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Abstract 

 

There is currently only limited understanding of the genetic aetiology of obstructive 

sleep apnoea (OSA). The aim of our study is to identify genetic loci associated with 

OSA risk and to test if OSA and its comorbidities share a common genetic 

background. 

We conducted the first large-scale genome-wide association study of OSA using 

FinnGen Study (217,955 individuals) with 16,761 OSA patients identified using 

nationwide health registries.  

We estimated 8.3% [0.06-0.11] heritability and identified five loci associated with 

OSA (P < 5.0 × 10−8):  rs4837016 near GTPase activating protein and VPS9 domains 

1 (GAPVD1), rs10928560 near C-X-C motif chemokine receptor 4 (CXCR4), 

rs185932673 near Calcium/calmodulin-dependent protein kinase ID (CAMK1D) and 

rs9937053 near Fat mass and obesity-associated protein (FTO) - a variant 

previously associated with body mass index (BMI). In a BMI-adjusted analysis, an 

association was observed for rs10507084 near Rhabdomyosarcoma 2 associated 

transcript (RMST)/NEDD1 gamma-tubulin ring complex targeting factor (NEDD1). 

We found genetic correlations between OSA and BMI (rg=0.72 [0.62-0.83]) and with 

comorbidities including hypertension, type 2 diabetes (T2D), coronary heart disease 

(CHD), stroke, depression, hypothyroidism, asthma and inflammatory rheumatic 

diseases (IRD) (rg > 0.30). Polygenic risk score (PRS) for BMI showed 1.98-fold 

increased OSA risk between the highest and the lowest quintile and Mendelian 

randomization supported a causal relationship between BMI and OSA.  

Our findings support the causal link between obesity and OSA and joint genetic 

basis between OSA and comorbidities. 
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Introduction 

 

Obstructive sleep apnoea (OSA) is a severe sleep disorder affecting at least 9% of 

the population. Prevalence increases with higher age reaching over 35% in 

individuals over 60 years of age1. Despite a recognized health impact and available 

diagnostic tools and treatments the condition remains underdiagnosed2, 3. OSA is 

characterized by repetitive episodes of nocturnal breathing cessation due to upper 

airway collapse resulting in mild to severe sleep deprivation and dysregulation of 

sleep, breathing and blood pressure. These conditions may lead to serious 

comorbidities through intermittent hypoxia, systemic inflammation and sympathetic 

activation4. Furthermore, OSA is influenced by multiple risk factors such as obesity, 

male sex, family history of OSA, high age and problems of upper airway flow or jaw 

anatomy5. 

 

Consequently, OSA is a serious public health problem due to its many 

cardiometabolic comorbidities including an increased risk to coronary heart disease 

(CHD), type 2 diabetes (T2D) and its complications6  and ultimately, increased 

mortality7. In addition, comorbidities such as depression8, hypothyroidism9, asthma10  

and inflammatory rheumatic diseases (IRD)11  are linked with OSA. IRD might 

manifest as a comorbidity of OSA through the affection of the temporomandibular 

joint, which rotates the lower jaw backward causing narrowing of the upper airway12. 

 

Genetic studies provide a tool to identify independent genetic risk factors that 

modulate disease risk, and to examine causal pathways between comorbidity traits. 

Genome-wide association studies (GWAS) in OSA patients have previously 

identified associations with OSA severity measured with apnoea-hypopnea index 

(AHI, number of apnoeas and hypopneas per hour of sleep) or respiratory event 

duration13-15. The genome-wide significant findings from these studies and the 

corresponding associations our study are found in Supplementary Table 1. Larger-

scale GWAS studies have been performed on OSA-related phenotypes such as 

snoring16. However, knowledge about OSA predisposing genetic loci is thus far 

limited17 . 
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To test genetic associations with OSA we utilised FinnGen study with genetic 

profiling for 217,955 individuals and OSA diagnosis based on International Statistical 

Classification of Diseases (ICD) codes obtained from the Finnish National Hospital 

Discharge Registry and the Causes of Death Registry. The registries have excellent 

validity and coverage18. Combining the OSA diagnosis (ICD-10: G47.3, ICD-9: 3472) 

and related risk factors and comorbidities with the genotyping data allows 

identification of risk variants, helps elucidating biological disease mechanisms and 

enables evaluation of OSA-related disease burden on a population level.  

