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Abstract

This paper proposes a novel statistical method to address population structure in genome-

wide association studies while controlling the false discovery rate, which overcomes some

limitations of existing approaches. Our solution accounts for linkage disequilibrium and

diverse ancestries by combining conditional testing via knockoffs with hidden Markov models

from state-of-the-art phasing methods. Furthermore, we account for familial relatedness by

describing the joint distribution of haplotypes sharing long identical-by-descent segments

with a generalized hidden Markov model. Extensive simulations affirm the validity of this

method, while applications to UK Biobank phenotypes yield many more discoveries compared

to BOLT-LMM, most of which are confirmed by the Japan Biobank and FinnGen data.
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INTRODUCTION

Genome-wide association studies (GWAS) measure hundreds of thousands of single-nucleotide

polymorphisms (SNP) in thousands of individuals to identify variants affecting a phenotype of in-

terest. The objective is to reliably determine which genotype-phenotype associations are likely to be

important and which are spurious; several challenges make this difficult, particularly for polygenic

traits which may be influenced by thousands of variants. First, spurious associations may arise

from multiple comparisons; i.e., strong correlations will occur by chance as numerous variables are

tested simultaneously.1 The typical solution is to apply a stringent significance threshold designed

to control the family-wise error rate (FWER)—the probability of a single false positive. However,

this is too conservative for polygenic phenotypes because numerous discoveries are expected.2–5

Indeed, SNPs with effect sizes large enough to pass the FWER threshold do not fully explain the

heritability of complex traits.6 A second source of spurious associations is linkage disequilibrium

(LD): the stochastic dependence of alleles on the same chromosome,7,8 which tends to be stronger

for those physically closer to each other. Thus, SNPs with no effect on the phenotype may be

marginally associated with it simply because they are in LD with a causal variant.5,9 Standard

GWAS methods cannot account for LD,5 so their findings do not precisely localize causal variants

and may be difficult to recognize as distinct when multiple nearby loci are discovered.9 Such am-

biguity may help explain why large studies are reporting associations densely across the genome.10

Lastly, population structure (heterogeneous degrees of similarity between different individuals, due

to diverse ancestries or familial relatedness) may also analogously lead to spurious associations and

has long been of concern in genetic analyses.11–13 Population structure not only induces dependence

between distant loci, it can even create spurious associations when there are no causal variants at

all. For example, if two populations differ in the distribution of the trait solely due to their envi-

ronments, then any SNP whose allele frequency varies across populations will be associated with

the trait. Hence, several methods were developed to account for population structure. An early

remedy built on principal component analysis (PCA),14 although linear mixed models (LMM) have

subsequently become predominant.15–17 While these corrections mitigate the impact of population

structure, they are limited to marginal testing (i.e., they ignore LD) with FWER control.

KnockoffZoom9 was recently proposed to address the limitations of marginal testing and FWER

control. This method accounts for LD through conditional (on nearby loci) rather than marginal

testing, so that its discoveries are clearly distinct and indicative of the presence of causal variants.5,9

The inferences are valid for both quantitative (e.g., body measurement) and qualitative (e.g., dis-
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ease status) phenotypes, regardless of their genetic architecture, in contrast to traditional methods,

which rely on linear models whose correctness may be difficult to verify. Practically, KnockoffZoom

partitions the genome into disjoint blocks and tests a conditional association hypothesis for each of

them, which, if rejected, suggests the presence of causal effects.9 While this requires testing the im-

portance of fixed groups of SNPs (determined at will, but before looking at the phenotype), it can

be easily applied at increasing levels of resolution, with finer and finer genome partitions, in order to

localize causal variants as precisely as possible. KnockoffZoom does not analyze imputed variants18

because, without additional assumptions, it is theoretically impossible to test conditional associa-

tions beyond the resolution of the SNP array (imputation cannot introduce additional information

about the phenotype compared to that contained in the typed SNPs).9 Nonetheless, its findings

achieve resolution comparable to that of fine-mapping methods19–21 applied to typed variants.9

Furthermore, KnockoffZoom is more powerful than LMM approaches because it controls the false

discovery rate22 (FDR)—the expected proportion of false discoveries—instead of the FWER. The

main limitation of KnockoffZoom is that, as originally implemented, it is only applicable to rela-

tively homogeneous samples because it does not fully account for population structure. To address

this missing component, we now present an extension that accounts for population structure while

retaining the advantages of conditional testing and FDR control.

Before presenting our results, we review the mechanics of KnockoffZoom. The method estab-

lishes statistical significance through careful data augmentation: it constructs imperfect copies

(knockoffs)5,23 of the genotypes for each individual that are in LD with the real variants and

also have the same allele frequencies, in such a way that replacing a group of genotypes with the

corresponding knockoffs would keep the modified data set statistically indistinguishable from the

original one, except possibly for some reduced association with the phenotype. Knockoffs serve as

negative controls:23,24 they are blindly analyzed jointly with the genotypes (the algorithm ignores

which variables are knockoffs until the very end), through any procedure of choice (e.g., an LMM, a

sparse regression model, or any machine learning tool). The significance of each genetic segment is

determined by contrasting the estimated importance of its genotypes to that of the corresponding

knockoffs. This is a fair comparison because knockoffs behave as the real non-causal variants. In

order to define precisely, and achieve practically, this exchangeability, the distribution of geno-

types is approximated with a hidden Markov model (HMM).5 This assumption is well grounded:

HMMs have already been widely and successfully employed to describe LD,8 for the purposes either

of ancestry inference,25,26 of identifying population-specific haplotype blocks,27 or of phasing and

imputation.28–32
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However, KnockoffZoom has so far relied practically on the fastPHASE29 HMM, which is not

designed to account for population structure. In fact, this model cannot simultaneously describe

association between different loci due to mixture33 (individuals with different ancestries), admix-

ture34 (individuals of mixed ancestry), and linkage (allele dependencies between nearby loci)—we

demonstrate this limitation empirically in Supplementary Notes A– C and Supplementary Fig-

ures 1–13. Therefore, KnockoffZoom was previously applied only to homogeneous and unrelated

samples.5,9 In this paper, we build upon the more flexible SHAPEIT35–37 HMM and expand the

applicability of KnockoffZoom to populations with diverse and possibly admixed ancestries. We

also further extend this method to account for familial relatedness, by jointly describing the dis-

tribution of haplotypes from multiple individuals sharing long identical-by-descent (IBD) genetic

segments,38 and then developing a corresponding construction of knockoffs. Crucially, our method

is applicable even if the population structure and the familial relatedness are cryptic, and remains

completely model-free regarding the genetic architecture of the trait.

After testing our method through careful simulations with real genotypes and simulated pheno-

types, we shall apply it to study height, body mass index, platelet count, systolic blood pressure,

cardiovascular disease, respiratory disease, hypothyroidism, and diabetes in the UK Biobank data

set,39 including virtually all samples therein. We will show this yields more numerous (between 25%,

for height, and 320%, for cardiovascular disease) distinct discoveries compared to BOLT-LMM.40

Furthermore, we will verify that most additional discoveries (between 37.3%, for platelet count,

and 88.5%, for diabetes) are validated by the GWAS Catalog,52 the Japan Biobank Project41,

or the FinnGen resource,42 while many of the remaining ones have known associations to related

traits. Finally, we highlight a novel discovery for cardiovascular disease, as one of many promis-

ing findings that may be worthy of further validation. Our full results, which involve thousands

of discoveries, are available from https://msesia.github.io/knockoffzoom-v2/, along with an

efficient software implementation of our method.

