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Abstract

Traditional accumulation-to-bound decision-making models assume that all choice options are processed simultaneously with equal
attention. In real life decisions, however, humans tend to alternate their visual fixation between individual items in order to efficiently
gather relevant information [46, 23, 21, 12, 15]. These fixations also causally affect one’s choices, biasing them toward the longer-fixated
item [38, 2, 25]. We derive a normative decision-making model in which fixating a choice item boosts information about that item. In
contrast to previous models [25, 39], we assume that attention enhances the reliability of information rather than its magnitude, consistent
with neurophysiological findings [3, 13, 29, 45]. Furthermore, our model actively controls fixation changes to optimize information
gathering. We show that the optimal model reproduces fixation patterns and fixation-related choice biases seen in human decision-
makers, and provides a Bayesian computational rationale for the fixation bias. This insight led to additional behavioral predictions that
we confirmed in human behavioral data. Finally, we explore the consequences of changing the relative allocation of cognitive resources
to the attended versus the unattended item, and show that decision performance is benefited by a more balanced spread of cognitive
resources.

Introduction

Would you rather have a donut or an apple as a mid-afternoon snack? If we instantaneously knew their associated rewards, we could
immediately choose the higher-rewarding option. However, such decisions usually take time and are variable, suggesting that they
arise from a neural computation that extends over time [33, 37]. If we assume these computations to involve a stream of noisy samples
of each item’s underlying value, then, normatively, we would accumulate these samples over time until we can confidently choose the
higher-rewarding item [42]. This strategy can be implemented with accumulation-to-bound models which show that choices between
equally desirable items are slower and more variable than choices between items with a larger difference in desirability, as is the case
in human behavior [34].

Standard accumulation-to-bound models assume that all choice options receive equal attention during decision-making. However,
the ability to drive one’s attention amidst multiple, simultaneous trains of internal and external stimuli is an integral aspect of everyday
life. Indeed, humans tend to alternate between fixating on different items when making decisions. Furthermore, their final choices are
biased towards the item that they looked at longer, irrespective of its desirability [38, 25, 26, 11]. This choice bias has been previously
replicated with a modified accumulation-to-bound model. However, this model assumed that fixations are driven by brain processes
that are exogenous to the computations involved in decision-making [25]. This stands in contrast to studies of visual attention, where
fixations appear to be controlled to extract choice-relevant information in a statistically efficient manner. In this case, fixations are driven
by processes endogenous to the decision [46, 23, 21, 12, 15].

We asked if the choice bias associated with fixations can be explained with a unified framework in which fixation changes and
decision-making are part of the same process. To do so, we endowed normative decision-making models [42] with attention that
boost the amount of information one collects about each choice option, in line with neurophysiological findings [3, 13, 29, 45]. We
furthermore assumed that this attention was overt [32, 20], and thus reflected in the decision maker’s gaze which was controlled by the
decision-making process.

We show that, under these assumptions, the normative decision-making strategy featured the same choice bias as observed
in human decision makers: it switched attention more frequently when deciding between items with similar values, and was biased
towards choosing items that were attended last, and attended longer. It furthermore led to new predictions that we could confirm in
human behavior: choice biases varied based on the amount of time spent on the decision and the average desirability across both
choice items. Lastly, it revealed why the observed choice biases might, in fact, be rational. Overall, our work provides a unified
framework in which the optimal, attention-modulated information-seeking strategy naturally leads to biases in choice that are driven by
visual fixations, as observed in human decisions.
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Results

An attention-modulated decision-making model

Before describing our attention-modulated decision-making model, we will first briefly recap the attention-free model [42] that ours
builds upon. This model assumes that for each decision trial, a true value associated with each item (z1,z2) is drawn from a normal
prior distribution with mean z̄ and variance σ2

z . Therefore, zj ∼ N
(
z̄, σ2

z

)
for both j ∈ {1, 2}. We assume the decision maker knows

the shape of the prior, but can’t directly observe the drawn true values. In other words, the decision maker a-priori knows the range
of values associated with the items they need to compare, but doesn’t know what exact items to expect nor what their associated
rewards will be. For example, one such draw might result in a donut and an apple, each of which has an associated value to the
decision maker (i.e., satisfaction upon eating it). In each nth time step of length δt, they observe noisy samples centered around the
true values, called momentary evidence, δxj,n|zj ∼ N

