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Abstract

SNP heritability of a trait is measured by the proportion of total variance ex-

plained by the additive effects of genome-wide single nucleotide polymorphisms

(SNPs). Linear mixed models are routinely used to estimate SNP heritability for

many complex traits. The basic concept behind this approach is to model genetic

contribution as a random effect, where the variance of this genetic contribution at-

tributes to the heritability of the trait. This linear mixed model approach requires

estimation of ‘relatedness’ among individuals in the sample, which is usually cap-

tured by estimating a genetic relationship matrix (GRM). Heritability is estimated

by the restricted maximum likelihood (REML) or method of moments (MOM) ap-

proaches, and this estimation relies heavily on the GRM computed from the ge-

netic data on individuals. Presence of population substructure in the data could

significantly impact the GRM estimation and may introduce bias in heritability

estimation. The common practice of accounting for such population substructure

is to adjust for the top few principal components of the GRM as covariates in the

linear mixed model. Here we propose an alternative way of estimating heritability

in multi-ethnic studies. Our proposed approach is a MOM estimator derived from

the Haseman-Elston regression and gives an asymptotically unbiased estimate of
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heritability in presence of population stratification. It introduces adjustments for

the population stratification in a second-order estimating equation and allows for

the total phenotypic variance vary by ethnicity. We study the performance of differ-

ent MOM and REML approaches in presence of population stratification through

extensive simulation studies. We estimate the heritability of height, weight and

other anthropometric traits in the UK Biobank cohort to investigate the impact of

subtle population substructure on SNP heritability estimation.

Keywords: Haseman-Elston Regression; population substructure; SNP-heritability

estimation; method of moments; UK Biobank

1 Introduction

Fundamental to the study of the inheritance is the partitioning of the total phenotypic

variation into genetic and environmental components (Visscher et al., 2008). Using twin

studies, the phenotypic variance can be partitioned to include the variance of an additive

genetic effect, shared and non-shared environmental effects. The ratio of the genetic

variance component to the total phenotypic variance is the proportion of genetically

controlled variation and is termed as the ‘narrow-sense heritability’. As shown in the

recent review of more than 17,000 twin studies (Polderman et al., 2015), heritability

provides useful information to estimate familial recurrence risk of disease, to inform about

the genetic architecture of the trait, and to generate an upper bound for disease risk

prediction.

In recent years, the genome-wide association studies (GWAS) are gaining momentum

with the availability of whole genome sequencing data. Heritability is routinely being

estimated from the genome-wide data on variants (single nucleotide polymorphisms or

SNPs), which is often termed as ‘SNP heritability’. Traditionally, SNP heritability is

estimated by fitting variance components models with restricted maximum likelihood

(REML) approach. These approaches partition the phenotypic covariance matrix of all

individuals into a genetic similarity matrix and a random variation matrix (Yang et al.,

2010; Lee et al., 2011, 2012; Ripke et al., 2013; AR et al., 2014; Locke et al., 2015).
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However, with the large sample size, for example, biobanks that assay hundreds of thou-

sands of individuals ( UK Biobank (Biobank, 2014), Precision Medicine cohort (Ashley,

2015), Millions Veterans Program (Gaziano et al., 2016) ), existing heritability estimation

methods such as REML-based methods become computationally expensive and memory

intensive, and thus can be difficult to apply.

Alternatively, there are method-of-moments (MOM) estimators for heritability. LD-

score regression approach (Bulik-Sullivan et al., 2015) estimates heritability by regressing

the summary statistics from single variant association analysis in a GWAS on linkage

disequilibrium (LD) scores. A version of Haseman-Elston approach (Haseman, 1972) for

heritability estimation provides a method of moments estimator for the heritability pa-

rameter by associating phenotypic covariance values with genetic covariance estimates.

There are several recent work on extending these Method of Moments estimators (Ge

et al., 2015; Schwartzman et al., 2019; Ma and Dicker, 2019; Hou et al., 2019) to make it

more computationally feasible for large sample sizes and more robust to linkage disequi-

librium.

Presence of population substructure can significantly bias the heritability estima-

tion (Browning and Browning, 2011). Confounding can occur because of not accounting

for the phenotypic differences among different sub-populations due to differences in envi-

ronmental influences. Moreover, population substructure introduces differences in allele

frequencies across sub-populations. Current heritability estimation methods primarily

work well in samples from a homogeneous population. However, diverse populations are

increasingly being used to conduct GWAS to improve fine-mapping of relevant variants.

Recently, Conomos et al. (2016) performed an association study in the admixed His-

panic Community Health Study/Study of Latinos (HCHS/SOL) samples, where many

biomedical traits in HCHS/SOL displayed heterogeneous variances across ethnic groups.

Modeling this heteroscedasticity reduced genomic inflation. Conomos et al. (2016) es-

timated the underlying ethnic groups through multi-dimensional scaling and estimated

distinct ethnic clusters to implement such correction. It is often desirable to implement

such corrections on a continuous scale, for example, modeling heterogeneity in variances
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along the axes of genetic variation.

In this paper, we propose a strategy to correct for the impact of population strati-

fication on heritability estimation with Haseman-Elston regression. Our approach does

not require classifying individuals into discrete sub-populations, rather the corrections

are implemented as a function of axes of genetic variation. Another huge advantage of

our proposed approach is that it is a method of moments estimator and can provide

computationally efficient estimates of heritability even for large biobank-scale datasets.

The rest of the paper is arranged as follows. We describe few existing approaches

to estimate heritability. We propose our modified Haseman-Elston estimator and show

the equivalency with the heritability estimator proposed by Ge et al. (2015). We further

demonstrate that this estimator gives an unbiased estimate of heritability in presence of

2 discrete sub-populations. We explore the performance of the estimator under various

alternative models and compare the performance with existing approaches. Finally we

estimate heritability for a number of anthropometric traits on UK Biobank dataset.

2 Methods

Linear mixed models are emerging as the method of choice for association testing in

genome-wide association studies (GWAS) because they account for both population strat-

ification and cryptic relatedness and achieve increased statistical power by jointly mod-

eling all genotyped markers.

