow cells typically have high numbers of overlapped clusters and are over clustered. The condition leads to poor template generation,
196 197 198 199 200	PF) and 2) sequencing quality score $\geq \%$ Q30 (Read1 and Read2) between iSeq and MiSeq platforms. The % PF value is an indicator of signal purity for each cluster. When an HTS library with higher DNA concentrations is loaded, flow cells typically have high numbers of overlapped clusters and are over clustered. The condition leads to poor template generation, which decreases the % PF value (Illumina, 2019b). In the present study, a >80 % PF value

204	algorithm, similar to that originally developed for Sanger sequencing experiments (Ewing et
205	al. 1998). Higher Q scores indicate lower probability of sequencing error, and lower Q scores
206	indicate probability of false-positive variant calls resulting in inaccurate conclusions. In the
207	present study, the % Q30 values (error rate = 0.001 %) were used for the comparison of
208	sequence quality between iSeq and MiSeq. The parameters were collected directly using
209	Illumina BaseSpace Sequence Hub.
210	We also evaluated changes in sequence reads in pre-processing steps between iSeq and
211	MiSeq platforms. Sequence reads were assessed based 1) merge pairs, 2) quality filtering, and
212	3) denoising. Sequence R1 and R2 reads generated from HTS were first merged into single
213	sequence reads using the "fastq_mergepairs" command; however, non-merged sequence reads
214	were discarded in this step. In the marge pairs step, the changes in sequence reads from raw
215	sequence reads to merged sequence reads were calculated. In the quality filtering step, the
216	changes in sequence reads from merged sequence reads to sequence reads through the quality
217	filtering step were calculated. Finally, in denoising steps, the changes in sequence reads from
218	sequence reads through the quality filtering step to sequence reads through the denoising step
219	were calculated. The calculated numbers of sequence reads are listed in Supplementary Table
220	S2 and S3 in series.

Before the comparison of fish fauna, rarefaction curves were illustrated for each sample in

both iSeq and MiSeq to confirm that the sequencing depth adequately covered the spec	2 both iS	both iSeq and Mi	Seq to confirm the	hat the sequencin	g depth adequatel	y covered the speci
--	-----------	------------------	--------------------	-------------------	-------------------	---------------------

223	composition using the "rrarefy" function of the "vegan" package ver. 2.5-6
224	(https://github.com/vegandevs/vegan) in R ver. 3.6.2 (R Core Team 2019). We evaluated the
225	species detection capacities of iSeq and MiSeq based on environmental DNA metabarcoding
226	by comparing the differences in species composition and the number of species detected
227	between the two sequencers. To test the differences in the number of species between iSeq
228	and MiSeq, we performed paired t-tests based on the number of species at each sampling site.
229	
230	Comparison of fish species detectability between eDNA metabarcoding and conventional
231	methods
232	We evaluated species detectability between HTS platforms by comparing the fish species
233	lists of HTS platforms with lists from conventional methods. Five sampling sites were
234	selected from Kyushu and Chugoku districts (R23-27 in Fig.1). The fish fauna data obtained
235	by conventional methods were based on the results of a previous study (Doi et al., 2020). The
236	conventional surveys were conducted through hand-net sampling and visual observation by
237	snorkeling (see Doi et al., 2020 for the detailed methods). The count data of each species were
238	replaced with the incidence-based datasets (presence or absence) for comparing with the
239	eDNA metabarcoding datasets. Fish sequence reads of each sampling site obtained by eDNA

240 metabarcoding were also replaced with the incidence-based data.