(
zjδt, σ

2δt
)
. While the model is agnostic to the origin of these samples, they

might arise from computations to infer the items’ values (e.g., how much do I currently value the apple?), memory recall (e.g., how
much did I previously value the apple?), or a combination thereof [37]. As the decision maker’s aim is to choose the higher-valued item,
they ought to accumulate evidence for some time to refine their belief in the items’ values. Once they have accumulated evidence for
t = Nδt seconds, their posterior belief for the value associated with either item is

zj |δxj,1:N ∼ N
(
σ2σ−2

z z̄ + xj(t)

σ2σ−2
z + t

,
σ2

σ2σ−2
z + t

)
, (1)

where xj(t) =
∑N

n=1 δxj,n is the accumulated evidence for item j [42]. The variance of this posterior reflects the uncertainty in
the decision maker’s value inference. In the attention-free model, this uncertainty monotonically decreases identically over time for
both items, reflecting the standard assumption of accumulation-to-bound models that, in each small time period, the same amount of
evidence is gathered for either choice item.

To introduce attention-modulation, we assume that attention limits information about the unattended item (Fig. 1A,B). This is
consistent with behavioral and neurophysiological findings showing that attention boosts behavioral performance [13, 14, 44] and the
information encoded in neural populations [31, 36, 45]. To limit information, we change the momentary evidence for the unattended
item j to δxj,n ∼ N

(
zjδt, γ

−1σ2δt
)
, while leaving that for the attended item unchanged. Here, the γ term controls the degree to

which inattention leads to noisier acquisition of information (0 < γ ≤ 1). Setting γ = 1 recovers the attention-free scenario [42].
Lowering information for the unattended item impacts the value posteriors as follows. If the decision maker again accumulates

evidence for some time t = Nδt, their belief about item j = 1’s value changes from Eq. (1) to

z1|δx1,1:N ∼ N
(
z1|

σ2σ−2
z z̄ +X1(t)

σ2σ−2
z + t1 + γt2

,
σ2

σ2σ−2
z + t1 + γt2

)
, (2)

where t1 and t2, which sum up to the total accumulation time (t = t1 + t2), are the durations that items 1 and 2 have been attended,
respectively. The accumulated evidenceX1(t) now isn’t simply the sum of all momentary pieces of evidence, but instead down-weights
them by γ if the associated item is unattended (see Methods). This prevents the large inattention noise from swamping the overall
estimate [16]. An analogous expression provides the posterior z2|δx2,1:N for item 2 (Supplementary Information).

The attention modulation of information is clearly observable in the variance of the value’s posterior (Eq. (2)). For γ < 1, this
variance, which is proportional to the decision maker’s uncertainty about the option’s value, drops more quickly over time if item 1
rather than item 2 is attended (i.e., if t1 rather than t2 increases). Therefore, it depends on how long each of the two items have been
attended to, and might differ between the two items across time (Fig. 1C). As a result, decision performance depends on how much
time is allocated to attending to each item.

The decision maker’s best choice at any point in time is to choose the item with the larger expected value, as determined by the
value posterior. However, the posterior by itself does not determine when it is best to stop accumulating evidence. In our previous
attention-free model, we addressed the optimal stopping time by assuming that accumulating evidence comes at cost c per second,
and found the optimal decision policy under this assumption [42]. Specifically, at each time step of the decision-making process, the
decision maker could choose between three possible actions. The first two actions involve immediately choosing one of the two items,
which promises the associated expected rewards. The third action is to accumulate more evidence that promises more evidence,
better choices, and higher expected reward, but comes at a higher cost for accumulating evidence. We found the optimal policy using
dynamic programming that solves this arbitration by constructing a value function that, for each stage of the decision process, returns
all expected rewards and costs from that stage onward [6, 8]. The associated policy could then be mechanistically implemented by an
accumulation-to-bound model that accumulates the difference in expected rewards, ∆ = 〈z2|δx2,1:N 〉 − 〈z1|δx1,1:N 〉, and triggers a
choice once one of two decision boundaries, which collapse over time, is reached [42].