2.1 Existing Approaches

Here we first introduce a general mixed-effect model to quantify how genes influence

phenotypes. Suppose the data consists of P SNPs on N subjects. For a subject i

(i = 1, . . . , N), yi is a normally distributed continuous outcome, Ci is the vector of

covariates, β is a vector of fixed effects, Zi is a P × 1 vector of genetic variants from

a GWAS. The outcome yi depends on Zi through the following mixed effect model,

y = Cβ + Zu + ε, with var(y) = Σ = ZZ
′
σ2
g + Iσ2

e , where u is a vector of SNP effects
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with u ∼ N(0, Iσ2
u), I is an N × N identity matrix, and ε is a vector of residual effects

with ε ∼ N(0, Iσ2
e). Z is a standardized N × P genotype matrix with the is-th element

zis = (xis − 2ps)/
√
2ps(1− ps), where xis is the number of copies of the reference allele

for the s-th SNP of the i-th individual and ps is the frequency of the reference allele.

If we define A = ZZ
′
/P and define σ2

g as the variance explained by all the SNPs, i.e,

σ2
g = Pσ2

u, with P being the number of SNPs, then the above linear model reduces to

y = Cβ + g + ε, with Σ = Aσ2
g + Iσ2

e , (1)

where g is an N × 1 vector of the total genetic effects of the individuals with g ∼

N(0,Aσ2
g), and A is interpreted as the genetic relationship matrix (GRM) between indi-

viduals. Note that the genetic relatedness Aij between the i-th individual and the j-th

individual is measured by the dot product of their standardized genotypes and then di-

vided by the number of markers, Aij =
zizj
P

= 1
P

∑P
s=1

((
xis − 2ps)/

√
2ps(1− ps)

)(
xjs −

2ps)/
√
2ps(1− ps)

))
. The heritability h2 of the trait y is defined as h2 = σ2

g/(σ
2
g + σ2

e).

We are interested in estimating the parameters σ2
g and σ2

e .

Maximum Likelihood Estimation

We assume y ∼ N(Cβ,Σ = Aσ2
g + Iσ2

e). The likelihood of the data is given by:

l(µ, β, σ2
g , σ

2
e) =

N

2
log(2π) +

1

2
log detΣ− 1

2
(y −Cβ)Σ−1(y −Cβ),

The estimation of the mixed effect model mentioned above is performed through max-

imum likelihood estimation. The software GCTA (Yang et al., 2011) uses the iterative

restricted maximum likelihood (REML) algorithm to estimate the variance components

σ2
g and σ2

e in the model 2 and gives an estimate of heritability by ĥ2 = σ̂2
g/σ̂

2
p, where σ̂2

p

is the estimated phenotypic total variance (σ2
p = σ2

g + σ2
e).

However, this mixed-model methods can easily become computationally intractable

as the sample size increases. Recently, there have been attempts to generate computa-

tionally scalable algorithms to implement this mixed models on biobank scale data (Loh
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et al., 2015). However, these approaches still encounter computational challenges on large

biobanks. Moreover, even subtle population substructure could significantly impact the

heritability estimation (Conomos et al., 2016).

Method of Moments Approach

The method of moments (Haseman-Elston regression (Haseman, 1972), LDscore regres-

sion (Bulik-Sullivan et al., 2015), MMHE (Ge et al., 2017)) approaches are another set

of widely used methods for estimating heritability h2 under Equation 1. We will next

provide short overview of these different approaches.

Haseman-Elston (HE) Regression: Generally we assume that the GRM is nor-

malized with its diagonal entries all equal 1 and y is centered and that Equation 1 holds.

One of the classical moment estimators for h2 comes from the least squares regression

coefficient for regressing yiyj on Aij for all i < j. This is because Equation 1 implies

that E(yiyj|A) = h2Aij for i 6= j. The heritability can be estimated from the following

equation:

yiyj = β∗Aij + ε∗ij (2)

Note β∗ = h2 is the heritability parameter. The corresponding estimator for h2 is

ĥ2HE =
(

ˆV ar(Aij)
)−1 ˆCov(yiyj,Aij). Note that

ˆV ar(Aij) =
2

N(N − 1)

∑
i<j

A2
ij,

ˆCov(yiyj,Aij) =
2

N(N − 1)

∑
i<j

yiyjAij.

Henderson (1984) used least squares in this way to estimate ĥ2HE. This approach is also

referred to as Haseman-Elston (HE) regression (Haseman, 1972).

A modification to the above approach is to consider two estimating equations for both

parameters σ2
g and σ2

e :

E(yiyj) = σ2
gAij, E(y2

i ) = σ2
gAii + σ2

e (3)
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Again, least square estimation can be used to produce unbiased estimates of σ2
g and σ2

e .

Linkage Disequilibrium Score Regression: As an alternative method, linkage

disequilibrium score (LDSC) regression (Bulik-Sullivan et al., 2015) has become a popu-

lar approach for estimating SNP heritability from summary statistics. LDSC estimates

SNP heritability by regressing squared per-SNP univariate regression test statistics on

corresponding “LD Scores”, defined as estimates of the sum of squared correlations for a

given SNP with all other SNPs within a region. The main advantage of this approach

is that it can utilize the summary statistics generated from a GWAS, which are publicly

available. The asymptotic equivalence between LDSC approach and the HE regression

has been derived under certain assumptions (Chen, 2014; Bulik-Sullivan, 2015). How-

ever, while an effective and computationally efficient approach, LDSC relies on a number

of assumptions, including independence of individuals to compute the summary statis-

tics, binning of LD scores. This introduces some arbitrariness to consider the approach

analytically and limit the assessment of its theoretical properties.

