Real-time, low-latency closed-loop feedback using markerless posture tracking

Gary Kane¹, Gonçalo Lopes², Jonny L. Saunders³, Alexander Mathis¹,⁴, & Mackenzie W. Mathis¹,⁴,*

¹The Rowland Institute at Harvard, Harvard University, Cambridge, MA USA
²NeuroGEARS Ltd, London, UK
³Institute of Neuroscience, Department of Psychology, University of Oregon, Eugene, OR USA
⁴Center for Neuroprosthetics, Center for Intelligent Systems, & Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

* mackenzie@post.harvard.edu

The ability to control a behavioral task or stimulate neural activity based on animal behavior in real-time is an important tool for experimental neuroscientists. Ideally, such tools are (1) noninvasive, (2) low-latency, and (3) provide interfaces to trigger external hardware based on posture (i.e., not just object-based-tracking). Recent advances in pose estimation with deep learning allows researchers to train deep neural networks to accurately quantify a wide variety of animal behaviors. In extending our efforts towards the animal pose estimation toolbox DeepLabCut, here, we provide a new DeepLabCut-Live! package that achieves low-latency real-time pose estimation (within 15 ms, at >100 FPS), with an additional forward-prediction module that achieves zero-latency feedback. We also provide three options for using this tool with ease: a stand-alone GUI (called DLC-Live! GUI), integration into Bonsai and into AutoPilot. Lastly, we benchmarked performance on a wide range of systems so that experimentalists can easily decide what hardware is required for their needs.

Highlights:

1. The DeepLabCut-Live! package is available via pip install deeplabcut-live
2. The Bonsai-DLC plugin is available
3. The AutoPilot-DLC plugin is available
4. The DeepLabCut-Live! GUI package is available via pip install deeplabcut-live-gui

Introduction

In recent years, advances in deep learning have fueled sophisticated behavioral analysis tools (1–7). Specifically, advances in animal pose estimation have ushered in an era of high-throughput quantitative analysis of movements (8). One such state-of-the-art animal pose estimation package, DeepLabCut (DLC, 4), provides tailored networks that predict the posture of animals of interest based on video frames, and can run swiftly in offline batch processing modes (up to 2,500 FPS on standard GPUs; 9, 10). This high throughput analysis has proven to be an invaluable tool to probe the neural mechanisms of behavior (8, 11).

The ability to apply these behavioral analysis tools to provide feedback to animals in real time is crucial for causally testing the behavioral functions of specific neural circuits.

This paper describes a series of new software tools that can achieve low-latency closed-loop feedback based on animal pose estimation with DeepLabCut. Additionally, these tools make it easier for experimentalists to design and conduct experiments with little to no additional programming, to integrate real-time pose estimation with DeepLabCut into custom software applications, and to share previously trained DeepLabCut neural networks with other users. First, we provide a marked speed and latency improvement from existing real-time pose estimation software (12–14) by optimizing inference code, using lightweight DeepLabCut models that perform well not only on GPUs, but also on CPUs and affordable embedded systems such as the NVIDIA Jetson platform. Second, we introduce a module to export trained DeepLabCut neural networks and load them into other platforms with ease, improving the ability to transfer trained models between machines, to share trained models with other users, and to load trained models in other software packages. Easy loading of trained models into other software packages enabled integration of DeepLabCut into another popular systems neuroscience software, Bonsai (15). Third, we provide a new lightweight DeepLabCut-Live! package to run DeepLabCut inference online (or offline). This package has minimal software dependencies and can easily be installed on integrated systems, such as the NVIDIA Jetson platform. Furthermore, it is designed to enable easy integration of real-time pose estimation using DeepLabCut into custom software applications. We demonstrate this ability via
integration of DeepLabCut-Live! into the new AutoPilot framework (16).

Using these new software tools, we achieve low latency real-time pose estimation, with delays as low as 10 ms using GPUs and 30 ms using CPUs. Furthermore, we introduce a forward-prediction module that counteracts these delays by predicting the animal’s future pose. Using this forward-prediction module, we were able to provide ultra-low latency feedback to an animal (even down to sub-zero ms delay). Such short latencies have only been approachable in marked animals (17), but have not been achieved to the best of our knowledge previously with markerless pose estimation (12–14, 18, 19).

Lastly, we developed a benchmarking suite to test the performance of these new tools on multiple hardware and software platforms. We provide performance metrics for 10 different GPUs, 2 integrated systems and 5 CPUs across different operation systems. We openly share this benchmarking suite1, so that users can look up expected inference speeds and run the benchmark on their system. We believe that with more user contributions this will allow the community to comprehensively summarize system performance for different hardware options and can thus guide users in choosing GPUs, integrated systems, and other options of interest for their particular use case.

Results
Exporting DLC models.

DeepLabCut enables the creating of tailored neuronal networks for pose estimation of user-defined bodyparts (4, 20). We sought to make these neural networks, which are TensorFlow graphs, easily deployable by developing a model-export functionality. These customized DeepLabCut models can be created from standard trained DeepLabCut models by running the export_model function within DeepLabCut (see Methods), or models can be downloaded from the new DeepLabCut Model Zoo.

The model export module utilizes the protocol buffer format (.pb file). Protocol buffers are a language-neutral, platform-neutral extensible mechanism for serializing structured data2, which makes sharing models simple. Sharing a whole (DeepLabCut) project is not necessary, and an end-user can simply point to the protocol buffer file of a model to run inference on novel videos (online or offline). The flexibility offered by the protocol buffer format allowed us to integrate DeepLabCut into applications written in different languages: a new python package DeepLabCut-Live!, which facilitates loading DeepLabCut networks to run inference; and into Bonsai, which is written in C# and runs DeepLabCut inference using TensorFlowSharp3.

1https://github.com/DeepLabCut/DeepLabCut-live
2https://developers.google.com/protocol-buffers
3https://github.com/migueleicaza/TensorFlowSharp

A new python package to develop real-time pose estimation applications.

The DeepLabCut-Live! package provides a simple programming interface to load trained/exported DeepLabCut models and perform pose estimation on single images (i.e., from a camera feed). By design this package has minimal dependencies and can be easily installed even on small integrated systems.