Once we introduce attention, a fourth action becomes available: the decision maker can choose to switch attention to the currently
unattended item (Fig. 1B). If such a switch comes at no cost, then the optimal strategy would be to continuously switch attention
between both items to sample them evenly across time. We avoid this physically unrealistic scenario by introducing a cost cs for
switching attention. This cost also includes a switch time ts, which is not included in t1 and t2. Overall, this leads to a value function
defined over a four-dimensional space: the expected reward difference ∆, the evidence accumulation times t1 and t2, and the currently
attended item y ∈ {1, 2} (see Supplementary Information). As the last dimension can only take one of two values, we can equally use
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Figure 1: Attention-modulated evidence accumulation. (A) Schematic depicting the value-based decision-making model. When choos-
ing between two snack items (e.g., apple versus donut), people tend to evaluate each item in turn, rather than think about all items
simultaneously. While evaluating one item, they will pay less attention to the unattended item (blurred item). (B) Schematic of the
value-based decision process for a single trial. At trial onset, the model randomly attends to one item (green box). At every time step,
it accumulates momentary evidence (orange box) that provides information about the true value of each item, which is combined with
the prior belief of each item’s value to generate a posterior belief. Note that the momentary evidence of the attended item comes from
a tighter distribution. Afterwards, the model assesses whether to accumulate more evidence (orange), make a choice (black), or switch
attention to the other item (green). (C) Evolution of the evidence accumulation process. The top panel shows momentary evidence at
every time point for the two items. Note that evidence for the unattended item has a wider variance. The middle panel shows how the
posterior estimate of each item may evolve over time (mean ± 1SD). The dotted lines indicate the unobserved, true values of the two
items. The bottom panel shows how uncertainty decreases regarding the true value of each item. As expected, uncertainty decreases
faster for the currently attended item compared to the unattended one.

two three-dimensional value functions. This results in two associated policies that span the three-dimensional state space (∆, t1, t2)
(Fig. 2).

Features of the optimal policy

At any point within a decision, the modelâĂŹs current state is represented by a location in this 3D policy space, such that different
regions in this space designate the optimal action to perform (i.e., choose, accumulate, switch). The boundaries between these regions
can be visualized as contours in this 3D state space (Fig. 2A). As previously discussed, there are two distinct policy spaces for when
the decision maker is attending to item 1 versus item 2 that are symmetric to each other (Fig. 2B).

Within a given decision, the deliberation process can be thought of as a particle that drifts and diffuses in this state space. The
model starts out attending to an item at random (y ∈ 1, 2), which determines the initial policy space (Fig. 2B). Assume an example trial
where the model attends to item 1 initially (y = 1). At trial onset, the decision maker holds the prior belief, such that the particle starts
on the origin (∆ = 0, t1 = t2 = 0) which is within the âĂIJaccumulateâĂİ region. As the model accumulates evidence, the particle
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Figure 2: Navigating the optimal policy space. (A) The optimal policy space. The policy space can be divided into regions associated
with different optimal actions (choose item 1 or 2, accumulate more evidence, switch attention). The boundaries between these regions
can be visualized as contours in this space. The three panels on the right show cross-sections after slicing the space at different ∆
values. Note that when ∆ = 0 (middle panel), the two items have equal value and therefore there is no preference for one item over
the other. (B) Optimal policy spaces for different values of y (currently attended item). The two policy spaces are mirror-images of
each other. (C) Example deliberation process of a single trial demonstrated by a particle that diffuses across the optimal policy space.
In this example, the model starts by attending to item 1, then makes two switches in attention before eventually choosing item 1. The
bottom row shows the plane in which the particle diffuses. Note that the particle diffuses on the (grey, shaded) plane perpendicular to
the time axis of the unattended item, such that it only increases in tj when attending to item j. Also note that the policy space changes
according to the item being attended to, as seen in (B). See results text for more detailed description.