MMHE: Ge et al. (2016, 2017) proposed this MOM estimator, which is closely related

to Haseman-Elston regression estimator (Haseman, 1972) and is equivalent to LD score

regression estimator under certain situations (Bulik-Sullivan et al., 2015; Bulik-Sullivan,

2015). Specifically, in the presence of covariates, i.e., y = Cβ + g + ε, an N × (N − k)

matrix U always exists, such that UTU = I,UUT = H,UTC = 0 and H = I −

C(CTC)−1CT .Applying UT to both sides of the model gives UTy = UTg + UTε. The

covariance structure of the transformed trait is cov[UTy] = σ2
gU

TAU + σ2
eI(N−k). Then

by converting a matrix into a vector by stacking its columns, an ordinary least squares

(OLS) estimator of σ̂∗2g, σ̂∗
2

e can be obtained by solving the linear system:

TrHAHA TrHA

TrHA N − k


σ∗g2
σ∗e

2

 =

yTHAHy

yTHy

 (4)

and obtain

c1σ̂∗
2

g = (N − k)yTHAHy − (TrHA)yTHy (5)

7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 5, 2020. ; https://doi.org/10.1101/2020.08.05.236901doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.05.236901


c1σ̂∗
2

e = −(TrHA)yTHAHy + (TrHAHA)yTHy (6)

ĥ2MMHE =
c1σ̂∗

2

g

c1(σ̂∗
2

g + σ̂∗
2

e)
(7)

where H = I−P and P = C(CTC)−1CT

2.2 Proposed Adjusted HE method

The MOM or the likelihood-based approaches generally assumes a homogeneous pop-

ulation. In a sample of diverse ancestry, these existing methods could produced very

biased estimates of heritability. The proposed concept is motivated by the idea is that

population substructure causes differences in allele frequencies as well as differences in

trait distributions among the sub-populations. Not accounting for such differences could

significantly introduce bias in the estimation of heritability. The standard approach is

to adjust for principal components (PCs) estimated from the GRM A as covariates in

Equation 1. The MOM-based approaches provide an useful alternative for large samples,

but it is always not clear how such adjustments for substructure could be implemented in

the approach. In this paper, we propose a two-step strategy to adjust for population sub-

structure in estimating heritability using Haseman-Elston regression (Haseman, 1972).

We first perform a regression on the mean level of the trait:

yi = Ciγ + εi, (8)

by regressing out covariates C, which might consist of k PCs and other covariates such

as sex and age. We assume that the residuals y′ still preserve the same information

and structure of heritability, i.e., var(y′) = Aσ2
g + Iσ2

e . For the second step, we con-

sider two different approaches to account for population stratification. One approach

is to adjust the allele frequencies with PCs and recompute GRM A as implemented in

PC-Relate (Conomos et al., 2016), and then apply the standard HE regression to obtain

heritability estimate (referred as ‘PC-Relate-HE’). Another novel way is that we intro-

duce PC-based corrections in Equation 3. We will refer to the method as Adjusted-HE

8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 5, 2020. ; https://doi.org/10.1101/2020.08.05.236901doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.05.236901


approach. The potential difference between PC-Relate-HE and Adjusted-HE is that, the

former only adjusts the GRM entries for population substructure, whereas Adjusted-HE

introduces correction to both GRM entries and to the total variance of outcome.

HE regression with PC-Relate adjusted GRM (PC-Relate-HE):

PC-Relate (Conomos et al., 2016) is a PCA-based method for robust estimation of IBD-

sharing probabilities and kinship coefficients that is applicable to general samples with

population structure. Consider the linear regression E[xs|V] = 1α0 + Vαs where xs is

the vector of genotype values for all samples at SNP s and V is a matrix whose columns

correspond to the top k PCs from PC-Air (Conomos et al., 2015). The fitted values from

this regression can be used as prediction of individual-specific allele frequencies from the

PCs: µ̂is = 1
2
Ê[xis|V 1

i , . . . , V
k
i ]. Then the PC-Relate estimator of the genetic relationship

coefficient Aij for individual i and j is

Âij =

∑P
s=1(xis − 2µ̂is)(xjs − 2µ̂js)

2
∑P

s=1[µ̂is(1− µ̂is)µ̂js(1− µ̂js)]1/2

, where µ̂is and µ̂js are the estimated individual-specific genotype mean for individual i

and j, respectively, at SNP s. Then we estimate the heritability with this PC-adjusted

GRM with the standard HE regression.

Unstandardized-Adjusted-HE (UAdj-HE): In this method, we consider the fol-

lowing estimating equation:

E(y′y′T) = σ2
gA + σ2

eI +
k∑
j=1

ajPCjPCT
j (9)

where y′ = (I−C(CTC)−1CT)y is the residual of the regression in Equation 8 .

One could use ordinary least square (OLS) approach to estimate σ2
g and σ2

e here. We have

also derived a closed form estimator of SNP heritability using the following equations (see

Appendix A),

TrA2 −
∑

j s
2
j TrA−

∑
j sj

TrA−
∑

j sj N − k


σ2

g

σ2
e

 =

y′TAy′ −
∑

j tjsj

y′Ty′ −
∑

j tj

 (10)
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and obtain

c = (N − k)(TrA2 −
k∑
j=1

s2j)− (TrA−
k∑
j=1

sj)
2

cσ̂2
g = (N − k)(yTAy −

k∑
j=1

sjtj)− (TrA−
k∑
j=1

sj)(y
′Ty′ −

k∑
j=1

tj)

cσ̂2
e = −(TrA−

k∑
j=1

sj)(y
′TAy′ −

k∑
j=1

sjtj) + (TrA2 −
k∑
j=1

s2j)(y
′Ty′ −

k∑
j=1

tj)

ĥ2UAdj-HE =
σ̂2
g

σ̂2
g + σ̂2

e

=
cσ̂2

g

c(σ̂2
g + σ̂2

e)
(11)

where tj = y′TPCjPCT
j y′, sj = PCT

j APCj.

Standardized-Adjusted-HE (SAdj-HE): If we have the residuals y′ standardized

by the sample mean and variance of Equation 8, then based on Equation 2 we have the

following estimating equation:

E(y′y′T) = h2A + (1− h2)I +
k∑
j=1

ajPCjPCT
j (12)

where y′ is the standardized residual of the Equation 8.

