1

TACS, RPE & DECLARATIVE LEARNING

1	
2	
3	
4	Failure to modulate reward prediction errors in declarative learning with theta
5	(6 Hz) frequency transcranial alternating current stimulation
6	
7	
8	Kate Ergo ^{1*} , Esther De Loof ¹ , Gillian Debra ¹ , Bernhard Pastötter ² , and Tom Verguts ¹
9	
10	¹ Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, Ghent,
11	Belgium
12	² Department of Psychology, University of Trier, Trier, Germany
13	
14	* Corresponding author
15	E-mail: kate.ergo@ugent.be (KE)
16	
17	
18	

2

TACS, RPE & DECLARATIVE LEARNING

Abstract

20	Recent evidence suggests that reward prediction errors (RPEs) play an important role in
21	declarative learning, but its neurophysiological mechanism remains unclear. Here, we tested
22	the hypothesis that RPEs modulate declarative learning via theta-frequency oscillations, which
23	have been related to memory encoding in prior work. For that purpose, we examined the
24	interaction between RPE and transcranial Alternating Current Stimulation (tACS) in declarative
25	learning. Using a between-subject (real versus sham stimulation group), single-blind stimulation
26	design, 76 participants learned 60 Dutch-Swahili word pairs, while theta-frequency (6 Hz) tACS
27	was administered over the medial frontal cortex (MFC). Previous studies have implied MFC in
28	memory encoding. We replicated our previous finding of signed RPEs (SRPEs) boosting
29	declarative learning; with larger and more positive RPEs enhancing memory performance.
30	However, tACS failed to modulate the SRPE effect in declarative learning and did not affect
31	memory performance. Bayesian statistics supported evidence for an absence of effect. Our
32	study confirms a role of RPE in declarative learning, but also calls for standardized procedures
33	in transcranial electrical stimulation.
34	Keywords: declarative learning, reward prediction error, tACS
35	

36

37

TACS, RPE & DECLARATIVE LEARNING

3

2	\mathbf{n}
-≺	ч

Introduction

40	Declarative memory consists of memory for facts and events that can be consciously
41	recalled [1,2]. Memoranda are learned rapidly, often after a single exposure [3]. The process of
42	acquiring such memories is called declarative learning. Declarative memory differs from
43	procedural memory, where a skill is learned slowly and by means of repeated practice (e.g.,
44	learning how to drive a car). Research has firmly established that prediction errors modulate
45	declarative memory [4]. Recent research shows that reward prediction errors (RPE; i.e.,
46	mismatches between reward outcome and reward prediction) specifically may facilitate
47	memory formation. RPEs were primarily studied within procedural learning. However, recent
48	evidence suggests that RPEs are crucial for declarative learning as well [5,6].
49	One robust experimental paradigm to test this RPE effect on declarative memory, was
50	proposed in [7]. Here, a variable-choice experimental paradigm was used where participants
51	learned Dutch-Swahili word pairs. On each trial, participants were presented with one Dutch
52	word and four Swahili translations. By fixing a priori the number of eligible Swahili translations
53	and whether a choice was rewarded or not, each trial was associated with a unique RPE. This
54	manipulation allowed verifying whether declarative learning was driven by unsigned RPEs
55	(URPE; signifying that the outcome is different than expected) or instead by signed RPEs (SRPE;
56	indicating that the outcome is better or worse than expected). If URPEs boost declarative
57	learning, recognition of word pairs should be enhanced for large positive and large negative
58	RPE values, exhibiting a U-shaped effect of RPE on memory. Instead, if SRPEs drive declarative
59	learning, recognition should be increased only for large, positive RPEs. The data revealed a SRPE

TACS, RPE & DECLARATIVE LEARNING

4

60	effect. Larger and more positive RPEs during study improved subsequent declarative memory
61	during testing. The effect of RPEs in this experimental paradigm was further substantiated in a
62	follow-up EEG study, where oscillatory signatures at reward feedback were detected in the
63	theta (4-8 Hz), high-beta (20-30 Hz) and high-alpha (10-15 Hz) frequency ranges, suggesting the
64	experience of RPEs by the participants [8]. Further validation came from an fMRI study using a
65	similar paradigm in which famous faces were associated with Swahili village names [9]. This
66	study revealed that RPE responses in the ventral striatum (VS) at reward feedback predicted
67	memory performance. These findings lend further support to the notion that RPE is a key factor
68	in the formation of new declarative memories, and that RPEs are characterized by distinctive
69	neural signatures.
70	It remains unclear, however, how RPEs boost declarative memory. It is well established that
71	RPEs are encoded by dopaminergic neurons in the midbrain (i.e., ventral tegmental area and

substantia nigra) [10]. These neurons change their firing rate in relation to RPEs. From the

73 midbrain, RPEs are projected to several other subcortical and cortical brain regions, such as the

VS [11], the hippocampus (HC) [12], and medial frontal cortex (MFC) [13]. Within these brain

structures, dopamine release functions as a neuromodulatory signal. One potential

76 neuromodulatory influence of dopamine occurs via modulating neural oscillations in a wide

range of frequency bands [14]. Neural activity in the theta frequency band (4-8 Hz) seems to be

of particular importance in memory encoding [15]. Indeed, oscillations in the theta frequency

allow communication between distant brain regions, promote encoding of novel information

80 [16], enable learning [17], and have been linked to improved declarative memory [18–20].

TACS, RPE & DECLARATIVE LEARNING

5

81	One possible mechanism through which theta frequency improves memory is theta phase
82	synchronization. Synchronization in declarative memory can be observed locally, for example,
83	using intracranial electrodes placed in the medial temporal lobe. With this method, [21] found
84	increased theta phase locking during the encoding of words. Theta phase synchronization can
85	also be observed non-locally. When multimodal (audio-visual) stimuli are synchronously
86	presented in theta phase, episodic memory is enhanced; with stronger theta phase
87	synchronization between the visual and auditory cortex predicting better memory performance
88	[22,23]. Furthermore, [24] observed increased theta phase synchronization between HC and
89	prefrontal cortex (PFC) during the presentation of unexpected items. Interestingly, the PFC, and
90	in particular the MFC, has been ascribed an important role in memory encoding [25–27]. It is
91	also strongly implied in reward [28,29] and RPE [30,31] processing. We hypothesize that during
92	declarative learning, RPEs project to the MFC [13], where they are used to optimize future
93	behavior [32]. Specifically, RPEs may (by means of neuromodulatory signaling) increase theta
94	(phase) synchronization between relevant brain areas (e.g., MFC and HC), therefore allowing
95	associative memories to be glued together more efficiently [33], facilitating (multimodal)
96	memory formation [34].