will move on a plane perpendicular to t2 = 0, since t2 remains constant while attending to item 1 (Fig. 2C, first column). During this
time, evidence about the true values of both items will be accumulated, but information regarding item 2 will be significantly noisier
(as controlled by γ). Depending on the evidence accumulated regarding both items, the particle may hit the boundary for âĂIJchoose
1âĂİ, âĂIJchoose 2âĂİ, or âĂIJswitch (attention)âĂİ. Assume the particle hits the âĂIJswitchâĂİ boundary, indicating that the model is
not confident enough to make a decision after the initial fixation to item 1. Now, the model is attending to item 2, and the policy space
switches accordingly (y = 2). The particle, starting from where it left off, will now move on a plane perpendicular to the t1 axis (Fig.
2C, second column). This process is repeated until the particle hits a decision boundary (Fig. 2C, third column). Importantly, these
shifts in attention are endogenously generated by the model as a part of the optimal decision strategy — it exploits its ability to control
how much information it receives about either item’s value.

The optimal policy space shows some notable properties. As expected, the âĂIJswitchâĂİ region in a given policy space is
always encompassed in the âĂIJaccumulateâĂİ region of the other policy space, indicating that the model never switches attention or
makes a decision immediately after an attention switch. Furthermore, the decision boundaries in 3D space approach each other over
time, consistent with previous work that showed a collapsing 2D boundary for optimal value-based decisions without attention [42].
The collapsing bound reflects the modelâĂŹs uncertainty regarding the difficulty of the decision task [17]. In our case, this difficulty
depends on how different the true item values are, as items of very different values are easier to distinguish than those of similar value.
If the difficulty is known within and across choices, the boundaries will not collapse over time, and their (fixed) distance will reflect the
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Figure 3: Replication of human behavior by simulated optimal model behavior [25]. (A) Monotonic increase in probability of choosing
item 1 as a function of the difference in value between item 1 and 2. (B) Monotonic decrease in response time (RT) as a function of trial
difficulty. RT increases with increasing difficulty. (C) Decrease in the number of attention switches as a function of trial difficulty. More
switches are made for harder trials. (D) Effect of last fixation location on item preference. The item that was fixated on immediately
prior to the decision was more likely to be chosen. (E) Attention’s biasing effect on item preference. The item was more likely to be
chosen if it was attended for a longer period of time. (F) Replication of fixation pattern during decision making. Both model and human
data showed a fixation pattern where a short initial fixation was followed by a long, then medium-length fixation. Error bars indicate
SEM across both human and simulated participants (N = 39 for both).

difficulty of the choice. However, since the difficulty of individual choices varies and is a priori unknown to the decision maker in our
task, the decision boundary collapses so that the model minimizes wasting time on a choice that is potentially too difficult.

The contour of the optimal policy boundaries changes in intuitive ways as different parameters of the model are adjusted (Fig.
S1). Increasing the switch cost cs leads to a smaller policy space for the âĂIJswitchâĂİ behavior, since there is an increased cost
for switching attention. Similarly, decreasing the inattention noise by increasing γ leads to a smaller âĂIJswitchâĂİ space because
the model can obtain more reliable information from the unattended item, reducing the necessity to switch attention. Increasing the
noisiness of evidence accumulation (σ2) causes an overall shrinkage of the evidence accumulation space. This allows the model
to reach a decision boundary more quickly under a relatively higher degree of uncertainty, given that evidence accumulation is less
reliable but equally costly. Similarly, increasing the cost of accumulating evidence (c) leads to a smaller accumulation space, so that
the model minimizes paying a high cost for evidence accumulation.

The optimal policy replicates human behavior

To assess if the optimal policy features the same decision-making characteristics as human decision makers, we used it to simulate
behavior in a task analogous to the value-based decision task performed by humans in Krajbich et al (2010) [25]. Briefly, in this task,
participants first rated their preference of different snack items on a scale of 1 to 10. Then, they were presented with pairs of different
snacks and instructed to choose the preferred item. While they deliberate on their choice, the participants’ eye movements were
tracked and the fixation duration to each item was used as a proxy for visual attention.

We simulated decision-making behavior using value distributions similar to those used in the human experiment (see Methods),
and found that the model behavior qualitatively reproduce essential features of human choice behavior (Fig. 3). As expected in value-
based decisions, a larger value difference among the compared items made it more likely for the model to choose the higher-valued
item (Fig. 3A; t(38) = 105.7, p < 0.001). Furthermore, the model’s mean response time decreased with increasing value difference,
indicating that less time was spent on trials that were easier (Fig. 3B; t(38) = −11.1, p < 0.001). The model also made less
attentional switches for easier trials, indicating that difficult trials required more evidence accumulation from both items, necessitating
multiple switches in attention (Fig. 3C; t(38) = −8.10, p < 0.001).