RESULTS

Knockoffs preserving population structure

We assume all haplotypes have been phased9 and we approximate their distribution with an

HMM similar to that of SHAPEIT.35–37 This model describes each haplotype sequence as a mosaic

of K reference motifs corresponding to the haplotypes of other individuals in the data set, where
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K is fixed (e.g., K = 100); critically, different haplotypes may use different sets of motifs. The

references are chosen based on haplotype similarity; see Methods. The idea is that the ancestry of

an individual should be approximately reflected by the choice of references; e.g., the haplotypes of

someone from England should be well-approximated by a mosaic of haplotypes primarily belonging

to other English individuals. Conditional on the references, the identity of the motif copied at each

position is described by a Markov chain with transition probabilities proportional to the genetic

distances between neighboring sites; different chromosomes are treated as independent. Conditional

on the Markov chain, the motifs are copied imperfectly: relatively rare mutations can independently

occur at any site. This model effectively accounts for population structure as well as LD in the

context of phasing,35–37 and our simulations will demonstrate its usefulness for conditional testing.

Having defined an HMM for each haplotype sequence, knockoffs are generated by repurposing

the algorithm in KnockoffZoom v1,9 which was originally based on the fastPHASE model, but is

sufficiently general to apply here. Our software implementation takes as input phased haplotypes

in standard binary format, builds the data-adaptive SHAPEIT HMM, and returns as a knockoff-

augmented data set that can be conveniently used by KnockoffZoom for conditional testing at the

desired resolution. The knockoff generation procedure is explained in the Methods.

Knockoffs preserving familial relatedness

The above model is not directly applicable to closely related samples because it describes them

independently (conditional on the reference motifs), whereas these share long IBD segments.38,43

Recall that knockoffs must follow the genotype distribution; therefore, processing related samples

independently would yield knockoffs breaking the relatedness structure, invalidating our inferences

(see Methods for a full explanation). We fix this by jointly modeling haplotypes in the same family.

We begin by detecting long IBD segments in the data.44–47 If the pedigree is known in advance,

one can restrict the IBD search within the given families; otherwise, there exists efficient software

to approximately reconstruct families from data at the UK Biobank scale.48 The results thus

obtained define a relatedness graph, where two haplotype sequences are connected if they share an

IBD segment; we refer to the connected components of this graph as the IBD-sharing families.

Conditional on the location of the IBD segments, we define a larger HMM jointly describing the

distribution of all haplotypes in each IBD-sharing family. Marginally, each haplotype is modeled by

the SHAPEIT HMM; however, different haplotypes are coupled along the IBD segments (and we

avoid using haplotypes in the same family as references for one another). This model is explicitly
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described in the Methods, where we explain how to generate knockoffs for it. The details are

technical, since the algorithm in Sesia et al.9 is no longer feasible due to the much larger state

space of this new HMM. We shall demonstrate empirically that our method generates knockoffs

sharing the same IBD segments as the real haplotypes, and also simultaneously preserves LD.

Numerical experiments with genetic data

Setup

We test the proposed methods via simulations based on subsets of phased haplotypes from the

UK Biobank data, chosen as to have strong population structure either due to diverse ancestries

or familial relatedness. After some pre-processing (see Methods), we partition each of the 22

autosomes into contiguous groups of SNPs at 7 different levels of resolution, ranging from that

of single SNPs to that of 425 kb-wide groups; see Supplementary Table 1. These partitions are

obtained by applying complete-linkage hierarchical clustering to the SNPs (genetic distances are

used as similarity measures) and cutting the resulting dendrogram at different heights. For each

such partition, we generate knockoffs with two alternative methods. In one case, we fit fastPHASE

using K = 50 latent HMM motifs, even though this is not designed for data with population

structure, and then apply KnockoffZoom v1.9 In the other case, we apply our new method to

generate knockoffs, and then we proceed from there to select important groups of SNPs as in

KnockoffZoom v1; we refer to this approach as KnockoffZoom v2.

Knockoffs preserving population structure

We generate knockoffs for 10,000 unrelated individuals with one of 6 different self-reported

ancestries (Supplementary Table 2). We will perform a diagnostic check of these knockoffs by

verifying their exchangeability with the genotypes through a PCA and a covariance analysis; then,

we will assess the performance of KnockoffZoom for simulated phenotypes.

A property of valid knockoffs is that their distribution is the same as that of the genotypes.5,23

(This follows from the stronger exchangeability requirement; see Methods). Thus, the proportion of

knockoff variance explained by their top principal components should be close to the corresponding

quantity computed on the genotypes. The PCA in Supplementary Figures 14–15 demonstrates that

our knockoffs preserve population structure quite accurately in this sense, unlike those based on the

fastPHASE HMM. This holds even at low resolution, where the sensitivity to model misspecification
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is highest.9 The covariance analysis9 in Supplementary Figures 16–22 confirms that our knockoffs

are approximately exchangeable with the genotypes and should have power comparable to that of

knockoffs based on the fastPHASE HMM.

Next, we simulate continuous phenotypes conditional on the true genotypes, from a homoscedas-

tic linear model with 500 causal variants distributed uniformly across the genome; the total heri-

tability is varied as a control parameter.9 We apply KnockoffZoom v1 and v2 on these data, using

lasso-based statistics.49 Supplementary Figure 23 shows the histogram of test statistics, which

should be symmetric around zero for null groups (i.e., those without causal variants). The statis-

tics obtained with the new knockoffs satisfy this property, while the fastPHASE model leads to a

rightward bias, which may result in an excess of false positives. By contrast, both methods yield

similarly distributed statistics for causal groups. The power9 and FDR are compared in Figure 1:

KnockoffZoom v2 has slightly lower power, but always controls the FDR.

single-SNP 208 kb 425 kb
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FIG. 1. Power and FDR in simulations involving samples with diverse ancestries. KnockoffZoom

performance at different resolutions on artificial phenotypes and real genotypes of 10,000 samples with very

diverse ancestries, using alternative knockoff constructions. The nominal FDR is 10%. The results are

averaged over 10 experiments with independent phenotypes; the vertical bars indicate standard errors.

Supplementary Figure 24 presents analogous results in simulations with sparser signals, while

Supplementary Figure 25 summarizes findings at different resolutions by counting only the most

specific ones.9 Supplementary Figure 26 reports on simulations where SNP importance is estimated

by BOLT-LMM instead of the lasso;50 the LMM is less powerful, but it makes fastPHASE knockoffs

even more susceptible to population structure, while our new method remains valid.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.04.236703doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.04.236703
http://creativecommons.org/licenses/by-nc-nd/4.0/


8

Knockoffs preserving familial relatedness

We test our method on 10,000 British individuals in 4,900 self-reported families; see Supplemen-

tary Table 3 and Supplementary Figure 27 for details. We use RaPID48 to detect IBD segments

wider than 3 cM, chromosome-by-chromosome, adopting the recommended parameters. After dis-

carding, for simplicity, segments shared by individuals who do not belong to the same self-reported

family, we are left with 723,454 of them. Their mean width is 19.6 Mb, or 26.1 cM, and each

contains 4238 SNPs on average (Supplementary Figure 28). We then generate knockoffs preserving

these IBD segments, and compare the results with those obtained disregarding relatedness.