241	To test the detectability of species observed with detectability under conventional methods,
242	the fish species compositions in five rivers were compared between the eDNA metabarcoding
243	(iSeq and MiSeq) and the conventional methods. Using fish faunal data obtained from iSeq,
244	MiSeq, and conventional methods, non-metric multidimensional scaling (NMDS) was
245	performed in 1000 separate runs. For NMDS, the dissimilarity of the fish fauna was
246	calculated based on the incidence-based Jaccard indices. Permutational multivariate analysis
247	of variance (PERMANOVA) was performed with 1000 permutations to assess the differences
248	in fish fauna among the methods and sites. Furthermore, to evaluate variance across sites
249	among methods, the permutational analyses of multivariate dispersions (PERMDISP) was
250	also performed with 1000 permutations. The "metaMDS", "adonis", and "betadisper"
251	functions in the "vegan" package ver. 2.5-6 were used for NMDS ordination, PERMNOVA,
252	and PERMDISP, respectively. To visualize the number of species in each method and the
253	number of common species between methods, Venn diagrams were illustrated for each river
254	using the "VennDiagram" package ver. 1.6.2 (Chen & Boutros, 2011) in R. To assess
255	differences in the number of species among methods at each river, the repeated measures
256	analysis of variance (ANOVA) was performed among iSeq, MiSeq, and conventional methods.
257	If a significant difference was found in repeated measures ANOVA, the Tukey-Kramer

258 multiple comparison test was performed to analyze differences among methods.

260	Results
-----	---------

- 261 HTS using iSeq and MiSeq
- In iSeq, the passing Filter (% PF), $\geq \%$ Q30 (Read 1), and $\geq \%$ Q30 (Read 2) were 80.80,
- 263 96.80, and 95.30%, respectively (Fig S1). In MiSeq, Passing Filter (% PF), \geq % Q30 (Read 1),
- and \geq % Q30 (Read 2) were 95.05, 97.30, and 96.48%, respectively (Fig. S1). The % PF
- value of iSeq was slightly lower than that of MiSeq; however, this was due to differences in
- the %PF calculation methods (Illumina, 2017). The Q30 values of Read 1 and 2 were not
- remarkably different between iSeq and MiSeq.
- In total, 3,325,177 and 2,154,367 read sequences were determined using iSeq and MiSeq,
- respectively. The sequencing depth and sequence per sample were consistent between iSeq
- and MiSeq in each processing step (Supplementary Table 2 and 3, Fig. S2–S5). In the present
- study, the differences in the numbers of sequence reads among samples were confirmed in the
- two sequencers. The rarefaction curves were saturated in all iSeq and MiSeq samples
- 273 (Supplementary Fig. S6 and S7). Therefore, the rarefying of read numbers among the samples
- was not performed.
- 275

276 Taxonomic assignment of sequence read

277	Sequence reads obtained from iSeq and MiSeq in the river and lake samples after
278	pretreatment are listed in Table 1. After the denoising step, most sequence reads in iSeq and
279	MiSeq could be taxonomically assigned to fish species. In total, 154 and 168 representative
280	iSeq and MiSeq sequences, respectively, were assigned to fish species (Assigned Reads in
281	Table 1). After the taxonomic assignment, 102 and 101 freshwater fish sequences with \geq
282	99 % identity were retained in iSeq and MiSeq, respectively. Low numbers of sequence reads
283	of two species (Rhinogobius sp. and Tridentiger sp.) were retained from negative control
284	samples (NC41-43) of iSeq and MiSeq (Supplementary Table S4 and S5), which could be due
285	to cross-contamination among samples. The species were commonly observed throughout the
286	samples, and the source of contamination could not be identified. Therefore, we did not assess
287	cross-contamination across the samples using negative control samples.
288	Based on the sequencing results, retained iSeq and MiSeq sequences were assigned to 69
289	and 68 freshwater fish species, subspecies, or genera, respectively (Supplementary Table S4
290	and S5). The genera that were assigned to multiple candidate species are listed in
291	Supplementary Table S6. Species compositions in all samples were almost similar between
292	iSeq and MiSeq. However, Japanese striped loach Cobitis biwae typeB was only detected in
293	L11 by iSeq sequencing. The number of species per sample ranged from 4 to 27, in iSeq, and