 

The aim of the study is to identify genetic loci associated with OSA risk and to test if 

OSA and its comorbidities share a common genetic background. To our knowledge, 

this is the first population-level longitudinal GWAS study regarding OSA.  

 

 

 

Materials and Methods 

 

General information 

First, using the FinnGen data, a GWAS was calculated for 2,925 ICD-code based 

phenotype definitions including OSA. Second, we selected into further analyses 

comorbidities which have previously been shown to associate with OSA in 

epidemiological studies, including obesity19, hypertension20 , T2D21 , CHD, stroke22, 

depression8, hypothyroidism9, asthma10  and IRD11, 12.  

 

 Study sample in FinnGen 

FinnGen (https://www.finngen.fi/en) is a large biobank study that aims to genotype 

500,000 Finns and combine this data with longitudinal registry data including The 

National Hospital Discharge Registry, Causes of Death Registry and medication 

reimbursement registries, all these using unique national personal identification 

codes. FinnGen includes prospective and retrospective epidemiological and disease-

based cohorts as well as hospital biobank samples. The data consists of 218,792 

individuals until the spring of 2020. FinnGen’s genotyping and imputation protocol is 

described in Supplementary Information.  
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To examine OSA patients more specifically 837 individuals who had ICD-code G47 

(Sleep disorders) were excluded from the controls and thus the remaining sample 

size was 217,955 participants. Of them, 16,761 (7.7%) had OSA diagnosis and 

10,557 (63.0%) of OSA patients were male. Baseline characteristics and OSA 

comorbidities of the participants are presented in Table 1. Differences in baseline 

demographics and clinical characteristics were tested using logistic regression 

model. The model was adjusted for sex, age and 10 first principal components (PC), 

except the model for age was adjusted for sex and 10 first PCs and the model for 

sex was adjusted for age and 10 first PCs. 

 

The diagnosis of OSA was based on ICD-codes (ICD-10: G47.3, ICD-9: 3472A), 

which were obtained from the Finnish National Hospital Discharge Registry and the 

Causes of Death Registry. This diagnosis is based on subjective symptoms, clinical 

examination and sleep registration applying AHI≥5/hour or respiratory disturbance 

index (RDI)≥5/hour. By combining ICD-codes from different registries, we generated 

disease endpoints. Supplementary Table 2 describes how endpoints were 

constructed for each phenotype. 

 

All prescription medicine purchases were retrieved from the Social Insurance 

Institution of Finland (KELA) registry for prescription drug purchases, since 1995 

(excluding over-the-counter medicines and medication administered at hospitals). 

The drugs are coded by the Anatomical Therapeutic Chemical (ATC) Classification 

System. 

 

  

Study samples in other cohorts 

UK Biobank (UKBB, https://www.ukbiobank.ac.uk/) is a major national and 

international health resource, with the aim of improving the prevention, diagnosis and 

treatment of a wide range of serious and life-threatening illnesses. UKBB 

recruited 500,000 people in 2006-2010 from across the United Kingdom. OSA 

diagnosis was based on ICD-10: G47.3. The study sample in the UKBB included 

4,471 OSA cases and 403,723 controls.  
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The Estonian Biobank is a population-based biobank of the Estonian Genome 

Center at the University of Tartu (EGCUT, www.biobank.ee). The cohort size is 

currently close to 150,000 participants. Patients were selected by ICD-10: G47.3. For 

additional conformation of the diagnosis treatment service codes from the Health 

Insurance Fund were also used. The study sample in the EGCUT included 4,930 

OSA patients and 61,056 controls. 

 

The All New Diabetics in Scania (ANDIS, http://andis.ludc.med.lu.se/) aims to recruit 

all incident cases of diabetes within Scania County in Southern Sweden. All health 

care providers in the region were invited; the current registration covered 14,625 

patients. OSA was defined by ICD-10: G47.3.  The study sample included 947 OSA 

patients and 9,829 controls.   