Supplementary Figure 29 shows that knockoffs would not preserve IBD segments if we did not

explicitly enforce such constraint, especially at low resolution. The diagnostics in Supplementary

Figure 30 confirm that our method correctly preserves LD, and Supplementary Figure 31 demon-

strates that accounting for relatedness does not decrease power; to the contrary, it can increase it

by ensuring that closely related haplotypes are not used as references for one another, which would

reduce the desired contrast between genotypes and knockoffs.

We simulate binary phenotypes from a liability threshold (probit) model with 100 uniformly

distributed causal variants; the numbers of cases and controls are balanced. (We consider binary

phenotypes, as opposed to continuous phenotypes as in the previous section, simply to highlight

the flexibility of our method, which is equally valid regardless of the distribution of the trait). We

include in this model an additive random term for each family, mimicking shared environmental

effects, whose strength is smoothly controlled by a parameter γ ∈ [0, 1] (Methods). The phenotypes

of different individuals in the same family are conditionally independent given the genotypes if

γ = 0, while identical twins will always have the same phenotype if γ = 1. In theory, environmental

effects may introduce spurious associations, unless the knockoffs account for familial relatedness;

this point is demonstrated empirically below and explained rigorously in the Methods.

Figure 2 reports FDR and power at low-resolution, with and without preserving relatedness.

This shows that preserving IBD segments enables FDR control even with extreme environmental

factors (γ = 1), with virtually no power loss. However, KnockoffZoom v2 is reasonably robust even

if relatedness is ignored, especially at higher resolution (Supplementary Figure 32). This partly

depends on the multivariate importance statistics used here (i.e., sparse logistic regression); in fact,

marginal statistics are more vulnerable to confounding, as illustrated in Supplementary Figure 33.

Finally, Supplementary Figures 34–35 confirm that the test statistics for null groups of SNPs are

symmetrically distributed if relatedness is preserved.
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FIG. 2. Power and FDR in simulations with familial relatedness. KnockoffZoom v2 performance on

artificial phenotypes and real genotypes of 10,000 related samples. Our method is applied with and without

preserving IBD segments. Results for phenotypes with different strengths of environmental effects γ are in

separate columns (γ = 0: no environmental effects, γ = 1: strongest environmental effects; see Methods for

more information about γ). Knockoff resolution equal to 425 kb. Other details are as in Figure 1.

.

Analysis of the UK Biobank phenotypes

Setup

We analyze 486,975 individuals both genotyped and phased in the UK Biobank, 136,818 of

which have close relatives; see Methods for details on quality control. Most samples are British

(429,934), Irish (12,702), or other Europeans (16,292). By running RaPID48 within the 57,164

families, as in the simulations, we detect 7,087,643 long IBD segments across the 22 autosomes.

We then apply KnockoffZoom v2 at different resolutions (as in the simulations), aiming to control

the FDR below 10%, using knockoffs preserving both population structure and familial relatedness.
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Discoveries with different subsets of individuals

We study 4 continuous traits (height, body mass index, platelet count, systolic blood pressure)

and 4 diseases (cardiovascular disease, respiratory disease, hyperthyroidism, diabetes), using dif-

ferent subsets of samples to compare performance. The phenotypes are defined in Supplementary

Table 4. In order to increase power, we include in the KnockoffZoom predictive model, along with

the genotypes and the knockoffs, a few relevant covariates that help explain some variation in the

phenotype,9 as explained in the Methods. These covariates include the top principal components

of the genetic matrix,14 although it is worth emphasizing that the validity of our method does not

depend on them, since we account for population structure through the knockoffs. The numbers of

low-resolution (208 kb) discoveries are in Figure 3; this demonstrates that including relatives yields

many more discoveries, while including different ancestries tends to have a smaller impact (unsur-

prisingly, since we have relatively few non-British samples). Table I summarizes the gains in the

numbers of discoveries at different resolutions allowed by KnockoffZoom v2, either by leveraging

related samples, or by including non-British individuals. This shows an increase in power, except

at the single-SNP resolution; this exception may be partially explained by the fact that single-

SNP discoveries are fewer and thus more affected by the random variability in the knockoffs.9

Supplementary Tables 5–6 report the numbers of discoveries at other resolutions, as well as those

obtained from the analysis of European non-British samples only. The full results are available at

https://msesia.github.io/knockoffzoom-v2/, along with an interactive visualization tool.

Table II demonstrates that KnockoffZoom v2 is much more powerful than BOLT-LMM, when

the latter is applied to the 459k European samples;40 in fact, we discover almost all findings reported

by BOLT-LMM and many new ones. (See Supplementary Tables 7–8 for more detailed results at

other levels of resolution.) This is consistent with KnockoffZoom v1,9 although our method is even

more powerful (except for the single-SNP resolution), as shown in Supplementary Tables 9–10.

Validation of novel discoveries

We begin to validate our findings by comparing them with those in the GWAS Catalog,52

in the Japan Biobank Project,41 and in the FinnGen resource42 (we use the standard 5 × 10−8

threshold for the p-values reported by the latter two). For simplicity, hereafter we focus on our

findings obtained including both related and non-British individuals. Supplementary Tables 11–

12 show that most of our high-resolution discoveries correspond to SNPs previously known to be
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FIG. 3. Numbers of KnockoffZoom discoveries for UK Biobank phenotypes. Low-resolution

(208 kb) discoveries using data from subsets of individuals with different self-reported ancestries.

Including related samples Including non-British samples

Everyone British Related Unrelated

Resolution
Total

Change

(%)
Total

Change

(%)
Total

Change

(%)
Total

Change

(%)

single-SNP 138–167 21.0 155–125 -19.4 125–167 33.6 155–138 -11.0

3 kb 921–992 7.7 655–971 48.2 971–992 2.2 655–921 40.6

20 kb 2814–3527 25.3 2808–3355 19.5 3355–3527 5.1 2808–2814 0.2

41 kb 4419–5867 32.8 4353–5354 23.0 5354–5867 9.6 4353–4419 1.5

81 kb 6784–8031 18.4 6676–7781 16.6 7781–8031 3.2 6676–6784 1.6

208 kb 8776–10270 17.0 8635–10049 16.4 10049–10270 2.2 8635–8776 1.6

425 kb 9401–10730 14.1 9028–10297 14.1 10297–10730 4.2 9028–9401 4.1

Sample size 408k–487k 19.4 356k–430k 20.8 430k–487k 13.0 356k–408k 14.6

TABLE I. Effect of sample size increases on numbers of KnockoffZoom v2 discoveries. Cumulative

numbers of discoveries for all UK Biobank phenotypes at different resolutions, with different subsets of the

samples. For example, including related individuals increases by 16.4% the number of discoveries obtained

from the British samples at the 208 kb resolution (from 8635 to 10,049). As another example, adding non-

British individuals (including related ones) increases by 2.2% the number of discoveries obtained from the

British samples (including related ones) at the 208 kb resolution (from 10049 to 10,270).
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KnockoffZoom v2 BOLT-LMM