Then we can obtain the estimate (derivation is shown in Appendix A)

ĥ2SAdj-HE =
N − TrA + y′TAy′ − y′Ty′ −

∑k
j=1(PCT

j APCj − 1)(y′TPCjPCT
j y′ − 1)

TrA2 − 2TrA +N −
∑k

j=1(PCT
j APCj − 1)2

(13)

We have shown that, in the presence of two distinct sub-populations, this estimator with

the first PC product adjustment can give us unbiased estimate (See Appendix B). To

calculate the variance of Adj-HE estimators, we can make two similar assumptions as Ge

et al. (2017) :(1) the off-diagonal elements in the empirical GRM matrix A are small and

the diagonal elements are close to 1, such that A ≈ I and (2) the phenotypic variance

can be estimated precisely. Therefore, we have var(ĥ2Adj-HE) ≈ 2/(TrA2 − 2TrA +N −∑k
j=1(PCT

j APCj − 1)2). And with the assumption of independence among samples, we

use the standard error of the OLS estimator derived from Equation 12 and Equation 9.
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2.2.1 Relationship between MMHE and Adjusted-HE

Our proposed UAdj-HE is equivalent to the MMHE approach (Ge et al., 2017), when

we adjust for the PCs in Equation 9 and Equation 4 are the same PCs computed from

the entire GRM A. Assume the set of covariates, C only consists of the PCs, i.e.,

P =
∑

j PCjPCT
j ,

tj = y′TPCjPCT
j y′ = yT(I−P)PCjPCT

j (I−P)y

= yT(PCjPCT
j −

∑
i

PCiPCT
i PCjPCT

j )(I−P)y = 0

Then Equation 10 reduces to

TrA2 −
∑

j s
2
j TrA−

∑
j sj

TrA−
∑

j sj N − k


σ2

g

σ2
e

 =

yTHAHy

yTHy

 (14)

where sj = PCT
j APCj. Moreover, in Equation 4,

TrHA = Tr (I−P)A = TrA−
∑
j

TrPCjPCT
j A = TrA−

∑
j

sj

TrHAHA = Tr (A−PA)(A−PA) = TrA2 − TrAPA− TrPA2 + TrPAPA

= TrA2 − 2
∑
j

PCT
j A2PCj +

∑
j

s2j + 2
∑
i<j

v2ij, where vij = PCT
i APCj

The only difference between Equation 4 and Equation 14 is TrHAHA and TrA2−
∑

j s
2
j .

In the case of using the set of PCs calculated from the same GRM matrix A, we can

use the fact that APCj = λjPCj, then vij = 0 and PCT
j A2PCj = s2j . As a result,

TrHAHA = TrA2 −
∑

j s
2
j and two methods are equivalent.

However if the set of covariates contain other covariates such as age, sex or if the

PCs are estimated by sampling an independent subset of markers from the given set

of markers, the two methods are not equivalent and may produce different estimates for

heritability. However, unless there is significant impact of other covariates on the variance

and covariance of the trait, we do not expect the estimates to differ significantly.
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3 Results

We conducted extensive simulation studies and real data analysis to evaluate the per-

formance of Adjusted-HE, MMHE, PC-Relate-HE and GCTA-REML methods with and

without principal components adjustment.

3.1 Simulation Studies

We considered 3 different simulation setup to assess the performance of these methods

in presence of allele frequency differences and differences in trait distributions among

the sub-populations. We simulated allele frequencies of 15,000 SNPs for each distinct

population using the Balding-Nichols model (Balding and Nichols, 1995). The SNPs were

assumed to be uncorrelated. For each SNP s, the allele frequency p0s in the ancestral

population was drawn from a uniform distribution on [0.1, 0.9]. In simulation 1 and 2,

for each sub-population k, the allele frequency pks was generated from a beta distribution

with parameters p0s(1− θk)/θk and (1− p0s)(1− θk)/θk. The parameter θk was set to a

common value in simulation 1 and we varied θk across sub-populations in simulation 2. In

simulation 3, the allele frequency of k-th population pks at SNP s was generated from a

beta distribution with parameters p(k−1)s(1−θk)/θk and (1−p(k−1)s)(1−θk)/θk, where θk

was set to a common value (k = 1, 2, 3, 4 and s = 1, 2, . . . , 15000). Next, we simulated the

genotypes xks of individuals in sub-population k from a binomial distribution Bin(2, pks)

assuming Hardy-Weinberg equilibrium. We only considered SNPs with MAF > 0.05 and

selected m (15,000 × pcausal) SNPs as causal variants with an effect size u ∼ N(0, h
2

m
),

where pcausal was the proportion of causal variants. Then the residual effects ek were

generated from a normal distribution with mean of 0 and variance of σ̂2
gk
(1/h2 − 1),

where σ̂2
gk

is the empirical variance of Xku, Xk is a nk×m unstandardized causal genotype

matrix, u is a m× 1 vector of causal effects and h2 is the given heritability. Finally, we

simulated phenotype yki of individual i in population k as yki = Xkiu + eki + ak, where

Xki is a 1 × m vector of causal SNPs of individual i in sub-population k and ak is a

population-intercept to make the means of sub-populations more different.
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We considered 4 discrete populations, each with 1,000 samples, and pcausal = 0.02

in all simulations. The results were based on 100 replications for each setup. We used

SAdj-HE, UAdj-HE, MMHE, PC-Relate-HE and GCTA-REML with no PC adjustment

to 5 PCs adjustments for estimating heritability.

Simulation 1: We considered θk of 0.01 (closely related sub-populations) and 0.1

(more divergent populations) with h2 set to 0.8. We also considered scenarios without or

with population-intercept (i.e., (a1, a2, a3, a4) = (0, 0, 0, 0) or (a1, a2, a3, a4) = (0, 1, 2, 3)).

Figure 1 shows the results of scenario when θk = 0.1 and h2 = 0.8. The density curves of

MMHE and UAdj-HE were identical, since they are equivalent methods as demonstrated

in Section 2.2.1. As expected, the heritability estimation for MOM approaches stabilized

after adjusting for 3 PCs as the sample had 4 different sub-populations. When the

mean differences in y across sub-populations were small (ak = 0), GCTA-REML handled

the impact of population substructure well, even when there were no PC adjustments

(Figure 1 top panel). But when population means were different, i.e., (a1, a2, a3, a4) =

(0, 1, 2, 3), GCTA-REML showed bias in heritability estimation when less than 3 PCs

were used as covariates (Figure 1 bottom panel).

Figure 2 shows boxplots of heritability estimates over 100 replicates for different meth-

ods. We show results for all the methods adjusted for 3 PCs. When 4 populations were

similar (θk = 0.01 and ak = 0), all methods performed well while GCTA-REML had

the smallest variance. But when the populations were genetically similar (θk = 0.01)

but with different population intercept (ak 6= 0), heritability was underestimated by all

methods. This is possibly due to the fact that the PCs were not informative to dis-

tinguish between the sub-populations and hence PC adjustments could not account for

the differences among the subpopulations. When the populations were more diverse

(θk = 0.1), PC-Relate-HE showed downward bias, whereas GCTA-REML, MMHE and

Adj-HE estimates were biased upward.