97 Unfortunately, the evidence for theta modulation of RPEs in declarative memory thus far 98 remains correlational only. With the rise of non-invasive brain stimulation (NIBS) techniques, 99 the causal role of neural oscillations and their relation to behavior can be explicitly tested [35]. 100 More specifically, transcranial Alternating Current Stimulation (tACS) allows modulating neural 101 oscillations [36]. It is hypothesized that tACS causes underlying brain networks to synchronize 102 or desynchronize. Although tACS has rather low temporal and spatial resolution, its frequency

TACS, RPE & DECLARATIVE LEARNING

6

resolution is high. By applying a weak sinusoidal current to the scalp, the likelihood of neural 103 104 firing is increased or decreased, depending on the stimulation parameters [37]. Ongoing neural oscillations can thus be entrained at specific frequencies of interest [37]. This synchronization 105 106 modulates brain activity and alters cognitive processes, leading to behavioral changes, which 107 can be measured through, for example, memory performance [38]. Whereas several tACS experiments entraining oscillations at theta frequency looked at its 108 effects on working memory [39–44], a few studies have investigated its effects on declarative 109 110 memory. [45] applied theta-frequency tACS over the right fusiform cortex while face and scene 111 pairs were encoded. Here, stimulation enhanced memory performance measured after a 24hour delay. Similarly, [46] also found enhanced long-term memory performance after applying 112 113 theta-frequency tACS over the right posterior cortex while participants learned face-monetary value pairs. To the best of our knowledge, no study examined the effects of theta-frequency 114 115 tACS over MFC in relation to declarative learning. Together, these findings suggest that RPEs are projected from brainstem to MFC; elicit theta 116 phase synchronization between several neural areas; and thus boost declarative learning. As 117 such, the goal of the current study was to use theta-frequency (6 Hz) tACS to entrain neural 118 oscillations whilst encoding new word pairs associated with RPEs of different sizes and values. 119 120 To this end, tACS was applied over the MFC while participants acquired 60 Dutch-Swahili word pairs using the variable-choice experimental paradigm. We hypothesized that if memory is 121 122 modulated by theta oscillations in MFC, then subsequent memory performance and certainty ratings should be modulated by tACS; and if theta oscillations are driven by RPE, as the 123 124 literature review suggests, tACS and RPE should interact.

TACS, RPE & DECLARATIVE LEARNING

7

125

Methods

126 **Participants**

- 127 We tested a total of 77 healthy, Dutch-speaking participants. One participant was excluded
- 128 from further analysis due to below chance level performance on the recognition test. The
- analyses were run on the remaining 76 participants (57 females, range = 18-29 years, M_{age} =
- 130 20.8 years, SD_{age} = 2.4 years). All participants had no prior knowledge of Swahili, gave written
- informed consent, were randomly assigned to a real (N = 38) or sham (N = 38) stimulation
- 132 group, and were paid €17.5. The study was approved by the Medical Ethics Review Board of the
- 133 Ghent University Hospital and was carried out in accordance with the Declaration of Helsinki.

134 Material

- 135 A total of 330 words (66 Dutch, 24 Japanese and 240 Swahili words) (S1 Tables) were used.
- 136 Each participant memorized 60 Dutch-Swahili word pairs. The experiment was run on an HP
- 137 ProBook 6560b laptop with a 15.6" screen size running PsychoPy software (version 1.85.4) [47].

138 Experimental paradigm

139 *Familiarization task*

- 140 Participants started with a familiarization task using the stimuli in the experiment, to
- 141 control for the novelty of the foreign Swahili words. All Dutch (N = 60) and Swahili (N = 240)
- 142 words were randomly and sequentially presented on the screen for a duration of two seconds.
- 143 Participants were asked to press the space bar whenever a Dutch word was presented.

8

TACS, RPE & DECLARATIVE LEARNING

144 Acquisition task

145	Prior to the actual acquisition task, a total of six practice trials with Dutch (N = 6) and
146	Japanese (N = 24) words was presented. After successfully finishing the practice set,
147	participants were presented with the acquisition task. Here, the aim was to learn 60 unique
148	Dutch-Swahili word pair associations. On each trial, one Dutch word was shown together with
149	four Swahili translations (Fig 1A). After four seconds, frames surrounded the eligible Swahili
150	translations. Either one, two or four Swahili translations were framed. In the one-option
151	condition, one Swahili translation was framed and participants could only choose this Swahili
152	word as the translation for the Dutch word. In the two-option condition, two Swahili
153	translations were framed and participants could choose between two options. In the four-
154	option condition trials, all four Swahili translations were framed and participants could choose
155	among these four options. The probability of choosing the correct Swahili translation was
156	therefore 100% (in one-option condition trials), 50% (in two-option condition trials), or 25% (in
157	four-option condition trials). Participants responded with the index and middle finger of the
158	right and left hand. For stimulation purposes, trial duration was controlled by instructing
159	participants to make their choice as soon as the fixation cross turned blue. If no choice was
160	made after two seconds, the fixation cross turned red, urging participants to choose as soon as
161	possible. To ensure that stimulation was given throughout the entire duration of the acquisition
162	task, total time spent in the acquisition task was equated for each participant. Specifically, if
163	participants made a choice less than two seconds after the fixation cross turned blue, feedback
164	was presented after [two seconds - choice duration] seconds. After participants made their
165	choice, the fixation cross turned into a blue "o" indicating that their response had been

TACS, RPE & DECLARATIVE LEARNING

9

166	registered. They were then provided with feedback where they saw the Dutch word, an
167	equation sign, and the to-be-learned Swahili translation (in green for correct choices and in red
168	for incorrect choices) for a duration of five seconds. This was followed by reward feedback (+0.5
169	Euros for correct choices and +0 Euros for incorrect choices) and a reward update telling them
170	how much money they earned up until the last completed trial (two seconds). After every ten
171	trials, the acquisition task was briefly paused for ten seconds to allow an impedance check.
172	Fig 1. Experimental paradigm and tACS setup. (A) Example trial of the acquisition task and
173	recognition test. In the acquisition task, participants choose between 1, 2 or 4 Swahili
174	translations. The two-option condition with rewarded choice is illustrated. (B) Experimental
175	design. The 2 (rewarded or unrewarded choice) x 3 (number of options) experimental design
176	showing the number of trials and associated RPE value in each cell. SRPEs were calculated by
177	subtracting the probability of reward from the obtained reward; URPE is the absolute value of
178	SRPE. (C) tACS setup. Theta-frequency (6 Hz) tACS was applied over the MFC. The stimulation
179	electrode (i.e., blue electrode) was placed over FCz, while the reference electrode (i.e., red
180	electrode) was placed in the neck.

