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Abstract 

Serial measurement of a large panel of protein biomarkers near the bedside could provide 

a promising pathway to transform the critical care of acutely ill patients. However, attaining 

the combination of high sensitivity and multiplexity with a short assay turnaround poses a 

formidable technological challenge. Here, we developed a rapid, accurate, and highly 

multiplexed microfluidic digital immunoassay by incorporating machine learning-based 

autonomous image analysis. The assay achieved 14-plexed biomarker detection at 

concentrations < 10pg/mL with a sample volume < 10 µL, including all processes from 

sampling to analyzed data delivery within 30 min, while only requiring a 5-min assay 

incubation. The assay procedure applied both a spatial-spectral microfluidic encoding 

scheme and an image data analysis algorithm based on machine learning with a 

convolutional neural network (CNN) for pre-equilibrated single-molecule protein digital 

counting. This unique approach remarkably reduced errors facing the high-capacity 

multiplexing of digital immunoassay at low protein concentrations. Longitudinal data 

obtained for a panel of 14 serum cytokines in human patients receiving chimeric antigen 

receptor-T (CAR-T) cell therapy manifested the powerful biomarker profiling capability 

and great potential of the assay for its translation to near-real-time bedside immune status 

monitoring.  

 
Introduction 
 

Over the past few years, the approach of providing personalized treatment for 

severely ill patients based on their individualized molecular profiles has received 

considerable attention as a next step to advance critical care medicine (1-3). Progress has 
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been made in identifying predictive and prognostic protein biomarkers in critical care 

which holds great promise in patient stratification (4, 5), disease monitoring (6, 7), and 

therapy development (3, 8). For example, Cao et al (9) tested patients infected with the 

2019 novel coronavirus (COVID-19) and reported that a panel of eight plasma cytokines 

showing significantly heightened levels allowed them to distinguish a group of severely ill 

patients from a group of mildly ill patients. However, even with the discoveries of these 

biomarkers, the medical community still falls behind with adopting the precision medicine 

approach to treat life-threatening acute illnesses, such as cytokine release syndrome (CRS), 

acute respiratory distress syndrome (ARDS), which are frequently associated with the 2019 

novel coronavirus (COVID-19), (9, 10) due to the lack of a sensitive molecular profiling 

tool to quickly guide clinical decisions or interventions with a near-real-time assay 

turnaround (1). Additionally, to monitor the highly heterogeneous and time-pressing illness 

conditions, high multiplex capacity is equally important as sensitivity and speed for 

improving diagnosis and prognosis accuracy with rich, comprehensive information on 

multiple biomarker profiles (1, 9, 11, 12). Currently, the commonly used clinical tools for 

multiplex serum/plasma protein analysis (13), including the bead-based assay coupled flow 

cytometry and the western blot, fall short of achieving the performance needed for critical 

care as they require a long assay time (>4 hrs), and laborious steps with limited sensitivity. 

Researchers have developed rapid (14-17), point-of-care (18-20), multiplex (21, 22) 

immunoassays powered by microfluidics. Nonetheless, it is still challenging for these 

assays to simultaneously achieve a combination of high multiplexity and sensitivity with a 

rapid assay turnaround time in a clinical setting. By counting single-molecule reactions in 

fL-nL-volume microwells or droplets (23-25), digital immunoassays can provide 
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unprecedented sensitivity (sub-fM detection) for biomarker analysis. Our recent study (26) 

demonstrated that it is feasible to extend the digital assay approach to achieve near-real-

time protein biomarker profiling at a clinically relevant pM-nM range by quenching 

reagent reaction at an early pre-equilibrium stage with an incubation process as short as 

15-300 sec. However, existing digital immunoassay platforms (27) have limited multiplex 

capacity (up to 6-plex). The current method (24, 28) utilizes fluorescence dye-encoded 

beads to identify different analytes. Unfortunately, the nature of binary-based statistical 

counting brings a few critical challenges to multiplexing digital immunoassays with this 

method. First, the assay typically requires a large number of beads (e.g. Simoa uses 100,000 

beads per plex (27)) for reliable analyte quantification. Mixing and counting such a large 

number of multi-color-encoded beads tends to cause false signal recognition due to optical 

crosstalk or non-uniform color coating. Second, increasing multiplexity while keeping the 

assay’s sensitivity and accuracy additionally requires a large number of microwell arrays 

to accommodate the large number of beads. This becomes impractical with the current 

platform as it demands a significantly increased assay device footprint and an image area 

size. Third, the assay also encounters a significant bead loss during the digitization process 

partitioning the beads into sub-volumes after the initial reaction process performed for bulk 

reagent volume in a cuvette (100 µL). All of these issues prohibit the translation of a cheap, 

robust, point-of-care multiplexed digital assay platform into near-patient applications, thus 

necessitating a new strategy. 