 

GWAS 

A total of 218,792 samples from FinnGen Data Freeze 5 with 2,925 disease 

endpoints were analyzed using Scalable and Accurate Implementation of 

Generalized mixed model (SAIGE), which uses saddle point approximation (SPA) to 

calibrate unbalanced case-control ratios23. Analyses were adjusted for age, sex, 

genotyping chip, genetic relationship and first 10 PCs. For OSA, we performed 

GWAS in a similar manner (n=217,955, including 16,761 OSA patients and 201,194 

controls), but adjusting also for body mass index (BMI) (n=159,731, including 12,759 

OSA patients and 146,972 controls). 

For the replication of the FinnGen OSA GWAS results we merged the evidence from 

the UKBB, EGCUT and ANDIS cohorts. The results were combined using inverse-

variance weighted fixed-effect meta-analysis. The merged data consisted 10,348 

OSA cases and 474,608 controls.  

The GWAS using UKBB data was calculated using SAIGE23 . This subset included 

4,471 OSA cases and 403,723 controls and was adjusted for birth year, sex, genetic 

relatedness and the first 4 PCs. In the EGCUT the data were analyzed using SAIGE 

and the model was adjusted for age, sex, genetic relatedness and the first 10 PCs 

and included 4,930 OSA patients and 61,056 controls. In ANDIS, the GWAS was 
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calculated using logistic regression model, which was adjusted for age, sex and first 

10 PCs. The analysis included 947 cases and 9,829 controls.  

 

 

Linkage disequilibrium score regression (LDSC) 

To estimate single nucleotide polymorphism (SNP) -based heritability, genetic 

correlation and tissue specific SNP-heritability we used LDSC-software24. LDSC 

uses linkage disequilibrium (LD) score regression method, which quantifies the 

contribution of each variant by examining the relationship between test statistics and 

LD. In calculation we used LD scores calculated from the 1000 Genomes Project25. 

To restrict to a set of common, well-imputed variants, we retained only those SNPs 

in the HapMap 3 reference panel26.  

 

To study genetic correlations between OSA, BMI, hypertension, T2D, CHD, stroke, 

depression, hypothyroidism, asthma and IRD we used summary statistics from the 

FinnGen data. For sleep traits we used summary statistics derived from the UKBB 

data. Study subjects self-reported sleep duration, sleepiness27  and chronotype28. 

Sleep efficiency (sleep duration divided by the time between the start and end of the 

first and last nocturnal inactivity period, respectively) was based on accelerometer-

derived measures29.  For tissue specific SNP-heritability we used a method, which 

combined data from Encyclopedia of DNA Elements (ENCODE, 

https://www.encodeproject.org/) and the Genotype-Tissue Expression (GTEx, 

https://gtexportal.org/home/) resources30, 31. 

 

 

Polygenic risk score (PRS) and Mendelian randomization (MR) 

PRS for BMI was calculated using summary statistics for 996,250 variants32.  The 

posterior effect sizes were calculated with PRS-CS utilising method33 and the score 

was calculated using Plink2 (https://www.cog-genomics.org/plink/2.0/) for the 

FinnGen data. 

 

We performed MR analysis to investigate the causality between BMI and OSA using 

independent BMI SNPs32. A genetic variant associated with the exposure of interest 
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(genetic instrument) is used to test the causal relationship with the exposure (BMI) 

and outcome (OSA)34. 

 

 

Gene based analysis 

Gene-based tests were performed using Multi-marker Analysis of GenoMic 

Annotation (MAGMA) as implemented on the Functional Mapping and Annotation 

(FUMA) platform, which provides aggregate association p-values based on all 

variants located within a gene and its regulatory region using information from 18 

biological data repositories and tools35. This analysis includes a gene-based test to 

detect significant SNPs associated with OSA using FinnGen OSA summary 

statistics. 

 

 

 

Results 

OSA correlates strongly with cardiovascular and metabolic traits 

To estimate strengths of associations between OSA and comorbidities we utilised 

data from 217,955 individuals who have participated in the FinnGen project. 16,761 

(7.7%) had OSA diagnosis and 10,557 (63%) of cases were male. The diagnoses 

were derived from ICD-codes in the Finnish National Hospital Discharge Registry 

and from the Causes of Death Registry. Baseline characteristics of the FinnGen 

participants and odds for OSA associated comorbidities are presented in Table 1.  