Design. Parametric modulation of RPEs was accomplished by fixing a priori the number of options (one, two or four) and reward on each trial (reward/no reward). This allowed the computation of an RPE for each cell of the design (Fig 1B). Note that by predetermining reward feedback at each trial, participants did not necessarily learn the actual Swahili translations of the Dutch words. For example, if a trial belonged to the rewarded condition, participants received positive feedback irrespective of their choice. Participants were unaware of this manipulation during the experiment, but were debriefed afterwards.

TACS, RPE & DECLARATIVE LEARNING

10

188	SRPEs were obtained by subtracting reward probability from reward outcome. For
189	rewarded trials, reward outcome is equal to one, whereas reward outcome is equal to zero for
190	unrewarded trials. Reward probability is determined by the number of options. URPEs are
191	computed by taking the absolute value of the SRPE.

192 *Recognition task*

193 In the recognition task, participants' recognition was tested on 60 Dutch-Swahili word pairs

194 (Fig 1A). On each trial, one Dutch word was shown together with the same four Swahili

195 translations from the acquisition task. Spatial positions of the Swahili translations were

196 randomly shuffled relative to the acquisition task to avoid that participants would respond

197 based on the spatial position instead of the actual translation of the Dutch word. In contrast to

198 the acquisition task, no frames surrounded the Swahili translations, and no feedback was

199 provided. No time limit was imposed. At the end of each trial, participants rated their certainty

200 on a four-point scale ("very certain", "rather certain", "rather uncertain", "very uncertain").

201 Sensations questionnaire

A subset of participants (N = 61) filled out a sensations questionnaire [48] (S2 File).
Participants rated seven sensations (itching, pain, burning, warmth/heat, pinching,
metallic/iron taste and fatigue) on a five-point scale (none, mild, moderate, considerable,

strong). They were also asked when the discomfort began, how long the discomfort lasted and

206 how much these sensations affected their performance. The sensations questionnaire was used

TACS, RPE & DECLARATIVE LEARNING

11

to verify whether participants in the real and sham stimulation group report a difference insensations.

209 tACS stimulation

210	tACS stimulation was a	pplied using a DO	C-stimulator Plus o	device (NeuroConn GmbH,
-----	------------------------	-------------------	---------------------	-------------------------

- 211 Ilmenau/Germany). Two saline-soaked sponge electrodes (5 x 6.5 cm²) were placed on the scalp
- and neck. The stimulation (blue) electrode was positioned at FCz (according to the 10-20
- 213 positioning system), targeting the MFC, while the reference (red) electrode was placed in the
- neck (Fig 1C). The sponge electrodes were fixed onto the participant's head with elastic fabric
- 215 bands. Impedance between electrodes was kept below 15 kΩ. Participants received tACS
- stimulation at the theta (6 Hz) frequency with an intensity of 2 mA (peak-to-peak; mean 0 mA).
- A sinusoidal stimulation waveform was used with no DC offset and a phase shift of zero
- 218 degrees. A fade-in and fade-out period of 5 seconds (30 cycles) was used. tACS was
- administered during the entire acquisition task for a duration of 16.6 minutes (6000 cycles) in
- the real stimulation group, while the sham stimulation group received 40 seconds (240 cycles)
- of stimulation. Sham stimulation duration was kept short to avoid changes in cortical

excitability [49].

Data analysis

Both frequentist and Bayesian statistics were calculated. With regard to frequentist
statistics, all data were analyzed within the linear mixed effects framework in R software [50],
unless mentioned otherwise. For continuous dependent variables (e.g., certainty ratings in the

TACS, RPE & DECLARATIVE LEARNING

12

227	recognition test) linear mixed effects models were used, while for categorical dependent
228	variables (e.g., recognition accuracy) generalized linear mixed effects models were applied. A
229	random intercept for participants was included in each model, while all predictors were mean-
230	centered. Note that SRPEs were treated as a continuous predictor allowing the inclusion of all
231	60 trials per participant to estimate its regression coefficient, with the exception of invalid trials
232	(i.e., trials on which a non-framed Swahili translation was chosen during the acquisition task).
233	In addition to frequentist statistics, Bayesian repeated measures analyses of variance
234	(ANOVAs) are reported that were performed in JASP (version 0.11.1; [51]). In Bayesian ANOVAs,
235	recognition accuracy and certainty ratings were analyzed as a function of SRPE and stimulation.
236	Bayes factors (BFs) quantify the evidence in favor of the null hypothesis (<i>BF</i> ₀₁ ; e.g., tACS does
237	not influence memory performance) or the alternative hypothesis ($BF_{10} = 1/BF_{01}$; e.g., tACS
238	influences memory performance). BF_{01} is reported when the Bayesian analysis provides
239	relatively more evidence for the null hypothesis; BF_{10} is instead reported when the analysis
240	provides relatively more evidence for the alternative hypothesis. We used default prior settings
241	for all analyses [52]. To determine the strength of evidence, we used Jeffreys' benchmarks [53],
242	with BFs corresponding to anecdotal (0-3), substantial (3-10), strong (10-30), very strong (30-
243	100) or decisive (>100) evidence.

244

Results

245 Sensations questionnaire

TACS, RPE & DECLARATIVE LEARNING

13

246	Independent samples t-tests were used to verify whether sensations varied between the
247	two stimulation groups. Participants in the real and sham stimulation groups did not report a
248	significant difference for any of the sensations probed (itching, pain, burning, warmth/heat,
249	pinching, metallic/iron taste and fatigue) (all $p > .06$). Furthermore, there were no significant
250	differences between stimulation groups with regard to when the discomfort began, t(58.90) =
251	0.48, $p = .63$, and how much these sensations affected their performance, $t(53.77) = 1.13$, $p =$
252	.26. Participants in the real stimulation group did report that the discomfort lasted significantly
253	longer compared to the sham stimulation group, <i>t</i> (40.33) = 3.35, <i>p</i> = .002.