Phenotype Discoveries Overlap with LMM Discoveries Overlap with KZ

bmi 2395 898 (37.5%) 697 689 (98.9%)

cvd 940 274 (29.1%) 257 249 (96.9%)

diabetes 113 52 (46.0%) 62 55 (88.7%)

height 3339 2228 (66.7%) 2464 2430 (98.6%)

hypothyroidism 295 129 (43.7%) 143 142 (99.3%)

platelet 1743 1057 (60.6%) 1204 1183 (98.3%)

respiratory 262 82 (31.3%) 94 92 (97.9%)

sbp 1183 561 (47.4%) 568 530 (93.3%)

TABLE II. Comparison of KnockoffZoom v2 at low resolution with BOLT-LMM. KnockoffZoom

discoveries (208 kb resolution, 10% FDR) using all 487k UK Biobank samples for different phenotypes,

and corresponding BOLT-LMM genome-wide significant discoveries (5× 108); the latter is applied on 459k

European samples40 for all phenotypes except diabetes and respiratory disease, for which it is applied on

350k unrelated British samples,9 for the sake of consistency in phenotype definitions. For example, we report

940 distinct discoveries for cardiovascular disease, 274 of which contain significant associations according to

BOLT-LMM. The latter reports a total of 257 discoveries (clumped9 with the standard PLINK51 algorithm)

for this phenotype, 96.9% of which overlap with one of our discoveries.

associated with the phenotype of interest. This is particularly true for those findings that are

also detected by BOLT-LMM, although many of our additional discoveries are also confirmed; see

Supplementary Tables 13–14. For example, our method reports 1089 findings for cardiovascular

disease at the 425 kb resolution, only 255 of which can be detected by BOLT-LMM; however, 85.6%

of our additional 834 discoveries are confirmed in at least one of the aforementioned resources.

Furthermore, Supplementary Table 15 suggests that most relevant associations in the Catalog

(above 70%) are confirmed by our findings, which is again indicative of high power. The relative

power of our method (i.e., the proportion of previously reported associations that we discover) seems

to be above 90% for quantitative traits, but lower than 50% for all diseases except hypothyroidism,

probably due to the relatively small number of cases in the UK Biobank data set compared to

more targeted case-control studies.

The 5×10−8 genome-wide threshold for the Japan Biobank Project and the FinnGen resource is

overly conservative given that our goal is to confirm selected discoveries. Therefore, we next utilize

these independent summary statistics for an enrichment analysis. The idea is to compare the

distribution of the external statistics corresponding to our selected loci to that of loci from the rest
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Total Not found by BOLT-LMM

Confirmed Confirmed

Phenotype Discoveries Other Other or Enrich. Discoveries Other Other or Enrich.

bmi 2395 1076 (44.9%) 1620 (67.6%) 1497 335 (22.4%) 806 (53.8%)

cvd 940 738 (78.5%) 764 (81.3%) 666 472 (70.9%) 493 (74.0%)

diabetes 113 97 (85.8%) 106 (93.8%) 61 46 (75.4%) 54 (88.5%)

height 3339 1886 (56.5%) 2493 (74.7%) 1111 164 (14.8%) 556 (50.0%)

hypothyroidism 295 156 (52.9%) 226 (76.6%) 166 43 (25.9%) 101 (60.8%)

platelet 1743 453 (26.0%) 1017 (58.3%) 686 29 (4.2%) 256 (37.3%)

respiratory 262 241 (92.0%) NA 180 159 (88.3%) NA

sbp 1183 643 (54.4%) 885 (74.8%) 622 154 (24.8%) 358 (57.6%)

TABLE III. Validation of findings through comparisons with other studies and enrichment.

Numbers of low-resolution (208 kb) discoveries obtained with our method and confirmed by other studies,

or by an enrichment analysis carried out on external summary statistics. For example, 81.3% of our 940

discoveries for cardiovascular disease are confirmed either by the results of other studies, or by the enrichment

analysis. The results are stratified based on whether our findings can be detected by BOLT-LMM using the

UK Biobank data (excluding non-European individuals).

of the genome, as explained in Supplementary Note D. This approach can estimate the number of

replicated discoveries but it has the limitation that it cannot tell exactly which ones are confirmed;

therefore, we will consider alternative validation methods later. (A more precise analysis is possible

here in theory, but has low power; see Supplementary Note D). Supplementary Tables 16–17

show that many additional discoveries can thus be validated, especially at high resolution. (See

Supplementary Tables 18–19 for more details about enrichment.) Table III summarizes these

confirmatory results. Respiratory disease is excluded from the enrichment analysis because the

FinnGen resource divides it among several fields, so it is unclear how to best obtain a single p-

value. In any case, the GWAS Catalog and the FinnGen resource already directly validate 90% of

our new findings for this phenotype.

We continue the validation by inspecting the novel discoveries (i.e., those missed by BOLT-

LMM and unconfirmed by the above studies) and cross-referencing them with the genetics litera-

ture, focusing for simplicity on the 20 kb resolution. Supplementary Table 20 shows that almost

all discoveries contain genes, and most have known associations to phenotypes closely related to

that of interest (Supplementary Table 21). Furthermore, most lead SNPs (those with the largest
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importance measure in each group9) have functional annotations (Supplementary Table 22).

Figure 4 showcases one of our novel discoveries for cardiovascular disease. The finest finding

here spans 4 genes, but we could not find previously reported associations with cardiovascular

disease within this locus. However, one of these genes (SH3TC2) is known to be associated with

blood pressure,53 while another (ABLIM3) is known to be associated with body mass index.54
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FIG. 4. Novel discovery for cardiovascular disease on the UK Biobank data. Center: the shaded

rectangles indicate the genetic segments detected by our method at different resolutions. Bottom: genes in

the locus spanned by our finest discovery. Top: BOLT-LMM marginal p-values computed on UK Biobank

samples with European ancestry,40 for genotyped and imputed variants within this locus. All BOLT-LMM p-

values within this locus are larger than 5×10−8; those larger than 10−3 are hidden. Note that KnockoffZoom

does not analyze imputed variants, since these do not carry any additional information about the phenotype.9

DISCUSSION

This paper has developed a new algorithm for constructing genetic knockoffs, inspired by the

SHAPEIT phasing method, that extends the applicability of KnockoffZoom to the analysis of data

with population structure. In particular, we can include related and ethnically diverse individuals

while controlling the FDR. This extension is crucial for several reasons. Firstly, very large studies
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are sampling entire populations quite densely,42,55 which yields many closely related samples. It

would be wasteful to discard this information, and potentially dangerous not to carefully account for

relatedness. Secondly, the historical lack of diversity in GWAS (which mostly involve individuals

of European ancestry) is a well-recognized problem,56,57 which biases our scientific knowledge

and disadvantages the health of under-represented populations. While this issue goes beyond the

statistical difficulty of analyzing diverse GWAS data, our work should at least help remove a

technical barrier. Firstly, by allowing the simultaneous analysis of diverse populations, we can

borrow strength from one another and increase power, as the different patterns of LD in different

populations may uncover causal variants more effectively.58 Secondly, discoveries obtained from the

analysis of diverse data may improve our ability to explain phenotypic variation in the minority

populations.59,60 Since the UK Biobank mostly comprises of British individuals, the increase in

power resulting from the analysis of diverse samples can only be relatively small. Nonetheless,

we observe some gains when we include non-British individuals. This is promising, especially

since simulations demonstrate that our inferences are valid even when the population is extremely

heterogeneous. Therefore, in the near future, we would like to apply our method to more diverse

data sets, such as that collected by the Million Veteran Program,61 for example.