 

GWAS of OSA reveals BMI dependent and independent associations  

We estimated the heritability for OSA in FinnGen to be 8.3% [0.06-0.11] before and 

6.0% [0.04-0.08] after BMI adjustment. In a genome-wide association test, five 

distinct genetic loci were associated with OSA (P < 5.0 × 10−8), outlined in Table 2 

and Figure 1a and regional associations in Supplementary Figure 1. The lead 

variant in a locus on chromosome 16 was rs9937053, an intronic variant near Fat 

mass and obesity-associated protein (FTO), P = 4.3 × 10−16. In chromosome 12, the 
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lead variant was rs10507084, near Rhabdomyosarcoma 2 associated transcript 

(RMST)/ NEDD1 gamma-tubulin ring complex targeting factor (NEDD1), P = 

2.8 × 10−11, where RMST, a long non-coding RNA, was the nearest gene and 

NEDD1 the nearest protein coding gene. On chromosome 10, the lead variant was 

rs185932673, an intronic variant near Calcium/calmodulin-dependent protein kinase 

ID (CAMK1D), P = 2.4 × 10−8. In chromosome 9, the lead variant was rs4837016 

near GTPase activating protein and VPS9 Domains 1 (GAPVD1), P = 1.5 × 10−8 and 

in chromosome 2, the lead variant rs10928560 was near C-X-C motif chemokine 

receptor 4 (CXCR4), P = 2.8 x 10−8. Four out of five of these OSA associated lead 

variants have also been previously associated with BMI (p<0.01)36-38, with the 

exception of rs10507084 at the RMST/NEDD1 locus. Conditional analyses of the 

associated loci did not suggest any additional associations. Adjusting for BMI did not 

affect the association for variant rs10507084 (Figure 1b and Table 2), (ORunadjusted = 

1.11[1.08-1.15], P=2.8 × 10−11 vs. ORBMI adjusted = 1.12[1.08-1.17], P=9.7 × 10−10) 

suggesting BMI-independent mechanisms for rs10507084 in OSA predisposition.  

 

As an exploratory analysis we used MAGMA. This tool annotates FinnGen OSA 

summary statistics based on 18 biological data repositories and tools35. Using 

MAGMA, we detected 25 significant associations (P < 2.54 × 10−6) with various 

biological processes, which were driven by the same loci as the significant GWAS 

variants in FTO and GAPVD1 (Supplementary Figure 2a). Similarly, the gene-

based test for BMI-adjusted OSA revealed three further associated genes 

(Supplementary Figure 2b).   

 

We performed a phenome-wide association analysis (PheWAS) using the FinnGen 

data and examined the associations between the lead SNPs and 2,925 disease 

endpoints. Rs10507084 was specific for OSA also after BMI adjustment suggesting 

an independent role from cardiometabolic traits for the association between 

rs10507084 and OSA (Figure 2a). In addition, there was a strong correlation 

between rs10507084 and the use of antidepressants (OR=1.013[1.007-1.019], P=4.4 

× 10−6) (Figure 2b).  
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Genetic correlations and MR connect OSA with cardiovascular 

outcomes and dysregulation of metabolism  

To study the potential common genetic background of OSA and its known 

epidemiological correlates, we computed genetic correlations between OSA and its 

comorbidities using FinnGen summary statistics. The results showed strong genetic 

correlations between OSA and BMI (rg = 0.72, [0.62-0.83], P=3.49 × 10−40) and 

between OSA and comorbidities: hypertension (rg=0.35, [0.23-0.48], P=4.06 × 10−8), 

T2D (rg=0.52, [0.37-0.66], P=6.40 × 10−12), CHD (rg=0.38, [0.17-0.58], 

P=3.84 × 10−4), stroke (rg=0.33, [0.03-0.63], P=2.93 × 10−2), depression (rg=0.43, 

[0.27-0.60], P=2.79 × 10−7 ), hypothyroidism (rg=0.40, [0.27-0.54], P=7.07 × 10−9), 

asthma (rg=0.50, [0.33-0.68], P=1.53 × 10−8) and IRD (rg=0.34, [0.09-0.58], 

P=6.97 × 10−3). Furthermore, we observed high genetic correlations between OSA 

comorbidities. Since many of OSA comorbidities are correlated with BMI, we 

calculated the genetic correlations after BMI adjustment. This analysis showed 

somewhat lower estimates for genetic correlations between OSA and CHD (rg=0.24 

[0.012-0.47], P=0.04) , depression (rg=0.33, [0.17-0.50], P=1.1 × 10−3), asthma 

(rg=0.33 [0.11-0.54], P=2.6 × 10−3) and hypothyroidism, (rg=0.28 [0.11-0.44], 

P=8.0 × 10−4). Genetic correlations between OSA and BMI (rg=0.08, [-0.05-0.22], 

P=0.22), hypertension (rg=0.05, [-0.10-0.20], P=0.51), T2D (rg=0.15, [-0.03-0.33], 