254 **Recognition accuracy**

255	The data revealed a significant main effect of reward, $\chi^2(1, N = 76) = 5.82, p = .02$.
-----	--

Recognition accuracy was slightly lower for rewarded choices (M = 64.6%, SD = 14.4%,

257 range = 26%–97%) compared to unrewarded choices (*M* = 66.4%, *SD* = 15.8%, range = 32%–

100%). Recognition accuracy increased with number of options, $\chi^2(1, N = 76) = 33.80, p < .001$,

259 (one-option: *M* = 60.5%, *SD* = 17.7%, range = 25%–95%; two-option: *M* = 65.5%, *SD* = 15.9%,

260 range = 25%–100%; four-option: *M* = 70.2%, *SD* = 15.7%, range = 35%–100%). The interaction

between reward and number of options was not significant, $\chi^2(1, N = 76) = 0.98$, p = .32.

Next, we verified whether recognition accuracy linearly increased with SRPEs. Replicating earlier research, frequentist statistics revealed a significant positive effect of SRPE, $\chi^2(1, N = 76)$ = 9.13, *p* = .003, with larger and more positive RPEs leading to increased recognition accuracy (Fig 2A-B). There was no main effect of stimulation on recognition accuracy, $\chi^2(1, N = 76) = 1.42$,

TACS, RPE & DECLARATIVE LEARNING

266 p = .23. The interaction between SRPE and stimulation was also not significant, $\chi^2(1, N = 76) =$ 267 .004, p = 0.95.

Fig 2. Results. (A-B) Recognition accuracy as a function of SRPE in the real and sham stimulation
 group, respectively. Recognition accuracy increases linearly with larger and more positive RPEs
 in the two stimulation groups, suggesting a SRPE effect. (C-D) Certainty rating in the real and
 sham stimulation group, respectively. In the two stimulation groups, SRPE significantly
 predicted certainty for correctly recognized word pairs, but not for incorrectly recognized word
 pairs.

Bayesian repeated measures ANOVA provided substantial evidence for the absence of a stimulation effect ($BF_{01} = 3.02$, against the null model). The observed data were about 3 times more likely under the null hypothesis than under the alternative hypothesis. The evidence for the SRPE effect was decisive ($BF_{10} > 100$, compared to null model). In addition, there was strong evidence against the interaction of SRPE and stimulation ($BF_{01} = 54.66$, compared to two-maineffects model).

280 Certainty ratings

For the certainty ratings there was a significant main effect of recognition accuracy, $\chi^2(1, N = 76) = 1170$, p < .001, indicating that participants were more certain of correctly recognized word pairs. In addition, there was a significant interaction between SRPE and recognition accuracy, $\chi^2(1, N = 76) = 7.63$, p = .006. Follow-up analysis revealed that, as expected, SRPE increased certainty for correctly recognized word pairs, $\chi^2(1, N = 76) = 9.14$, p = .002, but did not affect false recognitions, i.e., incorrectly recognized word pairs, $\chi^2(1, N = 76) = 2.16$, p = .14

15

TACS, RPE & DECLARATIVE LEARNING

(Fig 2C-D). In addition, the data revealed a significant interaction between stimulation and recognition accuracy, $\chi^2(1, N = 76) = 5.37$, p = .02. Follow-up analysis revealed a main effect of stimulation for the correctly recognized word pairs, $\chi^2(1, N = 76) = 5.03$, p = .02, but not for incorrectly recognized word pairs, $\chi^2(1, N = 76) = 0.11$, p = .75. Participants in the sham stimulation group were more certain of correctly recognized word pairs, compared to participants in the real stimulation group. The interaction between SRPE and stimulation was not significant, $\chi^2(1, N = 76) = 1.61$, p = .20.

A Bayesian repeated measures ANOVA revealed anecdotal evidence for the absence of a stimulation effect ($BF_{01} = 1.33$, against the null model). For the SRPE effect, the evidence was decisive ($BF_{10} > 100$, compared to null model). We also found strong evidence against the interaction of SRPE and stimulation ($BF_{01} = 19.74$, compared to two-main-effects model).

298

Discussion

The main objective of our study was to examine if theta-frequency (6 Hz) tACS can 299 modulate the effect of RPEs in declarative learning. For this purpose, participants acquired 60 300 Dutch-Swahili word pairs, associated with RPEs of different sizes and values, while the MFC was 301 stimulated. We replicated our earlier finding of SRPEs driving declarative learning [7]. Word pair 302 303 recognition increased for large and positive RPEs. However, contrary to our hypothesis, thetafrequency (6 Hz) tACS did not successfully improve memory nor modulate the effect of RPEs on 304 declarative learning. There was a small effect of stimulation on certainty in the correctly 305 306 recognized words, but this effect requires replication and must currently be interpreted with caution. 307

TACS, RPE & DECLARATIVE LEARNING

308	Whereas the importance of RPEs in procedural learning has been well established, its role in
309	declarative learning has remained elusive until recently. One of the first experimental
310	paradigms examining the effect of RPEs in declarative learning was put forward by [54].
311	Although this RPE effect on declarative memory could not be replicated [55,56], several
312	research labs have since then used a range of experimental paradigms to investigate the role of
313	RPEs in declarative learning. Most of these studies revealed positive effects of RPEs on
314	declarative memory [6,57,58], but one study also reported negative effects [59] (for review see
315	[5]). Overall, these studies (including the current one) support the claim that RPEs are a key
316	factor in the formation of declarative memory.
317	Prior research has repeatedly shown a role of theta frequency in (reward) prediction error
318	processing [60–63] as well as memory performance [19]. In particular, [23] provided direct
319	evidence for a causal role of theta frequency in memory. Memory for multimodal (audio-visual)
320	stimuli was enhanced only when these stimuli were modulated at the theta frequency and not
321	at other frequencies. Furthermore, in an earlier EEG study from our lab, we examined the
322	neural signatures of RPEs in declarative learning and found increased theta (4-8 Hz) power
323	during reward feedback [8]. However, it must be noted that in this particular EEG study, theta
324	frequency followed an unsigned RPE (URPE) pattern during reward feedback. Theta power thus
325	increased for both large negative and large positive RPEs. This URPE pattern evolved into a
326	SRPE pattern during reward feedback and was accompanied by power increases in the high-
327	beta (20-30 Hz) and high-alpha (10-17 Hz) frequency bands. Although beta and alpha power
328	followed a clear SRPE pattern, we opted not to stimulate at these frequencies as there is more
329	inter-individual variability with regard to peak-frequency [64].