Our method accounts for LD, population structure, and cryptic relatedness, which are the major

sources of confounding in GWAS data, so our discoveries are directly interpretable and may be

portrayed in a causal sense relatively safely;5,9 indeed, a closely related approach yields formal

causal claims in the special case of parent-child trio data.62 Furthermore, our inferences require

no assumptions about the genetic architecture of the phenotype, which makes KnockoffZoom very

versatile. It is worth stressing that our simulations are based on genetic data, do not provide any

additional information to our method about the relatedness or population structure other than

that already available to the analyst, and do not exploit any knowledge of the architecture of the

simulated traits. Therefore, the results are informative about the general validity of our method.5,9

Confirmatory analyses demonstrate that a large proportion of our discoveries are either con-

sistent with the findings of BOLT-LMM on the same data, or are supported by other studies.

This is of interest, especially since we do not have access to studies larger than the UK Biobank,

so we cannot expect to already replicate all novel discoveries. Furthermore, many of our un-

confirmed findings are associated to related phenotypes or contain protein-coding genes that are

over-expressed in the relevant tissues. Even though our method does not perform fine-mapping in

the traditional sense—we do not work with imputed variants—it is more flexible and appreciably

more powerful than the existing genome-wide alternatives, such as BOLT-LMM. Furthermore, our
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discoveries are more tightly localized than those based on marginal testing, and hence immediately

more interpretable, which will facilitate any follow-up analysis.

The possibility to include individuals of diverse ancestries opens alluring research opportunities.

For example, we would like to understand which discoveries are consistent across populations

and which are more specific, as this may help further weed out false positives, explain observed

variations in phenotypes, and possibly shed more light onto the underlying biology.

SOFTWARE AVAILABILITY

We have implemented our methods in a standalone software written in C++, which is available

from https://msesia.github.io/knockoffzoom-v2/. This takes as input phased haplotypes in

BGEN format63 and outputs genotype knockoffs at the desired resolution in the PLINK51 BED

format. Our software is designed for the analysis of large data: it is multi-threaded and memory

efficient. Furthermore, if sufficient computational resources are available, knockoffs for different

chromosomes can be constructed in parallel. For reference, it took us approximately 4 days using

10 cores and 80GB of memory to generate knockoffs for the UK Biobank data on chromosome 1

(approximately 1M haplotype sequences, 600k SNPs, and 600k IBD segments).

DATA AVAILABILITY

Data from the UK Biobank Resource (application 27837); see https://www.ukbiobank.ac.uk/.
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METHODS

Formal definition of the inferential objective

We begin by formally stating our objective. Let Y ∈ Rn be a phenotype of interest measured

for n subjects, and let X ∈ Rn×p be the corresponding genotypes at p sites, which are assumed

to be random variables from an HMM, as we will discuss shortly. Our goal is to detect genomic

regions containing distinct associations with the phenotype, as precisely as possible. Formally, we

seek this objective by testing conditional null hypotheses23 in the form of

H0,g : Y |= XGg | X−Gg , (1)

where G = (G1, . . . , GL) is a fixed partition of {1, . . . , p}, XGg denotes the variants in group Gg,

and X−Gg denotes those outside it. This framing is different from that employed by classical

GWAS techniques, where one is only able to test marginal independence between the phenotype

and a single variant Xj—a scientifically less interesting hypothesis.5,64 In particular, conditioning
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on the remainder of the genome (X−Gg in the above notation) ensures that a rejection of the null

hypothesis implies the presence of a unique association of Y with the variants in the region Gg,

rather than a spurious correlation caused by LD. Moreover, such tests are naturally robust to the

confounding of population structure,64 and even enable formal causal inferences in some cases.62

While we do not have the space for a full account here, previous work has already discussed at

length the relative advantages of conditional testing over marginal testing.5,9,62,64 The only caveat is

that correctly implementing these tests using GWAS data is technically challenging in the presence

of population structure9—a difficulty that we address here by building upon KnockoffZoom.9

Review of KnockoffZoom

KnockoffZoom is a recently-introduced statistical technique for genome-wide association studies

that simultaneously tests the conditional null hypotheses defined above for all groups of variants in

any given partition of the genome, controlling the FDR (the expected number of false discoveries)

below a desired target level (e.g., 10%). By applying this procedure multiple times with increas-

ingly refined partitions, one can localize interesting conditional associations at different levels of

resolutions, ranging from a few hundred kilo-bases to single-SNP precision. Unlike those of other

approaches, the statistical guarantees of KnockoffZoom do not rely on any assumption about the

genetic architecture of the trait, such as linearity and Gaussian errors. Instead, KnockoffZoom only

needs to model the distribution of the genotypes with an HMM, consistently with the standard

approaches for phasing and imputation.5,9 To test the hypotheses in (1), KnockoffZoom leverages

a statistical technology called knockoffs,5,23,24 which we describe informally below.

For the genotypes X(i) of any individual i, we construct in silico a synthetic “knockoff” version

X̃(i) ∈ Rp, in such a way that X and X̃ are statistically exchangeable at the population level,

except for the fact that X̃ has no conditional associations with Y . In other words, for any group

Gg in the given genome partition, the distribution of XGg and X̃Gg are indistinguishable unless

there is a conditional association between XGg and Y . This property, which will be formally stated

later, allows the knockoff genotypes X̃ to serve as negative controls for X.23 The intuition is that,

by construction of the knockoffs, any detectable difference between XGg and X̃Gg implies that the

region Gg must contain a distinct association with Y . Practically, one can control the FDR for the

conditional hypotheses in (1) by computing a test statistics for each group of variants (i.e., as the

contrast between any empirical association measures between Y and XGg , X̃Gg , respectively) and

then rejecting the null hypotheses whose statistics are greater than the data-adaptive significance
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threshold computed by the knockoff filter.24 To maximize the number of discoveries, one should use

powerful association (or, importance) measures; the typical solution is to compute these starting

from a multivariate predictive model, as explained next.23

KnockoffZoom9 fits a sparse generalized linear regression model of Y given the augmented data

[X, X̃] ∈ Rn×2p, after standardizing X and X̃ to have unit variance. Then, letting β̂j(λCV) and

β̂j+p(λCV) indicate the estimated coefficients for Xj and X̃j , respectively, it defines the importance

measures Tg =
∑

j∈Gg
|β̂j(λCV)| and T̃g =

∑
j∈Gg

|β̂j+p(λCV)| for each group of variants Gg. (The

regularization parameter λCV is tuned by cross-validation). We adopt these statistics because they

have the advantage of being powerful,9 interpretable for GWAS,65 and computationally feasible

even with very large data.66 However, the knockoffs framework can theoretically accommodate

virtually any statistics.23 The importance measures are combined into a test statistic for each

group of variants, i.e., Wg = Tg − T̃g, which is finally provided as input to the knockoff filter24 to

select significant associations. In particular, the knockoff filter selects groups of SNPs whose W

is sufficiently large (i.e., here large values of W imply that the corresponding real genotypes have

larger regression coefficients compared to the knockoffs). See Figure 5 for a schematic summary of

the entire procedure.