P=0.11), stroke (rg=0.32, [-0.05-0.69], P=0.09) and IRD (rg=0.27, [-0.01-0.54], P=5.7 

 × 10−2) attenuated after BMI adjustment (Figure 3).  

 

To estimate genetic correlations between FinnGen OSA summary statistics and 

other sleep traits we used UKBB derived summary statistics for sleep variables. We 

observed genetic correlation with sleep efficiency13  rg = -0.31, [-0.44 - -0.17], 

P=9.80 × 10−6) and this was reflected with higher genetic correlation with daytime 

sleepiness29 (rg = 0.44, [0.33-0.54], P=1.27 × 10−15). These associations remained 

significant also after BMI adjustment (rg=-0.19, [-0.36 - -0.03], P= 0.02, rg=0.42, 

[0.29-0.55], P=1.06 × 10−10, respectively). We did not find significant genetic 

correlations between OSA and sleep duration or chronotype29 (Table 3).  

 

To investigate the biological mechanisms behind OSA, we also examined tissue 

enrichment of association signals using partitioned heritability analysis using LDSC: 

an approach which combines data from ENCODE and the GTEx resources30, 31  to 
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FinnGen OSA summary statistics. Concordantly with the association of BMI and 

cardiometabolic traits, we observed strongest association with cardiovascular tissues 

and connective and bone tissues (P < 0.05). Furthermore, enrichments with BMI 

adjusted OSA implicated central nervous system (CNS) as the strongest associating 

single tissue (P < 0.05) (Supplementary Figure 3).  

 

To test if there is a causal relationship between OSA and its comorbidities, we 

performed analysis of PRS followed by formal MR analysis using FinnGen OSA 

summary statistics and independent BMI SNPs32. The BMI PRS showed a strong 

association with OSA risk (Table 4) and the individuals in the highest BMI PRS 

quintile had 1.98-fold increased ([1.88-2.09], P=3.38 × 10−140) OSA risk after 

adjustment for age, sex and 10 first PCs. Similarly, this association was further 

accentuated in formal MR.  We used 64 independent BMI SNPs32 as instrumental 

variables to predict OSA. In line with epidemiological observations and genetic 

correlation, we discovered a strong causal predictive effect from BMI to OSA (IVW: 

beta=0.67, P=8.32 × 10−16) (Figure 4, Supplementary Table 3).  

 

 

Replication 

For each lead variants associated with OSA, we examined the estimates from the 

additional, comparable cohorts: UKBB, ANDIS and EGCUT. The results were 

combined using inverse-variance weighted fixed-effect meta-analysis. These 

additional independent datasets support the role of FTO and GAPVD1 loci in OSA (P 

< 0.05) (Supplementary Table 4). 

 

 

 

 

 

 

Discussion 

 

In this study, using biobank data of over 217,000 individuals we show that OSA risk 

has a strong genetic component and identify five genetic loci that are associated with 
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the risk for OSA. Our results show high genetic correlations between OSA and 

cardiometabolic diseases and risk factors, with strongest connections between OSA 

and BMI, hypertension, T2D and CHD, which are in line with previous 

epidemiological and clinical observations. These genetic correlations tracked with 

phenotypic correlations and comorbidities for OSA. In addition, both our association 

findings and the MR results support the causal role of obesity in OSA.  

 

These results allow us to draw several conclusions. First, genetic variation plays an 

important role in development of OSA. This is supported by both the SNP heritability 

estimates and the associated loci.  

 

Second, our results show that obesity plays a central causal role in the OSA risk. 

This is supported by high genetic correlations between OSA and BMI. We found that 

four out of five associated loci were mediated through their associations with BMI. 