TACS, RPE & DECLARATIVE LEARNING

330	We hypothesized that declarative learning is facilitated by theta frequency synchronization.
331	Neurons are synchronized when their activation is locked to a common (slow-wave) phase. In
332	such case, spikes of pre- and postsynaptic neurons are highly correlated, enabling synaptic
333	learning between pairs of neurons because synaptic plasticity relies on the precise spike-timing
334	of neurons [65]. Theta phase may modulate spike timing-dependent plasticity by ensuring that
335	(anatomically distant) neurons fire in synchrony [66,67]. As tACS modulates the spike timing of
336	neurons [68], it is a promising tool to causally manipulate neural oscillations related to RPE-
337	processing in declarative learning. For this reason, theta-frequency tACS was currently used to
338	stimulate the MFC. Unfortunately, however, our tACS manipulation did not affect memory
339	performance.
340	In the following section, we speculate why we found no effect of theta-frequency (6Hz)
341	tACS and provide suggestions for future research. First, it remains possible that theta frequency
342	has no effect on RPEs in declarative learning and declarative memory per se. Using a combined
343	EEG-TMS setup, [69], applied beta-frequency TMS over the PFC and showed that beta
344	frequency is indeed causally related to memory formation. As such, a future follow up to the
345	current study would be to stimulate the PFC at beta frequency while participants acquire word
346	pairs associated with RPEs of varying size and value. Second, tACS has a relatively low spatial
347	resolution. As a consequence, current flow is not focal, but distributed across the entire scalp.
348	Therefore, it is conceivable that our tACS manipulation did not exclusively stimulate the MFC.
349	Due to a complex interplay of brain networks, it remains possible that other brain regions were
350	stimulated as well, potentially interacting or interfering with our RPE effect in declarative
351	learning. For instance, [70] applied theta-frequency (5 Hz) tACS over the ventrolateral

TACS, RPE & DECLARATIVE LEARNING

352	prefrontal cortex during the acquisition of face-occupation pairs in older adults. In line with our
353	study, theta-frequency tACS did not affect memory performance. Using a high-definition (HD)
354	tACS montage setup with smaller electrodes, might improve anatomical stimulation specificity.
355	Another option to improve spatial resolution would be to use rhythmic Transcranial Magnetic
356	Stimulation (TMS) [71]. In the same experimental paradigm where rTMS at beta frequency
357	modulated declarative memory [69], tACS at beta frequency did not successfully modulate
358	memory formation [72]. This finding thus further validates the use of (rhythmic) TMS over tACS.
359	Instead of delivering single pulses as theta frequency, another procedure is to deliver high-
360	frequency bursts at theta frequency. This procedure has also been shown to increase memory
361	performance and certainty ratings [73,74] and thus is also a viable alternative for future
362	research. Third, some authors raised the interesting issue of brain-state-dependent effects [75–
363	78]. More specifically, tACS effects might depend on the current brain state a participant is in. If
364	a participant is in an optimal brain state where brain networks are synchronized enabling high
365	encoding efficiency, stimulating the learning brain might impair learning. If, however, a
366	participant is in a non-optimal brain state where synchronization is less pronounced and
367	accompanied by decreased encoding efficiency, then applying stimulation could facilitate
368	learning and improve memory performance. As we could not measure participants' brain states
369	in our study, it is possible that tACS interacted with ongoing brain states. Fourth, we used the
370	same stimulation parameters for each participant. It would be interesting to see whether using
371	individualized stimulation parameters would alter the results. This could be accomplished by
372	using a closed-loop approach where brain signals are measured before, during, and after task
373	execution by means of EEG. As such, individual peak frequencies can be extracted and

TACS, RPE & DECLARATIVE LEARNING

19

374	neurophysiological changes due to tACS stimulation can be measured [79], which can then be
375	used to tailor stimulation parameters to each participant individually. Indeed, evidence has
376	shown that stimulation parameters should ideally be adjusted to participants' internal brain
377	states [80]. Fifth, due to logistical constraints, a between-subjects design was used. By doing so,
378	individual differences are not easily controlled. This could be mitigated by using a within-
379	subjects design, where each participant is subjected to a real and a sham stimulation condition.
380	Finally, due to the lack of standardized tACS procedures across studies, it remains difficult to
381	draw definitive conclusions. The absence of an effect highlights the importance for
382	understanding its underlying mechanisms [81], and setting up general procedural guidelines
383	with regard to neurostimulation studies [49,82].
384	In summary, the current study examined whether applying theta-frequency (6 Hz) tACS over
384	In summary, the current study examined whether applying theta-frequency (6 Hz) tACS over
384 385	In summary, the current study examined whether applying theta-frequency (6 Hz) tACS over the MFC modulates the RPE effect in declarative learning. Previous behavioral results were
384 385 386	In summary, the current study examined whether applying theta-frequency (6 Hz) tACS over the MFC modulates the RPE effect in declarative learning. Previous behavioral results were replicated, with SRPEs driving declarative learning. However, theta tACS over the MFC did not
384 385 386 387	In summary, the current study examined whether applying theta-frequency (6 Hz) tACS over the MFC modulates the RPE effect in declarative learning. Previous behavioral results were replicated, with SRPEs driving declarative learning. However, theta tACS over the MFC did not modulate the effect of RPEs on declarative learning, and we proposed guidelines for future

391 None.

392

393 Acknowledgements

TACS, RPE & DECLARATIVE LEARNING

- 394 We thank Lara Bardi for help with the tACS startup. KE conducted the research as a doctoral
- researcher, supported by grant 1153418N of the Research Foundation Flanders. EDL and TV
- were supported by grant BOF17-GOA-004 from the Research Council of Ghent University.