Here, we have developed a highly multiplexed digital immunoassay platform, termed 

the “pre-equilibrium digital enzyme-linked immunosorbent assay (PEdELISA) 

microarray.” The PEdELISA microarray analysis integrates on-chip biosensors with a 
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small footprint to minimize the number of images that are needed to read and fully 

automates the signal counting process, both of which are critically necessary for 

overcoming the bottlenecks against multiplexing digital assays. The analysis incorporates 

a powerful microfluidic spatial-spectral encoding method and a machine learning-based 

image processing algorithm into multi-biomarker detection. The spatial-spectral encoding 

method confines color-encoded magnetic beads into the arrayed patterns of microwells on 

a microfluidic chip. The locations of the microwell patterns on the chip indicate which 

target analytes are detected by trapped color-coded beads. In contrast to the existing digital 

immunoassay protocol, the fully integrated microfluidic architecture allows the assay 

reaction to be performed entirely on-chip (no bead loss) at an early pre-equilibrium state, 

which only requires a sample volume < 10 µL, a 5-min assay incubation and a 75 mm × 

50 mm chip size. Based on a convolutional neural network (CNN), the machine learning 

algorithm permits unsupervised image data analysis while resolving false signal 

recognition accompanying the multiplexing of digital immunoassays. Employing these 

biosensing schemes, the PEdELISA microarray platform allows us to simultaneously 

quantify a large panel of biomarkers in half an hour without sacrificing the accuracy. We 

used the platform to obtain longitudinal data for blood samples from human patients 

experiencing cytokine release syndrome (CRS) after chimeric antigen receptor T cell 

(CAR-T) therapy. The data signify the time-course evolution of the profiles of 14 

circulating cytokines over illness development. With its near-real-time assay turnaround 

and analytical power, the platform manifests great potential to enable acute immune 

disorder monitoring that guides timely therapeutic interventions. 
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Results 
 

Multiplexed Digital Immunoassay with CNN Image Processing. The PEdELISA 

microarray analysis used a microfluidic chip fabricated using polydimethylsiloxane 

(PDMS)-based soft lithography. The chip contains parallel sample detection channels (10-

16) on a glass substrate, each with an array of hexagonal biosensing patterns (Figure 1A). 

The hexagonal shape allows each biosensing pattern to densely pack 43,561 fL-sized 

microwells, which fits into the entire field of view of a full-frame CMOS sensor through a 

10x objective lens (Figure S1). Prior to the assay, we deposited magnetic beads (d = 2.8 

μm) encoded with non-fluorescent color (no color) and those with Alexa Fluor® 488 (AF 

488) into physically separated microwell arrays (Figure S2). These beads were conjugated 

with different capture antibodies according to their colors and locations on the chip. In the 

current design, the arrangement of 2 colors and 8 arrayed biosensing patterns in each 

detection channel allows the PEdELISA microarray chip to detect 2 × 8 = 16 protein 

species (16-plex) at its maximum capacity for each sample loaded to the detection channel. 

Compared with a single color-encoded method, this combination greatly reduces potential 

optical crosstalk and fluorescence overlap during a signal readout process. The pre-

deposition ensures a fixed number of beads to target each biomarker, which allows more 

accurate digital counting for each biomarker. It also eliminates bead loss during the 

conventional partition process and achieves nearly a 100% yield in the signal readout for 

enzyme active QuantaRedTM (Qred)-emitting beads (“On” beads or “Qred+” beads).  The 

microwell structure (diameter: 3.4 µm and depth: 3.6 µm) was designed to generate 

sufficient surface tension to hold beads in the microwells.  This kept false signals resulting 

from physical crosstalk between the trapped beads at a negligible level (Figure S3).  
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 A unique challenge posed by highly multiplexed digital assays is to provide fast 

and accurate analysis of fluorescence signals originating from ~7 million microwells per 

chip. Additionally, the signal counting process needs to distinguish precisely between 

images of multi-color bead-filled and empty microwells and to identify signals accurately 

while subjected to a large fluorescence intensity variance, occasional image defects due to 

reagent mishandling, and image focus shifts. These challenges make the conventional 

image processing method with the thresholding and segmentation (GTS) scheme (Figure 