These findings are in line with the finding that weight loss is an important contributor 

of lowering AHI and the severity of OSA39, 40. 

 

Third, we also identified a strong association near RMST/NEDD1, which was specific 

for OSA independent of BMI. The lead SNP associated with antidepressant 

purchases which may imply that daytime sleepiness caused by OSA together with 

sleep disturbances may lead to depression and increased antidepressant usage. 

This is in line with the observation that depression is prevalent among patients with 

OSA8.  

 

Fourth, a strong genetic correlation was observed between OSA and sleep traits, 

especially with sleepiness and sleep efficiency. These findings highlight the 

pathological effects of OSA on sleep. As OSA is manageable with Continuous 

Positive Airway Pressure (CPAP) or oral appliance, these genetic correlations 

implicate the importance of OSA treatment.  

 

Our study does have some limitations. First, registry-based ascertainment through 

hospitalisation may miss non-hospitalised cases (false negatives) and treatment 

information such as CPAP compliance or oral sleep apnoea appliance usage. 

However, to our knowledge this is the largest number of cases combined for a 
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GWAS. Second, due to a relatively small number of cases in the replication datasets, 

our statistical power was limited in the replication analysis. The finding of 

rs185932673 should be interpreted cautiously as the variant is rare in the Finnish 

population and the association was not replicated in the other study samples.  

 

Here we present associations between five novel genetic loci and OSA. Our findings 

highlight the causal links between obesity and OSA but also provide evidence for 

non-BMI dependent genetic effects. In addition to BMI, we show that genetic effects 

that modify risk of cardiometabolic diseases, depression, hypothyroidism, asthma 

and IRD are also correlated with genetic effects for OSA showing that the observed 

comorbidities between OSA and these diseases may have a joint genetic basis. Our 

results confirm that OSA is a heterogenic disease with several phenotypes and that 

implies different approach to OSA management.  
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Table 1. Baseline characteristics and previously known OSA comorbidities between OSA 
and non-OSA individuals in the FinnGen cohort 

 

Body mass index (BMI) was measured of 159731 individuals including 12759 OSA cases and 146972 controls. 
OSA=obstructive sleep apnoea, T2D = type 2 diabetes, CHD = coronary heart disease, IRD = inflammatory 
rheumatic diseases, OR = odds ratio 

 

 

Table 2. Characterization of five genome-wide significant OSA loci 

CHR Position RSID Nearest 

gene 

Consequence Fin.enr. AF  AF cases AF 

controls 

OR p-value p-value 

BMIadj 

16 53765595 rs9937053 FTO intron 0.97 0.43 0.45 0.43 1.11[1.08-1.13] 4.3 × 10−16 0.04 

12 97359374 rs10507084 RMST/NEDD1 intergenic 3.03 0.18 0.19 0.18 1.11[1.08-1.15] 2.8 × 10−11 9.7 × 10−10 

10 12656440 rs185932673 CAMK1D intron 0.55 0.0033 0.0051 0.0032 1.87[1.50-2.33] 2.4 × 10−8 9.3 × 10−6 

9 125379530          rs4837016 GAPVD1 intergenic 1.12 0.47 0.45 0.47 0.93[0.91-0.95] 1.5 × 10−8 2.2 × 10−4 

2 136234237 rs10928560 CXCR4 downstream 1.04 0.20 0.18 0.20 0.92[0.89-0.94] 2.8 × 10−8 8.5 × 10−5 

The finding of rs185932673 should be interpreted cautiously as the variant is rare in the Finnish population.  
CHR=chromosome, Fin.enr=Finnish enrichment compared to other European ancestry, AF=allele frequency, 
OR=odds ratio, [95% confidence interval], p-value BMIadj=p-value after BMI adjustment 

 
 
 
 

 
 
 
 

 

 
       All Non-OSA OSA OR [95% CI] P-value 

 
n=217955 n=201194 n=16761 

 
 

Male (n, %) 94799 (43.5) 84242 (41.9) 10557 (63.0) 2.26[2.19-2.34] < 2.00 × 10−16 

Female (n, %) 123156 (56.5) 116952 (58.1) 6204 (37.0)   

Age (mean, sd) 52.4 (17.5) 51.8 (17.7) 58.9 (13.3) 1.02[1.02-1.03] < 2.00 × 10−16 