To use the DeepLabCut-Live! package to perform pose estimation, experimenters must simply start with a trained DeepLabCut model in the exported protocol buffer format (.pb file) and instantiate a DLCLive object. This object can be used to load the DeepLabCut network and perform pose estimation on single images:

```python
from dlclive import DLCLive
my_live_object = DLCLive("/exportedmodel/directory")
my_live_object.init_inference(my_image)
pose = my_live_object.get_pose(my_image)
```

On its own, the DLCLive class only enables experimenters to perform real-time pose estimation. To use poses estimated by DeepLabCut to provide closed-loop feedback, the DeepLabCut-live package uses a Processor class. A Processor class must contain two methods, process and save. The process method takes a pose as an argument, performs some operation, such as giving a command to control external hardware (e.g. to give reward or to turn on a laser for optogenetic stimulation), and returns a processed pose. The save method allows the user to save data recorded by the Processor in any format the user desires. By imposing few constraints on the Processor object, this tool is very flexible; for example, it can be used to read and write from a variety of commonly used data acquisition and input/output devices, including National Instruments devices, Arduino and Teensy micro-controllers, as well as Raspberry Pis and similar embedded systems. An example Processor object that uses a Teensy micro-controller to control a laser for optogenetics is provided in the DeepLabCut-live package.

We also provide functionality within this package to test inference speed of DeepLabCut networks. This serves to find the bounds for inference speeds an end user can expect given their hardware and pose estimation requirements. Additionally, there is a method to display the DeepLabCut estimated pose on top of images to visually inspect the accuracy of DeepLabCut networks.

Ultimately, this package is meant to serve as a software development kit (SDK): to be used to easily integrate real-time pose estimation and closed-loop feedback into other software, either that we provide (described below), or integrated into other existing camera capture packages.

Inference speed using the DeepLabCut-live package.

Maximizing inference speed is of utmost importance to experiments that require real-time pose estimation. Some
known factors that influence inference speed of DeepLab-Cut networks include the size of the network, the size of images, and the computational power of the hardware (9, 10). Accordingly, we tested the inference speed of the DeepLabCut-Live! package using different networks, different image sizes, and on multiple systems with different computational power.

Specifically, we tested two different network architectures available within DeepLabCut: DLC-ResNet-50v1 (1, 4, 9, 21) and DLC-MobileNetV2-0.35 (9, 22). We tested different image sizes using image pre-processing methods built in to the DeepLabCut-Live! package. There are three methods to reduce the size of images to increase inference speed: static image cropping, dynamic cropping around keypoints, and downsizing images (see Methods). These methods are especially important tools, as experimenters may want to capture a higher resolution, larger “full frame” view, but can increase inference speed by either performing inference only on the portion of the image in which the animal is present (i.e., dynamically crop the image around the animal), or if the entire image is needed, by performing inference on an image with reduced resolution (i.e. a smaller image). In particular, we used the downsizing function to parametrically change image sizes for this test. Lastly, we performed these tests on a variety of hardware configurations, ranging from NVIDIA GPUs to Intel CPUs on Linux, Windows, and MacOS computers, as well as NVIDIA Jetson developer kits–inexpensive embedded systems with on-board GPUs (Figure 2).

For each test, we measured the inference speed on 1,000-10,000 images on CPUs and GPUs. As expected, inference speeds were faster for the smaller MobileNetV2-0.35 encoder compared to smaller GPUs or CPUs (Figure 2). For example, with the NVIDIA Titan RTX GPU (24 GB) and the NVIDIA GeForce GTX 1080 GPU (8 GB), we achieved inference speeds of 152 ± 15 and 134 ± 9 frames per second on medium sized images (459 x 349 pixels) using the MobileNetV2-0.35 DeepLabCut network. Full results are presented in Figure 2 and Table 1.

Moreover, we created a website that we aim to continuously update with user input: one can simply export the results of these tests (which capture information about the hardware automatically), and submit the results on GitHub⁴. These results, in addition to the extensive testing we provide below, then become a community resource for considerations with regard to GPUs and experimental design⁵.

User-interfaces for real-time feedback.

In addition to the DeepLabCut-live package that serves as a SDK for experimenters to write custom real-time pose estimation applications, we provide three methods for conducting experiments that use DeepLabCut to provide closed-loop feedback that do not require users to write any additional code: a standalone user interface called the DLC-Live! GUI (DLG), and by integrating DeepLabCut into popular existing experimental control softwares Autopilot (16) and Bon sai (15).

DLC-Live! GUI.

The DLG provides a graphical user interface that simultaneously controls capturing data from a camera (many cam-

<table>
<thead>
<tr>
<th>GPU Type</th>
<th>Video Model</th>
<th>Dog Video</th>
<th>Mouse Video</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>image size (pixels, w*h)</td>
<td></td>
</tr>
<tr>
<td>Linux</td>
<td>Intel Xeon CPU MobileNetV2-0.35</td>
<td>75 x 133</td>
<td>119 x 87</td>
</tr>
<tr>
<td></td>
<td>Intel Xeon CPU MobileNetV2-0.35</td>
<td>150 x 267</td>
<td>229 x 174</td>
</tr>
<tr>
<td></td>
<td>Intel Xeon CPU MobileNetV2-0.35</td>
<td>300 x 533</td>
<td>459 x 349</td>
</tr>
<tr>
<td></td>
<td>Intel Xeon CPU MobileNetV2-0.35</td>
<td>424 x 754</td>
<td>649 x 393</td>
</tr>
<tr>
<td></td>
<td>Intel Xeon CPU MobileNetV2-0.35</td>
<td>600 x 1067</td>
<td>849 x 493</td>
</tr>
<tr>
<td></td>
<td>Intel Xeon CPU MobileNetV2-0.35</td>
<td>117 x 698</td>
<td>917 x 698</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GPU Type</th>
<th>Video Model</th>
<th>Dog Video</th>
<th>Mouse Video</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>image size (pixels, w*h)</td>
<td></td>
</tr>
<tr>
<td>Windows</td>
<td>Intel Xeon Silver CPU MobileNetV2-0.35</td>
<td>78 ± 3</td>
<td>43 ± 1</td>
</tr>
<tr>
<td></td>
<td>Intel Xeon Silver CPU MobileNetV2-0.35</td>
<td>64 ± 3</td>
<td>32 ± 0</td>
</tr>
<tr>
<td></td>
<td>Intel Xeon Silver CPU MobileNetV2-0.35</td>
<td>40 ± 2</td>
<td>20 ± 1</td>
</tr>
<tr>
<td></td>
<td>Intel Xeon Silver CPU MobileNetV2-0.35</td>
<td>18 ± 0</td>
<td>9 ± 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GPU Type</th>
<th>Video Model</th>
<th>Dog Video</th>
<th>Mouse Video</th>
</tr>
</thead>
<tbody>
<tr>
<td>MacOS</td>
<td>Intel Core i5 CPU MobileNetV2-0.35</td>
<td>124 ± 19</td>
<td>80 ± 9</td>
</tr>
<tr>
<td></td>
<td>Intel Core i5 CPU MobileNetV2-0.35</td>
<td>80 ± 9</td>
<td>43 ± 1</td>
</tr>
<tr>
<td></td>
<td>Intel Core i5 CPU MobileNetV2-0.35</td>
<td>43 ± 1</td>
<td>22 ± 1</td>
</tr>
<tr>
<td></td>
<td>Intel Core i5 CPU MobileNetV2-0.35</td>
<td>22 ± 1</td>
<td>11 ± 1</td>
</tr>
<tr>
<td></td>
<td>Intel Core i5 CPU MobileNetV2-0.35</td>
<td>11 ± 1</td>
<td>6 ± 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GPU Type</th>
<th>Video Model</th>
<th>Dog Video</th>
<th>Mouse Video</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jetson</td>
<td>Xavier MobileNetV2-0.35</td>
<td>124 ± 19</td>
<td>80 ± 9</td>
</tr>
<tr>
<td></td>
<td>Xavier MobileNetV2-0.35</td>
<td>80 ± 9</td>
<td>43 ± 1</td>
</tr>
<tr>
<td></td>
<td>Xavier MobileNetV2-0.35</td>
<td>43 ± 1</td>
<td>22 ± 1</td>
</tr>
<tr>
<td></td>
<td>Xavier MobileNetV2-0.35</td>
<td>22 ± 1</td>
<td>11 ± 1</td>
</tr>
<tr>
<td></td>
<td>Xavier MobileNetV2-0.35</td>
<td>11 ± 1</td>
<td>6 ± 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GPU Type</th>
<th>Video Model</th>
<th>Dog Video</th>
<th>Mouse Video</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tegra X2</td>
<td>TX2 MobileNetV2-0.35</td>
<td>124 ± 19</td>
<td>80 ± 9</td>
</tr>
<tr>
<td></td>
<td>TX2 MobileNetV2-0.35</td>
<td>80 ± 9</td>
<td>43 ± 1</td>
</tr>
<tr>
<td></td>
<td>TX2 MobileNetV2-0.35</td>
<td>43 ± 1</td>
<td>22 ± 1</td>
</tr>
<tr>
<td></td>
<td>TX2 MobileNetV2-0.35</td>
<td>22 ± 1</td>
<td>11 ± 1</td>
</tr>
<tr>
<td></td>
<td>TX2 MobileNetV2-0.35</td>
<td>11 ± 1</td>
<td>6 ± 1</td>
</tr>
</tbody>
</table>
Table 2. Performance of the DeepLabCut-live-GUI (DLG). F-P = delay from image acquisition to pose estimation; F-L = delay from image acquisition to turning on the LED; FPS (DLG) = Rate of pose estimation (in frames per second) in the DeepLabCut-live-GUI; FPS (DLCLive) = Rate of pose estimation for the same exact configuration directly tested using the DeepLabCut-live benchmarking tool. All values are mean ± standard deviation.