294	4 to 26, in MiSeq. The paired <i>t</i> -test revealed significant differences in the number of species
295	between iSeq and MiSeq at all sites (t = 5.6488, $p < 0.001$). The differences in the number of
296	species between iSeq and MiSeq ranged from 0 to 4. However, species that were detected by
297	iSeq only often had low read counts (11 to 32 reads per species, Supplementary Table S). For
298	example, 15 and 12 species were detected in the iSeq and MiSeq at site 5; however, the
299	numbers of reads of the three species detected only in the iSeq were 11 (Lepomis
300	macrochirus), 11 (Oncorhynchus masou subsp.), and 28 (Tachysurus nudiceps), respectively
301	(Supplementary Table S7).
302	
303	Comparison of fish species composition between eDNA methods and conventional methods
304	R23–27 river samples were used for the comparisons between the two sequencers and the
305	conventional methods (Fig. 2). A total of 30, 30, and 29 species were detected in R23-27
306	using the iSeq, MiSeq, and conventional methods, respectively (Supplementary Table S8).
307	The number of species detected by iSeq, MiSeq, and conventional methods were 14-19, 14-
308	-19, and 8-16 in each site in R23-27, respectively (Supplementary Table S8). The number of
309	species detected by iSeq and MiSeq was higher than that detected the conventional methods
310	in all survey sites (deep green in Fig. 2). High numbers of species were commonly detected
311	by iSeq, MiSeq, and conventional methods. In addition, no species that was common between

iSeq or MiSeq and conventional methods was identified. Based on the results of repeated

- measured ANOVA, there were significant differences among methods (F = 9.061, p = 0.0088),
- among sites (F = 4.827, p = 0.0282 in Supplementary Table S9). However, based on the
- results of the subsequent Tukey-Kramer test, there were no significant differences among the
- three methods (p > 0.05, Supplementary Table S10).
- To assess differences in species composition among the three methods, we used NMDS
- ordination (Fig. 3). In NMDS ordination, the fish communities of iSeq and MiSeq at each site
- 319 were plotted at almost similar coordinates. Based on the results of PERMANOVA and
- 320 PERMDISP analyses, there were no significant differences in species composition evaluated
- by iSeq, MiSeq, and conventional methods (PERMANOVA, p = 0.48450 and PERMDISP, p
- 322 = 0.18510 in Table 2). Therefore, there were no significant differences in assemblage structure
- among the three methods.

324

325 Discussion

- Here, we observed that iSeq and MiSeq could obtain similar sequence qualities and fish
- fauna in eDNA metabarcoding. As mentioned previously, the SBS chemistry of iSeq is
- 328 distinct from that of MiSeq in sequencing workflow and base-calling, as well as distinct
- 329 cartridge structures and flow cell mechanisms. However, such differences would not influence

330	sequence quality in eDNA metabarcoding activities. In addition, we obtained high-quality
331	sequence data and a few sequencing errors were observed in both iSeq and MiSeq.
332	Furthermore, the rate of change in the number of sequence reads in each process of the
333	analytical pipeline was almost similar between iSeq and MiSeq.
334	The freshwater fish fauna in the rivers and lakes identified by MiFish metabarcoding
335	exhibited minimal differences in the number of species or species composition between iSeq
336	and MiSeq. Generally, the number of species per sample in iSeq was higher than that in
337	MiSeq due to the differences in the obtained sequence reads between the two sequencers.
338	Species detected only in the iSeq had relatively low numbers of reads (11-32 reads,
339	Supplementary Table S10). Since the same sequence library was used in the iSeq and MiSeq,
340	the reads of such species could have been detected in the MiSeq by increasing the sequencing
341	depth. Such results indicate that the number of species that can be detected by iSeq and
342	MiSeq are approximately similar if the same sequence library is used.
343	Based on the results of the comparisons of the numbers of species among the three methods,
344	the number of species detected by eDNA metabarcoding was higher than those of
345	conventional methods in each river, including many species that were only detected by HTS
346	(Fig. 2). Conversely, some species were only observed in each river using the conventional
347	methods. In previous studies, eDNA metabarcoding has exhibited "higher diversity" or

