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Simone Codeluppi3, Gioele La Manno1,

Genomics techniques are currently being adapted to provide spatially resolved omics profiling. However, the 
adaptation of each new method typically requires the setup of specific detection strategies or specialized in-
strumentation. A generic approach to spatially resolve different types of high throughput data is missing. Here, 
we describe an imaging-free framework to localize high throughput readouts within a tissue by combining 
compressive sampling and image reconstruction. We implemented this framework to transform a low-input 
RNA sequencing protocol into an imaging-free spatial transcriptomics technique (STRP-seq) and validated 
this method with a transcriptome profiling of the murine brain. To verify the broad applicability of STRP-seq, 
we applied the technique on the brain of the Australian bearded dragon Pogona vitticeps. Our results reveal 
the molecular anatomy of the telencephalon of this lizard, providing evidence for a marked regionalization of 
the reptilian pallium and subpallium. Overall, the proposed framework constitutes a new approach that allows 
upgrading in a generic fashion conventional genomic assays to spatially resolved techniques.

Introduction
Spatially resolved molecular atlases constitute fundamental 
resources to the scientific community [1]. In situ hybrid-
ization (ISH) compendia such as the Allen Brain Atlas or 
Genepaint are extensively used as references to guide the 
mapping of newly discovered cell types [2]–[6]. Recently, 
the development of new technologies that can simultane-
ously map the expression of multiple genes on the same 
tissue sample have accelerated the generation of new atlas-
es. These techniques are based on either quantitative in-si-
tu hybridization or on the sequencing of RNA molecules 

captured on barcoded supports [7]–[17]. However, in-situ 
hybridization techniques require a preselection of target 
genes, and sequencing methods suffer from resolution lim-
its and suboptimal capture efficiency.
An alternative approach for spatially resolving the distribu-
tion of gene expression patterns relies on sampling a tissue 
regularly on a grid by laser capture microdissection (LCM). 
After LCM sampling, a next-generation sequencing (NGS) 
library can be prepared using a low-input protocol, and the 
gene expression pattern can be quantified [18]. Overall, 
combining microdissection-based approaches with sin-
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Figure 1 | Sampling and reconstruction approach to resolve the spatial localization of genomics data. a, Schematic representation of the tissue 
processing steps. The tissue is first cut along the axis of interest to obtain consecutive 14 µm primary sections. The spatial pattern of the signal is assumed 
constant between primary sections. Each section is then sliced at a different angle to generate tissue strips (secondary sections). Only three angles are shown 
for simplicity, but more are typically used. b, Library preparation and generation of raw data. Cells of tissue strips are lysed and mRNA is captured. Reverse 
transcription is followed by PCR, tagmentation and sequencing. For each primary section, the gene expression within each tissue strip can be concatenated 
as a parallel-slice projection vector. c, Reconstruction of gene expression patterns performed by the Tomographer algorithm. Gene expression count values 
for the strips are modeled as samples from a negative binomial distribution. The expected value is the sum of the intensity of the image to reconstruct. 
The spatial localization of the gene of interest is obtained by maximum a posteriori estimation, considering probabilistic priors on the distribution of pixel 
intensities.
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gle-cell RNA sequencing has proved successful to delineate 
relationships between cells populating a niche and their po-
tency [19]. However, the sensitivity of LCM-based assays is 
limited by laser-induced degradation of nucleic-acids and 
the technical complexity of handling and preparing libraries 
for multiple microscopic samples is considerable.
Tomo-seq is a more accessible and imaging-free spatial se-
quencing method in which a tissue sample is cryosectioned 
into thin slices that are used to prepare NGS libraries [20], 
[21]. Using this method, it is possible to generate a one-di-
mensional transcriptomic pattern that allows the evaluation 
of gene expression variation over a spatial axis. The authors 
also demonstrated the reconstruction of three-dimensional 
gene expression patterns by using the iterative proportional 
fitting (IPF) algorithm to combine three orthogonal one-di-
mensional profiles generated using multiple genetically 
equivalent samples [20]. However, IPF cannot solve this 
reconstruction problem for complex anatomical configu-
rations and lacks robustness to noise. Moreover, an entire 
specimen is required to obtain each of the 1D profiles, mak-
ing 3D reconstructions impossible for many applications 
where multiple genetically identical specimens are not avail-
able [22]–[24].
Even though the current atlassing efforts are focused on 
mapping gene expression patterns, the possibility to create 
atlases probing other modalities will be beneficial for the 
entire scientific community [25], [26]. However, other NGS-
based technologies, including those to measure chromatin 
accessibility, histone modifications, non-coding or nascent 
RNAs lack a spatial counterpart. Thus, the development of 
a generalized approach to convert every existing NGS pro-
tocol into a spatially resolved technique, without modifying 
the detection strategy, would accelerate the transition to a 
spatial-omics paradigm. Motivated by this, we developed 
a strategy to perform such an adaptation. Here, we present 
a framework that brings this transition to life by using a 
compressed sensing tissue sampling strategy based on mul-
ti-angle-sectioning and an associated algorithm that enables 
the reconstruction of complex spatial patterns (see Online 
Methods). In this study, we demonstrate that our spatial-om-
ics approach allows the reconstruction of spatial expression 
patterns on a transcriptome-wide scale by benchmarking it 
against the mouse Allen Institute ISH Mouse Brain atlas [1]. 
Furthermore, we apply this framework to study the brain of 
the lizard non-model organism Pogona vitticeps. We reveal 
quantitative aspects of the molecular anatomy of the pallium 
and comparative relationships between the reptilian and the 
mammalian brain.

Results
The spatial distribution of a signal can be determined 
by compressed sampling and reconstruction.
The objective of the proposed framework is to determine 
the abundance of a target signal at a given tissue location 
through the use of a compressed sensing approach [27]. The 
approach consists in measuring several locations of the tis-
sue collectively so as to simplify tissue sampling while al-
lowing the subsequent reconstruction of the signal at every 
single point (Fig. 1).

To this aim, we designed a user-friendly tissue sampling 
scheme based on cryosectioning (Supplementary Fig. 1). 
Initially, the tissue is cut into consecutive thin slices, which 
we refer to as “primary sections”. Subsequently, primary 
sections are further sliced along an orthogonal plane at pre-
defined orientations resulting in tissue strips (“secondary 
sections”) (Fig. 1a, see Online Methods). Here, we reason 
that primary sections are thin enough so that the difference 
in the signal distribution between them is negligible in re-
lation to the target resolution (i.e. we chose 14µm for the 
experiments below). Under this assumption, different sets of 
secondary sections obtained at different orientations can be 
considered as a resampling of the same distribution.
It is helpful to think of the set of measurements obtained 
from one series of secondary sections as an analogue of a 
parallel-beam sum projection in ray-based tomography 
[28], [29]. Henceforth we refer to this set of measurements 
for each particular angle as a “parallel-slice projection”. 
However, in contrast to classical computer tomography, we 
developed a probabilistic algorithm that requires only a few 
parallel-slice projections to reconstruct the spatial pattern 
that generated the data. This is achieved by modeling the 
noise, setting priors on the degree of smoothness and spar-
sity of the solution, and then finding the maximum a poste-
riori estimate (Fig. 1c; see Section 2 of the Online Methods).
We implemented this framework for the quantification of 
gene expression and developed Spatial Transcriptomics by 
Reoriented Projections and sequencing (STRP-seq), a meth-
od that combines the sampling strategy presented above 
with a customized low-input RNA-seq protocol based on 
STRT-seq chemistry (Fig. 1b, see Section 1 of Online Meth-
ods) [30]. In this technique, we obtain a parallel-slice pro-
jection for each gene by quantifying the reads that map to a 
transcript in each of the secondary sections (Fig. 1b,c).