TACS, RPE & DECLARATIVE LEARNING

397		References
398	1.	Squire LR. Memory systems of the brain: A brief history and current perspective.
399		Neurobiol Learn Mem. 2004;82(3):171–7.
400	2.	Bastin C, Van der Linden M. The contribution of recollection and familiarity to
401		recognition memory: A study of the effects of test format and aging. Neuropsychology.
402		2003;17(1):14.
403	3.	Eichenbaum H. Hippocampus: Cognitive processes and neural representations that
404		underlie declarative memory. Neuron. 2004;44(1):109–20.
405	4.	Greve A, Cooper E, Kaula A, Anderson MC, Henson R. Does prediction error drive one-
406		shot declarative learning? J Mem Lang. 2017;94:149–65.
407	5.	Ergo K, De Loof E, Verguts T. Reward prediction error and declarative memory. Trends
408		Cogn Sci. 2020;24(5):388–97.
409	6.	Rouhani N, Norman KA, Niv Y. Dissociable effects of surprising rewards on learning and
410		memory. J Exp Psychol Learn Mem Cogn. 2018;44(9):1430–43.
411	7.	De Loof E, Ergo K, Naert L, Janssens C, Talsma D, Van Opstal F, et al. Signed reward
412		prediction errors drive declarative learning. Ito E, editor. PLoS One. 2018
413		Jan;13(1):e0189212.
414	8.	Ergo K, De Loof E, Janssens C, Verguts T. Oscillatory signatures of reward prediction
415		errors in declarative learning. Neuroimage. 2019;186:137–45.

TACS, RPE & DECLARATIVE LEARNING

22

416	9.	Calderon CB, De Loof E, Ergo K, Snoeck A, Boehler CN, Verguts T. Signed reward	
-----	----	--	--

- 417 prediction errors in the ventral striatum drive episodic memory. bioRxiv. 2020 Jan
- 418 3;2020.01.03.893578.
- 419 10. Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science
- 420 (80-). 1997;275(5306):1593–9.
- 421 11. Watabe-Uchida M, Eshel N, Uchida N. Neural circuitry of reward prediction error. Annu
 422 Rev Neurosci. 2017;40(1):373–94.
- 423 12. Shohamy D, Adcock RA. Dopamine and adaptive memory. Trends Cogn Sci.

424 2010;14(10):464–72.

- 425 13. Nieuwenhuis S, Holroyd CB, Mol N, Coles MGH. Reinforcement-related brain potentials
- 426 from medial frontal cortex: Origins and functional significance. Neurosci Biobehav Rev.
- 427 2004 Jul 1;28(4):441–8.
- 428 14. Lisman JE, Grace AA, Duzel E. A neoHebbian framework for episodic memory; role of
- dopamine-dependent late LTP. Trends Neurosci. 2011 Oct;34(10):536–47.
- 430 15. Herweg NA, Solomon EA, Kahana MJ. Theta oscillations in human memory. Trends Cogn
 431 Sci. 2019;24(3):20.
- 432 16. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance:
- 433 A review and analysis. Brain Res Rev. 1999;29(2):169–95.
- 434 17. Fries P. A mechanism for cognitive dynamics: Neuronal communication through neuronal
- 435 coherence. Trends Cogn Sci. 2005;9(10):474–80.

TACS, RPE & DECLARATIVE LEARNING

436	18.	Osipova D, Takashima A, Oostenveld R, Fernández G, Maris E, Jensen O. Theta and
437		gamma oscillations predict encoding and retrieval of declarative memory. J Neurosci.
438		2006;26(28):7523–31.
439	19.	Sederberg PB, Kahana MJ, Howard MW, Donner EJ, Madsen JR. Theta and gamma
440		oscillations during encoding predict subsequent recall. J Neurosci. 2003;23(34):10809–
441		14.
442	20.	Summerfield C, Mangels JA. Coherent theta-band EEG activity predicts item-context
443		binding during encoding. Neuroimage. 2005;24:692–703.
444	21.	Solomon EA, Stein JM, Das S, Gorniak R, Sperling MR, Worrell G, et al. Dynamic theta
445		networks in the human medial temporal lobe support episodic memory. Curr Biol. 2019
446		Apr 1;29(7):1100–11.
447	22.	Wang D, Clouter A, Chen Q, Shapiro KL, Hanslmayr S. Single-trial phase entrainment of
448		theta oscillations in sensory regions predicts human associative memory performance. J
449		Neurosci. 2018 Jun 13;38(28):6299–309.
450	23.	Clouter A, Shapiro KL, Hanslmayr S. Theta phase synchronization is the glue that binds
451		human associative memory. Curr Biol. 2017;27(23):3143–8.
452	24.	Gruber MJ, Hsieh L-T, Staresina BP, Elger CE, Fell J, Axmacher N, et al. Theta phase
453		synchronization between the human hippocampus and the prefrontal cortex supports
454		learning of unexpected information. J Cogn Neurosci. 2018;30(11):1646–56.
455	25.	Preston AR, Eichenbaum H. Interplay of hippocampus and prefrontal cortex in memory.

TACS, RPE & DECLARATIVE LEARNING

- 456 Curr Biol. 2013;23(17):R764–73.
- 457 26. Euston DR, Gruber AJ, Mcnaughton BL. The role of medial prefrontal cortex in memory
 458 and decision making. Neuron. 2012;76(6):1057–70.
- 459 27. De La Vega A, Chang LJ, Banich MT, Wager TD, Yarkoni T. Large-scale meta-analysis of
- 460 human medial frontal cortex reveals tripartite functional organization. J Neurosci. 2016
- 461 Jun 15;36(24):6553–62.
- 462 28. Gehring WJ, Willoughby AR. The medial frontal cortex and the rapid processing of
- 463 monetary gains and losses. Science (80-). 2002;295(5563):2279–82.
- 464 29. Vassena E, Silvetti M, Boehler CN, Achten E, Fias W, Verguts T. Overlapping neural
- 465 systems represent cognitive effort and reward anticipation. PLoS One. 2014 Mar 7;9(3).
- 466 30. Oliveira FTP, McDonald JJ, Goodman D. Performance monitoring in the anterior cingulate
- 467 is not all error related: Expectancy deviation and the representation of action-outcome
- 468 associations. J Cogn Neurosci. 2007;19(12):1994–2004.
- 469 31. Jessup RK, Busemeyer JR, Brown JW. Error effects in anterior cingulate cortex reverse
 470 when error likelihood is high. J Neurosci. 2010 Mar 3;30(9):3467–72.
- 471 32. Silvetti M, Vassena E, Abrahamse E, Verguts T. Dorsal anterior cingulate-brainstem
- 472 ensemble as a reinforcement meta-learner. PLoS Comput Biol. 2018 Aug
- 473 1;14(8):e1006370.
- 474 33. Berens SC, Horner AJ. Theta rhythm: Temporal glue for episodic memory. Curr Biol.
- 475 2017;27(20):R1110–2.