The model also reproduced the biasing effects of fixation on preference seen in humans [25]. An item was more likely to be
chosen if it was the last one to be fixated on (Fig. 3D), and if it was viewed for a longer time period (Fig. 3E; t(38) = 5.32, p <
0.001). Interestingly, the model also replicated a particular fixation pattern seen in humans, where a short first fixation is followed by a
significantly longer second fixation, which is followed by a medium-length third fixation (Fig. 3F).

One feature that distinguishes our model from previous attention-based decision models is that attention only modulates the
variance of momentary evidence without explicitly down-weighting the value of the unattended item [25, 39]. Therefore, at first glance,
preference for the more-attended item is not an obvious feature since our model does not appear to boost its estimated value. However,
under the assumption that decision-makers start out with a zero-mean prior, Bayesian belief updating with attention modulation turns
out to effectively account for a biasing effect of fixation on the subjective value of items [27]. For instance, consider choosing between
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two items with equal underlying value. Without an attention-modulated process, the model will accumulate evidence from both items
simultaneously, and thus have no preference for one item over the other. However, once attention is introduced and the model attends
to item 1 longer than item 2, it will have acquired more evidence about item 1’s value. This will cause item 1 to have a sharper, more
certain likelihood function compared to item 2 (Fig. 4A). As posterior value estimates are formed by combining priors and likelihoods
in proportion to their associated certainties, the posterior of item 1 will be less biased towards the prior than that of item 2. This leads
to a higher subjective value of item 1 compared to that of item 2 even though their true underlying values are equal.

This insight leads to additional predictions for how attention-modulated choice bias should vary with certain trial parameters. For
instance, the Bayesian account predicts that trials with longer response times should have a weaker choice bias than trials with shorter
response times. This is because the difference in fixation times between the two items will decrease over time as the model has
more opportunities to switch attention. Both the human and model behavior robustly showed this pattern (Fig. 4B; human, t(38) =
−3.25, p = 0.0024; model, t(38) = −32.0, p < 0.001). Similarly, choice bias should increase for trials with higher-valued items. In this
case, since the evidence distribution is relatively far away from the prior distribution, the posterior distribution is âĂIJpulled awayâĂİ
from the prior distribution to a greater degree for the attended versus unattended item, leading to greater choice bias. Both human and
model data confirmed this behavioral pattern (Fig. 4C; human, t(38) = 2.95, p = 0.0054; model, t(38) = 11.4, p < 0.001).

Figure 4: Behavioral predictions from Bayesian value estimation, and further properties of the optimal policy. (A) Bayesian explanation
of attention-driven value preference. Attending to one of two equally-valued items for a longer time (red vs. blue) leads to a more
certain (i.e., narrower) likelihood and weaker bias of its posterior towards the prior. This leads to a subjectively higher value for longer-
attended item. (B,C) Effect of response time (RT; left panel) and sum of the two item values (value sum; right panel) on attention-driven
choice bias in humans (B) and the optimal model (C). For (B), the horizontal axis is binned according to number of fixations; the tick
marks indicate the mean RT for trials where there were one, two, or three total fixations. For (C), the horizontal axis is binned to
contain the same number of trials per bin, where the tick marks indicate the mean value sum for each bin. For (B) and (C), the vertical
error bars indicate SEM across participants, and the horizontal error bars indicate SEM across participants of the mean x-values
within each bin. (D) Comparing decision performance between the optimal policy and the original aDDM model. Performance of the
aDDM was evaluated for different boundary heights (error bars = SEM across simulated participants). Even for the reward-maximizing
aDDM boundary height, the optimal model significantly outperformed the aDDM. (E) Decision performance for different degrees of the
attention bottleneck (κ) while leaving the overall input information unchanged (error bars = SEM across simulated participants). The
performance peak for intermediate κ values (i.e., κ = 0.5) indicates that allocating similar amounts of attentional resource to both
items is beneficial.