<table>
<thead>
<tr>
<th>GPU Type</th>
<th>Mode</th>
<th>F-P (ms)</th>
<th>F-L (ms)</th>
<th>FPS (DLG)</th>
<th>FPS (DLCLive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>GeForce GTX 1080</td>
<td>10 ± 1</td>
<td>11 ± 1</td>
<td>56 ± 16</td>
<td>123 ± 16</td>
</tr>
<tr>
<td></td>
<td>Rate</td>
<td>15 ± 3</td>
<td>16 ± 3</td>
<td>91 ± 11</td>
<td></td>
</tr>
<tr>
<td>Linux</td>
<td>Quadro P400</td>
<td>11 ± 1</td>
<td>11 ± 1</td>
<td>63 ± 19</td>
<td>105 ± 4</td>
</tr>
<tr>
<td></td>
<td>Rate</td>
<td>15 ± 3</td>
<td>16 ± 3</td>
<td>93 ± 19</td>
<td></td>
</tr>
<tr>
<td>Jetson</td>
<td>Xavier</td>
<td>13 ± 1</td>
<td>14 ± 1</td>
<td>48 ± 3</td>
<td>84 ± 7</td>
</tr>
<tr>
<td>MacOS</td>
<td>CPU</td>
<td>29 ± 5</td>
<td>29 ± 4</td>
<td>24 ± 5</td>
<td>62 ± 6</td>
</tr>
</tbody>
</table>

Figure 3. Pose estimation latency using the DLC-Live!-GUI Top: A lick sequence from the test video with 8 keypoints measured using the DLC-Live!-GUI (using Windows/GeForce GTX 1080 GPU). Image timestamps are presented in the bottom-left corner of each image. Bottom: Latency from image acquisition to obtaining the pose, from the last pose to the current pose, and from image acquisition when the mouse’s tongue was detected to turning on an LED. The width of the violin plots indicate the probability density – the likelihood of observing a given value on the y-axis.
tions (to see how they generally perform, please see Table 1): a Windows desktop with NVIDIA GeForce GTX 1080 GPU, a Linux desktop with NVIDIA Quadro P400 GPU, a NVIDIA Jetson Xavier, and a MacBook Pro laptop with Intel Core-i7 CPU.

On a Windows system with GeForce GTX 1080 GPU, DLG achieved delays from frame acquisition to obtaining the pose as fast as 10 ± 1 ms (mean ± sd) in the “Optimize Latency” mode. Compared to the “Optimize Latency” mode, this delay was, on average, 4.38 ms longer (95% CI: 4.32-4.44 ms) with smaller images and 4.6 ms longer (95% CI: 4.51-4.63 ms) with the larger images in the “Optimize Rate” mode. As suggested above, the longer delay from frame acquisition to pose in the “Optimize Rate” mode can be attributed to delays from when images are acquired until pose estimation begins. With a frame acquisition rate of 100 FPS, this delay would be expected to be 5 ms with a range from 0-10 ms, as observed.

Running DLG In the “Optimize Rate” mode on this Windows system, the delay from obtaining one pose to the next was 11 ± 2 ms (rate of 91 ± 11 poses per second) for smaller images and 12 ± 1 ms (rate of 84 ± 9 poses per second) for larger images. Compared to the “Optimize Rate” mode, the “Optimize Latency” mode was 7.7 ms (95% CI: 7.6-7.8 ms) slower for smaller images and 9.1 ms (95% CI: 9.0-9.1 ms) for larger images. This increased delay from one pose to another can be attributed to time waiting for acquisition of the next image in the “Optimize Latency” mode.

Lastly, the delay from acquiring an image in which the tongue was detected until the LED could turn on/off includes the time needed to obtain the pose, plus additional time to determine if the tongue is present and to execute the control signal (send a TTL pulse to the LED). To determine the additional delay caused by detection of the tongue and sending a TTL signal to the LED, we compared the delay from image acquisition to turning on the LED with the delay from image acquisition to obtaining a pose in which the LED was not triggered. Detecting the tongue and sending a TTL pulse only took an additional 0.4 ms (95% CI: 0.3-0.6 ms). Thus, the delay from image acquisition to turn on the LED can be almost entirely attributed to pose estimation. Full results from all four tested systems can be found in Figure 3 and Table 2.