Simulation 2: In this simulation setup, we varied θk to consider different pairwise

similarities between each of the sub-populations with the ancestral population. The

parameters θ1, θ2, θ3, θ4 were set to 0.05, 0.1, 0.15 and 0.2 respectively. As a result, the
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Figure 1. Simulation 1: Heritability estimation of different methods with 0 to 5 PCs
adjustment with h2 = 0.8 and θk = 0.1
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Figure 2. Simulation 1: Heritability estimation of different methods with 3 PCs ad-
justment across 100 replicates. Dashed line is the true h2 = 0.8. Left: ak = 0. Right:
(a1, a2, a3, a4) = (0, 1, 2, 3)

variances of y in different sub-populations were different compared to simulation 1 with

a common θk (Supplementary Figure S1). Figure 3 shows the result of scenarios without

population-intercept ak (left panel) and with population-intercept ak (right panel). The

methods MMHE, UAdj-HE and GCTA-REML showed marginal overestimation, but PC-

Relate-HE significantly underestimated heritability.

Simulation 3: In this simulation, we used θks to represent genetic similarity be-

tween population pair (k − 1, k), k = 2, 3, 4. This simulation generated more diverse

sub-populations as compared to Simulation 1 and Simulation 2. Similar to simulation 2,

the variances of y in each sub-population were more different as θk increasing (Supple-

mentary Figure S2). We estimated the pairwise Fst value between sub-populations using

the empirical Bayes estimator in FinePop package (Kitada et al., 2007) (Supplementary

Table S1). As we increased θk, PC-Relate-HE showed increasing downward bias and

GCTA-REML and SAdj-HE biased upward more. The approaches while UAdj-HE and

MMHE performed the best with smallest bias among the methods (Figure 4).

In general, in the presence of population substructure, all the MOM estimators per-

formed better than the original HE regression without any PC adjustment, when ad-

justed for sufficient PCs. PC-Relate-HE showed underestimation, especially when sub-
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Figure 3. Simulation 2: Heritability estimation of different methods with 3 PCs ad-
justment with h2 = 0.8 and θ1, θ2, θ3, θ4 = (0.05, 0.1, 0.15, 0.2). Left: ak = 0; Right:
(a1, a2, a3, a4) = (0, 1, 2, 3)
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Figure 4. Simulation 3: Heritability estimation of different methods with 3 PCs ad-
justment with h2 = 0.8 and θ1 = θ2 = θ3 = θ4 = θ, ak = 0.
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populations were more diverse. Our proposed approach and REML showed slight over-

estimation in most scenarios. When the variances of phenotype differed across sub-

populations, PC-Relate-HE underestimated severely. This is probably due to fact that

PC-Relate-HE only adjusted the GRM for population substructure, whereas Adj-HE ap-

proaches corrected both the GRM and the total variance of y for population substructure

and showed little bias in the estimation of heritability. As expected, GCTA-REML esti-

mates had the smallest variance compared to the other MOM estimators, since the data

was simulated from a normal distribution, however, it suffered from overestimation when

there was heterogeneity of variances across sub-populations. SAdj-HE showed more bias

in estimation over UAdj-HE, probably because of the inaccuracy in standardization of y,

especially when there was heterogeneity of variances across sub-populations. In terms of

averaged computational time for each replicate of simulation, PC-Relate took about 1700

seconds to run PC-Air and create the PCs-adjusted GRM for 4,000 samples, whereas it

only took less than 30 seconds totally to calculate the PCs and construct the standard

GRM in PLINK and GCTA; and MMHE and GCTA-REML took about 3 seconds and 20

seconds in heritability estimation respectively whereas Adjusted-HE only took less than

a second running on Haswell E5-2680v3 processors.

3.2 Real Data Analysis: UK Biobank

The UK Biobank data has approximately 800,000 markers and comprises 488,377 samples.

We leveraged the QC information released by UK Biobank (Bycroft et al., 2018) and used

SNPs that passed all QC tests in 106 batches. We removed the samples that had mismatch

between inferred sex and self-reported sex, samples that were identified as outliers in

heterozygosity and missing rates, and samples that were in the kinship table (Biobank,

2015). We further excluded SNPs that had high missing rate (>1.5%), low minor allele

frequency (<1%) and subjects that had high missing genotype rate (>1%). 305,639

samples and 566,647 markers remained for the following analysis after QC. It is also

worth mentioning that we did not restrict our analysis to subjects that were self-reported

white British. The majority of the samples was British, but there were people with other
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ethnicities (Supplementary Table S3, S4). PCs were computed after LD pruning and

removing long-range LD-regions (Abdellaoui et al., 2013). We pruned the SNPs after

removing long-range LD-regions so that pairwise r2 < 0.2 among the remaining markers

for windows of 1000 markers and a step-size of 80 markers. We computed PCs using the

pruned data with 247,135 markers.

We studied the performance of different approaches on a subset of the 305,639 sam-

ples, since GCTA-REML cannot be handle this large sample size. We sampled 45,510

subjects from 305,639 subjects who are self-reported White, Asian or Black, and applied

GCTA-REML, LD score regression, MMHE, SAdj-HE and UAdj-HE on this sub-sample.

We analyzed 7 quantitative phenotypes including height, weight, BMI, waist, levels of

the diisobutyl phthalate (DiBP), systolic blood pressure (SysBP), hip and waist circum-

ference. We adjusted for the top few PCs and other covariates such as age and height as

recommended in Ge et al. (2017), except for UK Biobank assessment center (Table 1).

For the Adjusted-HE methods, we first regressed out PCs and other covariates from each

phenotype, then applied the closed-form formula or performed least-square estimation

using Equation 12 to estimate heritability. For the MMHE method, we considered PCs

and other covariates in the matrix P. We adjusted for covariates and PCs when conduct-

ing GWAS for LDscore regression, and for GCTA-REML, we included PCs and other

covariates in Equation 1 while performing the REML estimation.