Next, we assessed whether the optimal model outperformed the original attentional drift diffusion model (aDDM) proposed by
Krajbich and colleagues (2010), which, despite its simpler structure, could nonetheless provide competitive performance. To ensure
a fair comparison, we adjusted the aDDM model parameters (i.e., attentional value discounting and the noise variance) so that the
momentary evidence provided to the two models has equivalent signal-to-noise ratios (Supplementary Info). The original aDDM model
fixed the decision boundaries at ±1 and subsequently fit model parameters to match behavioral data. Since we were interested in
comparing performance, we simulated model behavior using incrementally increasing decision barrier heights, looking for the height
that yields the maximum mean reward (Fig. 4D). We found that even for the best-performing decision barrier height, the aDDM model
yielded a significantly lower mean reward compared to that of the optimal model (t(76) = 3.01, p = 0.0027).
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Recent advances in artificial intelligence used attentional bottlenecks to regulate information flow with significant associated perfor-
mance gains [5, 19, 30, 4, 40]. Analogously, attentional bottlenecks might also be beneficial for value-based decision-making. To test
this, we asked if paying full attention on a single item at a time confers any advantages over the ability to pay relatively less reliable,
but equal attention to multiple options in parallel. To do so, we varied the amount of momentary evidence provided about both the
attended and unattended items while keeping the overall amount of evidence fixed. The balance of evidence reliability between the
attended and unattended items was controlled by κ, such that κ = 0 resulted in no evidence about the unattended item, and κ = 0.5
resulted in equal momentary evidence about both items (see Supplementary Info). When κ = 0.5, switching attention had no effect
on the evidence collected about either item. For values κ > 0.5, the decision maker collected more evidence about the unattended
item compared to the attended item. Therefore, the reliability of evidence from the attended item at κ = 0.2 is equal to that of the
unattended item at κ = 0.8. When tuning model parameters to best match human behavior, we found a low κ ≈ 0.004, suggesting
that humans tend to allocate the majority of their presumably fixed cognitive resources to the currently attended item. This allows for
reliable evidence accumulation for the attended item, but is more likely to necessitate frequent switching of attention.

To investigate whether widening this attention bottleneck leads to changes in decision performance, we simulated model behavior
for different values of κ (0.1 to 0.9, in 0.1 increments). Interestingly, we found that mean reward from the simulated trials is greatest at
κ = 0.5 and decreases for more extreme values of κ, suggesting that a more even distribution of attentional resources between the
two items is beneficial for maximizing reward (t(38) = −8.51, p < 0.001).

The impact of attention is not unique to value-based decisions. In fact, recent work showed that fixation can bias choices in a
perceptual decision-making paradigm [43]. In their task, participants were first shown a target line with a certain orientation, then
shown two lines with slightly different orientations. The goal was to choose the line with the closest orientation to the previously shown
target. Consistent with results in the value-based decision task, the authors demonstrated that the longer-fixated option was more
likely to be chosen. We modified our attention-based optimal policy to perform in such perceptual decisions, in which the goal was to
choose the option that is the closest in some quantity to the target, rather than choosing the higher-valued option. Our modified optimal
policy was successful at reproducing the attention-driven biases seen in humans (Fig. S2).

Discussion

In this work, we show that a normative decision-making model with an attentional bottleneck is able to reproduce the choice and
fixation patterns of human decision-makers. Unlike previous work that suggested fixation patterns to be independent of the decision-
making strategy [25, 26], our work shows that they could instead reflect active information gathering through controlling an attentional
bottleneck. This interpretation extends previous work on visual attention to the realm of value-based and perceptual decision-making
[46, 23, 21, 12, 15].

In contrast to prior models that simply down-weighted the value of the unattended item [25, 26, 39], our model posits that attention
enhances the reliability of information [16]. This was inspired by neurophysiological findings demonstrating that visual attention se-
lectively increases the firing rate of neurons tuned to task-relevant stimuli [35], decreases the mean-normalized variance of individual
neurons [28, 45], and reduces the correlated variability of neurons at the population level [13, 29, 3]. In essence, selective attention
appears to boost the signal-to-noise ratio, or the reliability of information encoded by neuronal signals rather than alter the magnitude
of the value encoded by these signals.