Tomographer’s maximum a posteriori estimates pro-
vide accurate reconstructions of complex spatial pat-
terns.
To demonstrate the potential of the proposed framework for 
studying non-trivial spatial patterns, we carried out in-silico 
simulation experiments using the Adult Mouse Allen Brain 
ISH Atlas profiles as ground truth (see Online Methods Sec-
tion 3). We compared ground truth ISH profiles to the re-
constructions obtained from simulation experiments using 
both our newly developed algorithm dubbed Tomographer 
and the IPT-based reconstruction proposed for Tomo-seq 
[20]. Since a 3D reconstruction problem is more strongly 
underdetermined (i.e. significantly more unknowns than 
equations) than the one we propose to solve, we include a 
simple 2D adaptation of Tomo-seq that constitutes a fairer 
comparison (See Online Methods Section 3.2).
To assess the information that can be recovered by each of 
the sampling methods, we determined the reconstruction 
accuracies of genes that are characterized by different spar-
sity and distribution patterns (Fig. 2a). We calculated the 
Pearson’s correlation coefficient, the total absolute difference 
among pixels, and the relative error between the recon-
structions and the ground truth. Evaluating these metrics 
we concluded that our method outperforms Tomo-seq for 
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the reconstruction of the spatial pattern of a given gene (Fig. 
2b).
We developed a probabilistic signal reconstruction strategy 
taking into account that we expect read counts to be distrib-
uted as a Negative Binomial (See Online Methods Section 
2; [31], [32]). In this way, we aim at buffering reconstruc-
tion errors that may arise because of the discrete nature of 
the data and the heteroscedasticity within each parallel-slice 
span. Nevertheless, we expect the maximum achievable ac-
curacy to remain dependent on average expression levels. To 
test the extent of this dependence, we corrupted simulated 
parallel-slice projections drawing realizations from a Neg-
ative Binomial distribution after rescaling the average read 
count to different levels (Fig. 2c-e and Supplementary Fig. 
2). Analyzing the reconstructions, we found that greater ex-
pression levels correlate with the quality of the output and 
that a minimum average expression level of 1 molecule per 
strip is required to obtain reliable reconstructions. Notably, 
the reconstruction accuracy we obtained here was signif-
icantly more robust to what we achieved by a naive least-

squares approach (Supplementary Fig. 2a-d)
To gauge the ability of the technique to generalize and resolve 
other spatial distributions, we simulated reconstructions for 
100 randomly selected genes retrieved from the Allen Brain 
Atlas. The resulting reconstructions were on average more 
similar to the ground truth pattern of a gene than to the next 
most similar gene available in the Allen Brain Atlas (Fig. 2e).
We then analyzed the effect of using different numbers of 
secondary slicing angles on the reconstruction accuracy in 
order to optimize the reconstruction while maintaining the 
feasibility of the protocol from an experimental viewpoint. 
We demonstrate that four cutting angles provide results that 
are a fair compromise between the reconstruction quality 
and sample processing effort and cost (Fig. 2f). However, we 
decided to use five cutting angles in the implementation of 
the protocol to increase resiliency to other technical sources 
of error (e.g. cutting errors or lost strips).
Finally, we evaluated the two-point discriminative resolu-
tion of the technique in noisy conditions as a function of 
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Figure 2 | Reconstruction performance of Tomog-
rapher on simulated data. a, Comparison of the nov-
el sampling and reconstruction algorithm (Tomogra-
pher) with existing methods: Iterative proportional 
fitting 2D and 3D (Tomo-seq). Starting from gene ex-
pression patterns extracted from the Allen Brain Atlas, 
the simulated projections are computed and the im-
age is then reconstructed (noiseless case). b, Recon-
struction accuracy for TAC1 evaluated using different 
metrics between the images: Pearson’s correlation co-
efficient, relative error and the number of pixels that 
differ more than the range between the maximum 
and minimum pixel intensity values are calculated 
with respect to the ground truth. c, Resilience to low 
signal to noise ratio of the Tomographer algorithm. 
Noisy data are simulated by projecting the expression 
and adding Poisson noise. d, Reconstruction accuracy 
at different expression levels for a given gene. The rel-
ative noise increases as the average expression level 
decays, causing a decrease in reconstruction accuracy 
for lowly expressed genes. Pearson correlation coeffi-
cient (blue) and Peak signal-to-noise ratio (PSNR) (red) 
shown for five realizations with additive Poisson noise 
at various expression levels. The shaded area is the 
standard deviation over 10 realizations of the noisy 
projections. e, Reconstruction accuracy across a sam-
ple of 100 genes of the Allen Brain Atlas with noise 
simulated as in (c). Reconstructions were compared 
to the ground truth using Pearson’s correlation coef-
ficient. Violin plots show the distribution of similarity 
across all the genes. Reference violins show the simi-
larity of each ground truth gene with the most similar 
gene (green) and the gene median similarity (across 
the entire Allen Brain Atlas). f, Effect of the number 
of projections (i.e. angles) on the reconstruction ac-
curacy. Reconstructions are scored using Pearson’s 
correlation coefficient. Standard deviation is comput-
ed over different realizations of the noise for average 
expression levels of 5 and 10. g, Assessment of two-
points discriminative power and resolution. The two-
point effective resolution was defined as the distance 
at which the two-Gaussian model outperforms the 
single-Gaussian model in explaining the reconstruct-
ed images, the Bayesian Information Criterion (BIC) 
was used as a metric. Resolution was determined to 
be 1.15 times the strip thickness (n=16, p-value < 2 × 
10^-5). Standard deviation calculated among random 
realization of the location of the points, fixing the dis-
tance. 
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the thickness of the strip generated by secondary slicing. By 
performing Monte Carlo simulations we demonstrate that 
the approach is capable of discriminating two distinct points 
provided that their distance is at least 1.15 times the second-
ary section width (Fig. 2g; 80 μm in this case; See Online 
Methods section 3.6).

STRP-seq accurately recovers the spatial transcriptome 
of the mouse brain.
To demonstrate the potential of STRP-seq to profile anatom-
ically complex tissues, we applied the technique to a coronal 
section of the mouse brain (Fig. 3). We cryosectioned the 
brain to obtain five primary and then 679 secondary sec-
tions, prepared the cDNA libraries and sequenced them 
to a depth allowing a transcriptome-wide quantification 
[8763 genes detected; an average of 40.3 counts per gene 
per secondary section]. We used this data to verify two key 
assumptions for the reconstruction. First, we calculated the 
correlation of the gene expression over the primary sections 
and confirmed their high similarity (median Pearson’s R = 
0.92, Supplementary Fig. 3a). Second, we evaluated the dis-
tribution of the noise and found that the read counts closely 
matched a Poisson distribution at low levels of expression, 
but that they were overdispersed at higher levels (Supple-
mentary Fig. 3b-c).
Next, we proceeded with the reconstructions (Fig. 3a-b). 
Based on the results of the previous simulations, we filtered 
out the genes that were too lowly expressed to allow for re-
constructions and retained the parallel-slice projections that 
varied significantly from the trend of total read counts (3880 
genes; see Online Methods Section 4.2). To assess whether 
we retrieved the correct spatial localization of RNA tran-
scripts, we compared 923 reconstructed genes to the ISH 
data from the Allen Brain Atlas using Pearson’s correlation 
coefficient and found a median reconstruction accuracy of 
R = 0.48 (Fig. 3c; See Online Methods). Notably, gene re-
constructions with Pearson’s correlation coefficients as low 
as 0.2 could already be recognized as similarly distributed 
to the ground truth, indicating that anatomical localizations 
can be correctly determined even for low-scoring recon-
structions (Fig. 3d-e). In addition to this, across total recon-
structions, 2.1% had parallel-slice projections that were in-
compatible to the Allen Brain Atlas ground truth, suggesting 
that there might be cases in which ISH and RNA-seq detect 
different signals, for example, capturing different splicing 
isoforms (Fig. 3g and Supplementary Fig. 3d).
To further evaluate if STRP-seq profiles are sufficient to de-
lineate anatomical distinctions de novo, we computed pair-
wise gene expression similarity scores between all the pixels. 
As predicted, pixels belonging to similar anatomical areas 
contained more similar gene expression levels. For example, 
the correlation between two points in the thalamus was 0.97 
while it was only 0.20 between points in the thalamus and 
the cortex (Fig. 3h). Additionally, displaying the similarity 
between a specific point to the remaining points as an im-
age, we obtain a profile that demarcates different anatomical 
regions (Fig. 3i,j).
Finally, to actively find those anatomical boundaries sug-
gested by the correlation structure of the data, we clustered 