3.2.1 45k sample

45,510 subjects were sampled from 305,639 subjects who are self-reported White, Asian

or Black (Supplementary Table S2). Similar to our simulation above, when all SNPs were

used to compute PCs, UAdj-HE gave the same result as MMHE even when we adjusted

for age and sex (results not shown here), which might indicate that other covariates such

as sex and age did not affect the variance and covariance of the traits significantly. Table 1

shows the heritability estimation of different methods when 10 PCs (computed based on

pruned SNPs) and appropriate covariates were adjusted. We can see that, Adjusted-HE

estimates were slightly lower than MMHE, if PCs were not computed based on all SNPs
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that were used to generate the empirical GRM. However, Adj-HE methods were com-

putationally more efficient (Table 3). LDSC regression method produced substantially

smaller estimates compared to other approaches, which indicates severe underestimation

by LDSC approach in presence of population stratification. GCTA-REML gave the high-

est estimates of heritability in most of the cases (except for height), which might also be

overestimation due to heterogeneity of variances as shown in our simulation study. Also,

as expected, in a large sample size, UAdj-HE and SAdj-HE gave similar results.

Table 1. A comparison of different methods of estimating heritability for 45k samples
with 10 PCs to correct population substructure

Height1 Weight2 BMI1 DiBP1 sysBP1 Hip3 Waist3

LDSC 0.523 0.196 0.197 0.119 0.136 0.099 0.047
GCTA-REML 0.648 0.346 0.344 0.180 0.196 0.142 0.165

MMHE 0.685 0.294 0.289 0.150 0.158 0.121 0.150
UAdj-HE 0.638 0.271 0.269 0.140 0.147 0.112 0.138
SAdj-HE 0.646 0.273 0.271 0.140 0.148 0.112 0.139

1 Sex, age are included in other covariates.
2 Sex, age and height are included in other covariates.
3 Sex, age, height and weight are included in other covariates.

3.2.2 305k sample

As we mentioned before, this 305k UK Biobank cohort is a collection of samples from

different ethnic backgrounds including White (British, Irish), Mixed (White and Black

Caribbean, White and Black African, White and Asian), Asian (Indian, Pakistani, Bangla-

deshi, Chinese, Asian British) and Black (Caribbean, African, Black British) (Supplemen-

tary Figure S3). The estimated variability for different traits across ethnicity is shown in

Supplementary Table S4, and it shows different outcome variances across sub-populations.

We applied Adjusted-HE corrected for 10 PCs and other covariates on this cohort (Ta-

ble 2). Compared to the Adjusted-HE results in the 45k sample, most of the estimations

increased except for weight and BMI. The results also demonstrated a good consistency

with previous results (Hou et al., 2019; Ge et al., 2017) and our approach was computa-

tionally very efficient. The MMHE approach needs to take block-columns GRM as input,

which is not the standard GRM format provided by GCTA. The GRM file generated by
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GCTA only stores the lower triangular and diagonal entries of the GRM. In contrast, our

proposed method can take the standard GCTA file with whole GRM as input in a more

efficient way and use formula (13) if the machine has sufficient memory, otherwise, it can

also read part GRM files generated by GCTA and conducts the adjusted regression in

parallel. The analysis for 10 PCs adjustment only took several minutes when jobs were

paralleled on Haswell E5-2680v3 processors (Table 3).

Table 2. Heritability estimation of 305k samples with Adj-HE corrected for PCs and
other covariates

Method Height Weight BMI DiBP sysBP Hip Waist

SAdj-HE + 10 PCs 0.689 0.271 0.273 0.169 0.156 0.119 0.160
UAdj-HE + 10 PCs 0.684 0.271 0.272 0.169 0.155 0.119 0.159

Ge et al. (2017)1 0.685 0.277 0.274 0.184 0.156 0.106 0.155
1 108,158 self-reported white-British and 486,175 SNPs were used.

Table 3. Computational performance of MMHE, GCTA-REML and Adjusted-HE

Method Computational time Peak memory

MMHE, 45k1 522s 110GB
GCTA, 45k1 5160s 87GB
SAdj-HE, 45k1 89s 39GB
SAdj-HE, 305k2 479s 10GB
1 Reported run times and memory are the average of seven runs for seven traits ad-

justed for 10 PCs and corresponding covariates using Haswell E5-2680v3 processors,
and do not include estimating GRM and calculating PCs.

2 Reported run times and memory are the maximum of 200 paralleled jobs for one
trait adjusted for 10 PCs and corresponding covariates using Haswell E5-2680v3
processors, and do not include estimating GRM and calculating PCs.
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4 Discussion

SNP-heritability, the proportion of variation in the phenotype attributable to the additive

effects of a given set of SNPs, is a fundamental quantity in genetics and provides an upper

bound to the risk explained by genetic prediction models. Traditionally, SNP-heritability

is estimated by fitting variance components models with restricted maximum likelihood

(REML). But these REML-based methods are not scalable to large biobank data. An

alternative method is Haseman-Elston regression which is a moment-based method and

is computationally much more efficient for large-scale datasets. In recent years, more

GWAS are conducted on diverse population and the presence of population substructure

can bias SNP-heritability estimation severely. For example, the difference in the outcome

variance by ethnicity will impact the estimation. Another major impact of ethnicity is

that the genetic relationship matrix A will be wrongly computed due to the difference

in allele frequencies by ethnicity. Principal components estimated from GRM are usually

used to account for population structure. A classical way to adjust for PCs in REML-

based methods is to include them as fixed effects in the mixed linear model; and PCs can

also be adjusted in the estimation of GRM using methods such as PC-Relate (Conomos

et al., 2015). However, it is still unclear how to incorporate such corrections in different

existing moment based approaches for estimating heritability.

In this paper, we proposed a computationally efficient MOM estimator of SNP-

heritability in presence of population substructure, which can be easily applied on large

scale biobank data. We have derived the estimator from the classical Haseman-Elston

regression by adding product terms of PCs and have shown the equivalence with MMHE

under specific conditions. We have also demonstrated the unbiasedness of our proposed

estimator in presence of two discrete sub-populations. Another flexibility of our proposed

approach is that it would be relatively easy to allow the heritability differ by ethnicity.

One could incorporate multiple interaction terms in the Adj-HE approach ( Equation 12

and Equation 9) to allow for such ethnic differences.