Data

Data augmentation

Predictive system Calibration

Novel component

Y X H knockoff algorithm

haplotype model

H̃ X̃

(X, X̃)

predictive model

genome partition

test statistics knockoff filter discoveries

FDR level

phasing de-phasing

FIG. 5. KnockoffZoom workflow. The novelty consists of an HMM for the distribution of haplotypes,

H, that can account for population structure and familial relatedness as well as LD, and of the associated

algorithm for generating knockoffs. For computational reasons, the genotypes are phased prior to generating

knockoffs, and the knockoff haplotypes are then de-phased to obtain knockoff genotypes.9
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KnockoffZoom model setup

KnockoffZoom v15 assumes all samples to be independent and identically distributed (i.i.d.):

(X(i), Y (i))
i.i.d.∼ PX,Y = PX · PY |X ,

where the distribution of the genotypes, PX , is approximated by the fastPHASE HMM,29 and PY |X

is left completely unspecified.23 The fastPHASE HMM restricts the applicability of KnockoffZoom

to homogeneous samples9 (see also Supplementary Notes A– C), while the i.i.d. assumption is

naturally ill-suited to described closely related samples that, in addition to sharing long nearly

identical portions of DNA, may also be exposed to the same environmental factors affecting their

phenotypes. Our present work shows how to overcome these limitations. We generalize the above

setup by assuming a fixed family structure and by grouping together individuals in the same

family, which are no longer treated independently. Furthermore, the distribution of the genotypes

is allowed to vary across families, depending on the population from which the family descended.

Formally, let F = {F1, . . . ,F|F|} indicate a fixed partition of {1, . . . , n}, where Ff ⊆ {1, . . . , n}
for all f ∈ {1, . . . , |F|}. Then, we assume that genotypes and phenotypes, along with a shared

family effect E, are sampled independently for individuals in different families, from some joint

distribution:

(X(Ff ), Y (Ff ), Ef ) ∼ P fX,Y,E = P fE · P
f
X · P

f
Y |X,E . (2)

Above, the random matrix X(Ff ) ∈ R|Ff |×p contains the genotypes (i.e., the rows of X) for all

individuals in the fth family and is sampled jointly from P fX , the random vector Y (Ff ) ∈ R|Ff |

describes the corresponding phenotypes, and Ef is the environmental factor shared by all family

members. Crucially, these distributions are allowed to vary across families, which encodes the

fact that the distribution of genotypes and phenotypes varies across populations. Importantly, the

distributions P fE and P fY |X,E are not assumed to be known; only P fX must be specified to carry

out the procedure. Conditional on Xf and Ef , the phenotypes Y f are assumed to be sampled

independently for each individual:

p(Y (Ff ) | X(Ff ), Ef ) =
∏
i∈Ff

pf (Y (i) | X(i), Ef ),

for some distribution function pf , which may also vary across families. Lastly, note that X |= E,

which means E is assumed to be an environmental factor unrelated to the genetic effects.

Before proceeding to the mechanics of the test, we pause to explain why testing the hypotheses

in (1) properly already implicitly accounts for the family effects E. Since our motivation is to help
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build a better genetic understanding the phenotype, the most intuitive goal within the above setup

is to test the null hypotheses

H0,g : Y |= XGg | X−Gg , E,

for all g ∈ {1, . . . , L}. However, these hypotheses are equivalent to those in (1) because we have

assumed X |= E. Therefore, tests of (1) already account for family effects, as long as we can carry

them out correctly, which is the problem we address here.

The last preliminary step is to formally define the knockoffs. This requires a small extension

of the existing framework,23 because there are now dependent groups of observations (families)

that follow different distributions. Nonetheless, the existing theory can be easily adapted for this

setting. In particular, we can still test the hypotheses in (1) with the knockoff filter,24 as long as

the KnockoffZoom test statistics satisfy the flip-sign property in Lemma 3.3 of Candès et al.23 To

ensure this property holds in the presence of families, the knockoff exchangeability property23 must

be defined in the following way: for any fixed partition G of the variants, we require that swapping

any group of SNPs with the corresponding knockoffs, simultaneously for all family members, would

keep the joint distribution of genotypes and knockoffs statistically indistinguishable. Formally, this

can be written as: (
X(Ff ), X̃(Ff )

)
swap(S;G)

d
=
(
X(Ff ), X̃(Ff )

)
∀S ⊆ G, (3)

where Ff indicates a particular family, and swap(S;G) is the operator that swaps all columns of

X(Ff ) indexed by S with the corresponding columns of X̃(Ff ). In the following, we will develop

a novel algorithm, based on a joint model for the genotypes in each family, to generate knockoff

genotypes satisfying (3).

Modeling haplotypes with population structure

We begin by recalling some useful notation for HMMs.9 We say that a sequence of phased

haplotypes H = (H1, . . . ,Hp), with Hj ∈ {0, 1}, is distributed as an HMM with K hidden states if

there exists a vector of latent random variables Z = (Z1, . . . , Zp), with Zj ∈ {1, . . . ,K}, such that:
Z ∼ MC (Q) , (latent discrete Markov chain),

Hj | Z ∼ Hj | Zj ind.∼ fj(Hj | Zj), (emission distribution).

(4)

Above, the Markov chain MC (Q) has initial probabilities Q1 and transition matrices (Q2, . . . , Qp).
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Taking inspiration from SHAPEIT,35–37 we assume the i-th haplotype sequence can be approx-

imated as an imperfect mosaic of K other haplotypes in the data set, indexed by {σi1, . . . , σiK} ⊆
{1, . . . , 2n} \ {i}. (Note the slight overload of notation: i denotes hereafter a phased haplotype

sequence, two of which are available for each individual). We will discuss later how the references

are determined; for now, we take them as fixed and describe the other aspects of the model. Math-

ematically, the mosaic is described by an HMM in the form of (4), where the distribution of the

latent Markov chain is:

P[Z
(i)
1 = k] = α

(i)
k ,

P[Z
(i)
j = k′ | Z(i)

j−1 = k] = Q
(i)
j (k′ | k) =


(
1− e−ρdj

)
α
(i)
k′ + e−ρdj , if k′ = k,(

1− e−ρdj
)
α
(i)
k′ , if k′ 6= k.

(5)

Above, dj indicates the genetic distance between loci j and j − 1, which is assumed to be fixed

and known (in practice, we will use distances previously estimated in a European population,67

although our method could easily accommodate different distances for different populations). The

parameter ρ > 0 controls the rate of recombination and can be estimated with an expectation-

maximization (EM) technique (Supplementary Methods). However, we have observed it works

well with our data to simply set ρ = 1; this is consistent with the approach of SHAPEIT,35–37

which also uses fixed parameters. The positive weights (α
(i)
1 , . . . , α

(i)
K ) are normalized so that their

sum equals one and they can be interpreted as characterizing the ancestry of the i-th individual.

In the applications discussed within this paper, we simply assume α
(i)
k = 1/K for all k, although

these parameters could also be estimated by EM (Supplementary Methods). Conditional on the

sequence Z, each element of H follows an independent Bernoulli distribution:

f
(i)
j (H

(i)
j | k) =


1− λj , if H

(i)
j = H

(σik)
j ,

λj , if H
(i)
j 6= H

(σik)
j .

(6)

Above, the parameter λj is a site-specific mutation rate, which makes the HMM mosaic imperfect.