DeepLabCut models in Bonsai.

Bonsai is a widely used visual language for reactive programming, real-time behavior tracking, synchronization of multiple data streams and closed-loop experiments (15). It is written in C#, thus provides an alternative environment for running real-time DeepLabCut and also test the performance of native TensorFlow inference outside of a Python environment. We developed equivalent performance benchmarks for testing our newly developed Bonsai-DLC plugin. This plugin allows loading of the DeepLabCut exported .pb files directly in Bonsai.

We compared the performance of Bonsai-DLC and DeepLabCut-Live! on a Windows 10 computer with GeForce GTX 1080 with Max-Q design GPU, and found that the performance of running inference through Bonsai-DLC was comparable to DeepLabCut-Live! inference (Figure 4), suggesting that, as expected, inference speed is limited primarily by available CPU/GPU computational resources rather than by any native language interface optimizations. Moreover, we found the latency to be 34 ms ± 9.5 ms (median, IQR, n=500) tested at 30Hz with 384 x 307 pixels, which is equivalent to what was found with DLG above.

We then took advantage of the built-in OpenGL shader support in Bonsai to assess how external load on the GPU would impact DLC inference performance, as would happen when running closed-loop virtual reality simulations in parallel with video inference. To do this, we implemented a simulation of N-body particle interactions using OpenGL compute shaders in Bonsai, where we were able to vary the load on the GPU by changing the number of particles in the simulation, from 5,120 up to 51,200 particles. This is a quadratic problem as each particle interacts with every other particle, so it allows us to easily probe the limits of GPU load and its effects on competing processes.

Figure 4. Inference speed using the Bonsai-DLC Plugin. Dashed Lines are ResNet-50, solid lines are MobileNetV2-0.35 (A) Overview of using DeepLabCut within Bonsai. Both capture-to-write or capture to detect for real-time feedback is possible. (B) Top: Direct comparison of the inference speeds using Bonsai-DLC plugin vs. the DeepLabCut-Live! package across image sizes from the same computer (OS: Windows 10, GPU: NVIDIA GeForce GTX 1080 with Max-Q Design). Bottom: Inference speeds using the Bonsai-DLC plugin while the GPU was engaged in a particle simulation. More particles indicates greater competition for GPU resources.
Overall, we found that as the number of particle interactions increased the GPU load, there was a corresponding drop in DLC inference speeds (Figure 4). The effects of load on inference were non-linear and mostly negligible until the load on the GPU approached 50%, then started to drop as more and more compute banks were scheduled and used, likely due to on-chip memory bottlenecks in the GPU compute units (23). Nevertheless, as long as GPU load remained balanced, there was no obvious effect on inference speeds, suggesting that in many cases it would be possible to combine closed-loop accelerated DeepLabCut-live inference with real-time visual environments running on the same GPU (24).

Distributed DeepLabCut with Autopilot.

Autopilot is a Python framework designed to overcome problems of simultaneously collecting multiple streams of data by distributing different data streams over a swarm of networked computers (16). Its distributed design could be highly advantageous for naturalistic experiments that require large numbers of cameras and GPUs operating in parallel.

Thus, we integrated DeepLabCut-Live! into Autopilot in a new module of composable data transformation objects. As a proof of concept, we implemented the minimal distributed case of two computers: one Raspberry Pi capturing images and one NVIDIA Jetson TX2, an affordable embedded system with an onboard GPU, processing them (see Methods, Table 5).

We tested the performance of this system by measuring the end-to-end latency of a simple light detection task (Figure 5A). The Raspberry Pi lit an LED while capturing and streaming frames to the Jetson. Autopilot’s networking modules stream arrays by compressing them on-the-fly with blosc (25) and routing them through a series of “nodes” – in this case each frame passed through four networking nodes in each direction. The Jetson then processed the frames in a chain of Transforms that extracted poses from frames using DLC-Live! (DLC-MobileNetV2-0.35) and returned a Boolean flag indicating whether the LED was illuminated. True triggers were sent back to the Raspberry Pi which emitted a TTL voltage pulse to the LED on receipt.

Experiments were performed with differing acquisition frame rates (30, 60, 90 FPS), and image sizes (128 x 128, 256 x 256, 512 x 416 pixels; Figure 5B). Frame rate had a little effect with smaller images, but at 512 x 416, latencies at 30 FPS (median = 161.3 ms, IQR = [145.6-164.4], n = 500) were 38.6 and 52.6 ms longer than at 60 FPS (median = 122.7 ms, IQR = [109.4 - 159.3], n = 500) and 90 FPS (median = 113.7 ms, IQR = [106.7 - 118.5], n = 500), respectively.

Frame rate imposes intrinsic latency due to asynchrony between acquired events and the camera’s acquisition interval: e.g. if an event happens at the beginning of a 30 FPS exposure, the frame will not be available to process until 1/30s = 33.3ms later. If this asynchrony is distributed uniformly then a latency of half the inter-frame interval is expected for a given frame rate. This quantization of frame...
rate latency can be seen in the multimodal distributions in Figure 5B, with peaks separated by multiples of their inter-frame interval. The inter-frame interval of inference with DeepLabCut-Live! imposes similar intrinsic latency. The combination of these two sources of periodic latency and occasional false-negatives in inference gives a parsimonious, though untested, account of the latency distribution for the 512x416 experiments.

Latency at different image sizes were primarily influenced by the relatively slow frame processing of the Jetson TX2 (See Figure 2). With smaller images (128 x 128 and 256 x 256), inference time (shaded areas in 5B) was the source of roughly half of the total latency (inference/median total latency, n=1500 each, pooled across frame rates. 128 x 128: 32.2/64.6 ms = 49.7%. 256 x 256: 34.5/65.1 ms = 53.0%). At 512 x 416, inference time accounted for between 50 and 70% of total latency (512 x 416, 30 FPS: 79.9/161.3 ms = 49.5%, 90 FPS: 79.9/113.7 ms = 70.3%). Minimizing instrument cost for experimental reproducibility and scientific equity is a primary design principle of Autopilot, so while noting that it would be trivial to reduce latency by using a faster GPU or the lower-latency Jetson Xavier (i.e., see above sections), we emphasize that DeepLabCut-Live! in Autopilot is very usable with $350 of computing power (TX2 with education discount: $299, Raspberry Pi 4 2GB RAM: $35, 27).