348	"complementary" results when compared to the results of conventional methods (Olds et al.
349	2016, Yamamoto et al. 2017, Deiner et al. 2017). Such complementary results in iSeq and
350	MiSeq support the findings of previous studies. Nevertheless, there were no statistically
351	significant differences in the numbers of observed species among the three methods.
352	Studies of eDNA metabarcoding have been increasing annually, and it is attracting the
353	attention of researchers and stakeholders as a time- and cost-efficient method for detecting
354	species composition and diversity (Tsuji et al. 2019). Traditionally, MiSeq has been used
355	extensively for eDNA metabarcoding (Miya et al. 2015, Port et al. 2016, Deiner et al. 2016,
356	Stoeckle et al. 2017, Komai et al. 2019). Our results indicate that iSeq can be used for eDNA
357	metabarcoding and has similar levels of species detectability to MiSeq. Despite the
358	differences in sequencing depths, iSeq and MiSeq revealed similar fish fauna at each site. The
359	results suggest that fish fauna from iSeq and MiSeq can be compared directly if library
360	preparation is performed using similar processes. MiSeq has an advantage over iSeq because
361	it can be used for a wide range of taxa and purposes due to the availability of different kits
362	with different lead lengths (max. 2×300 bp) and the number of leads (max. pair-end 25
363	million leads). However, MiSeq has to be adhere to a few complex procedures during
364	sequencing, such as the need to clean the channels for decontamination between sequencing
365	runs. Such procedural complexity may lead to cross-contamination between library samples

366	or between sequencing runs. In contrast, the iSeq has less working procedures than MiSeq
367	because of the use of cartridges and no need to clean the flow path. Therefore, iSeq may have
368	lower cross-contamination risk between sequencing runs than MiSeq. Future research should
369	evaluate cross-contamination risk between the two technologies.
370	
371	Acknowledgments
372	We thank T. Kono and K. Yamaguchi for assisting in the field sampling. We also thank H.
373	Fujii for assistance in the laboratory work and S. Miyazono for providing constructive
374	comments on an earlier version of the manuscript. We thank K. Naka for assisting in iSeq
375	running, and T. Kobayashi for running the MiSeq platform at the Illumina laboratory and for
376	manuscript corrections. We also thank Illumina K. K. (Japan) for providing us with a
377	sequencing cartridge kit for the iSeq run.
378	
379	References
380	Barnes, M.A. & Turner, C. R. (2016). The ecology of environmental DNA and implications
381	for conservation genetics. Conservation Genetics, 17, 1–17.
382	https://doi.org/10.1007/s10592-015-0775-4
383	
384	Barnes, M. A., Turner, C. R., Jerde, C. L., Renshaw, M. A., Chadderton, W. L., & Lodge, D.
385	M. (2014). Environmental conditions influence eDNA persistence in aquatic systems.
386	Environmental Science & Technology, 48, 1819–1827.
387	https://doi.org/10.1021/es404734p
388	
389	Bylemans, J., Furlan, E. M., Hardy, C. M., McGuffie, P., Lintermans, M., & Gleeson, D. M.

390	(2017). An environmental DNA-based method for monitoring spawning activity: a
391	case study, using the endangered Macquarie perch (Macquaria australasica). Methods
392	in Ecology and Evolution, 8, 646-655. https://doi.org/10.1111/2041-210X.12709
393	
394	Chen, H., & Boutros, P.C. (2011). Venn Diagram: a package for the generation of
395	highly-customizable Venn & Euler diagrams in R. BMC Bioinformatics, 12, 35.
396	https://doi.org/10.1186/1471-2105-12-35
397	
398	Closek, C. J., Santora, J. A., Starks, H. A., Schroeder, I. D., Andruszkiewicz, E. A., Sakuma,
399	K. M., Bograd, S. J., Hazen, E. L., Field, J. C., & Boehm, A. B. (2019). Marine
400	vertebrate biodiversity and distribution within the Central California Current using
401	environmental DNA (eDNA) Metabarcoding and Ecosystem Surveys. Frontiers in
402	Marine Science, 16. https://doi.org/10.3389/fmars.2019.00732
403	
404	Deiner, K., Bik, H.M., Mächler, E., Seymour, M, Lacoursière-Roussel, A., Altermatt, F., Creer,
405	S., Bista, I., Lodge, D.M, Vere, N., Pfrender, M.E., & Bernatchez, L. (2017).
406	Environmental DNA metabarcoding: Transforming how we survey animal and plant
407	communities. Molecular Ecology, 26(21), 5872–5895.
408	https://doi.org/10.1111/mec.14350
409	
410	Doi, H., Inui R., Akamatsu, Y., Kannno, K., Yamanaka, H., Takahara, T., & Minamoto, T.
411	(2017). Environmental DNA analysis for estimating the abundance and biomass of stream
412	fish. Freshwater Biology, 62: 30-39. https://doi.org/10.1111/fwb.12846
413	
414	Doi, H., Inui R., Matsuoka S., Akamatsu Y., Goto M., & Kono T. (2020). Evaluation of
415	biodiversity metrics through environmental DNA metabarcoding compared with visual
416	and capture surveys in river fish community. <i>BioRxiv</i> preprint,
417	https://doi.org/10.1101/617670.
418	
419	Doi, H., Matsuoka S., Matsuzaki S. S., Nagano M., Sato H., Yamanaka H., Matsuhashi S.,
420	Yamamoto S., Minamoto T., Araki H., Ikeda K., Kato A., Kumei K., Maki M.,
421	Mitsuzuka T., Takahara T., Toki K., Ueda N., Watanabe T., Yamazoe K., & Miya M.
422	The effects of ecosystem characteristics and species traits on species detection by
423	eDNA metabarcoding compared to species records in Japanese lake fish communities.
424	Molecular Ecology, submitted.
425	
426	Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST.