S4A) inaccurate, thus requiring human supervision for error correction in handling digital 

assay images. Mu et al. (29, 30) showed that the use of machine learning algorithms would 

provide promising solutions to significantly improve the accuracy of digital assay image 

processing. However, this approach is only applied for single-color images with a small 

number of microreactors (a few thousand) with 1080×1120 pixels, which is impractical for 

high-throughput analysis. To address these challenges, we developed a novel dual-pathway 

parallel-computing algorithm based on convolutional neural network (CNN) visualization 

for image processing.  

 The CNN-based analysis procedure (Figure 1B) includes multi-color fluorescence 

image data read-in/pre-processing (image crop, noise filtering, and contrast enhancement), 

microwell/bead image segmentation by pre-trained dual-pathway CNN, post-processing, 

and result output. The key component, dual-pathway CNN, was pre-trained to classify and 

segment image pixels by labels of (I) fluorescence “On” (Qred channel) microwells, (II) 

Alexa Fluor® 488 color-encoded beads (AF488 channel), (III) image defects, and (IV) 

background. The architecture of the network (Figure 1B) is separated into a downsampling 

process for category classification and an upsampling process for pixel segmentation. The 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.04.236448doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.04.236448


 

 

8 
 

downsampling process consists of 3 layers, including 2 convolution layers (4-6 filters, 

kernel of 3×3) with a rectified linear unit (ReLU), and a max-pooling layer (stride of 2) in 

between. The upsampling process consists of a transposed convolution layer with ReLU, a 

softmax layer and a pixel classification layer. To speed up the training process, we started 

with dividing an image with 32 × 32 pixels and classifying them with the labels and then 

eventually expanding the image pixel size to 256 × 256 using a pre-trained network (Figure 

S5). We found a large intensity variance across the optical signals from beads in different 

microwell reactors. As a result, the intensity-based labeling of microwells leads to 

recognition errors. Microwells with bright beads can be misrecognized to have larger areas 

with more pixels than those with dim beads. Instead, given that all microwells are 

lithographically patterned to have an identical size, we labeled them using the same pre-

fixed area scale (octagon, r=3 pixel for microwell, disk, r=2 pixel for bead) regardless of 

their image brightness to make the machine to recognize them correctly. The majority of 

pixel labels are for the background (Label IV) with no assay information in typical digital 

assay images. We used the inverse frequency weighting method to further enhance the 

classification accuracy, which gives more weights to less frequently appearing classes that 

are identified by Labels (I), (II), and (III) (See Supporting Information and Figure S5 for 

training details).  

 In contrast to a previously reported study (29), we greatly reduced the number of 

convolution layers and filters (depth of network) for high speed processing. Our algorithm 

employs much fewer labels and features required for imaging processing than those for 

other typical CNN applications, such as autonomous driving. The unique feature of our 

algorithm is the ability to run two neural networks in parallel for two detection pathways: 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.04.236448doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.04.236448


 

 

9 
 

one for assay targets (e.g. microwells, beads, and fluorescence signals) and the other for 

defects. This allows the imaging processing to achieve high speed while maintaining good 

precision. As a result, it only took ~5 seconds (CPU: Intel Core i7-8700, GPU: NVIDIA 

Quadro P1000) to process two-color channel data for two 6000×4000 pixel images which 

contain 43561 micro-reactors. 

PEdELISA Microarray Platform Performance. To validate the effectiveness of the 

dual-pathway CNN method developed in this work, we compared its performance with that 

of the standard method based on global thresholding and segmentation (GTS). Figure 2A 

shows representative two-color-channel images causing errors to the image labeling and 

signal counting of the GTS method. These errors are corrected by the CNN method. For 

example, false signal counting derives from chip defects or poor labeling reagent 

confinements within individual microwell reactors due to the local failure of oil sealing. 