Autopilot, of course, imposes its own latency in distributing frame capture and processing across multiple computers. Subtracting latency that is intrinsic to the experiment (frame acquisition asynchrony and GPU speed), Autopilot has approximately 25 ms of overhead (median of latency - mean DeepLabCut inference time - 1/2 inter-frame interval = 25.4 ms, IQR = [14.7 - 37.9], n = 4500). Autopilot’s networking modules take 6.9 ms on average to route a message one-way (16), and have been designed for high throughput rather than low latency (message batching, on-the-fly compression).

Real-time feedback based on posture.

Lastly, to demonstrate practical usability of triggering a TTL signal based on posture, we performed an experiment using DLG on a Jetson Xavier in which an LED was turned on when a dog performed a “rearing” movement (raised forelimbs in the air, standing on only hindlimbs; Figure 6). First, a DeepLabCut network based on the ResNet-50 architecture was trained to track 20 keypoints on the face, body, forelimbs, and hindlimbs of a dog (see Methods). Next, the Jetson Xavier running DLG was used to record the dog as she performed a series of “rearing” movements in response to verbal commands, with treats given periodically by an experimenter. Video was recorded using a Logitech C270 webcam, with 640 x 480 pixel images at 30 FPS. Inference was run on images downsized by 50% (320 x 240 pixels), using the “Optimize Rate” mode in DLG.

The dog was considered to be in a “rearing” posture if the vertical position of at least one of the elbows was above the vertical position of the withers (between the shoulder blades). Similar to the mouse experiment, a Processor was used to detect “rearing” postures and control an LED via communication with a Teensy micro-controller (Figure 6A). The LED was turned on the first image in which a “rearing” posture was detected, and subsequently turned off upon the first image in which the dog was not in a “rearing” posture (for a fully closed-loop stimulus).

This setup achieved a rate of pose estimation of 22.417 ± 0.928 frames per second, with an image to pose latency of 61 ± 10 ms (N = 1848 frames) and, on images for which the LED was turned on or off, an image to LED latency of 59 ± 11 ms (N = 9 “rearing” movements). However, using DLG, if the rate of pose estimation is slower than video acquisition, not all images will be used for pose estimation (N = 2433 total frames, 1848 poses recorded). To accurately calculate the delay from the ideal time to turn the LED on or off, we must compare the time of the first frame in which a “rearing” posture was detected from all images recorded, not only from images used for pose estimation. To do so, we estimated the pose on all frames recorded offline using the same exported DeepLabCut model and calculated the ideal times that the LED would have been turned on or off all available images. According to this analysis, there was a delay of 70 ± 23 ms to turn the LED on or off (consistent with estimates on Jetson systems shown above).

As shown above, there are three methods that we have implemented that could reduce these delays: i) training a DeepLabCut model based on the MobileNetV2 architecture (vs ResNet-50), ii) using more computationally powerful GPU-accelerated hardware for pose estimation (see 2), iii) or acquiring video at a higher frame rate, which reduces potential delays between the time an image was acquired and the time pose estimation begins in the “Optimize Rate” mode, or reducing the time the pose estimation process would have to wait for a newly acquired frame in the “Optimize Latency” mode. However, no matter how fast the hardware system, there will be some delay from acquiring images, estimating pose, and providing feedback.

To overcome these delays, we developed another method to reduce latency for highly sensitive applications. Namely, we can perform a forward prediction— to predict the animal’s future pose before the next image is acquired and processed. Depending on the forward prediction model, this could potentially reach zero-latency feedback levels (or below)— a dream for experimentalists who aim to study timing of causal manipulations in biological systems.

To reduce the delay to turn on the LED when the dog exhibited a “rearing” movement, we implemented a Kalman filter that estimated the position, velocity, and acceleration of each keypoint, and used this information to predict the position of each keypoint at the current point in time (i.e., not the time at which the image was acquired, but after time had been taken to process the image). For example, if the image was acquired 60 ms ago, the Kalman filter “Processor” predicted keypoints 60 ms into the future.

Thus, in another set of experiments, we recorded as the dog...
Figure. 6. Real-time feedback based on posture. A) Diagram of the workflow for the dog feedback experiment. Image acquisition and pose estimation were controlled by the DLC-Live! GUI. A DeepLabCut-live Processor was used to detect “rearing” postures based on the likelihood and y-coordinate of the withers and elbows and turn an LED on or off accordingly. B) An example jump sequence with LED status, labeled with keypoints measured offline using the DeepLabCut-live benchmarking tool. The images are cropped for visibility. C) Example trajectories of the withers and elbows, locked to one jump sequence. Larger, transparent points represent the true trajectories – trajectories measured offline, from each image in the video. The smaller opaque points represent trajectories measured in real-time, in which the time of each point reflects the delay from image acquisition to pose estimation, with and without the Kalman filter forward prediction. Without forward prediction, estimated trajectories are somewhat delayed from the true trajectories. With the Kalman filter forward prediction, trajectories are less accurate but less delayed when keypoints exhibit rapid changes in position, such as during a rearing movement. D) The delay from the time the dog first exhibited a rearing posture (from postures measured offline) to the time the LED was turned on or off. Each point represents a single instance of the detection of a transition to a rearing posture or out of a rearing posture.

performed a series of “rearing” movements, this time using a Processor that first forward-predicted the dog’s pose, then detected “rearing” movements and controlled an LED accordingly. Using the Processor with a Kalman filter reduced inference speed compared to the Processor without the Kalman filter, due to the time required to compute Kalman filter updates (15.616 ± 0.332 frames per second). The image to pose latency was 81 ± 10 ms (N = 1187 frames), and image to LED latency of 82 ± 11 ms (N = 9 “rearing” movements). However, compared to the ideal times to turn the LED on or off calculated from pose estimation performed on all available images, the Kalman filter “Processor” achieved a delay of -13 ± 61 ms. In this case, the Kalman filter turned the LED on or off 13 ms prior to the point at which the first rearing posture was detected. These results indicate the potential to perform zero or negative latency feedback based on posture.
Discussion

Providing event-triggered feedback in real-time is one of the strongest tools in neuroscience. From closed-loop optogenetic feedback to behaviorally-triggered virtual reality, some of the largest insights from systems neuroscience have come through causally testing the relationship of behavior to the brain (28–30). Although tools for probing both the brain and for measuring behavior have become more advanced, there is still the need for such tools to be able to seamlessly interact. Here, we aimed to provide a system that can provide real-time feedback based on advances in deep learning-based pose estimation. We provide new computational tools to do so with high speeds and low latency, as well as a full benchmarking test suite (https://deeplabcut.github.io/DLC-inferencespeed-benchmark/), which we hope enables ever more sophisticated experimental science.