We conducted a number of simulations to study the performance of Adjusted-HE and
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other methods including GCTA-REML, MMHE and PC-Relate-HE for heritability esti-

mation. In simulation studies under a variety of population substructure configurations,

we showed that if not adjusting for PCs, MOM estimators are biased severely in the

presence of population substructure; and the estimates stabilized after adjusting for PCs.

When sub-populations had similar outcome mean and variances, GCTA-REML estimates

were stable even without any PC adjustment, but it also needed PC adjustments to sta-

bilize if outcome means or variances were different. We also noticed increasing downward

bias for PC-Relate-HE and increasing upward bias for GCTA-REML, when the sub-

populations were increasingly different in outcome variances. The UAdj-HE approach

always maintained the smallest bias in these scenarios.

In the real data application on UK Biobank, we analyzed 7 quantitative traits includ-

ing height, weight, BMI, systolic blood pressure, diastolic blood pressure, waist circum-

ference and hip circumference. We compared Adjusted-HE to other widely used methods

including GCTA-REML and LDSC regression on a small subset of 45k individuals, and

also applied Adjusted-HE on a full sample of 305k individuals in a computationally ef-

ficient way. The results showed that LDSC regression tended to give underestimation.

GCTA-REML gave higher heritability estimation than our methods for all traits, likely

due to difference in trait variances by ethnicity. Our Adj-HE estimates were generally

close to the estimates reported for anthropometric traits from other studies (Yang et al.,

2015).

Despite the computational efficiency, our proposed method has a few limitations. Our

two-step Adj-HE approach assumes that there is no impact of other covariates such as

age and sex on the variance of the outcome. It also slightly underestimated heritability

when the PCs were computed using a subset of markers in the GRM. Moreover, it is a bit

unclear in terms of how many PC adjustments would be necessary to capture the impact

of population stratification.
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Appendix A

Derivation of Adjusted-HE formula

UAdj-HE: For unstandardized y′ (only mean-centered), we have

E(y′y′T) = σ2
gA + σ2

eI +
k∑
j=1

ajPCjPCT
j (9)

where y′ is the residual after the regression step.

Using the method of moment and the Frobenius matrix norm to solve it,

(â1, . . . , âk, σ̂2
g , σ̂

2
e) = argmax

aj ,σ2
g ,σ

2
e

||y′y′T − (σ2
gA + σ2

eI +
k∑
j=1

ajPCjPCT
j )||F

= argmax
aj ,σ2

g ,σ
2
e

{(σ2
g)

2TrA2 + (σ2
e)

2Tr I +
k∑
j=1

a2j + 2σ2
gσ

2
e TrA

+ 2
k∑
j=1

ajPCT
j APCjσ

2
g + 2

k∑
j=1

ajσ
2
e

− 2σ2
gy
′TAy′ − 2σ2

ey
′Ty′ − 2

k∑
j=1

ajy
′TPCjPCT

j y′}

= argmax
aj ,σ2

g ,σ
2
e

Q(a1, . . . , ak, σ
2
g , σ

2
e)

Let ∂Q
∂aj

= 0, tj = y′TPCjPCT
j y′, sj = PCT

j APCj, we have aj = tj − σ2
gsj − σ2

e .

Let


∂Q
∂σ2

g
= 0

∂Q
∂σ2

e
= 0

, we have

TrA2 TrA

TrA N


σ2

g

σ2
e

 =

y′TAy′ −
∑k

j=1 ajPCT
j APCj

y′Ty′ −
∑k

j=1 aj


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Plug in aj, it becomes

TrA2 −
∑

j s
2
j TrA−

∑
j sj

TrA−
∑

j sj N − k


σ2

g

σ2
e

 =

y′TAy′ −
∑

j tjsj

y′Ty′ −
∑

j tj

 (10)

Then

ĥ2UAdj-HE =
σ̂2
g

σ̂2
g + σ̂2

e

=
cσ̂2

g

cσ̂2
g + cσ̂2

e

where

c = (N − k)(TrA2 −
k∑
j=1

s2j)− (TrA−
k∑
j=1

sj)
2

cσ̂2
g = (N − k)(yTAy −

k∑
j=1

sjtj)− (TrA−
k∑
j=1

sj)(y
′Ty′ −

k∑
j=1

tj)

cσ̂2
e = −(TrA−

k∑
i=1

sj)(y
′TAy′ −

k∑
j=1

sjtj) + (TrA2 −
k∑
j=1

s2j)(y
′Ty′ −

k∑
j=1

tj)

SAdj-HE: For standardized y′ (in both mean and variance), we have

E(y′y′T) = h2A + (1− h2)I +
k∑
j=1

ajPCjPCT
j (12)

where y′ is the standardized residual after first step.

Using the same idea to solve Equation 12, we have

(â1, . . . , âk, ĥ2) = argmax
aj ,h2

||y′y′T − (h2(A− I) + I +
∑
j

ajPCjPCT
j )||F

= argmax
aj ,h2

{(h2)2(TrA2 − 2TrA +N) +
∑
j

a2j + 2h2(TrA−N)

+ 2
∑
j

aj + 2h2
∑
j

ajPCT
j APCj − 2h2

∑
j

aj

− 2h2y′TAy′ + 2h2y′Ty′ − 2
∑
j

ajy
′TPCjPCT

j y′}

= argmax
aj ,h2

Q(h2, a1, . . . , ak)
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Let


∂Q
∂aj

= 0

∂Q
∂h2

= 0

, we have


TrA2−2TrA+N PCT

1 APC1−1 PCT
2 APC2−1 ... PCT

k APCk−1
PCT

1 APC1−1 1 0 ... 0

PCT
2 APC2−1 0 1 ... 0

...
...