Defocusing can cause two neighboring microwells to be dilated with each other.  Highly 

bright Qred fluorescence from an “On” microwell can cause secondary illumination to light 

up neighboring microwells. This results in “optical crosstalk” between neighboring 

microwells (28), which causes the false counting of secondarily illuminated microwells as 

“On” sites. The uneven illumination of excitation light causes the failure of recognizing 

dim AF-488 encoded beads (recognized as non-color beads).  

 In the CNN training process, we collected a large number of images for each error 

source and used them to train the neural network to achieve results similar to those from 

manual counting with the human eyes. We applied the following equation to evaluate the 

error in terms of deviation to the ground truth (%):  
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(1) 

where NCNN or GTS is the number of microwell or bead counted either by CNN or GTS 

method respectively, NTP is the number of true positives determined by human labeling. 

The global threshold value was adjusted based on the gray histogram of the image (Figure 

S4). The human labeling process includes the pre-processing with the GTS method together 

with human correction to obtain the ground truth, which has been validated by the 

conventional sandwich ELISA method in our previous study (Figure S6) (26). 

 In counting enzyme active microwells with the Qred channel, we observed that the 

deviation percentage from ground truth varied with the number of the counted “On” 

(Qred+) microwells, which is proportional to the analyte concentration.  Each data point in 

Figure 2B-D was taken for a hexagonal-shaped biosensing pattern (Figure 1B) that 

contains 43561 microwell arrays with an average bead filling rate of 55.1%. In these data, 

the number of Qred+ microwells ranged from 1 to 10000 (Figure 2B). At higher analyte 

concentrations (NQred>100), both of the methods achieved reasonably high accuracy with 

a deviation to the ground truth of 3.92% (CNN) and 9.96% (GTS). However, at the lower 

concentrations (NQred<100), this deviation became significant (CNN: 5.14% GTS: 71.6%). 

The larger error of the GTS scheme is attributed to the false counting of regions 

contaminated with fluorescent reagents and the miscounting of Qred+ microwells of low 

fluorescence intensity. Thus, the dual-pathway CNN greatly improved the accuracy of the 

PEdELISA image processing and replacing the thresholding method with our CNN method 

eliminated the need for human supervision to correct the significant errors in the low 

concentration region.   

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 %
𝑁 𝑁

𝑁
100% 
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In counting color-encoded magnetic beads with the AF-488 channel, we found that the 

deviation was very small (CNN: 0.021%, GTS: 0.161%). The deviation was suppressed by 

the little spectral overlap between AF488 and Qred, channels and the high image contrast 

that we intentionally created between AF-488 and non-color encoded beads (Figure 2C). 

Some miscounting under the uneven spatial distribution of illumination light intensity and 

the spherical aberration of objective lens over the entire field of view still contributed to 

the deviation. The CNN method achieved a nearly 8-fold improvement of accuracy. 

Counting the total number of beads (both no color and fluorescence color-encoded ones) 

with brightfield images using a customized Sobel edge detection algorithm yielded an 

average deviation to the ground truth of 0.256% as shown in Figure 2D. 

To verify our ability to suppress optical crosstalk in the multiplexed assay 

incorporating the CNN method, we prepared a 25% fetal bovine serum (FBS) sample 

spiked with two different cytokine species of 1000-fold concentration difference: IL-1α 

(AF488 encoded) and IL-1β (non-color encoded). Optical crosstalk becomes problematic 

especially in multiplexed analysis, where the quantity of one biomarker can be serval 

orders of magnitude higher than those of other biomarkers in the same sample. A slightly 

false recognition can even give a significantly higher value of biomarker concentration 

than its true value. Figure 2E shows the comparison between the conventional GTS 

method and the CNN method. False recognition was greatly reduced by the CNN method 

and we verified that 1pg/mL of IL-1α or β will not interfere even when the other protein 

reaches 1ng/mL. Furthermore, we performed single-plexed measurements of 1pg/mL of 

IL-1α and IL-1β, which give “true” concentration values while eliminating optical 

crosstalk.  The single- and dual-plexed measurements both yielded statistically similar 
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results with the CNN method (two-tailed unequal variance t-test, IL-1α P=0.253; IL-

1β=0.368), which proves the accuracy of this method even at the presence of strong optical 

crosstalk.  