427	Bioinformatics, 26, 2460–2461. https://doi.org/10.1093/bioinformatics/btq461
428	
429	Edgar, R. C. and Flyvbjerg, H. (2015). Error filtering, pair assembly and error correction for
430	next-generation sequencing reads. <i>Bioinformatics</i> , 31, 3476–3482.
431	https://doi.org/10.1093/bioinformatics/btv401
432	Eving D. Hillion I. Wandl M. C. & Cross D. (1008). Dage calling of outermeted acquereer
433	Ewing, B., Hillier L., Wendl M. C., & Green P. (1998). Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. <i>Genome Research</i> , 8: 175–185.
$\begin{array}{c} 434\\ 435 \end{array}$	
$\frac{435}{436}$	https://doi.org/10.1101/gr.8.3.175
430 437	Hänfling, B., Handley, L. L., Read, D. S., Hahn, C., Li, J., Nichols, P., Blackman, R. C.,
437 438	Oliver, A., & Winfield, I. J. (2016). Environmental DNA metabarcoding of lake fish
438 439	communities reflects long-term data from established survey methods. <i>Molecular</i>
$439 \\ 440$	<i>Ecology</i> , 25, 3101–3119. https://doi.org/10.1111/mec.13660
$\frac{440}{441}$	<i>Ecology</i> , 25, 5101–5119. https://doi.org/10.1111/mcc.15000
442	Hinlo, R., Furlan, E., Suitor, L., & Gleeson D. (2017). Environmental DNA monitoring and
443	management of invasive fish: comparison of eDNA and fyke netting. <i>Management of</i>
444	Biological Invasions, 8: 89–100. https://doi.org/10.3391/mbi.2017.8.1.09
445	
446	Illumina. (2017). Calculating percent passing filter for patterned and nonpatterned flow
447	cells-A comparison of methods for calculating percent passing filter on Illumina flow
448	<i>cells</i> Illumina.
449	https://www.illumina.com/content/dam/illumina-marketing/documents/products/
450	technotes/hiseq-x-percent-pf-technical-note-770-2014-043.pdf
451	
452	Illumina. (2019a). iSeq 100 sequencing system guide. Illumina. https://support.
453	illumina.com/downloads/iseq-100-system-guide-1000000036024.html
454	
455	Illumina. (2019b). Cluster optimization overview guide. Illumina. https://support.
456	illumina.com/downloads/cluster-optimization-overview-guide-1000000071511.html
457	
458	Jerde, C. L., Mahon, A. R., Chadderton, W. L., & Lodge, D. M. (2011). "Sight - unseen"
459	detection of rare aquatic species using environmental DNA. Conservation Letters, 4,
460	150–157. https://doi.org/10.1111/j.1755-263X.2010.00158.x
461	
462	Komai, T., Goto, O. R., Sado, T., & Miya M. (2019). Development a new set of PCR primers
463	for eDNA metabarcoding decapod crustaceans, Metabarcoding & Metagenomics, 3,