Related Works. DeepLabCut and related animal pose estimation tools (reviewed in 8) have become available starting in early 2018, and two groups have built tools around real-time applications with DeepLabCut. However, the reported speed and latencies are slower than what we were able to achieve here: Forys et al. 2020 (12) latencies of 30 ms using top-end GPUs, but this delay increases if the frame acquisition rate is increased beyond 100 frames per second. Schweihoff et al. 2019 (14) also achieve latencies of 30 ms from frame acquisition to detecting a behavior of interest (round-trip frame to LED equivalent was not reported). We report a 2-3x reduction in latency (11 ms/16 ms from frame to LED in the “Optimize Latency”/“Optimize Rate” mode of DLG) on a system that uses a less powerful GPU (Windows/GeForce GTX 1080) compared to these studies, and equivalent performance (29 ms/35 ms from frame to LED in the “Optimize Latency”/“Optimize Rate” mode of DLG) on a conventional laptop (MacBook Pro with Intel Core-i7 CPU). Although we believe such tools can be used to present the advances presented in this work to achieve higher frame rates and lower latencies, our new real-time approach provides an improvement in portability, speed, and latency.

Animal pose estimation toolboxes, like DeepLabCut, have all benefited from advances in human pose estimation research. Although the goals do diverge (reviewed in 8) in terms of required speed, the ability to create tailored networks, and accuracy requirements, competitions on human pose estimation benchmarks such as PoseTrack (31) and COCO (32) have advanced computer vision. Several human pose estimation systems have real-time options: OpenPose (2) has a real-time hand/face pose tracker available, and PiPaf (33) reaches about 10Hz on COCO (32, depending on the backbone). On the challenging multi-human PoseTrack (31) benchmark, LightTrack (34) reaches less than 1Hz. However, recent work achieves 3D multi-human pose estimation at remarkable frame rates (35), in particular they report an astonishing 154 FPS for 12 cameras with 4 people in the frame. State of the art face detection frameworks, based on optimized architectures such as BlazeFace can achieve remarkable speeds of >500 FPS on GPUs of cell phones (36). The novel (currently unpublished) multi-animal version of DeepLabCut can also be used for feedback, and depending on the situation, tens of FPS for real-time applications should be possible. Inference speed can also be improved by various techniques such as network pruning, layer decomposition, weight discretization or feed-forward efficient convolutions (37). Plus, the ability to forward predict postures, as we show here, can be used to compensate for hardware delays.

Scalability, affordability, and integration into existing pipelines.

If neuroscience’s embrace of studying the brain in its natural context of complex, contingent, and open-ended behavior (8, 38, 39) is smashing the champagne on a long-delayed voyage, the technical complexity of the experiments is the grim specter of the sea. Markerless tracking has already enabled a qualitatively new class of data-dense behavioral experiments, but the heroism required to simultaneously record natural behavior from 62 cameras (40) or electrophysiology from 65,000 electrodes (41), or integrate dozens of heterogeneous custom-built components (42) hints that a central challenge facing neuroscience is scale.

Hardware-intensive experiments typically come at a significant cost, even if the pose estimation tools are “free” (developed in laboratories at a non-significant expense, but provided open source). Current commercial systems are expensive—up to $10,000—and they have limited functionality; these systems track the location of animals but not postures or movements of experimenter-defined points of the animal, and few to none offer any advanced deep learning-based solutions. Thus, being able to track posture with state-of-the-art computer vision at scale is a highly attractive goal.

DeepLabCut-Live! experiments are a many-to-many computing problem: many cameras to many GPUs (and coordinated with many other hardware components). The Autopilot experiment we described is the simplest 2-computer case of distributed applications of DeepLabCut-Live!, but Autopilot provides a framework for its use with arbitrary numbers of cameras and GPUs in parallel. Autopilot is not prescriptive about hardware configuration, so for example if lower latencies were needed users could capture frames on the same computer that processes them, use more expensive GPUs, or use the forward-prediction mode. Along with the rest of its hardware, experimental design, and data management infrastructure, integration of DeepLabCut in Autopilot makes complex experiments scalable and affordable.

Thus, here we presented options that span ultra high-performance (at GPU cost) to usable, affordable solutions that will work very well for most all applications (i.e., up to 90 FPS with zero to no latency if using our forward-prediction mode). Indeed, the Jetson experiments that we performed used simple hardware (inexpensive webcam, simple LED circuit) and either the open source DLC-Live! GUI or AutoPilot.
In addition to integration with Autopilot, we introduce integration of real-time DeepLabCut into Bonsai, a popular framework that is already integrated into many popular neuroscience tools such as OpenEphys (43), BonVision (24), and Bpod6. The merger of DeepLabCut and Bonsai could therefore allow for real-time posture tracking with sophisticated neural feedback with hardware such as NeuroPixels, Minisscopes, and beyond. For example, Bonsai and the newly released BonVision toolkit (24) are tools for providing real-time virtual reality (VR) feedback to animals. Here, we tested the capacity for a single GPU laptop system to run Bonsai-DLC with another computational load akin to what is needed for VR, making this an accessible tool for systems neuroscientists wanting to drive stimuli based on potentially sophisticated postures or movements. Furthermore, in our real-time dog-feedback utilizing the forward-prediction mode we utilized both posture and kinematics (velocity) to be able to achieve sub-zero latency.

Sharing DLC Models.

With this paper we also introduce three new features within the core DeepLabCut ecosystem. One, the ability to easily export trained models without the need to share project folders (as previously); two, the ability to load these models into other frameworks aside from DLC-specific tools; and three, we modified the code-base to allow for frozen-networks. These three features are not only useful for real-time applications, but if users want to share models more globally (as we are doing with the DeepLabCut Model-Zoo Project), or have a easy-install lightweight DeepLabCut package on dedicated machines for running inference, this is an attractive option. For example, the protocol buffer files are system and framework agnostic: they are easy to load into TensorFlow (44) wrappers based on C++, Python, etc. This is exactly the path we pursued for Bonsai’s plugin via a C#-TensorFlow wrapper (https://github.com/migueldeicaza/TensorFlowSharp). Moreover, this package can be utilized even in offline modes where batch processing is desirable for very large speed gains (9, 10).

Feedback on posture and beyond.

To demonstrate the capabilities of DeepLabCut-Live! we performed a set of experiments where an LED was triggered based on the confidence of the DeepLabCut network and the posture of the animal (here a dog, but as is DeepLabCut, this package is animal and object agnostic). We also provide a forward-prediction mode that utilizes temporal information via kinematics to predict future postural states. But, the software is not limited to this. For example, one can build Processor objects to trigger on joint angles, or more abstract targets such as being in a particular high dimensional state space. We believe the flexibility of this feedback tool, plus the ability to record long-time scale videos for “standard” DeepLabCut analysis makes this broadly applicable to many applications.

6Developed by Sanworks: https://www.sanworks.io/index.php

Conclusions.