Earlier works that first proposed this model also suggested formulae for determining suitable values

of the parameters ρ and λ = (λ1, . . . , λp) in terms of the physical distances between SNPs and other

population genetics quantities.8 However, given that we have access to large a data set, we choose

instead to estimate λ by EM (Supplementary Methods). We have noticed that it works well to

also explicitly prevent λ from being too large or too small (e.g., 10−6 ≤ λj ≤ 10−3).

To reduce the computational burden and mitigate the risk of overfitting, the value of K should

not be too large; here, we adopt K = 100. We have observed that larger values improve the
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goodness-of-fit relatively little, while reducing power by increasing the similarity between vari-

ables and knockoffs.9 Having thus fixed K, the identities of the reference haplotypes for each i,

{σi1, . . . , σiK}, are chosen in a data-adaptive fashion as those whose ancestry is most likely to be

similar to that of H(i). Concretely, one may carry this out as outlined by Algorithm 1, separately

chromosome-by-chromosome. Different options are available for defining similarities between hap-

lotypes; for simplicity, we use the Hamming distance. Since computing the pairwise distances

between all haplotypes would have quadratic complexity in the sample size, which is unfeasible

for large data, we first divide the haplotypes into clusters of size N , with K � N � 2n (i.e.,

N ≈ 5000), through recursive 2-means clustering, and then we only compute distances within

clusters, following in the footsteps of SHAPEIT v3.37

Algorithm 1 Choosing the HMM reference haplotypes

Input: haplotypes H ∈ {0, 1}2n×p, parameter K;

Input: hyperparameters N1, N2, s.t. K � N1 < N2 � n.

Input: a distance measure ξ between haplotypes.

Divide {1, . . . , 2n} into M sets Cc s.t. N1 ≤ |Cc| ≤ N2, by recursive 2-means clustering.37

for c = 1, . . . ,M do

Compute a distance matrix D ∈ R|Cc|×|Cc| for all haplotypes in Cc, with ξ.

for i in Cc do

Define R(i) as the set of K nearest neighbors of Hi in Cc.

Output: a set R(i) of K references for each haplotype H(i).

While the approach in Algorithm 1 is the easiest to introduce first, in practice it is preferable for

our purpose to utilize a different set of local references in different parts of the same chromosome.

We will describe this extension later, after discussing the novel knockoff generation algorithm.

Generating knockoffs preserving population structure

Conditional on the reference indices, {σi1, . . . , σiK}, the above setup describes each haplotype

sequence H(i) as an HMM; a model for which we already know how to generate knockoffs in

theory.5,9 Therefore, generating knockoffs in our setting is straightforward: all we need to do is to

define the customized HMM for each haplotype sequence, and then to apply the knockoff generation

algorithm previously developed in KnockoffZoom v1.9 This solution is outlined in Algorithm 2.
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Algorithm 2 Knockoff haplotypes preserving population structure

Input: haplotypes H ∈ {0, 1}2n×p, genetic map ρ ∈ Rp−1, partition G of {1, . . . , p}; parameter K.

for i = 1, . . . , 2n do

Assign references R(i) = {σi1, . . . , σiK} with Algorithm 1.

Initialize α
(i)
k ← 1

K , for each k ∈ {1, . . . ,K}.

Estimate λ = (λ1, . . . , λp) by EM (Supplementary Methods), initialize ρ← 1.

for i = 1, . . . , 2n do

Define the HMM {R(i), ρ, λ}.
Sample Z(i) = (Z

(i)
1 , . . . , Z

(i)
p ) from P[Z(i) | H(i)], with step I of Algorithm 3 in Sesia et al.9

Sample a knockoff copy Z̃(i) of Z(i) with respect to G, with step II of Algorithm 3 in Sesia et al.9

Sample H̃(i) from P[H(i) | Z(i) = Z̃(i)], with step III of Algorithm 3 in Sesia et al.9

Output: knockoff haplotypes H̃ ∈ {0, 1}2n×p.

Knockoffs with local reference motifs based on hold-out distances

Relatedness is not necessarily homogeneous across the genome. This is particularly evident in

the case of admixture, which may cause an individual to share haplotypes with a certain population

only in part of a chromosome. Therefore, it is worth extending Algorithms 1–2 to accommodate

different local references within the same chromosome. We implement this as follows.

First, we divide each chromosome into relatively wide genetic windows (10 Mb, for concreteness);

then, we choose the reference haplotypes separately within each of them, based on their similarities

outside the window of interest. In order to allow the choice of references to be as locally adaptive as

possible, we only consider the alleles in the two neighboring windows when computing distances.

This approach is similar to that of SHAPEIT v3,37 although the latter does not hold out the

SNPs in the current window to determine local similarity. Our approach is better suited for

knockoff generation because it reduces overfitting—knockoffs too similar to the original variables—

and consequently increases power. Once the local references for each haplotype have been defined,

we can apply Algorithm 2 window-by-window. To avoid discontinuities at the boundaries, we

consider overlapping windows (expanded by 10 Mb on each side). More precisely, we condition on

all SNPs within 10 Mb when sampling the latent Markov chain (step I of Algorithm 3 in Sesia et

al.9) but then we only generate knockoffs within the window of interest.
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Knockoffs preserving familial relatedness

Within an IBD-sharing family of size m, we model the joint distribution of the haplotype

sequences, namely (H(1), . . . ,H(m)), as an HMM with a Km-dimensional latent Markov chain. For

simplicity, we write this as Z(1 :m) = (Z(1), . . . , Z(m)), where Z(i) ∈ {1, . . . ,K}p. Conditional on

Z(i), each element of H(i) is independent and follows the same emission distribution as in (4)–(6):

P
[
H

(i)
j = 1 | Z(i)

j = k
]

= f
(i)
j (1 | k) =


1− λ, if H

(σik)
j = 1,

λ, if H
(σik)
j = 0.

(7)

If Z(1), . . . , Z(m) were also independent of each other, this would reduce to a collection of m HMMs

of the type in (4)–(6). However, to account for familial relatedness, we assume that different Z(i)

are coupled at the IBD segments (which we have previously detected and hold fixed), as described

below.

Denote by ∂(i, j) ⊂ {1, . . . ,m} the set of haplotype indices that share an IBD segment with H(i)

at position j. Let us also define ηi,j = 1/(1 + |∂(i, j)|) ∈ (0, 1]. Then, we model the distribution of

Z(1 :m) as follows. For 1 < j ≤ p,

P
[
Z

(1 :m)
j = z

(1 :m)
j | Z(1 :m)

j−1 = z
(1 :m)
j−1

]
=

m∏
i=1

(
Q

(i)
j (z

(i)
j | z

(i)
j−1)

)ηi,j ∏
i′∈∂(i,j)

1[z
(i)
j = z

(i′)
j ], (8)

where the transition matrices Q
(i)
j are defined as in (5), while

P
[
Z

(1 :m)
1 = (k(1), . . . , k(m))

]
=

m∏
i=1

(
α
(i)

k(i)

)ηi,j ∏
i′∈∂(i,j)

1[k(i) = k(i
′)]. (9)

The first term on the right-hand-side of (8) describes the transitions in the Markov chain, while

the second term is the constraint that makes the haplotypes match along the IBD segments. The

purpose of the ηi,j exponent is to make the marginal distribution of each sequence as consistent

as possible with the model presented earlier for unrelated haplotypes. (If we set instead ηi,j = 1,

transitions of the latent state may occur with significantly different frequency inside and outside

IBD segments). In the trivial cases of families of size one, ∂(1, j) = ∅ and η1,j = 1, for all

j ∈ {1, . . . , p}, so it is easy to see that (8)–(9) reduce to the original model for unrelated haplotypes

in (5). By contrast, in the general case, the latent states for different haplotypes in the same family

are constrained to be identical along all IBD segments. See Supplementary Figure 36 (a) for a

graphical representation of this model.