When designing our model, we took the simplest possible approach to introduce an attentional bottleneck into normative models
of decision-making. Despite this, we were able to capture a wide range of previously observed features of human decisions (Figs. 3
and S2) and confirm new predictions arising from our theory (Fig. 4B&C). When doing so, our aim was not to quantitatively capture all
details of human behavior, which might be driven by additional heuristics and features beyond the scope of our model [1, 18]. Instead,
we focused on providing a normative explanation for how fixation changes qualitatively interact with human decisions.

Formulating the choice process through Bayesian inference revealed a simple and intuitive explanation for choice biases (Fig. 4A)
(see also [27]). This explanation required the decision maker to a-priori believe the items’ values to be lower than they actually are
when choosing between appetitive options. The opposite might be true for aversive items, in which decision makers a-priori expect
higher values. In this case, our Bayesian framework predicts that choice biases should reverse: less-fixated items should become the
preferred choice. This is exactly what has been observed in human decision-makers [2].

Due to the optimal policy’s complexity (Fig. 2), we expect the nervous system to implement it only approximately (e.g., similar to
[41] for multi-alternative decisions). Such an approximation has been recently suggested by Callaway and colleagues [10], where
they used approaches from rational inattention to approximate optimal decision-making in the presence of an attentional bottleneck.
Unlike our work, they assumed that the unattended item is completely ignored, and therefore could not investigate the effect of graded
shifts of attentional resources between items (Fig. 4E). In addition, they were unable to replicate the choice bias in binary choices.
Nonetheless, despite only approximating the normative strategy, they were able to well-capture many behavioral features of human
decisions involving two and three items. Hébert and Woodford have recently addressed a related decision problem in which the amount
of attention assigned to either item could be changed continuously over time [22]. While interesting in its own right, such continuous
assignment makes it impossible to relate attention to discrete fixation changes, as we do in our work.

We show that adding an attentional bottleneck does not boost performance of our decision-making model (Fig. 4E). Instead,
spreading a fixed cognitive reserve evenly between the attended and unattended items maximized performance. Parameters fit to
human behavior reveal that humans tend to allocate a large proportion of their cognitive resource toward the attended item, suggesting
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that the benefits of an attentional bottleneck might lie in other cognitive processes. Indeed, machine learning applied to text translation
[5, 19], object recognition [30, 4], and video-game playing [40] benefits from attentional bottlenecks that allow the algorithm to focus
resources on specific task subcomponents. For instance, image classification algorithms that extract only the relevant features of an
image for high-resolution processing demonstrated improved performance and reduced computational cost compared to those without
such attentional features [30]. Similarly, attentional bottlenecks that appear to limit human decision-making performance might have
beneficial effects on cognitive domains outside the scope of binary value-based decisions. This is consistent with the idea that the
evolutionary advantage of selective attention involves the ability to rapidly fixate on salient features in a cluttered environment, thereby
limiting the amount of information that reaches upstream processing and reducing the overall computational burden [24].

Materials and Methods

Here, we provide an outline of the framework and its results. Detailed derivations are provided in Supplementary Information.

Attention-modulated decision-making model

Before each trial, z1 and z2 are drawn from zj ∼ N
(
z̄, σ2

z

)
. z1 and z2 correspond to the value of each item. In each time-step n > 0 of

duration δt, the decision-maker observes noisy samples of each zj . This momentary evidence is drawn from δxj,n|zj ∼ N
(
zjδt, σ

2δt
)

for the attended item j = yn, and δxk,n|zk ∼ N
(
zkδt, γ

−1σ2δt
)

for the unattended item k 6= yn, where 0 ≤ γ ≤ 1 reduces the
information provided by this item. The posterior zj for j ∈ {1, 2} after t = Nδt seconds is found by Bayes’ rule, p (zj |δxj,1:N , y1:N ) ∝
p(zj)