Age at OSA diagnosis (mean, sd)  
 

55.3 (11.9) 
 

 

BMI (mean, sd) 27.25 (5.34) 26.87 (5.02) 31.72 (6.74) 1.15[1.15-1.16] < 2.00 × 10−16 

Hypertension (number of cases, %)  55678 (25.5) 47549 (23.6) 8129 (48.5) 2.44[2.36-2.53] < 2.00 × 10−16 

T2D (number of cases, %) 29054 (13.3) 23932 (11.9) 5122 (30.6) 2.60[2.50-2.70] < 2.00 × 10−16 

CHD (number of cases, %) 20925 (9.6) 18495 (9.2) 2430 (14.5) 1.11[1.06-1.17] 1.04 × 10−5 

Stroke (number of cases, %) 11671 (5.4) 10414 (5.2) 1257 (7.5) 1.10[1.03-1.17] 3.29 × 10−3 

Depression (number of cases, %) 23160 (10.6) 20094 (10.0) 3066 (18.3) 2.56[2.45-2.67] < 2.00 × 10−16 

Hypothyroidism (number of cases, %) 26228 (12.0) 23384 (11.6) 2844 (17.0) 1.85[1.77-1.94] < 2.00 × 10−16 

Asthma (number of cases, %) 20520 (9.4) 17358 (8.6) 3162 (18.9) 2.58[2.47-2.69] < 2.00 × 10−16 

IRD (number of cases, %) 12961 (5.9) 11555 (5.7) 1406 (8.4) 1.48[1.39-1.57] < 2.00 × 10−16 
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Table 3. Genetic correlations between OSA and other sleep traits 
 

 Sleepiness Sleep duration Chronotype Sleep efficiency 

OSA rg = 0.44 [0.33-0.54] 
p = 1.27 × 10−15 

rg = 0.0096 [-0.085-0.10] 
p = 0.84 

rg = -5.0 × 10−4 [-0.079-0.078] 
p = 0.99 

rg = -0.31 [-0.44 - -0.17] 
p = 9.80 × 10−6 

OSA BMI adjusted  rg = 0.42 [0.29-0.55] 
p = 1.06 × 10−10 

rg = 0.078 [-0.031-0.19] 
p = 0.14 

rg = -0.063 [-0.154-0.028] 
p = 0.18 

rg = -0.19 [-0.36 - -0.03] 
p = 0.02 

 
Summary statistics for sleep traits that were used to calculate the genetic correlations were obtained in 
previous genome-wide association study (GWAS) from the UK Biobank (UKBB). OSA=obstructive sleep apnoea, 
BMI=body mass index. 
 

 

 

Table 4. BMI’s polygenic risk score predicts OSA 

BMI_PRS      

  OR CI p-value 

BMI_Q1  -    -  

BMI_Q2 1.29 1.22-1.36 3.49 × 10−19 

BMI_Q3 1.45 1.37-1.53 5.61 × 10−40 

BMI_Q4 1.61 1.53-1.70 7.93 × 10−67 

BMI_Q5 1.98 1.88-2.09 3.38 × 10−140 
 

Estimated effect coefficients for the body mass index (BMI)’s polygenic risk score as a predictor of OSA. The 
BMI’s polygenic risk score was stratified into quintiles and BMI_Q5 is the highest quintile. OSA=obstructive 
sleep apnoea, OR=odds ratio, CI = 95% confidence interval. 
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Figure 1    

 

a) Manhattan plot for obstructive sleep apnoea (OSA) including 16 761 OSA cases and 201 194 controls. For 
each genetic variant, the x-axis shows chromosomal position, while y-axis shows the −log10(P) value. 
The horizontal line indicates the genome-wide significance threshold of P = 5 × 10−8. Five genetic loci were 
identified at the genome-wide significance level. CXCR4=C-X-C motif chemokine receptor 4, GAPVD1= GTPase 
activating protein and VPS9 Domains 1, CAMK1D=Calcium/calmodulin-dependent protein kinase ID, 
RMST=Rhabdomyosarcoma 2 associated transcript / NEDD1=NEDD1 gamma-tubulin ring complex targeting 
factor, FTO=Fat mass and obesity-associated protein 
 
b) Manhattan plot for obstructive sleep apnoea (OSA) after body mass index (BMI) adjustment including 12 
759 OSA cases and 146 972 controls. For each genetic variant, the x-axis shows chromosomal position, while y-
axis shows the −log10(P) value. 
The horizontal line indicates the genome-wide significance threshold of P = 5 × 10−8. One genetic locus was 
identified at the genome-wide significance level. RMST=Rhabdomyosarcoma 2 associated transcript / 
NEDD1=NEDD1 gamma-tubulin ring complex targeting factor 
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Figure 2. 