pixels using the Louvain community detection algorithm. 
The clustering output identified regions of neighboring pix-
els that recapitulate gross anatomical structures defined by 
the Allen Brain Reference Atlas (Fig. 3k).
Together, these analyses provide evidence that STRP-seq 
data can be used to reveal the molecular organization of tis-
sue heterogeneity.

STRP-seq allows for the de novo reconstruction of the 
molecular anatomy of the lizard brain. 
To demonstrate the applicability of STRP-seq for examining 
unconventional or rare samples we profiled brain sections 
from Pogona vitticeps, a non-model organism lizard endem-
ic to semi-arid regions of Australia (Fig. 4a,b; [33], [34]). 
We used STRP-seq to measure and reconstruct 8,183 anno-
tated genes in the brain of P. vitticeps [35]. To validate our 
approach, we compared a set of images from our reconstruc-
tions to ISH experiments and single-cell profiling previously 
reported, confirming that these genes were enriched in the 
same locations. (Fig. 4c,d and Supplementary Fig. 4) [34].
According to classical neuroanatomical work, the lizard tel-
encephalon includes the basal ganglia, derived from the ven-
tral telencephalon or subpallium, a layered cortex and the 
non-layered dorsal-ventricular ridge (DVR), both derived 
from the dorsal telencephalon or pallium. While the ho-
mology of reptilian and mammalian cortices is established, 
the DVR, which is unique to birds and reptiles, remains an 
evolutionary dilemma. Recent work, based on single-cell 
RNA-seq but not spatial transcriptomics, suggested that an-
terior dorsal-ventricular ridge (aDVR) includes  two distinct 
regions, which have never been recognized in any previous 
work [36]. To validate this distinction and quantitatively 
evaluate its relevance in a broader context, we studied the 
molecular anatomy of the lizard telencephalon using STRP-
seq profiles. 
First, we performed a multivariate analysis of STRP-seq data 
examining single pixels. We began by calculating a pairwise 
gene expression similarity matrix between different loca-
tions of the tissue (Fig. 4e). Sorting the similarity matrix 
using the SPIN algorithm revealed sharply defined groups 
of covarying pixels [37]. Visualizing the cell-to-cell similar-
ity values in correspondence to the location in the brain, we 
confirmed that the block-like covariance structure corre-
sponded to anatomical regions in the lizard brain. A more 
continuous variation was only observed at a finer level with-
in those blocks (Fig. 4f).
To explicitly delineate molecularly distinct regions, we per-
formed unbiased clustering of the pixels (Fig. 4g). We found 
15 clusters of contiguous pixels that explained most of the 
variation present in the data (88.12 %) (Fig. 4g). The 15 clus-
ters provided a nuanced description of the variability (cf. 
Fig 4e) and could be grouped to identify main regions of 
the lizard brain. Nonetheless, each cluster was defined by a 
marked gene expression identity. Gene enrichment analysis 
highlighted genes that were expressed specifically in indi-
vidual areas such as SS2, FAT1 and NR4A2 (Fig. 4h,i and 
Supplementary Fig. 5). Other genes were enriched in mul-
tiple clusters, either marking a whole main area (DDX58, 
BCL11B) or displaying a gradient-like pattern such as IL7R, 
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RTN4RL2 and BAALC (Fig. 4i).
Representing the similarity relations between the 15 clusters 
using hierarchical clustering revealed a molecular organiza-
tion of this part of the anterior telencephalon in four main 
regions. The regions corresponded to the pallial cortex, the 
subpallium, the medial aDVR and the lateral aDVR (Fig. 
4i). The dendrogram suggested a marked dissimilarity be-

tween the subpallium and the other regions. Surprisingly, we 
found that the dissimilarity between the long-believed ho-
mogenous medial aDVR and the lateral aDVR was as large 
as the dissimilarity between the pallial cortex and the lateral 
aDVR, two functionally distinct regions. When comparing 
the genes enriched in both regions of the aDVR, we found 
the lateral part harboring genes encoding for membrane 
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uptake and transport proteins such as ANXA9, TRARG1, 
KCNH5 and other solute carriers suggesting a possible func-
tional specialization (Fig. 4i and Supplementary Fig. 6a). In 
contrast, the different regions of the pallial cortex (medial, 
dorsomedial, anterior dorsal, posterior dorsal and lateral 
cortex), that have been extensively characterized as func-
tionally distinct, displayed less marked dissimilarities.

STRP-seq data allows for the analysis of regional iden-
tities in the lizard brain. 
Our clustering analysis of spatial data revealed an unex-
pected molecular heterogeneity in the lizard anterior telen-
cephalon. To better understand the molecular basis of this 
difference, we examined the expression pattern of genes 
characteristic of different neuronal types (Fig. 5a and Sup-
plementary Fig. 6).
We found genes typically expressed by GABAergic neurons, 
such as the transcription factors TSHZ1, MEIS2, SIX3 and 
the postsynaptic GABA receptor GABRG3 expressed ven-
trally [38]. Additionally, genes expressed by glutamatergic 
neurons, such as the transcription factors SATB2, NEU-
ROD2 and LHX2 and the postsynaptic glutamate receptor 
GRIN2B [39], were enriched in ventral and dorsomedial 
areas. GAD2 and ALDH5A1, which encode for enzymes 
involved in the biosynthesis of glutamate and GABA, were 
expressed consistently with the aforementioned markers. 
In contrast, GOT1, an enzyme involved in the metabolism 