We report the development of a new light-weight Python pose estimation package based on DeepLabCut, that can be integrated with behavioral control systems (such as Bonsai and AutoPilot) or used within a new DLC-Live! GUI. This toolkit allows users to do real-time, low-latency tracking of animals (or objects) on high-performance GPU cards or on low cost, affordable and scalable systems. We envision this being useful for precise behavioral feedback in a myriad of paradigms.

Methods

Alongside this publication we developed several software packages that are available on GitHub. Links are listed in table 3 and details provided throughout the paper.

<table>
<thead>
<tr>
<th>Name</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeepLabCut-Live! SDK</td>
<td>GitHub Link</td>
</tr>
<tr>
<td>Benchmarking Submission</td>
<td>GitHub Link</td>
</tr>
<tr>
<td>Benchmarking Results</td>
<td>Website Link</td>
</tr>
<tr>
<td>DLC-Live! GUI</td>
<td>GitHub Link</td>
</tr>
<tr>
<td>Bonsai - DLC Plugin</td>
<td>GitHub Link</td>
</tr>
<tr>
<td>AutoPilot - DLC</td>
<td>GitHub Link</td>
</tr>
</tbody>
</table>

Table 3. Software packages presented with this paper

Animals.

All mouse work was carried out under the permission of the IACUC at Harvard University (#17-07-309). Dog videos and feedback was exempt from IACUC approval (with conformation of this with IACUC).

Mice were surgically implanted with a headplate as in (45). In brief, using aseptic technique mice were anesthetized to the surgical plane, a small incision in the skin was made, the skull was cleaned and dried and a titanium headplate was placed with Metabond. Mice were allowed 7 days to recover, and given burphrenophine for 48 hours post-operatively. The dog used in this paper was previously trained to perform rearing actions for positive reinforcement, and therefore no direct behavioral manipulation was done.

DeepLabCut.

The mouse DeepLabCut model was previously trained according to the protocol in (9, 20). Briefly, the DeepLabCut toolbox (version 2.1.6.4) was used to i) extract frames from selected videos, ii) manually annotate keypoints on selected frames, iii) create a training dataset to train the convolutional neural network, iv) train the neural network, v) evaluate the performance of the network, and vi) refine the network. This network was trained on a total of 120 labeled frames.

The dog model was initially created based on the “full_dog” model available from the DeepLabCut Model Zoo (ResNet-50, with ADAM optimization and ingaug augmentation (46); currently unpublished, more details will be provided elsewhere). Prior to running the DLG feedback experiments,
initial training videos were taken, frames from these videos were extracted and labeled, and the model was retrained using imqaug with the built in scaling set to 0.1-0.5 to optimize network accuracy on smaller images. This network was retrained with 157 labelled frames.

After training, DeepLabCut models were exported to a protocol buffer format (.pb) using the new export model feature in the main DeepLabCut package (2.1.8). This can be performed using the command line:

dlct-export /path/to/config.yaml

or in python:

def deeplabcut as dlc
dlc.export_model("/path/to/config.yaml")

<table>
<thead>
<tr>
<th>Feature</th>
<th>DLC version</th>
<th>Pub. Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLC-ResNets</td>
<td>1, 2.0+</td>
<td>4, 20</td>
</tr>
<tr>
<td>DLC-MobileNetV2s</td>
<td>2.1+</td>
<td>9</td>
</tr>
<tr>
<td>Model Export Fxn</td>
<td>2.1.8+</td>
<td>this paper</td>
</tr>
<tr>
<td>DeepLabCut-live</td>
<td>new package</td>
<td>this paper</td>
</tr>
</tbody>
</table>

DeepLabCut-Live! package.

The DeepLabCut-Live code was written in Python 3 (www.python.org), and distributed as open source code on GitHub and on PyPi. It utilizes TensorFlow (44), numpy (47), scipy (48), openCV (49), and others. Please see GitHub for complete, platform-specific installation instructions and description of the package.

The DeepLabCut-Live package provides a DLCLive class that facilitates loading DeepLabCut models and performing inference on single images. The DLC-Live class also has built in image pre-processing methods to reduce the size of images for faster inference: image cropping, dynamic image cropping around detected keypoints, and image downsizing. DLC-Live objects can be instantiated in the following manner:

```python
from dlclive import DLCLive

my_live_object = DLCLive("/path/to/exported/model/directory", resize=0.5)
```

Inference speed tests were run using a benchmarking tool built into the DeepLabCut-Live package. Different image sizes were tested by adjusting the pixels parameter, which specifies the total number of pixels in the image while maintaining the aspect ratio of the full-size image. For all options of the benchmarking tool, please see GitHub or function documentation. Briefly, this tool can be used from the command line:

```
mdl-live-benchmark /path/to/model/directory /path/to/video/file -o /path/to/output/directory
```

or from python:

```python
from dlclive import benchmark_videos
benchmark_videos("/path/to/model/directory", "/path/to/video", output="/path/to/output/directory")
```

DLC-Live! GUI software.

The DLC-Live! GUI (DLG) code was also written in Python 3 (www.python.org), and distributed as open source code on GitHub and on PyPi. DLG utilizes Tkinter for the graphical user interface. Please see Github for complete installation instructions and a detailed description of the package.

DLG uses the multiprocess package (50) to run image acquisition, writing images to disk and pose estimation in separate processes from the main user-interface. Running these processes in parallel enabling users to record higher frame rate videos with minimal sacrifice to pose-estimation speed. However, there are still some delays when running image acquisition and pose-estimation asynchronously: if these processes are run completely independently, the image may not have been acquired immediately before pose-estimation begins. For example, if images are acquired at 100 frames per second, the image will have been acquired with a range of 0-10 ms prior to running pose-estimation on the image. If the pose-estimation process waits for a new image to be acquired, then there will be a delay between completing pose-estimation on one image and beginning pose-estimation on
the next one. Accordingly, DLG allows users to choose between two modes: i) the Latency mode, in which the pose-estimation process waits for an new image to reduce the latency between image acquisition and pose-estimation, and ii) the Rate mode, in which the pose-estimation process runs independently of image acquisition. In this mode, there will be longer latencies from image acquisition to pose-estimation but the rate of pose-estimation will be faster than in the Latency mode.

To test the performance of DLG, we used a video of a mouse performing a task that required licking to receive reward in the form of a drop of water. Video was collected at 100 frames per second using a The Imaging Source USB3 camera (model number: DMK 37AUX287) and Camera_Control software (51).

We tested the performance of DLG under four conditions—on full-size images (352 x 274 pixels) and downsized images (176 x 137 pixels), both image sizes in Latency mode and Rate mode. All four conditions were tested on four different computers (see Table 2 for specifications).