TACS, RPE & DECLARATIVE LEARNING

476	34.	Backus AR, Schoffelen J-M, Szebényi S, Hanslmayr S, Doeller CF. Hippocampal-prefrontal
477		theta oscillations support memory integration. Curr Biol. 2016;26(4):450–7.
478	35.	Thut G, Bergmann TO, Fröhlich F, Soekadar SR, Brittain JS, Valero-Cabré A, et al. Guiding
479		transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and
480		associated functions: A position paper. Vol. 128, Clinical Neurophysiology. Elsevier
481		Ireland Ltd; 2017. p. 843–57.
482	36.	Zaehle T, Rach S, Herrmann CS. Transcranial alternating current stimulation enhances
483		individual alpha activity in human EEG. PLoS One. 2010;5(11):1–7.
484	37.	Antal A, Paulus W. Transcranial alternating current stimulation (tACS). Front Hum
485		Neurosci. 2013;7:317.
486	38.	Ambrus GG, Pisoni A, Primaßin A, Turi Z, Paulus W, Antal A. Bi-frontal transcranial
487		alternating current stimulation in the ripple range reduced overnight forgetting. Front
488		Cell Neurosci. 2015;9:374.
489	39.	Jaušovec N, Jaušovec K. Increasing working memory capacity with theta transcranial
490		alternating current stimulation (tACS). Biol Psychol. 2014;96:42–7.
491	40.	Pahor A, Jaušovec N. The effects of theta and gamma tACS on working memory and
492		electrophysiology. Front Hum Neurosci. 2018;11:651.
493	41.	Chander BS, Witkowski M, Braun C, Robinson SE, Born J, Cohen LG, et al. tACS phase
494		locking of frontal midline theta oscillations disrupts working memory performance. Front
495		Cell Neurosci. 2016;10:120.

TACS, RPE & DECLARATIVE LEARNING

496	42.	Alekseichuk, Turi Z, Lara G de, Antal A, Biology WP-C, 2016 U. Spatial working memory in
497		humans depends on theta and high gamma synchronization in the prefrontal cortex. Curr
498		Biol. 2016;26(12):1513–21.
499	43.	Albouy P, Weiss A, Baillet S, Zatorre RJ. Selective entrainment of theta oscillations in the
500		dorsal stream causally enhances auditory working memory performance. Neuron. 2017
501		Apr 5;94(1):193–206.
502	44.	Vosskuhl J, Huster RJ, Herrmann CS. Increase in short-term memory capacity induced by
503		down-regulating individual theta frequency via transcranial alternating current
504		stimulation. Front Hum Neurosci. 2015;9:257.
505	45.	Lang S, Gan LS, Alrazi T, Monchi O. Theta band high definition transcranial alternating
506		current stimulation, but not transcranial direct current stimulation, improves associative
507		memory performance. Sci Rep. 2019;9(1):8562.
508	46.	Alekseichuk I, Turi Z, Veit S, Paulus W. Model-driven neuromodulation of the right
509		posterior region promotes encoding of long-term memories. Brain Stimul. 2020 Mar
510		1;13(2):474–83.
511	47.	Peirce JW. PsychoPy—psychophysics software in Python. J Neurosci Methods.
512		2007;162(1–2):8–13.
513	48.	Fertonani A, Ferrari C, Miniussi C. What do you feel if I apply transcranial electric
514		stimulation? Safety, sensations and secondary induced effects. Clin Neurophysiol. 2015
515		Nov 1;126(11):2181–8.

TACS, RPE & DECLARATIVE LEARNING

516	49.	Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial
517		direct current stimulation: State of the art 2008. Brain Stimul. 2008;1(3):206–23.
518	50.	R Core Team. R: A language and environment for statistical computing. R Found Stat
519		Comput Vienna, Austria. 2014;
520	51.	JASP Team. JASP (Version 0.13)[Computer software] [Internet]. 2020. Available from:
521		https://jasp-stats.org/
522	52.	Rouder JN, Morey RD, Speckman PL, Province JM. Default Bayes factors for ANOVA
523		designs. J Math Psychol. 2012;56:356–74.
524	53.	Jeffreys H. The theory of probability. 3rd ed. New York, NY: Oxford University Press.;
525		1961.
526	E A	Duracely N. Deven D. Delen D. Dural F. A common mechanism for edentive cooling of
520	54.	Bunzeck N, Dayan P, Dolan RJ, Duzel E. A common mechanism for adaptive scaling of
527	54.	reward and novelty. Hum Brain Mapp. 2010;31(9):1380–94.
	55.	
527		reward and novelty. Hum Brain Mapp. 2010;31(9):1380–94.
527 528		reward and novelty. Hum Brain Mapp. 2010;31(9):1380–94. Mason A, Ludwig C, Farrell S. Adaptive scaling of reward in episodic memory: A
527 528 529	55.	reward and novelty. Hum Brain Mapp. 2010;31(9):1380–94. Mason A, Ludwig C, Farrell S. Adaptive scaling of reward in episodic memory: A replication study. Q J Exp Psychol. 2017;70(11):2306–18.
527 528 529 530	55.	reward and novelty. Hum Brain Mapp. 2010;31(9):1380–94. Mason A, Ludwig C, Farrell S. Adaptive scaling of reward in episodic memory: A replication study. Q J Exp Psychol. 2017;70(11):2306–18. Mason A, Farrell S, Howard-Jones P, Ludwig CJH. The role of reward and reward
527 528 529 530 531	55. 56.	reward and novelty. Hum Brain Mapp. 2010;31(9):1380–94. Mason A, Ludwig C, Farrell S. Adaptive scaling of reward in episodic memory: A replication study. Q J Exp Psychol. 2017;70(11):2306–18. Mason A, Farrell S, Howard-Jones P, Ludwig CJH. The role of reward and reward uncertainty in episodic memory. J Mem Lang. 2017;96:62–77.
527 528 529 530 531 532	55. 56.	reward and novelty. Hum Brain Mapp. 2010;31(9):1380–94. Mason A, Ludwig C, Farrell S. Adaptive scaling of reward in episodic memory: A replication study. Q J Exp Psychol. 2017;70(11):2306–18. Mason A, Farrell S, Howard-Jones P, Ludwig CJH. The role of reward and reward uncertainty in episodic memory. J Mem Lang. 2017;96:62–77. Davidow JY, Foerde K, Galvan A, Shohamy D. An upside to reward sensitivity: The