of glutamate but not in neurotransmission, had a distinct 
expression pattern (Supplementary Fig. 6b). Furthermore, 
the genes for the monoamine associated neuropeptide 
Neurotensin (NTS), the noradrenaline receptor ADRB3, 
ADRA2A, and the monoamine-degrading enzyme MAOA 
colocalized dorsally, suggesting that cortical neurons in this 
area receive monoaminergic inputs [40]. Genes expressed 
by cholinergic neurons were enriched in ventral regions, in 
correspondence to the subpallium, including the co-trans-
mitter TAC3, TAC1, the nicotinic acetylcholine receptor 
CHRM4, and the enzyme CHAT, suggesting the presence 
of a population cholinergic cells in this region (Fig. 5a and 
Supplementary Fig. 6b).
To interpret the heterogeneity in a border context, we used 
the gene expression data to support homology relationships 
with other vertebrate brain areas. First, we examined in the 
lizard brain the expression of genes known to characterize 
the avian and murine subpallium, a region of the vertebrate 
brain that has an essential role in motoric and sensory func-
tions [41], [42]. We detected marker RNAs of the murine 
subpallial striatum enriched in the lizard subpallium such 
as DRD1 and ISL1 (Fig. 5b and Supplementary Fig. 6e). In 
addition, we localized DLX5 and LHX8, which are known to 
characterize the entire subpallium and the palladial-preop-
tic area respectively [41] (Fig. 5b).
Then, we examined the expression of well-described mam-
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malian claustrum markers (RGS12, SYNPR, CNR1, HTR1B, 
HTR1C, CACNA1B) in the lizard brain and found them to 
be expressed in the medial aDVR, where they colocalized 
with bona fide markers for this region (HPCA, GNG2, 
ADARB2, RORB, CPNE4) (Fig. 5c and Supplementary Fig. 
6c,d). This finding confirms that the medial aDVR in lizards 
is the claustrum homologue, as suggested by electrophysio-
logical characterization, axonal tracing and single-cell RNA-
seq [36],[43]. 
Lastly, to confirm the hypothesis that the reptilian pallial 
cortex contains a region homologous to the hippocampus, 
we localized genes that are known to be expressed in dif-
ferent subregions of the murine hippocampus [34], [44]. 
Expressed in the medial and dorsomedial cortex we found 
markers of the cornus ammonis (CA) region 1-4, genes 
characterizing hippocampal mossy fibers and markers of 
granule cells in the ventral and dorsal dentate gyrus (Fig. 5d 
and Supplementary Fig. 6f).
Finally, we performed an independent comparison of the 
examined region with mammalian data, by both cross-ref-
erencing the STRP-seq data with a recently proposed molec-
ular taxonomy of cell types in the mouse brain and scoring 
the correspondence between the expression pattern of a giv-
en pixel and of the cell clades (See Online Methods; Supple-
mentary Fig. 7; [45]). Importantly, the analysis confirmed 
the localization of the dentate gyrus in the medial cortex 
and the ventral positioning of the subpallium (Supplemen-
tary Fig. 7). Interestingly, for the anterior dorsal-ventricular 
ridge, we found a set of genes compatible with telencephalic 
inhibitory neurons and a non-cholinergic motor neuron sig-
nature in the medial and lateral aDVR respectively. Moreo-
ver, we observed an enrichment of astrocytic markers in the 
ventricular area, most likely marking reptilian ependymo-
glial cells that surround the lateral ventricle (Supplementary 
Fig. 7; [34]).

Discussion
Here, we present a versatile framework that allows to trans-
form existing low-input NGS techniques into methods ca-
pable of encoding spatial information through compressed 
sampling and a probabilistic image reconstruction algo-
rithm [27]. We report an implementation of our framework 
for studying transcriptomic data, STRP-seq, and demon-
strate its application to profiling rare samples such as the 
brain of the Australian lizard P. vitticeps. To facilitate the ad-
aptation of the presented framework to applications beyond 
gene expression studies, we provide Tomographer, a versatile 
software package to solve fast and parallelized image recon-
struction problems for genomic data.
One limit of our approach is its relatively low resolution 
when compared to imaging based methods and its inability 
to reveal discontinuous, checkboard-like patterns [10]. For 
example, our method does not allow for discrimination of 
the signal at the single-cell level. Instead, it is designed to 
capture broader tissue-level patterns of expression. For these 
reasons, we envision the method to be most useful as a way 
to link single-cell resolved data to its spatial context, to pro-
file unique samples (e.g. biopsies), and to study the molecu-
lar anatomy of non-model organisms.

We demonstrate how STRP-seq can strengthen our un-
derstanding of evolutionary relationships between brain 
regions. We show this by supporting hypotheses on region 
homology with molecular data and by presenting further ev-
idence for an anatomically divided aDVR [34], [36]. In par-
ticular, we suggest a starker molecular distinction than pre-
viously thought. In the medial aDVR, which is considered 
the reptilian claustrum homologue, we discovered a gene 
expression signature related to mammalian telencephalic 
inhibitory neurons, suggesting a differential recruitment of 
this set of genes to glutamatergic cells of the medial aDVR. 
In the lateral aDVR, we unexpectedly detected the expres-
sion of genes related to non-cholinergic motor neurons, sug-
gesting that we capture mRNA of neurons projection from 
the brain stem to the lateral aDVR [46].
Taken together, we provide a fundamental generic profiling 
scheme compatible with different types of genomics meas-
urements that can be set up at a low cost and without the 
need of specialized instrumentation. We envision our frame-
work will help bridge the gap between the various available 
NGS techniques and their spatial counterpart.
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1 Experimental Work21

1.1 Animal work22

The CD-1 mouse was obtained by Charles River (Germany). Mice were housed in rooms with a regular dark/light23

cycle and fed a standard rodent diet and water ad libitum. All animal procedures were approved by the local24

ethics committee in Stockholm (Stockholms djurförsöksetiska nämnd) and followed the Directive 2010/63/EU of25

the European Parliament and of the Council, the Swedish Animal Welfare Act (Djurskyddslagen: SFS 1988:534),26

the Swedish Animal Welfare Ordinance (Djurskyddsförordningen: SFS 1988:539) and the provisions regarding27

1
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the use of animals for scientific purposes: DFS 2004:15 and SJVFS 2012:26. P. vitticeps experiments were28

conducted at the Max Plank Institute for brain research and followed the Hessian, German and EU laws on29

animal experimentation. Lizards were sacrificed according to § 4 (3) Tierschutzgesetz (TierSchG, German animal30

welfare law) and § 2 Tierschutz-Versuchstierverordnung (TierSchVersV).31

1.2 Cryosectioning32

Agarose membranes for cryosectioning were prepared by allocating a drop of 3% low melting temperature agarose33

stained with Orange-G (Sigma) between two superfrost glass slides (Thermo). To remove excess agarose, a metal34

frame from a laser capture microdissection slide (LCM0521, Thermo) was placed on the membrane and used as35

a trimming guide. Fresh frozen and OCT (Tissue-Tek) embedded brains were cut into 14 µm thick sections and36

collected on the agarose membrane which was trimmed once again. A metal frame was placed on the prepared37

slide and the created well was filled with OCT and frozen on dry ice. The glass slide was then replaced with a38

second metal frame which was filled with OCT and frozen again. To cut the collected sections at a predefined39

angle, each sample was removed from the metal frame using a scalpel and mounted onto a customized positioning40

device (Suppl. Fig 1a). The device consists of a metal wall that can be attached to a cryomold and a sample41

retainer that can position the tissue slaps at a predefined angle relative to the metal wall using a mobile guide.42

Before each use the positioning device was placed on dry ice and the right cutting angle was selected by moving43

the mobile guide into a respective hole of the sample table. The cryomold was attached to the positioning device44

by cutting one of its plastic walls with a scalpel and sliding it into the clip of the metal wall so that the rectangular45

hole aligns with the surface of the table. It was then filled with Optimal Cutting temperature compound (OCT)46

up to the level of the slit and frozen rapidly using a head sink mounted behind the metal wall. To start the47

sectioning process, a tissue slab was placed on the sample retainer, aligned with the angle guide and slit into the48

cryomold. The sample was frozen in the OCT block at the correct angle and repositioned on the cryostat. 70 µm49

strips were sliced, collected with forceps and transferred in a 96-wells plate kept inside the cryostat. The angle50

of the cryostat sample holder was not changed between samples. All samples were collected the same day and51

stored at -80�C.52

1.3 Preparation of cDNA library53

We prepared poly-T coated magnetic microbeads incubating for 15min 24 µL (per plate, 0.25 µL per sample) of54

MyOne C1 streptavidin beads washed using a magnet and resuspended in Binding Washing Tween (BWT) 1x55

bu↵er (5 mM Tris-HCl, 1 M NaCl, 0.5 mM EDTA, 0.1% Tween 20 ) containing 5M STRTC1 P1A T31 Primer56