Multiplex Pre-Equilibrium Cytokine Detection. Using 2-color encoded (AF488, non-

color) magnetic beads with 8 physically separated microarrays, we designed a microfluidic 

chip to detect 14 cytokines (up to 16-plex) simultaneously (see chip design in Figure S7). 

Figure 3A shows standard curves obtained from PEdELISA microarray analysis with CNN 

image processing for cytokines ranging from 0.16 pg/mL to 2.5 ng/mL in 25% FBS. Here, 

the measurement output is the fraction of the number of enzyme active (Qred+) beads to 

the total number of beads used for assaying the particular analyte. This fraction is directly 

correlated to the analyte concentration. The assay was performed for a system at the early 

state of a transient sandwich immune-complex formation reaction process with a 5-min 

incubation period, followed by a 1-min enzymatic labeling process. The reaction conditions 

have been optimized to match all cytokine biomarkers within the clinically relevant range, 

and a linear dynamic range of three orders of magnitude was achieved in general. Table S2 

summarizes the values of the limit of detection (LOD) and limit of quantification (LOQ) 

of the assay for each cytokine. The antibody-antigen affinity affects the LOD of the assay, 

and it varies across the detected cytokine species. As a result, we obtained different LOD 

values for these cytokines even if the capture antibody-conjugated beads were prepared by 

the same protocol regardless of the analyte types (See Experimental Section). The LOD 

value tends to decrease with an increasing incubation period.  Although the assay was 

performed with a short incubation period of 5 min, the LOD was found to be still below 
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5pg/mL (with IL-1β reaching the lowest 0.188pg/mL) after optimizing the detection 

antibody mixing ratio and the enzyme labeling concentration.  

 We further assessed the level of antibody cross-reactivity among 14 cytokines in 

25% FBS. Figure 3B shows the assay results for sera spiked by all, one, or none of the 

recombinant cytokines of 14 species, namely “all-spike-in,” “single-spike-in,” and “no-

spike-in” samples. We observed more than 100 times lower background signals from the 

no-spike-in (negative) sample than those from the all-spike-in sample across the 14 

cytokines (except IL-17A for which there is a slightly higher background due to the more 

active binding between its capture and detection antibodies). The signal-level variation 

across the 14 cytokines at the same concentration from the all-spike-in and single-spike-in 

samples could derive from the different levels of analyte-antibody affinity for these 

cytokines. We also observed a similar trend in the variation of the LOD values for the 

cytokines from the curves in Figure 3A. The signal from each of the 14 single-spike-in 

samples manifests a high level of specificity to the target analyte. This verifies that the 

multiplexed assay measurements cause negligible cross-reactivity between each cytokine 

analyte and other capture and detection antibodies that should not couple with it.  

 Finally, we applied the 14-plex PEdELISA microarray analysis for the longitudinal 

serum cytokine measurement from patients receiving CAR-T cell therapy. CAR-T 

therapies have demonstrated remarkable anti-tumor effects for treatment-refractory 

hematologic malignancies (31, 32). Unfortunately, up to 70% of leukemia and lymphoma 

patients who receive CAR-T therapy experience cytokine release syndrome (CRS). CRS is 

a potentially life-threatening condition of immune activation caused by the release of 

inflammatory cytokines (e.g., IL-6, TNF-α, and others) (33, 34). CRS initially causes 
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fevers and other constitutional symptoms that can rapidly (i.e., within 24 hours) progress 

to hypotension and organ damage requiring intensive care. Previous studies (11, 12) have 

shown the measurement of a panel of cytokines can indicate the early onsite of severe CRS. 

Thus, the way of intervening CRS could be significantly improved by the multiplex 

PEdELISA microarray analysis.     

 To demonstrate the clinical utility of the assay technology, we ran our assay for two 

CAR-T patients, one who experienced up to grade 2 CRS and one who did not experience 

CRS in the first few days of post CAR-T infusion. The total sample-to-answer time 

achieved was 30 min for the entire 14-plexed measurement including the sample incubation 

(5 min), labeling (1 min), washing/reagent confining (10 min), and image 

scanning/analysis (14 min) processes. Figure 4A shows that Patient 1 developed CRS on 

day 4 that persisted until day 9. We found significant elevations for all assayed cytokines 

on Day 0 in comparison to their baseline levels on Day -2 and Day -9. Interestingly, the 

spike on Day 0 is not due to the CAR-T cells, as the blood sample was taken prior to CAR-

T infusion. Typically, CRS patients exhibit a high IL-6 concentration within their blood 

(35). However, Patient 1 manifested a significantly higher level of TNF-α. This suggests 

biological heterogeneity in the pathogenic cytokine profiles of patients who develop CRS. 