Generating knockoffs with the existing algorithm for HMMs in this case would have compu-

tational complexity equal to O(npKm), which is unfeasible for large data sets unless m = 1. To
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understand why this complexity is O(npKm), note that the model is effectively an HMM with a

Km-dimensional latent Markov chain,9 where each vector-valued variable corresponds to the al-

leles at a specific site for all individuals in the family. Fortunately, one can equivalently look at

the joint distribution of (Z(1:m), H(1:m)) as a more general Markov random field68 with 2×m× p
variables, each taking values in {1, . . . ,K} or {0, 1}, respectively. See Supplementary Figure 36 (b)

for a graphical representation of this model, where each node corresponds to one of the two hap-

lotypes of an individual at a particular marker. The random field perspective opens the door to

more efficient inference and posterior sampling based on message-passing algorithms.69 Leaving the

technical details to the Supplementary Methods, we outline the new knockoff generation procedure

in Algorithm 3.

In a nutshell, we follow the same spirit of the construction for unrelated haplotypes in Algo-

rithm 2, with the important difference that the HMM with a K-dimensional latent Markov chain

of length p is replaced by a latent Markov random field with 2 ×m × p variables, which requires

some innovations.

• First, the K haplotype references in the model for each H(i) are shared by all haplotypes

within the same family; see Supplementary Algorithm 1.

• Second, the posterior sampling of Z(1:m) | H(1:m) is carried out via generalized belief

propagation69 instead of the standard forward-backward procedure for HMMs;5,9 see Sup-

plementary Algorithm 2 and Supplementary Figure 37. (This generally involves some degree

of approximation, but it is exact for many family structures).

• Third, the knockoff copies Z̃(1:m) of Z(1:m) are generated with a modified version of

the existing algorithm for HMMs9 that circumvents the computational difficulties of the

higher-dimensional model by breaking the couplings between different haplotypes through

conditioning70 upon the extremities of the IBD segments; see Supplementary Algorithm 3

and Supplementary Figure 38. To clarify, conditioning on the extremities of the IBD seg-

ments means that we make the knockoffs identical to the true genotypes for a few sites in

each family, which reduces power only slightly (we consider relatively long IBD segments, so

there are few extremities), but greatly reduces the computational burden (see Supplement

for a full explanation).

It is worth remarking that, for trivial families of size one, this is exactly equivalent to Algorithm 2.

Finally, note that the extension to local references with hold-out distances discussed earlier also
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applies seamlessly here. Even though our software implements this extension, we do not explicitly

write down the algorithms with local references in this paper for the sake of clarity and space.

Algorithm 3 Knockoff haplotypes preserving population structure and familial relatedness

Input: H ∈ {0, 1}2n×p, d ∈ Rp−1, G, and K as in Algorithm 2, collection of IBD segments I.

Define the set U ⊆ {1, . . . , n} of haplotype indices that do not share any IBD segments in I.

Divide the remaining haplotypes into L distinct families Ff ⊆ {1, . . . , n}, for f ∈ {1, . . . , L}.
for f ∈ 1, . . . , L do

Assign references R(f) = {σf1, . . . , σfK} with Supplementary Algorithm 1.

Initialize α
(f)
k ← 1

K , for each k ∈ {1, . . . ,K}.

Estimate λ = (λ1, . . . , λp) by EM (Supplementary Methods), initialize ρ← 1.

for f ∈ 1, . . . , L do

Define the HMM {R(f), ρ, λ}.
Sample (Z(i))i∈Ff

∈ {1, . . . ,K}m×n from P[(Z(i))i∈Ff
| (H(i))i∈Ff

], with Supplementary Algorithm 2.

Sample a knockoff copy (Z̃(i))i∈Ff
of (Z(i))i∈Ff

with respect to G, with Supplementary Algorithm 3.

Sample H̃(i) from P[H(i) | Z(i) = Z̃(i)], coordinate by coordinate independently, for all i ∈ Ff .

for i ∈ U do

Generate a knockoff copy H̃(i) of H(i) as in Algorithm 2.

Output: knockoff haplotype matrix H̃ ∈ {0, 1}2n×p that preserves the IBD segments.

Quality control and data pre-processing for the UK Biobank

We begin with 487,297 genotyped and phased subjects in the UK Biobank (application 27837).

Among these, 147,669 have reported at least one close relative in the data set. We define families by

clustering together individuals with kinship greater or equal to 0.05; then we discard 322 individuals

(chosen as those with the most missing phenotypes) to ensure that no families have size larger

than 10. This leaves us with 136,818 individuals labeled as related, divided into 57,164 families.

The median family size is 2, and the mean is 2.4). The total number of individuals that passed

this quality control (included those who have no relatives) is 486,975. We only analyze biallelic

SNPs with minor allele frequency above 0.1% and in Hardy-Weinberg equilibrium (10−6), among

the subset of 350,119 unrelated British individuals analyzed in previous work.9 The final SNPs

count is 591,513.
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Including additional covariates

We account for the sex, age and squared age of the subjects to increase power (squared age is

not used for height), as in earlier work.9,40 These covariates are leveraged in the KnockoffZoom

predictive model, along with the top 5 genetic principal components. The inclusion of the principal

components, which may capture population-wide shifts in the distribution of the phenotype, is

useful to improve power because it increases the accuracy of the predictive model while keeping it

sparse,9 but it is unnecessary to avoid spurious discoveries due to population structure, since our

method already accounts for that through the knockoffs. We thus fit a sparse regression model to

predict Y given [Z,X, X̃] ∈ Rn×(r+2p), where Z,X, X̃ are the r covariates, the p genotypes, and

the p knockoffs, respectively. The model coefficients for Z are not regularized, and their estimates

are not directly included in the test statistics.

Numerical experiments

Feature importance measures for each SNP are computed in three alternative ways: by fitting the

lasso with cross-validation and taking the absolute value of the estimated regression coefficients;9

by running BOLT-LMM40 and taking the negative logarithm of the marginal p-values; and by

performing univariate logistic regression (in the case of binary phenotypes) and taking the negative

logarithm of the marginal p-values. These models are designed to predict Y given [X, X̃]; in the first

two cases we also include the top 10 principal components of the genotype matrix (computed on

the entire UK Biobank data set) as additional covariates. Then, the feature importance measures

Tj and T̃j , for the jth SNP and its corresponding knockoff, are combined in the usual way to define

the knockoff test statistics for each group Gg ⊆ {1, . . . , p} of variables: Wg =
∑

j∈Gg
Tj−

∑
j∈Gg

T̃j .

In the simulations with related samples, the latent Gaussian variable for the ith individual in

the probit model is given by:

L(i) =

p∑
j=1

βjX
(i)
j + γE(fi) +

√
1− γ2ε(i),

where E(fi) and ε(i) are independent standard normal random variables, γ ∈ [0, 1], and fi denotes

the family to which the ith individual belongs. The magnitude of the nonzero genetic coefficients

β is varied as a parameter, to control the total heritability of the trait.
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