464	1-19. https://doi.org/10.3897/mbmg.3.33835
465	
466	Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J. Y., Sato K., Minamoto, T., Yamamoto,
467	S., Yamanaka, H., Araki, H., Kondoh, M., & Iwasaki W. (2015). MiFish, a set of
468	universal PCR primers for metabarcoding environmental DNA from fishes: detection
469	of more than 230 subtropical marine species. Royal Society Open Science, 2, 150088.
470	http://dx.doi.org/10.1098/rsos.150088
471	
472	Mychek-Londer, J. G., Balasingham, K. D., & Heath, D. D. (2019). Using environmental
473	DNA metabarcoding to map invasive and native invertebrates in two Great Lakes
474	tributaries. Environmental DNA. https://doi.org/10.1002/edn3.56
475	
476	Olds, B. P., Jerde, C. L., Renshaw, M. A., Li, Y., Evans, N. T., Turner, C. R., Deiner, K.,
477	Mahon, A. R., Bruesekel, M. A., Shirey, P. D., Pfrender, M. E., Lodge, D. M., & Lamberti,
478	G. A. (2016). Estimating species richness using environmental DNA. Ecology and
479	Evolution, 6(12), 4214–4226. https://doi.org/10.1002/ece3.2186
480	
481	Port, J. A., O'Donnell, J. L., Romero-Maraccini, O. C., Leary P. R., Litvin, S. Y., Nickols, K. J.
482	Yamahara, K. M. and Kelly R. P. (2016). Assessing vertebrate biodiversity in a kelp forest
483	ecosystem using environmental DNA. Molecular Ecology, 25, 527–541.
484	https://doi.org/10.1111/mec.13481
485	
486	Shaw, J. L.A., Clarke, L. J., Wedderburn, S. D., Barnes, T. C., Weyrich, L. S., & Cooper, A.
487	(2016). Comparison of environmental DNA metabarcoding and conventional fish survey
488	methods in a river system. <i>Biological Conservation</i> , 197, 131–138.
489	https://doi.org/10.1016/j.biocon.2016.03.010
490	Steadyle M.V. Scholava I., & Charley Devers 7 (2017) Aquatic environmental DNA
491	Stoeckle, M. Y., Soboleva L., & Charlop-Powers Z. (2017). Aquatic environmental DNA
492 492	detects seasonal fish abundance and habitat preference in an urban estuary. <i>PLoS ONE</i>
$\begin{array}{c} 493 \\ 494 \end{array}$	12(4): e0175186. https://doi.org/10.1371/journal. pone.0175186
$\frac{494}{495}$	Tabarlet, P., Coissac, E., Hajibabei, M., & Rieseberg, L. H. (2012). Environmental DNA.
495 496	<i>Molecular Ecology</i> , 21, 1789–1793. https://doi.org/10.1111/j.1365-294X.2012.05542.x
490 497	moreculur Leology, 21, 1707–1775. https://doi.org/10.1111/J.1505-274A.2012.05542.X
497 498	Takahara, T., Minamoto, T., Yamanaka, H., Doi, H., & Kawabata Z. (2012). Estimation of fish
499	biomass using Environmental DNA. <i>PLoS ONE</i> , 7(4), e35868.
500	https://doi.org/10.1371/journal.pone.0035868
200	