We also conducted a similar analysis for a patient who did not develop CRS (Figure 4B). 

We recorded an increase in IL-2 and a relatively high level of IL-17A for this patient, while 

other cytokines showed no significant changes throughout the analysis. Presumably, 

normal CAR-T cell expansion was taking place in the patient’s body. 
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Discussion  
 

We expect that extending the multiplex capacity of digital immunoassay would greatly 

broaden its utility in the continuous monitoring of protein biomarkers for critically ill 

patients. However, multiplexing the assay becomes enormously difficult with an increasing 

number of target biomarkers. Multiplexed digital signal counting required over more than 

a few millions of fL-sized reactors with conventional methods experiences poor 

sample/reagent handling and declined accuracy due to various error sources. In this study, 

we developed a highly multiplexed digital immunoassay platform, namely the PEdELISA 

microarray, to provide a promising solution for these challenges. The assay platform 

employs a unique combination of spatial-spectral encoding and machine learning-based 

image processing on a microfluidic chip. The positional registration of on-chip biosensing 

patterns, each with more than 40,000 microwell reactors confining sample sub-volumes, 

fluorescence-encoded analyte-capturing beads, and assay reagents, enabled 14-plex 

cytokine detection for 10 L of serum with high sample handling efficiency, small reagent 

loss, and negligible sensor cross talk. The signal processing and analysis of the 14-plexed 

PEdELISA microarray analysis employed a novel parallel computing CNN-based 

machine-learning algorithm. This algorithm achieved autonomous classification and 

segmentation of image features (e.g. microwells, beads, defects, backgrounds) at high 

throughput (1 min/analyte). Notably, it yielded 8-10-fold higher accuracy than the 

conventional GTS-based algorithm without any human-supervised error correction.   

We ran the PEdELISA microarray measurement of human serum samples from 

patients who received CAR-T cancer therapy with an incubation time as short as 5 min. 

The assay simultaneously detected 14 cytokine biomarkers per sample with a clinically 
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relevant dynamic range of pM-nM, and the entire assay process from sample loading to 

data delivery was completed within 30 min. We tested blood samples obtained from a 

CAR-T patient at different time points during the course of the therapy with the short assay 

turnaround. The longitudinal measurement proved the ability of our assay platform to 

continuously monitor a large number of cytokine profiles that were rapidly evolving in the 

circulatory system of a patient manifesting CRS. With its speed, sensitivity, multiplexing 

capacity, and sample-sparing capability, the PEdELISA microarray is poised for future 

translation to critical care medicine, which is expected to allow the treatment of life-

threatening illnesses caused by emerging diseases (e.g., COVID-19) to be timely and 

tailored with the patient’s comprehensive biomarker profiles.   

 
Materials and Methods 
 
Materials. We purchased human IL-6, TNF-α, IL-2, IL-8, IL-13 capture, and biotinylated 

detection antibody pairs from Invitrogen™, and IL-1α, IL-1β, IL-10, IL-12, IL-15, IL-17A, 

IFN-γ, GM-CSF and MCP-1 from BioLegend. We obtained Dynabeads, 2.7μm-diameter 

carboxylic acid, and epoxy-linked superparamagnetic beads, avidin-HRP, QuantaRed™ 

enhanced chemifluorescent HRP substrate, Alexa Fluor™ 488 Hydrazide, EDC (1-ethyl-

3-(3-dimethylaminopropyl) carbodiimide hydrochloride), Sulfo-NHS (Sulfo-N-

hydroxysulfosuccinimide), MES (2-(N-morpholino)ethanesulfonic acid) buffered saline, 

bovine serum albumin (BSA), TBS StartingBlock T20 blocking buffer, and PBS 

SuperBlock blocking buffer from Thermo Fisher Scientific. We obtained Phosphate 

buffered saline (PBS) from Gibco™, Sylgard™ 184 clear polydimethylsiloxane (PDMS) 

from Dow Corning, and Fluorocarbon oil (Novec™ 7500) from 3M™. 
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Antibody Conjugation to Magnetic Beads. We prepared the non-color encoded magnetic 

beads by conjugating epoxy-linked Dynabeads with the capture antibody molecules at a 

mass ratio of 6 μg (antibody): 1 mg (bead). The Alexa Fluor™ 488 (AF488) encoded 

magnetic beads were prepared by first labeling carboxylic acid-linked Dynabeads with AF 