... ... ...
PCT

k APCk−1 0 0 ... 1


 h2
a1
a2
...
ak

 =


N−TrA+y′TAy′−y′Ty′

y′TPC1PCT
1 y′−1

y′TPC2PCT
2 y′−1

...
y′TPCkPCT

k y′−1


Then we can obtain

(TrA2 − 2TrA +N)h2 +
k∑
j=1

(PCT
j APCj − 1)aj = N − TrA + y′TAy′ − y′Ty′ (15)

aj = (y′TPCjPCT
j y′ − 1)− (PCT

j APCj − 1)h2 (16)

Substitute (16) into (15) we have

ĥ2SAdj-HE =
N − TrA + y′TAy′ − y′Ty′ −

∑k
j=1(PCT

j APCj − 1)(y′TPCjPCT
j y′ − 1)

TrA2 − 2TrA +N −
∑k

j=1(PCT
j APCj − 1)2

Appendix B

Expectation of the heritability estimates

Assuming that different clusters affect allele frequencies (GRM) only and not the mean

directly, and the variance of y is estimated precisely by the sample variance. When we

only consider PCs from the full GRM in the adjustment, formula 13 can be written as

ĥ2SAdj-HE =
N − TrA + yTAy − yTy −

∑k
j=1(PCT

j APCj − 1)(yTPCjPCT
j y − 1)

TrA2 − 2TrA +N −
∑k

j=1(PCT
j APCj − 1)2

=
Tr (A− I)(I−P)(yyT − I)(I−P)

Tr (A− I)(I−P)(A− I)(I−P)
(17)

We have, E(yyT ) = h2ATrue + (1 − h2)I where ATrue is the true GRM (where the

standardisation of the genotype matrix has been done based on subclusters). Since, we

do not know the subclusters, we do not know ATrue either. Denote the GRM A which we
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generally work with as Ausual (where the genotype matrix is standardised overall). also

denote H = I − P. Under these notations the expression of heritability in Equation 17

above can be written as,

ĥ2SAdj-HE =
Tr (Ausual − I)H(yyT − I)H

Tr (Ausual − I)H(Ausual − I)H

and its expectation can be obtained as,

E(ĥ2SAdj-HE) =
Tr (Ausual − I)H(E(yyT)− I)H

Tr (Ausual − I)H(Ausual − I)H

=
Tr (Ausual − I)H(h2ATrue + (1− h2)I− I)H

Tr (Ausual − I)H(Ausual − I)H

=
Tr (Ausual − I)(h2HATrueH− h2H)

Tr (Ausual − I)H(Ausual − I)H
(since, H2 = H)

= h2
Tr (Ausual − I)(HATrueH−H)

Tr (Ausual − I)H(Ausual − I)H

(18)

B.1 Theory with clusters

Suppose there are 2 clusters of individuals, i.e., k = 1, 2. Let the allele frequencies of

s-th SNP for i-th individual from cluster k be pks. The total number of individuals

is N = n1 + n2. Let ps = r1p1s + r2p2s with rk =
nk
N
. We make an assumption that√

2p1s(1− p1s) ≈
√

2p2s(1− p2s) ≈
√

2ps(1− ps) = ms (this is a reasonable assumption

since even if p1s, p2s are much different
√

2pks(1− pks)’s are not, see Figure 5).

Figure 5. See how the variance function behaves for varying p, the function
√
2p(1− p)

takes pretty close values even when p takes highly different values
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The corresponding raw(unscaled) genotype matrix be X =

[
XT

1 XT
2

]T
where Xk is

of dimension nk×P . Two following ways of standardizing elements of X: for an individual

i in cluster k,

z∗kis =
xis − 2pks√
2pks(1− pks)

=
xis − 2pks

ms

, (True way)

zis =
xis − 2ps√
2ps(1− ps)

=
xij − 2ps
ms

= z∗kis + aks, (Usual way)

aks =
2(pks − ps)

ms

, ps =
1

N
(n1p1s + n2p2s)

Thus, Z∗k = Zk−ak with ak =

[
ak1enk

. . . akPenk

]
. Or, Z∗ = Z−a with a =

[
aT1 aT2

]T
.

True GRM and usual GRM can be written as,

Ausual =
1

P
ZZT ;ATrue =

1

P
Z∗Z∗T = Ausual −

1

P
(aZT + ZaT ) +

1

P
aaT (19)

With 2 distinct population subclusters, the first PC of Ausual would be a vector with

v1 for n1 individuals from cluster 1 and −v2 for n2 individuals from cluster 2 with

vk =
1

nk

√
n1n2

N
(Patterson et al., 2006; Galinsky et al., 2016). More formally, PC1 =[

v1e
T
n1
−v2eTn2

]T
. We can write,

H1 = IN −PC1PCT
1 = IN −

 v21Jn1,n1 −v1v2Jn1,n2

−v1v2Jn2,n1 v22Jn2,n2



For the s-th column of a matrix,

H1a.,s = a.,s −

 v21Jn1,n1 −v1v2Jn1,n2

−v1v2Jn2,n1 v22Jn2,n2


a1sen1

a2sen2


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= a.,s −

 (a1sv
2
1n1 − a2sv1v2n2)en1

(−a1sv1v2n1 + a2sv
2
2n2)en2


=

(a1s − a1sv21n1 + a2sv1v2n2) en1

(a2s + a1sv1v2n1 − a2sv22n2)en2


=


(
a1s − a1s

n2

N
+ a2s

n2

N

)
en1(

a2s + a1s
n1

N
− a2s

n1

N

)
en2


=


(
a1s

n1

N
+ a2s

n2

N

)
en1(

a2s
n2

N
+ a1s

n1

N

)
en2



=


(
2(p1s − ps)

ms

n1

N
+

2(p2s − ps)
ms

n2

N

)
en1(

2(p2s − ps)
ms

n2

N
+

2(p1s − ps)
ms

n1

N

)
en2


=

000
000

 (
plugging in ps =

1

N
(n1p1s + n2p2s)

)

Thus, we find that premultiplying a by H1 gives H1a = 000. Using this fact in the expres-

sions of equation (2) we get,

H1ATrueH1 = H1

(
Ausual −

1

P
(aZT + ZaT ) +

1

P
aaT

)
H1 = H1AusualH1. (20)

Plugging H = H1 in equation (1) we get,

E(ĥ2SAdj-HE) = h2
Tr (Ausual − I)(H1ATrueH1 −H1)

Tr (Ausual − I)H1(Ausual − I)H1

= h2
Tr (Ausual − I)(H1AusualH1 −H1)

Tr (Ausual − I)H1(Ausual − I)H1

= h2
Tr (Ausual − I)H1(Ausual − I)H1

Tr (Ausual − I)H1(Ausual − I)H1

= h2

Thus, it shows why Haseman Elston regression with H1AusualH
T
1 (MMHE) or our pro-

posed Haseman Elston regression with the first PC product adjustment would give us
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asymptotically unbiased estimate of heritability. When there are more clusters, more

PCs would be needed to be considered.
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