∏N
n=1 p (δxj,n|zj , yn), which results in Eq. (2). If yn ∈ {1, 2} identifies the attended item in each time-step, the attention times

in this posterior are given by t1 = δt
∑N

n=1(2 − yn) and t2 = δt
∑N

n=1(yn − 1). The attention-weighted accumulated evidence is
X1(t) =

∑N
n=1 γ

yn−1δx1,n and X2(t) =
∑N

n=1 γ
2−ynδx2,n, down-weighting the momentary evidence for periods when the item is

unattended.
We found the optimal policy by dynamic programming [6, 17], which, at each point in time, chooses the action that promises the

larges expected return, including all rewards and costs from that point into the future. Its central component is the value function that
specifies this expected return for each value of the sufficient statistics of the task. In our task, the sufficient statistics are the two
posterior means, 〈zj |Xj(t), t1, t2〉 for j ∈ {1, 2}, the two accumulation times, t1 and t2, and the currently attended item yn. The
decision maker can choose between four actions at any point in time. The first two are to choose one of the two items, which is
expected to yield the corresponding reward, after which the trial ends. The third action is to accumulate evidence for some more time
δt, which comes at cost cδt, and results in more momentary evidence and a corresponding updated posterior. The fourth is to switch
attention to the other item 3 − yn, which comes at cost cs > 0. As the optimal action is the one that maximizes the expected return,
the value for each sufficient statistic is the maximum over the expected returns associated with each action. This leads to the recursive
Bellman’s equation that relates values with different sufficient statistics (see SI for details) and reveals the optimal action for each of
these sufficient statistics. Due to symmetries in our task, it turns out these optimal actions only depend on the difference in posterior
means ∆, rather than each of the individual means (see SI). This allowed us to compute the value function and associated optimal
policy in the lower-dimensional (∆, t1, t2, y)-space, an example of which is shown in Fig. 2.

The optimal policy was found numerically by backwards induction [42, 9], which assumes that at a large enough t = t1 + t2, a
decision is guaranteed and the expected return equals ∆. We set this time point as t = 6s based on empirical observations. From
this point, we move backwards in small time steps of 0.05s and traverse different values of ∆ which was also discretized into steps of
0.05. Upon completing this exercise, we are left with a 3-dimensional grid with the axes corresponding to t1, t2 and ∆, where the value
assigned to each point in space indicates the optimal decision to take for the given set of sufficient statistics. The boundaries between
different optimal actions can be visualized as 3-dimensional manifolds (Fig. 2).

Model simulations

Using the optimal policy, we simulated decisions in a task analogous to the one humans performed in Kracjbich et al., 2010 [25]. On
each simulated trial, two items with values z1 and z2 are presented. The model attends to one item randomly (y ∈ [1, 2]), then starts
accumulating noisy evidence and adjusts its behavior across time according to the optimal policy. Since the human data had a total
of 39 participants, we simulated the same number of participants (N = 39) for the model, but with a larger number of trials. For each
simulated participant, trials consisted of all pairwise combinations of values between 0 and 7, iterated 20 times. This yielded a total of
1280 trials per simulated participant.

When computing the optimal policy, there were several free parameters that determined the shape of the decision boundaries.
Those parameters included the evidence noise term (σ2), spread of the prior distribution (σ2

z ), cost of accumulating evidence (c), cost
of switching attention (cs), and the relative reliability of evidence accumulation of the attended vs unattended items (γ). In order to find
a set of parameters that best mimics human behavior, we performed a random search over a large parameter space and simulated
behavior using the randomly selected set of parameters [7]. We iterated this process for 2,000,000 sets of parameters and compared
the generated behavior to that of humans (see Supplementary Information). After this search process, the parameter set that best
replicated human behavior consisted of cs = 0.0065, c = 0.23, σ2 = 27, σ2

z = 18, γ = 0.004.
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Statistical analysis

The relationship between task variables (e.g., difference in item value) and behavioral measurements (e.g., response time) were
assessed by estimating the slope of the relationship for each participant. For instance, to investigate the association between response
times and absolute value difference (Fig. 3B), we fit a linear regression within each participant using the absolute value difference
and response time for every trial. Statistical testing was performed using one-sample t-tests on the regression coefficients across
participants. This procedure was used for statistical testing involving Figs. 3B,C,E, and Figs. 4B,C. To test for a significant peak effect
for Fig. 4E, we used the same procedure after subtracting 0.5 to the original κ values. To compare performance between the optimal
model and the aDDM (Fig. 4D), we first selected the best-performing aDDM model, then performed an independent-samples t-test
between the mean rewards from simulated participants from both models.
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