Postural feedback experiment.

Prior to conducting the dog feedback experiment, the dog was extensively trained to “rear” upon the verbal command “jump” and the visual cue of a human’s arm raised at shoulder height. “Rearing” was reinforced by manually providing treats for successful execution. Prior to recording videos for tracking and feedback, the dog routinely participated in daily training sessions with her owners. There was no change to the dog’s routine when implementing sessions in which feedback was provided.

To conduct the feedback experiment, we used the DLG software on a Jetson Xavier developer kit. Pose estimation was performed using an exported DeepLabCut model (details regarding training provided above). Feedback was provided using a custom DeepLabCut-Live Processor that detected “rearing” movements and controlled an LED via serial communication to a Teensy microcontroller.

The dog was considered to be in a “rearing” posture if a) the likelihood of the withers and at least one elbow was greater than 0.5 and b) the vertical position of at least one elbow, whose likelihood was greater than 0.5, was above the vertical position of the withers (i.e., y<bow < y<withers, with the top of the image as y = 0 and bottom of image as y = image height. For each pose, the Processor determined whether the dog was in a “rearing” posture, queried the current status of the LED from the Teensy microcontroller, and if the current status did not match the dog’s posture (i.e., if the LED was off and the dog was in a “rearing” posture), sent a command to the Teensy to turn the LED on or off.

In this experiment, we recorded the time at which images were accessed by DLG, the time at which poses were obtained by DLG after processing, and the times that the LED was turned on or off by the Processor. We calculated the pose estimation rate as the inverse of the delay from obtaining one pose to the next, the latency from image acquisition to obtaining the pose from that image, and, for poses in which the Processor turned the LED on or off, the latency from image acquisition to sending the command to turn the LED on or off.

As not all images will be run through pose estimation using DLG, to assess the delay from behavior to feedback, we performed offline analyses to determine the ideal time to turn the LED on or off given all the acquired images. Using the DeepLabCut-live benchmarking tool, we obtained the pose for all frames in the acquired videos by setting the save_poses flag from the command line:

```
dlc-live-benchmark /path/to/model/directory
/path/to/video/file --save-poses -n 0
```

This command can also be run from python:

```
from dclive import benchmark_videos
benchmark_videos("/path/to/model/directory", 
"/path/to/video/file", 
n_frames=0, 
save_poses=True)
```

We then ran this full sequence of poses through the “rearing” detection Processor, and compared these times – for each “rearing” movement, the time at which the first frame that showed a transition to a “rearing” posture and out of a “rearing” posture was acquired – with the times that the LED was turned on or off during real-time feedback.

To implement the forward-predicting Kalman filter, we used a Processor object that first used a Kalman filter to estimate the position, velocity, and acceleration of each keypoint; used the position, velocity, and acceleration to predict the position of the limb into the future– the amount of time it predicted into the future depended on the delay for that image (prediction time = current time – image acquisition time) – and finally, checked if the dog was in a “rearing” posture and controlled the LED accordingly. For the exact implementation, please see the source code on Github for the Kalman filter Processor and the dog rearin Processor.

Details of AutoPilot setup.

Latencies were measured using software timestamps and confirmed by oscilloscope. Software measurements could be gathered in greater quantity but were reliably longer than the oscilloscope latency measurements by 2.8 ms (median of difference, n=75, IQR=[2.4 - 3.4]), thus we use the software measurements noting they are a slightly conservative estimate of functional latency.

Autopilot experiments were performed using the DLC_Latency Task and the Transformer “Child” (see (16) for terminology).

Separate DLC-MobileNetV2-0.35 models tracking a single point were trained for each capture resolution (128 x 128, 256 x 256, 512 x 416 pixels). Training data was labeled such that the point was touching the LED when it was on, and in the
corner of the frame when the LED was off. Frames were processed with a chain of Autopilot Transform objects like:

```python
from autopilot import transform as t

# create transformation object
tfm = t.image.DLC("/model/path") + \\
t.selection.DLCSlice("part_name") + \\
t.logical.Condition(
    minimum = [min_x, min_y],
    maximum = [max_x, max_y]
)

# process a frame, yielding a bool
led_on = tfm.process(frame)
```

where min_x, min_y, etc. defined a bounding box around the LED.

Table 5. Materials for Autopilot Tests

<table>
<thead>
<tr>
<th>Tool</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raspberry Pi</td>
<td>4, 2GB</td>
</tr>
<tr>
<td>Autopilot</td>
<td>0.3.0-2f31e78</td>
</tr>
<tr>
<td>Jetson Developer Kit</td>
<td></td>
</tr>
<tr>
<td>Camera</td>
<td>FLIR CM3-U3-13Y3M-CS</td>
</tr>
<tr>
<td>Spinnaker SDK</td>
<td>2.0.0.147</td>
</tr>
<tr>
<td>Oscilloscope</td>
<td>Tektronix TDS 2004B</td>
</tr>
</tbody>
</table>

Data Analysis and Visualization.

Autopilot data were analyzed with Pandas (1.0.5) (52) in Python and Tidyverse (1.3.0) (53) in R. Data were visualized with ggplot2 (3.3.0) (54) and ggridges (0.5.2) (55).

Acknowledgments:

We thank Sébastien Hausmann for testing the DLC-Live GUI, and to Jessy Lauer for optimization assistance. We thank Jessica Schwab and Izzy Schwane for assistance with the dog feedback experiment. We greatly thank Michael Wehr for support of AutoPilot-DLC, and the Mathis Lab for comments. Funding was provided by the Rowland Institute at Harvard University and the Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation to AM and MWM, a Harvard Mind, Brain, Behavior Award to GK, MWM; and NSF Graduate Research Fellowship No. 1309047 to JLS. The authors declare no conflicts of interest.

Contributions:

G.K., A.M., M.W.M conceptualized the project. G.K., J.S., G.L., A.M., M.W.M designed experiments. G.K. and J.S. developed Jetson integration. G.K. developed and performed experiments for DLC-Live, & the DLC-Live GUI. J.S. developed and performed experiments for AutoPilot-DLC. G.L. developed and performed experiments for Bonsai-DLC. A.M. contributed to Bonsai-DLC and DLC-Live. All authors performed benchmarking tests. G.K. and M.W.M. original draft, all authors contributed to writing. M.W.M., A.M. acquired funding and supervised the project.

References

27. Adafruit. Raspberry Pi 4 Model B - 2 GB RAM.

Figure. 7. Inference speed of different networks with different image sizes with different system configurations, using CPUs for inference. Solid lines are tests using DLC-MobileNetV2-0.35 networks and dashed lines using DLC-ResNet-50 networks. Shaded regions represent 10th-90th percentile of the distributions. N = 1000-10000 observations per point.