488 Hydrazide dye and then by conjugating the beads with capture antibody at a mass ratio 

of 12 μg (antibody): 1 mg (bead) using standard EDC/sulfo-NHS chemistry. Detailed 

protocol has been described in the previous publication (26). We stored the antibody-

conjugated magnetic beads at 10 mg beads/mL in PBS (0.05% T20 + 0.1% BSA + 0.01% 

Sodium Azide) buffer wrapped with an aluminum foil sheet at 4 °C. No significant 

degradation of these beads was observed within the 3-month usage.  

Patient Blood Sample Collection and Preparation. Blood samples were collected from 

patients receiving CAR-T cell therapy and was performed with informed consent under the 

University of Michigan Institutional Review Boards (IRB) protocol 

HUM00115179/UMCC 2016.051. Venous blood was collected into a vacutainer 

containing no anticoagulant on-site at the University of Michigan Medical School Hospital 

and transported it to a biological lab. After allowing the sample to clot for a minimum of 

30 minutes at room temperature, we isolated serum by centrifuging the vacutainer at 1200 

× g, for 15 minutes at room temperature. The serum was removed by a pipette, aliquoted 

into screw cap tubes, and then stored at -80 ºC prior to the assay.  

14-plex PEdELISA Assay. All assay reagents were prepared in 96-well plate low retention 

tubes and kept on ice until use. The reagent preparation involved preparing a mixture of 

biotinylated detection antibody (up to 14 cytokines for CAR-T study) in carrier protein 

buffer (0.1% BSA, 0.02% Sodium Azide) and storing it at 4C, and preparing an Avidin-
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HRP solution in a superblock buffer at 100 pM. For the PEdELISA chip calibration, we 

prepared a mixture of recombinant proteins in 25% fetal bovine serum (standard solution), 

which was 5x serially diluted from 2.5 ng/mL to 0.16 pg/mL. Prior to the assay, we diluted 

patient serum samples (5uL) two times with PBS (5uL) to prepare a sample solution.  As 

the first step of the assay, we mixed the sample solution (10 μL) and the biotinylated 

detection antibody solution (10 μL) (sample mixture) and mixed the 5 titrated standard 

solutions (10 μL) and the biotinylated detection antibody solution (10 μL) (standard 

mixtures). Then, we loaded these sample and standard mixtures into the detection channels 

in parallel and incubated the chip for 300 sec. The signals obtained from the standard 

mixtures were used for calibrating the biosensors of the chip. The microfluidic channels 

were then washed with PBS-T (0.1% Tween20) at 20 L/min by s syringe pump for 2 min. 

40 μL of the avidin-HRP solution was then loaded into the channel and incubate for 1 min. 

The chip was washed again with PBS-T (0.1% Tween20) at 20 L/min for 10 min. 30 μL 

of the enhanced chemifluorescent HRP substrate QuantaRed solution was loaded into the 

channels and subsequently sealed with 35 μL of fluorinated oil (HFE-7500, 3M). The inlets 

and outlets of the channels were covered by glass coverslips to prevent evaporation during 

the imaging process. A programmable motorized fluorescence optical microscopy system 

was used to scan the image of the bead-filed microwell arrays on the microfluidic chip, 

identify the bead type (non-color vs. AF488 dyed), and detect the enzyme-substrate 

reaction activity. This system is composed of a Nikon Ti-S fluorescence microscope (10x 

objective), a programmable motorized stage (ProScan III), a mercury lamp fluorescence 

illumination source, a SONY full-frame CMOS camera (α7iii), and a custom machined 

stage holder. The motorized stage was pre-programmed to follow the designated path to 
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scan the entire chip (160 images) in 3 sequential steps: 1. Scan the QuantaRed channel 

(532nm/585nm, excitation/emission) 2. Scan the AF488 channel (495nm/519nm, 

excitation/emission) 3. Scan the brightfield. It typically took around 5-7 min to scan the 

entire chip for 10 samples in 16-plex detection. 