501	
502	Takeuchi, A., Sado, T., Gotoh, R.O., Watanabe, S., Tsukamoto, K., & Miya M. (2019). New
503	PCR primers for metabarcoding environmental DNA from freshwater eels, genus Anguilla.
504	Scientific Reports, 9, 7977. https://doi.org/10.1038/s41598-019-44402-0
505	
506	Thomsen P. F., Kielgast, K., Iversen, L. L., Møller, P. R., Rasmussen, M., & Willerslev, E.
507	(2012). Detection of a diverse marine fish fauna using Environmental DNA from seawater
508	samples. PLoS ONE, 7(8), e41732. https://doi.org/10.1371/journal.pone.0041732
509	
510	Thomsen, P. F., & Sigsgaard, E. E. (2019). Environmental DNA metabarcoding of wild
511	flowers reveals diverse communities of terrestrial arthropods. Ecological Evolution, 9,
512	1665–1679. https://doi.org/10.1002/ece3.4809
513	
514	Tsuji, S., Takahara, T., Doi, H., Shibata, N., & Yamanaka, H. (2019). The detection of aquatic
515	macroorganisms using environmental DNA analysis—A review of methods for collection,
516	extraction, and detection. Environmental DNA, 1, 99-108. https://doi.org/10.1002/edn3.21
517	
518	Uchii, K., Doi, H., & Minamoto, T. (2016). A novel environmental DNA approach to quantify
519	the cryptic invasion of non-native genotypes. Molecular Ecology Resources, 16, 415-422.
520	https://doi.org/10.1111/1755-0998.12460
521	
522	Ushio, M., Fukuda, H., Inoue, T., Kobayashi, M., Kishida, O., Sato, K., Murata, K., Nikaido,
523	M., Sado, T., Sato, Y., Takeshita, M., Iwasaki, W., Yamanaka, H., Kondoh, M., & Miya, M.
524	(2017). Environmental DNA enables detection of terrestrial mammals from forest pond
525	water. Molecular Ecology Resources, 17, e63–e75.
526	https://doi.org/10.1111/1755-0998.12690
527	
528	Ushio, M., Murata, K., Sado, T., Nishiumi, I., Takeshita, M., Iwasaki, W., & Miya M. (2018).
529	Demonstration of the potential of environmental DNA as a tool for the detection of avian
530	species. Scientific Reports, 8, 4493. https://doi.org/10.1038/s41598-018-22817-5
531	
532	Yamamoto, S., Masuda, M., Sato, Y., Sado, T., Araki, H., Kondoh6, M., Minamoto, T. and
533	Miya, M. (2017). Environmental DNA metabarcoding reveals local fish communities in a
534	species-rich coastal sea. Scientific Reports, 7, 40368. https://doi.org/10.1038/srep40368
535	
536	Yamanaka, H., Minamoto, T., Matsuura, J., Sakurai, S., Tsuji, S., Motozawa, H., Hongo4, M.,
537	Sogo, Y., Kakimi, N., Teramura, I., Sugita, M., Baba, M., & Kondo, A. (2017). A simple

538 539 540 541	method for preserving environmental DNA in water samples at ambient temperature by addition of cationic surfactant. <i>Limnology</i> , <i>18</i> , 233–241. https://doi.org/10.1007/s10201-016-0508-5
542 543 544 545 546	 Wu, Q., Kawano, K., Ishikawa, T., Sakata, M. K., Nakao, R., Hiraiwa, M. K. Tsuji, S., Yamanaka, H., & Minamoto T. (2019). Habitat selection and migration of the common shrimp, <i>Palaemon paucidens</i> in Lake Biwa, Japan—An eDNA-based study. <i>Environmental DNA</i>, 1, 54–63. https://doi. org/10.1002/edn3.6
547	Data Accessibility
548	All data of the iSeq and MiSeq sequencing was shared in DRA (Accession number:
549	DRA10593), and all used data, including all detected species by iSeq, MiSeq, and
550	conventional methods, were shared in Supplemental Tables.
551	
552	Author Contributions
553	Study Concept: Yoshihisa Akamatsu, Hideyuki Doi
554	Field Sampling: Ryutei Inui, Masuji Goto
555	Data Cleaning: Masuji Goto, Shunsuke Matsuoka, Hideyuki Doi
556	Data Analysis: Ryohei Nakao
557	Manuscript writing and Visualization: Ryohei Nakao
558	
559	