 
 

a) Phenome-wide association analysis (PheWAS) associations after body mass index (BMI) adjustment 
between rs10507084 and 2,925 disease endpoints. Significance Bonferroni corrected threshold was defined at 
P = 0.05/2925 = 1.71 × 10−5. Associated P-values on the −log10 scale on the vertical axis and the disease 
definition along the horizontal axis: 1. I Certain infectious and parasitic diseases, 2. II Neoplasms from hospital 
discharges , 3. II Neoplasms, from cancer registry , 4. III Diseases of the blood and blood-forming organs and 
certain disorders involving the immune mechanism, 5. IV Endocrine, nutritional and metabolic diseases, 6. 
Diabetes endpoints, 7. V Mental and behavioural disorders, 8. Psychiatric endpoints, 9. Alcohol related 
diseases, 10. VI Diseases of the nervous system, 11. Neurological endpoints, 12. VII Diseases of the eye and 
adnexa, 13. VIII Diseases of the ear and mastoid process, 14. IX Diseases of the circulatory system, 15. 
Cardiometabolic endpoints, 16. X Diseases of the respiratory system, 17. Asthma and related endpoints, 18. 
Chronic obstructive pulmonary disease and related endpoints, 19. Interstitial lung disease endpoints, 20. XI 
Diseases of the digestive system, 21. Dental endpoints, 22. Gastrointestinal endpoints, 23. XII Diseases of the 
skin and subcutaneous tissue, 24. XIII Diseases of the musculoskeletal system and connective tissue, 25. 
Rheumatoid arthritis endpoints, 26. XIV Diseases of the genitourinary system, 27. XV Pregnancy, childbirth and 
the puerperium , 28. XVI Certain conditions originating in the perinatal period, 29. XVII Congenital 
malformations, deformations and chromosomal abnormalities, 30. XVIII Symptoms, signs and abnormal clinical 
and laboratory findings, not elsewhere classified, 31. XIX Injury, poisoning and certain other consequences of 
external causes, 32. XX External causes of morbidity and mortality, 33. XXI Factors influencing health status 
and contact with health services, 34. Drug purchase endpoints, 35. Diseases marked as autoimmune origin, 36. 
Common endpoint, 37. Demonstration endpoints, 38. ICD-10 main chapters, 39. Operation endpoints, 40. 
Other, not yet classified endpoints, 41. Miscellaneous, not yet classified endpoints, 42. Comorbidities of 
Asthma, 43. Comorbidities of Chronic obstructive pulmonary disease, 44. Comorbidities of Diabetes, 45. 
Comorbidities of Gastrointestinal endpoints, 46. Comorbidities of Interstitial lung disease endpoints, 47. 
Comorbidities of Neurological endpoints, 48. Comorbidities of Rheumatoid arthritis endpoints 
b) Phenome-wide association analysis (PheWAS) analysis concerning drug purchases. The x-axis shows 
phenotypes based on Anatomical Therapeutic Chemical – drug codes (ATC), while y-axis shows the significance 
Bonferroni corrected threshold −log10(P) value which was defined as 0.05/69 = 7.25 × 10−4. 
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Figure 3.  
 

   

Genetic correlations between obstructive sleep apnoea (OSA), body mass index (BMI) and previously known 
comorbidities using LD-score regression. Colour-scale represents the strength of the correlation. Correlations 
between OSA and other traits have been calculated with and without BMI-adjustment. CHD=coronary heart 
disease, T2D=type 2 diabetes, IRD=inflammatory rheumatic diseases.  
 

 
Figure 4.  

 

Formal Mendelian randomization (MR) suggesting a strong causal relationship between body mass index (BMI) and 
obstructive sleep apnoea (OSA) where BMI predicts OSA as an outcome.  
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