(5’Biotin-AAT GAT ACG GCG ACC ACC GAT CGT TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT).57

The beads were then washed twice in Lithium Washing Tween (LiWT) bu↵er (10 mM Tris-HCl pH 7.5, 0.15 M58

LiCl, 1 mM EDTA) resuspended in 480 µL (per plate, 5 µL per sample) of the same bu↵er, ready to be added59

to the lysate. Plates containing the cryosectioned strips were quickly spun down and placed on a thermally60

conductive metal block positioned on dry ice. To lyse the strips 37 µL of Lysis/Binding bu↵er (LBB) (100 mM61

Tris-HCl, pH 7.5, 500 mM LiCl, 10 mM EDTA, 1% Lithium dodecyl sulfate (LiDS), 5 mM dithiothreitol (DTT))62

2
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were added to each well of the plate, 0.4 µL of 1:1000 ERCC per sample (corresponding to 24.8M molecules) were63

also added as an internal control. The plate was maintained on dry ice and the bu↵er was allowed to freeze.64

The plate was then alternatively vortexed for 40 s and briefly centrifuged for a total of 3 times. The plate was65

then incubated at 37�C for 7 minutes. Vortex agitation and spinning down centrifugation were repeated twice66

and then 5 µL of the previously prepared mix containing the poly-T coated beads were added. The samples67

were incubated 2 min at 70�C on a thermal cycle, were let equilibrate at room temperature and incubated 3068

min at room temperature. The beads were bound to a magnet and the samples washed with LiWT twice each69

time carefully resuspending the beads by vortexing. Finally beads of each well were resuspended in 7.5 µL of RT70

Mix and carefully resuspended by pipetting. RT Mix was prepared mixing the following reagents: 163 µL of 5X71

SuperScript First-strand bu↵er (18064-014 Thermo), 4.9 µL of 1M MgCl2, 135 µL of 5M Betaine, 48 µL dNTPs,72

20 µL DTT 0.1M, 7 µL 10% Tween 20, 20µL RNAse inhibitor (Takara), 50 µL Template Switching Oligo 40 µM73

(C1-P1-RNA-TSO: 5’Biotin-rArArU rGrArU rArCrG rGrCrG rArCrC rArCrC rGrArU rNrNrN rNrNrG rGrG),74

40 µL Superscript II (18064-014 Thermo), 349 µL of RNAse-free water. The plate was incubated for 1 h 30 min75

at 42�C and 10 min at 72�C the beads were resuspended by vigorous agitation of the plate every 15 minutes.76

The beads were bound using a magnet and supernatant discarded. The beads, coated with cDNA, were then77

resuspended in 16µL PCR mix and the following PCR program was run for a total of 18 cycles. 3 min at 95�C; 578

cycles of: 20s at 98�C - 4 min at 62�C - 6 min at 72�C; 9 cycles of: 20s at 98�C - 30s at 68�C - 6 min at 72�C; 479

cycles of: 20s at 98�C - 30s at 68�C - 6 min at 72�C; 10 min at 72�C; Hold at 4�C. The PCR mix was assembled80

by combining the following reagents: 1mL of 2x KAPA Hot Start Mix, 80 µL of 5M Betaine, 2 µL 10% Tween81

20, 80 µL of PCR primer 10µL (C1-P1-PCR-2: 5’Biotin-GAA TGA TAC GGC GAC CAC CGA T) and 838µL82

RNAse-free water.83

1.4 Library preparation and sequencing84

Samples were diluted to 2 ng/µL of PCR product and a random sample of wells was inspected on an Agilent85

Bioanalyzer using a high sensitivity DNA kit. The first and last secondary section for which a cDNA library was86

clearly visible on the bio-analyzer were identified and a bu↵er of 6 extra samples before and after were retained87

for sequencing. Sequencing library was prepared by ”tagmentation”, that is by simultaneously fragmenting and88

barcoding using Tn5 DNA transposase [1]. Briefly, 6µL of amplified cDNA were transferred to a multi-well plate89

containing barcoded adaptors. Tagmetation bu↵er (6µM TAPS-NaOH, pH 8.5, 25 mM MgCl2 and 50% DMF)90

and transposome stock were added before incubating the plate at 55 C for 5 min. The fragmented cDNA products91

were bound with an excess of Dynabeads MyOne Streptavidin C1 beads in order to retain only the 5- and 3-92

most fragments. All fractions were pooled, the beads were immobilized, washed and 3 fragments cleaved with a93

PvuI restriction reaction. Finally, the single-stranded library was eluted in water. Samples were sequenced on a94

Illumina HiSeq 2000 at a total depth of 1 billion reads per experiment for both the mouse and lizard experiment.95
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1.5 Read mapping pipeline96

To obtain the table of UMI counts corresponding to each strip we processed the sequencing with a custom pipeline97

that is thoroughly described elsewhere [2]. The pipeline was designed and optimized for the STRT-seq chemistry98

from which we adapted our RNA-seq protocol. Briefly, the sequencing data was aligned to the mouse genome99

using Bowtie, di↵erent quality controls were applied. The parameter filter-singletons was set to False since we100

expected more real molecules to be supported by single UMI read than in a single-cell scenario. For Pogona101

vitticeps we used the same pipeline but, in absence of a high quality genome, we performed the mapping directly102

on an assembled transcriptome reported by Georges et al., 2015 [3]. The assembled transcript models were103

extended at the 5’ by adding the 200bp upstream determined using genome contigs to bu↵er that inaccurate TSS104

definition.105

2 Models and Computational Approaches106

2.1 Nomenclature107

• The two-dimensional expression pattern for each gene can be represented as a matrix X 2 Rn,m. We denote108

the intensity of pixel at position i, j with Xi,j . We also introduce an alternative notation for the same109

object. x 2 Rnm is the vector that is obtained by flattening X, that is: Xi,j = xm(i�1)+j . These two110

notations are used alternatively in di↵erent parts of the text to make formulations easier to interpret.111

• For each gene, we indicate data from each parallel-slice projection over a given angle � with a vector112

b� 2 Nk� where k� is the number of strips obtained cutting at angle � so that each entry b�i contains the113

read count measured in correspondence to the ith strip. Henceforth we will omit the � indices and refer to114

the entire set of parallel-slice projection with the stacked column vector b = (b↵T ,b�T , ...,b!T )T . Instead,115

we use b̂ to indicate the parallel-slice projection vector predicted by the model.116

• The information regarding the orientation and width of the slices is contained in a matrix A 2 Rk,nm which117

we refer to as the design matrix. A is a sparse matrix that is constructed so that Aij is set to 1 if the entire118

pixel xj was sampled by the kth strip bk, to a fraction if only part of the pixel was sampled, zero otherwise119

(details in Section 2.4). The design matrix can be thought as a linear operator that acts onto the image120

(i.e. the vectorized x) to return the expected molecule count the secondary slice-projections that is b̂ = Ax.121

122

2.2 Assumptions123

• The pixel intensities and di↵erences of pixel intensities are assumed to be drawn from Exponential and124

Laplacian distributions, respectively.125

– Genes are assumed to be relatively localized and have pixel intensity histograms that accumulate on126

low values. We place an exponential prior on pixel values x ⇠ Exp(� = ↵).127
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– The signal we want to reconstruct appears as an image. This implies that transitions from pixel to128

pixel are generally smooth and only rarely sharp (at edges of gene expression). We therefore impose a129

Laplacian prior on both dimensions of the pixel gradient. In other words, we consider the two priors130