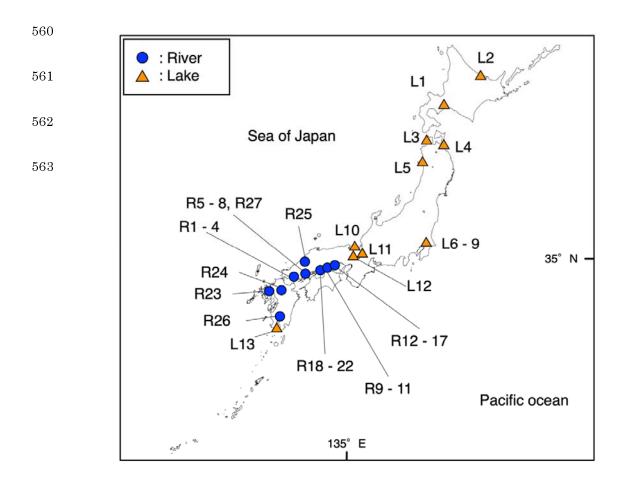
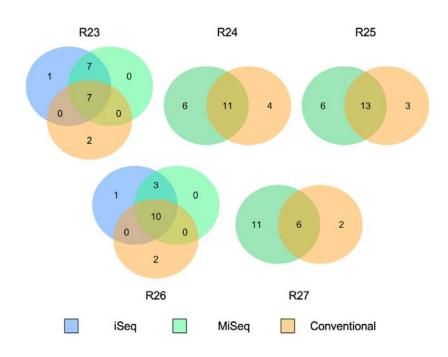
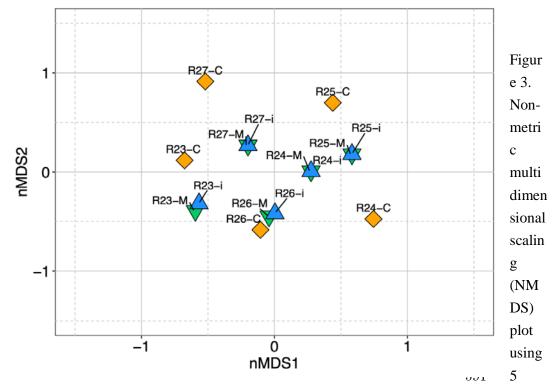



Figure 1. Sampling sites used in the present study. Blue circles and orange triangles show the
locations of the river and lake samples, respectively. Detailed information on each site is
listed in Supplementary Table S1.

568

569 Figure 2. Venn diagrams for comparison of the number of species between high throughput


570 sequencers and conventional methods in 5 river samples (R23-27 in Fig. 1). Blue, green, and

571 orange circles indicate the species of eDNA of iSeq, eDNA of MiSeq, and conventional

572 methods, respectively. Deep green circles in R24, 25, and 27 indicate the species of two

573 sequencers because of fully-overlapping species composition between iSeq and MiSeq. Note

that the size of each circle does not represent a difference in the number of species.

592 river samples. Blue triangles, green inverted triangles, and diamond shapes indicate the points

593 of iSeq, MiSeq, and conventional methods, respectively. Labels with these shapes also

⁵⁹⁴ indicate iSeq (-i), MiSeq (-M), and conventional methods (-C).

595

	iSeq		MiSeq			
Read Ratio	Read Ratio					
Denoised Read	3010341	100.0%	1914412	100.0%		
Assigned Read	2732599	90.8%	1687629	88.2%		
OTU Ratio						
Total OTUs	154	100.0%	168	100.0%		
OTU(Freshwater)	102	66.2%	101	60.1%		
OTU (Marine and Brackish)	24	15.6%	22	13.1%		
Under 99 % Identity	28	18.2%	45	26.8%		

Table 1 Ratio of sequence reads and Operational Taxonomic Unit (OTU) count after denoising

597

598

	-	Df†	Sum of Square	Mean Square	F value	R^2	Pr (>F)
PERMANOVA							
	Methods [‡]	2	0.35707	0.17853	0.96117	0.13808	0.48450
	Residuals	12	2.22894	0.18574		0.86192	
	Total	14	2.58600			1.00000	
PERMD	ISP						
	Methods [‡]	2	0.01696	0.00848	1.94810		0.18510
	Residuals	12	0.05224	0.00435			

Table 2 Statistical results of Permutational Multivariate Analysis of Variance (PERMANOVA) and Permutational Multivariate Analysis of Dispersion (PERMDISP) for comparisons of species composition between iSeq and MiSeq

† Degree of Freedom (Df)

‡ Species detection methods (iSeq, MiSeq, and Conventional)