 

Statistics. Experiments with both synthetic recombinant proteins and CAR-T patient 

samples at each time point were performed 3 times (in independent tests) with two on-chip 

repeats to obtain the error bar. Group differences were tested using a two-tailed unequal 

variance t-test. A p-value of < 0.05 was considered to be statistically significant. 

 

Data availability 

The CAR-T patient cytokine data in this study is available through the database. All 

relevant data are available within the article file or Supplementary Information, or available 

from the authors on reasonable request.  
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Figure 1. Concept of CNN processed PEdELISA microarray analysis. (A) Microfluidic 
spatial-spectral encoding method used for multiplexing digital immunoassay. Fluorescence 
color-encoded magnetic beads coated with different capture antibodies are pre-deposited 
into the array of hexagonal-shaped biosensing patterns in the microfluidic detection 
channel. The locations of the biosensing patterns are physically separated from each other. 
This arrangement yields Ncolor×Narray measurement combinations determining the assay 
plexity, Nplex, where Ncolor is the total number of colors used for encoding beads deposited 
in each biosensing pattern, and Narray is the total number of the arrayed biosensing patterns 
in each detection channel. In this study, Ncolor=2 (non-fluorescent and Alexa Fluor® 488: 
AF488) and Narray=8. (B) A convolutional neural network-guided image processing 
algorithm for high throughput and accurate single molecule counting. Two neural networks 
were run in parallel, reading multi-color fluorescence image data, recognizing target 
features versus defects, and generating an output mask for post data processing. The 
brightfield image was analyzed using a Sobel edge detection algorithm. The images were 
finally overlaid to determine the fraction of enzyme active beads emitting QuantaRedTM 
signal (Qred+ beads) to total beads for each color label. The unlabeled scale bars are 25 
μm. 
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Figure 2. Image processing by convolutional neural network (CNN) and global 
thresholding and segmentation (GTS) methods (A) representative images causing false 
signal counting (red dot: Qred+ microwell, green dot: AF-488-colored bead, yellow dot: 
recognized spot to be counted). (i) The circle represents an area covered by an aqueous 
reagent solution that is spread over multiple microwell sites due to poor confinement during 
the oil sealing process. GTS counts potentially false and unreliable signal spots from the 
area. CNN removes the area from counting. (ii) Image defocusing causes GTS to merge 
two signal spots from a pair of the neighboring Qred+ microwells in the circle and to count 
it as a single signal spot. (iii) Secondary illumination of microwell sites due to optical 
crosstalk in the circle results in their false counting by GTS. (iv) GTS fails to label and 
count microwell sites holding dim AF-488-colored beads.  Error analysis of CNN and GTS 
methods on (B) Qred-channel (C) AF488-channel and (D) brightfield images. (E) Tests 
assessing the impact of optical crosstalk on the accuracy of CNN and GTS using dual-color 
IL-1α and IL-1β detection by spiking (i) IL-1α:1ng/mL IL-1β:1ng/mL (ii) IL-1α:1ng/mL 
IL-1β:1pg/mL (iii) IL-1α:1pg/mL IL-1β:1ng/mL (iv) IL-1α:1pg/mL IL-1β:1pg/mL (v) IL-
1α:1pg/mL IL-1β:1pg/mL assay in single plex for validation. All assays were performed 
in 25% fetal bovine serum buffer. 
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Figure 3. PEdELISA microarray analysis. (A) Assay standard curves for 14 cytokines from 
0.16pg/mL to 2500pg/mL in 25% fetal bovine serum (FBS). (B) Assay specificity test with 
25% FBS “all-spike-in,” “single-spike-in,” and “no-spike-in” (negative) samples. The 
analyte concentration of 500pg/mL used for spiking FBS is the optimal value to assess both 
false positive and negative signals.  
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Figure 4. 14-plex cytokine measurements in longitudinal serum samples from CAR-T 
patients who were diagnosed (A) grade 1-2 CRS (B) no CRS. Day 0 represents the day of 
CAR-T cell infusion. Data before Day 0 represents the baseline. The shaded region marks 
the period that the patient was diagnosed with grade 1-2 CRS. For better visualization, the 
data was organized and separately plotted based on the cytokine level from high to low.  
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