(xi+1,j � xi,j) ⇠ Laplacian(µ = 0, b =
p
2��1) and (xi,j+1 � xi,j) ⇠ Laplacian(µ = 0, b =

p
2��1).131

• Each gene’s expression profile is independent from another.132

• Each angle of the parallel-slice projection b� is a re-sampling of the same distribution in R2.133

• The sampling distribution of the parallel-slice projection b given the pixel intensity values follows a Negative134

Binomial Distribution whose mean is given by b̂.135

2.3 Formulation of the optimization problem136

The objective is to estimate the pixel intensity values given the values of the observed molecule counts, b. The137

task is framed as a maximum a posteriori estimation problem where we posit that the sampling distribution of the138

parallel-slice projection b given the pixel intensity values follows a Negative Binomial Distribution whose mean139

and variance are b̂ and rb̂�1, respectively.140

b ⇠ Negative Binomial(µ = b̂,� = rb̂�1)

) P(b = bi|b̂ = b̂i, r) =
�(r + bi)

bi!�(r)

2

4
r

r + b̂i

3

5

r 2

4
b̂i

r + b̂i

3

5

bi

where b̂ = Ax
141

(1)

The pixel intensities and di↵erence of pixel intensities are assumed to be drawn from an Exponential and142

Laplacian distribution, respectively.143

x ⇠ Exp(� = ↵) ) P(X = xi|↵) = ↵e�↵xi (2)
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(xi+1,j � xi,j) ⇠ Laplacian(µ = 0, b =
p
2��1)

) P(xi+1,j � xi,j |�) =
1

2
p
2��1

e
�
|xi+1,j � xi,j |

p
2��1

(xi,j+1 � xi,j) ⇠ Laplacian(µ = 0, b =
p
2��1)

) P(xi,j+1 � xi,j |�) =
1

2
p
2��1

e
�
|xi,j+1 � xi,j |

p
2��1

(3)

144

145

Deriving the posterior distribution of the pixel intensity values x using Bayes Theorem gives us146

P(✓|data) =
P(data|✓)P(✓)

P(data)
(4)

147

148

Since P(data) is our vector containing the experimentally obtained values, it is a constant and therefore149

independent of the parameters to be estimated. Thus, it can be ignored to simplify the expression to150

P(✓|data) / P(data|✓)P(✓) (5)

151

152

Incorporating our model and its distributions as defined above we can then write153

P(x|b,↵,�,A, r) / P(b|x,A, r)P(x|↵,�) (6)

154

155

The maximum a posteriori estimate for the pixel intensity values x becomes156

xMAP = argmaxx P(b|x,A, r)P(x|↵,�)

= argmaxx log(P(b|x,A, r)) + log(P(x|↵,�))

= argmaxx log(
Qs

z=1 P(bz|x,A, r)) + log(
Qnm

z=1 P(xz|↵,�))

= argmaxx(
Ps

z=1 log(P(bz|x,A, r)) +
Pnm

z=1 log(P(xz|↵,�))

(7)

157

158
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Substituting the probability distributions defined previously, the xMAP expression can be written as follows:159

xMAP = argmax
x

nmX

z=1

log

0

B@

2

4
�(r + bz)

bz!�(r)

3

5

2

4
r

r + b̂z

3

5

r 2

4
b̂z

r + b̂z

3

5

bz
1

CA+

nmX

z=1

log

0

BBBB@
↵e↵xz

1

2
p
2��1

e
�
|xz+m � xz|

p
2��1 1

2
p
2��1

e
�
|xz+1 � xz|
p
2��1

1

CCCCA

(8)

160

161

We minimize the negative of the xMAP expression and ignore the hyperparameter terms since they do not162

depend on the pixel intensity values, x, and are thus constant. Further simplifying the expression and expanding163

the log terms we have164

xMAP =
nmX

z=1

log

0

@�

0

@bz +
b̂z

r

1

A

1

A� log

0

@�

0

@
b̂z

r

1

A

1

A� log (�(bz + 1))

�
b̂z

r
log(1 + r) + bz log

0

@
r

r + 1

1

A+
nmX

z=1

↵xz +
|xz+m � xz|

p
2��1

+
|xz+1 � xz|
p
2��1

(9)

165

166

Note that we constrain the pixel intensity values to always be positive. From the above expression it is trivial167

to see that the exponential distribution terms and the Laplacian distribution terms simplify to the L1 norm and168

total variation terms respectively. This is therefore equivalent to placing a sparsity constraint on the pixel values,169

which intuitively makes sense as we expect most pixel values to be zero for cases of localized gene expression170

profiles. Total Variation minimization on the other hand has been shown to preserve edges and reduce noise in171

image reconstruction algorithms.172

We also calculate the analytical gradient of the xMAP function to speed up the convergence of the optimization173

algorithm. As the L1 norm and Total Variation terms are non-di↵erentiable we use instead a di↵erentiable174

variation known as the lasso (dlasso) [4]. The derivative of the xMAP function is175

�xMAP

�xi
=

nmX

j=1

0

@
1

r

0

@Aij(log(r + 1) +  
µj

r
�  (

µj

r
+ bj)

1

A

1

A

+
�(dlasso(xj))

�xi

�(dlasso(xj+m � xj))

�xi
+
�(dlasso(xj+1 � xj))

�xi
)

(10)

176

177

Where  is the digamma function178
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dlasso(xi) = xierf

0

@
xi

s

1

A

erf(xi) =
2
p
⇡

Z xi

s

0
e�t2dt

(11)

179

180

where s is a hyperparameter which we set equal to 0.005. The derivative of dlasso is given by:181

�(dlasso(xi))

�xi
= erf

0

@
xi

s

1

A+ 2�

0

@
xi

s
, 0,

1
p
2

1

A
xi

s
(12)

182

183

where � is the density function of the normal distribution �(xi, µ,�2) =
1

p
2⇡�2

e
�
(xi � µ)2

2�2
184

For the gradient of the total variation we follow a similar approach, calculating the di↵erence of the neighboring185

pixels inside the mask.186

It should be noted that b̂ vectors are incremented by
0.005

p

Pp
i=0 bi in order to prevent division by zero187

operations that may occur during calculation of the negative log likelihood.188

2.4 Computing the design matrix189

To create the design matrix A we begin with creating a binary mask corresponding to the shape of the tissue.190

We start with two micrographs (mRNA staining using FITCH-polyT) that we acquired from the sections191

before and after the one sequenced. We morph the two micrographs into an intermediate image by identifying192

corresponding features, finding a Delaunay triangulation and using it to perform a piece-wise a�ne transform.193

The same procedure was also used between the right and left section of the slice to create a symmetric image.194

In this way we obtain a gray-scale image which is shown as background in all the reconstructions of the paper.195

Finally we threshold the gray-scale image to obtain a binary mask and rescal it so that the slice width corresponds196

to 1 pixel.197

We then use the mask to determine the position of the strips. To do this for each angle � we consider the198

line bundle of slope tan(�) and intercept qp. We identify q1 as the intercept of the most distant line that still199

overlaps with the mask. It is then possible to assign the successive qp as the width of the strips is known, an stop200

at the last line that overlaps with the mask. Once the lines are determined qk the design matrix Aij can be filled201

accordingly.202
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Aij =

8
>>><

>>>:

1

w
distance(xj , linei) if distance(xj , linei) < w

0 otherwise

(13)

This way of defining A has the advantage of reducing aliasing artefacts and it is designed so that
P

i Aij = 1 8j203

for each angle. Note that all pixels at a distance greater than w from the kth line have contribution of zero to204

molecular counts of b̂k.205

The design matrix was modified to impose a symmetry constraint, which, in our hands, increased the accuracy206

of the spatial expression profiles that are recovered.207

2.5 K-fold cross validation and hyper-parameter optimization208

The optimization problem presents two hyper-parameters: ↵ and �. They are responsible for controlling the209

sparsity and smoothness of the reconstructed image, respectively. When ↵ and � are appropriately chosen we210

will avoid over-fitting while also preventing relevant features from being blurred.211

212

To score each set of hyper-parameters we adopt a k-fold cross validation procedure where all but one of the213

parallel-slice projections are used as training data to fit the model, and the remaining slice-projection is used as214

a test set to score the reconstruction by calculating the negative log-likelihood.215

Note that if we had used a random subset of data points from the stacked projection the procedure we could216

not have avoided over-fitting as the signal in neighbouring data points and strips are correlated (i.e. training set217

is not independent from the test set).218

219

A grid search is performed allowing values ranging from 0 to 10 for each hyper-parameter. In order to attain220

more precise values for ↵ and � values after completion of the grid search, we use a Bayesian optimization221

approach (as implemented by GpyOpt library). Using values computed from the initial grid search, the Bayesian222

optimization procedure parsimoniously samples the cross validation function an additional number of times to223

determine the optimal hyper-parameter values. The hyper-parameter pair with the best log-likelihood score is224

selected.225

3 Simulations and Method Evaluation226

3.1 Overview227

In order to demonstrate the potential of the method, a number of simulated experiments were performed using228

ISH data from the Allen Brain Atlas. Ground truth images from the Allen Brain Atlas were up-sampled using a229

cubic interpolation to attain a resolution similar to reconstructions using raw data.230

231
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In all the experiments in which we added noise, we drew the noise from Poisson using the expected value of232

the projection A · x as the parameter � of the distribution, that is bsym ⇠ Poisson(Ax)233

3.2 Comparison to Previous Methods234

Based on the Matlab code provided by the authors, we re-implemented in Python the Iterative Proportional235

Fitting (IPT) algorithm proposed in the Tomo-seq paper for 3D reconstruction [5]. Furthermore, to provide an236

example of a less under-determined problem and thus, a more fair comparison against our method, we considered237

a Tomo-seq adaptation that is limited to 2D sampling and reconstruction. In these experiments no noise was238

added to projection values.239

240

The qualitative and quantitative di↵erences were quantified with Pearson’s correlation coe�cient, the relative241

total error (
1

meani(gi)

Pnm
n=i rn � gn) and number of pixels that di↵er more than a given tolerance. The last one242

is more precisely:
Pnm

n=i[rn � gn > ✏] where g and r are the flattened ground truth and reconstructed images243

respectively and where [ ] are Iverson brackets. ✏ was chosen to be 1/16 of the di↵erence between the maximum244

and minimum pixel value in the ground truth image.245

3.3 Influence of Angles on Reconstruction Quality246

To determine the minimum number of angles to obtain a good reconstruction we considered three di↵erent levels of247

gene expression (average signal rescaled to 0.5, 5 and 150 counts) and presence of noise. We performed a simulation248

experiment on the expression pattern of the gene TAC1, reconstructions were executed using di↵erent numbers of249

angles. We performed the tests adding angles sequentially so that each successive simulation contained all the same250

cutting angles of the previous set plus one. The chosen sequence of angles was: 0,⇡,
⇡

2
,
⇡

4
,
⇡

2
+
⇡

4
,
⇡

8
,
⇡

4
+
⇡

8
,
⇡

2
+
⇡

8
.251

For each condition, we scored the results using the average Pearson’s R over 5 realizations.252

3.4 E↵ect of Noise at Various Expression Levels253

To investigate how the quality of reconstructions varies based on gene expression, projections were scaled to various254

average expression levels ranging from 0.04 to 150 with additive noise sampled from a Poisson distribution. This255

was followed by reconstruction. The experiment was repeated for five trials for selected genes. Reconstruction256

quality is quantified by both Pearson’s R and PSNR.257

To visualize the strength of our probabilistic algorithm, we compared the mathematical reconstructions to a258

reconstruction solved by a simple least-squares solver.259

3.5 Reconstruction Accuracy260

In order to determine the accuracy of the reconstructions for di↵erent expression patterns, parallel slice-projections261

were simulated for 100 randomly selected genes from the Allen Brain ISH Atlas (ABA). After adding noise to262
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the parallel slice-projection, we performed reconstructions and compared the results to the ground truth images.263

To recreate the conditions of the experimental data, we utilized the same angles used in the experiments for the264

simulations.265

The comparison to ground truth images was achieved using Pearson’s R. Since the range of values correspond-266

ing to an accurate reconstruction is dependent on the dynamic range, the signal-to-noise ratio, the localization,267

and the sparsity of the signal, we constructed a reference distributions specific to this data.268

We construct a high and low accuracy scenario by considering for each gene two gene profiles from the ABA269

as references: (1) for the high accuracy reference, we retrieved the most similar gene across the entire ABA and270

(2) for the low accuracy, we selected the gene with similarity equal to the median. More formally, being Rij the271

pairwise correlation matrix between available genes in the Atlas, the reference distributions corresponds to the272

values of the vectors Rhigh
i = maxj(Rij) and Rlow

i = medianj(Rij).273

274

3.6 Resolution275

To determine the point resolution of the technique (the distance at which the method is no longer able to276

discriminate two points), we used a Monte Carlo simulation approach.277

We first generated a signal consisting of two points (using Gaussians PDFs) at random locations but separated278

at di↵erent fixed distances ranging from 0.3 to 2.0 times the strip thickness. We used the image to obtain the279

expected parallel slice-projections from which we draw Poisson realizations. We repeated the simulation, varying280

both the position of the Gaussians and the realization of the noise over the projections, and then evaluated the281

reconstruction results.282

To determine whether the points remain distinguishable after reconstruction, two Gaussian models were fit to283

the images, one consisting of a single Gaussian with full covariance matrix, the second consisting of two Gaussians284

with diagonal covariance matrices. For each simulation, the Bayesian Information Criterion (BIC) score between285

the two models was computed and used as a metric of how well the two points can be discriminated.286

The point resolution was then defined as the distance at which the di↵erence in BIC scores between the287

individual Gaussian and mixture model becomes significantly higher than the null distribution that considers an288

image with only one point. In particular, the null distribution was determined with an analogous simulation but289

keeping the two Gaussians fully superimposed such that they form a single point. In this way, the theoretical290

point resolution was found to be 1.15 the strip width, with a p-value of 1.259⇥ 10�5.291

4 STRP-seq and Data analysis292

4.1 Data-Preprocessing and Filtering293

An important aspect of retrieving quality output reconstructions is to prepare the raw dataset through the selec-294

tion of suitable genes for analysis. This section describes the two fundamental steps in the filtering process: (a)295

the removal of inadequate genes and (b) the selection of spatially segregated genes that contain information other296
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than solely the total molecule count. The section goes on to describe the processing of the data immediately prior297

to analysis.298

299

A total number of 24,362 and 18,580 RNA sequences with their projection profiles over five angles were300

provided for analysis for the mouse and lizard, respectively. It was observed that reconstruction quality tends to301

be poor if one of the three following conditions occurs:302

• Low mean value. Genes with low expression values over projections are more a↵ected by noise (refer to303

figure of simulations).304

• Low non-zero counts. Genes with very low amounts of non-zero values over all projections do not allow for305

good estimations of the log-likelihood.306

• Contradictory information between projections. Data collection may have been faulty if the quantity of307

non-zero values in a given angle su�ciently supersedes the quantity of non-zero values in another angle.308

This can pose numerical problems for the solver.309

In order to filter genes based on these criteria, a threshold was required for each condition and for each data310

set. Genes that were below the 5th percentile for each condition were deemed as substandard and removed from311

further analysis. Thresholds defined this way resulted in a minimum mean value count of 5 and a minimum312

non-zero count of 15 for the mouse dataset. For the lizard dataset, thresholds were a minimum mean value count313

of 2 and a minimum non-zero count of 10. Contradictory projections were defined to be if an angle existed that314

had at least 4 times fewer non-zero counts than another angle. This resulted in a new total of 5,796 and 8,183315

genes in the mouse and lizard datasets, respectively. These genes are used for the comparative study described316

in Section 4.3.317

318

To reduce redundancy and the amount of time to complete reconstructions, genes that had similar projection319

profiles to the total molecule count were removed. The projection profile of the total molecule count was processed320

to remove spikes via the modelling of a heteroscedastic gaussian process. The similarity between profiles was esti-321

mated by calculating the log-likelihood of each value in a given gene’s projection assuming they are samples from a322

negative binomial distribution where the value of the total molecule count is the expected value of the distribution.323

A threshold was selected based on where the scores begin to level o↵ with respect to the distribution of their fre-324

quencies. This threshold was selected to be -1000 for the mouse data and -630 for the lizard data. This resulted in325

3,880 and 2,135 genes which were then admitted for reconstruction for the mouse and lizard datasets, respectively.326

327

Optimally chosen ↵ and � hyperparameter values were saved for future reference. Theoretically higher �328

values correspond to flatter genes. Since the analysis performed in future sections requires spatially segregated329

genes, flat genes can be e�ciently filtered based on the selected � value.330

331
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Genes that were deemed worthy of analysis were then processed in two steps: (a) application of a Gaussian332

blur on the image of standard deviation 2 and (b) a rescaling of pixel values to reflect the RNA molecule count333

from projection values for individual genes. Gaussian blurring was achieved by first determining the 50 nearest-334

neighbours for each pixel in a mask and multiplying their distances to the pixel in question by a Gaussian335

function. Values across the image were then normalized by the maximum and multiplied by the sum of RNA336

molecule counts across projections to reflect the gene expression intensity at a given pixel.337

4.2 Mus Musculus Analysis338

4.2.1 Quality of reconstructions from experimental work339

In order to better define the ability of STRP-seq to mathematically reconstruct a given gene’s expression profile340

from raw data, Pearson’s R was calculated between the reconstruction and its ground truth profile. The ground341

truth profile was retrieved from the Allen Brain Atlas for genes which were present in the correct coronal layer.342

The Allen Brain ISH experiments provide expression patterns in tissue which are of di↵erent dimension than343

that of our reference mask. In order to compare the two datasets by a correlation score, Allen brain images were344

rescaled and morphed using Delaunay triangulation to match the dimensions of STRP-seq gene output images.345

Morphing introduces an unavoidable error due to the fact that reference points for triangulation were selected346

manually. This implies that highly localized genes are more likely to output unreliable values for Pearson’s R, as347

there will be less overlap of the signal between the reconstruction and the ground truth even though the signals348

remain in close proximity. This can cause Pearson’s R to be negative when in fact the two spatial profiles are349

quite similar. In order to make the coe�cient more reliable for cases such as these, a Gaussian blur was applied350

to the reconstructed image and original ISH image. The Gaussian blur considered the 50 nearest neighbors to351

determine the new value of a given pixel. Pearson’s R between ground truth and mathematically reconstructed352

images was then calculated using pixels strictly within the tissue mask.353

354

4.2.2 Data analysis355

Given the gene expression profiles that we were able to mathematically reconstruct, we then asked if it is be356

possible to distinguish individual regions or cell types within the mouse brain.357

In order to demonstrate this concept, three pixels were manually selected from the mouse mask such that358

two corresponded to regions in the thalamus and one to the cortex. Gene values were logged and then scattered359

against each other between thalamus-thalamus pixels and thalamus-cortex pixels. Pearson’s R was calculated for360

both scenarios. It should be noted that a bootstrapping approach for gene selection was used in order to dampen361

the e↵ects of outliers. This resulted in an average Pearson’s R = 0.971 with standard deviation 0.0022. This362

method was then extended to all pixels in the mask. Using correlation coe�cients which were calculated between363

pixels, a distance matrix was created and sorted using the Sorting Points Into Neighborhoods (SPIN) algorithm [6].364

365
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An alternative way to visualize tissue structure from gene expression profiles is through the use of a non-linear366

dimensionality reduction technique, such as UMAP, or a clustering algorithm. The two-dimensional UMAP367

projections were color-coded based on spatial location in the mask to help make sense of the distribution. The368

Louvain method for community detection was applied to determine whether clusters of tissue exist and support369

what was observed from applying SPIN to a correlation matrix between pixels.370

4.3 Pogona Vitticeps Analysis371

4.3.1 Independent analysis of the lizard brain372

In order to select genes that were spatially localized, Principal Component Analysis (PCA) was applied to the373

reconstructed images to visualize basis functions that represent a significant portion of the variance of the data.374

Meaningful components were considered to be those that had an explained variance of at least 0.02. Since we375

are interested in looking for spatially varying genes, we selected genes which were not well-described by the first376

principal component which describes the most general distribution - the total molecule count - but correlated377

with other components. This filtering process resulted in the selection of 308 genes.378

379

Relationships among pixels within the lizard tissue were investigated by calculating a pairwise correlation380

distance matrix and sorting it as described in Section 4.2. The individual rows in the matrix were then color-381

coded and mapped to the location in the brain to provide context about where the pixels are localized within the382

brain.383

To further investigate the molecular regions of the lizard brain, the Louvain method for community detection384

was applied to the distance matrix. The number of neighbours and resolution parameter was set to 150 and 1.1,385

respectively, which permitted us to delineate four major regions in the lizard brain.386

Finally, a heatmap visualizing the gene enrichment score calculated as

Pz xzczk
Pz czk

where cz is a binary vector387

indicating if a pixel xz is within the selected cluster ck, for individual subregions and a selection of genes was388

created and sorted according to hierarchical clustering. The values were then normalized over the columns. Four389

genes with higher enrichment scores were selected and their spatial distributions displayed.390

4.3.2 Comparative study of lizard and murine brain391

In order to investigate the degree of similarity between the murine and lizard brains, mutual genes which were392

present in the datasets of both organisms were selected. This resulted in two matrices:393

• The first matrix which contained murine cell types in one axis and gene values in the second axis. Cell394

type gene expression values were retrieved from the summary Loom file from the Zeisel Atlas ([2]; http:395

//mousebrain.org/downloads.html) which contains expression values and metadata per cell type. Ex-396

pression values were log-transformed.397

• The second matrix contained gene values belonging to the lizard in one axis and pixel location in the second398

axis. Expression values were log-transformed.399
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A bootstrapping method was then performed in which 1000 genes were selected at random over 100 iterations.400

For each pixel in the lizard matrix, a linear regressor was fit using murine cell type gene expression levels in401

the mouse matrix. Regression coe�cients of the cell types were stored for each pixel in the lizard mask and the402

median value of these 100 iterations were compared to the 10th percentile value. In cases where the median value403

surpasses that from the 10th percentile by at least 30%, we conclude that the regression is not considered robust404

and reject the result.405

5 Tomographer Package406

Applying the framework is facilitated by the Tomographer package which was developed for the mathematical407

reconstruction of any spatially varying signal whose input data can be provided in the specified form. The package408

is compatible with Python >= 3.6, and a number of external libraries are required and are listed in the Installation409

section of the GitHub repository at https://github.com/lamanno-epfl/tomographer. For further references,410

including functionality and specifications for package use, see Tomographer Documentation.411
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