TACS, RPE & DECLARATIVE LEARNING

28

536		decision-making strengthen memory encoding. Nat Hum Behav. 2019;3(7):719–32.
537	59.	Wimmer GE, Braun EK, Daw ND, Shohamy D. Episodic memory encoding interferes with
538		reward learning and decreases striatal prediction errors. J Neurosci. 2014;34(45):14901-
539		12.
540	60.	Cavanagh JF, Figueroa CM, Cohen MX, Frank MJ. Frontal theta reflects uncertainty and
541		unexpectedness during exploration and exploitation. Cereb Cortex. 2012
542		Nov;22(11):2575–86.
543	61.	Cavanagh JF, Frank MJ, Klein TJ, Allen JJB. Frontal theta links prediction errors to
544		behavioral adaptation in reinforcement learning. Neuroimage. 2010 Feb;49(4):3198–209.
545	62.	Mas-Herrero E, Marco-Pallarés J. Frontal theta oscillatory activity is a common
546		mechanism for the computation of unexpected outcomes and learning rate. J Cogn
547		Neurosci. 2014;26(3):447–58.
548	63.	Cavanagh JF, Cohen MX, Allen JJB. Prelude to and resolution of an error: EEG phase
549		synchrony reveals cognitive control dynamics during action monitoring. Neuroscience.
550		2009;29(1):98–105.
551	64.	Haegens S, Cousijn H, Wallis G, Harrison PJ, Nobre AC. Inter- and intra-individual
552		variability in alpha peak frequency. Neuroimage. 2014;92:46–55.
553	65.	Caporale N, Dan Y. Spike timing-dependent plasticity: A Hebbian learning rule. Annu Rev
554		Neurosci. 2008;31:25–46.

555 66. Fell J, Axmacher N. The role of phase synchronization in memory processes. Nat Rev

TACS, RPE & DECLARATIVE LEARNING

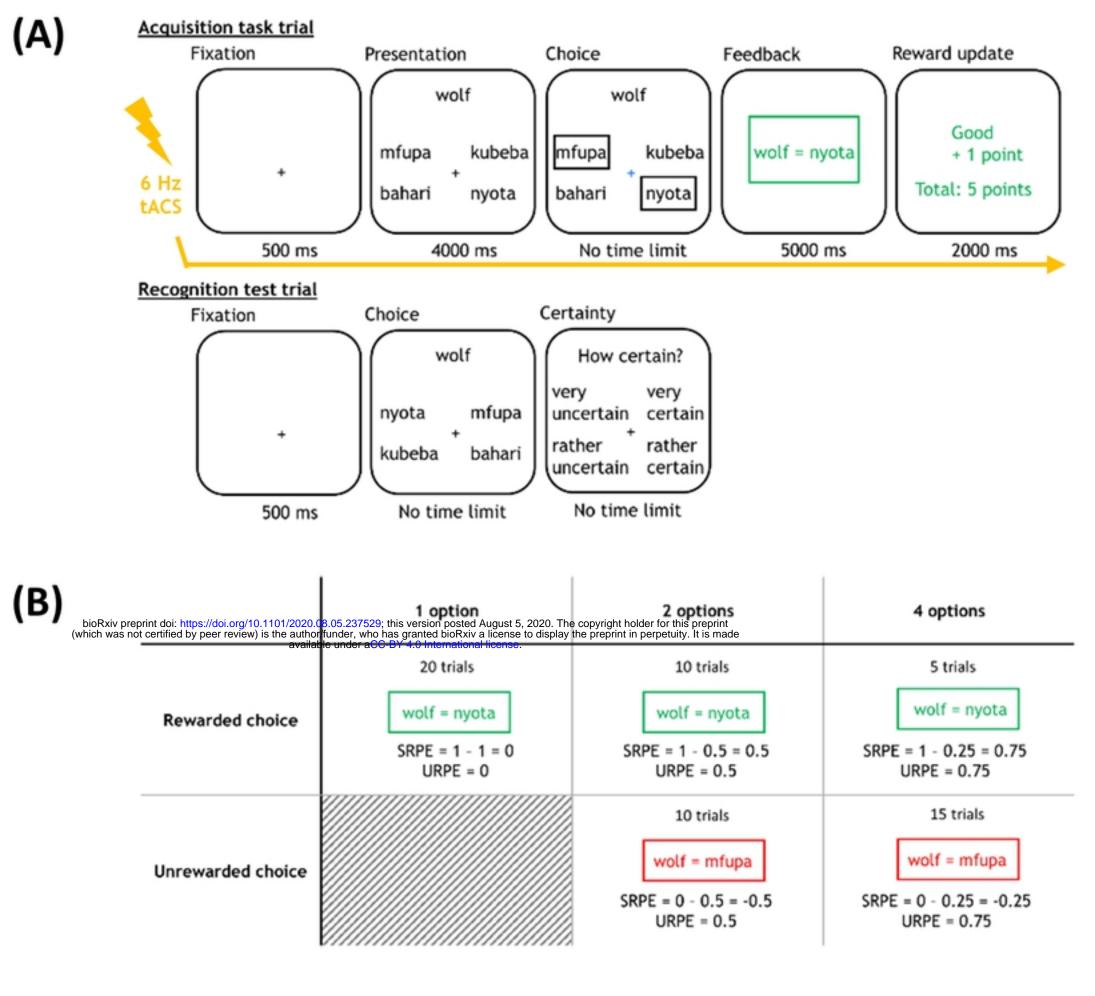
L8.
L

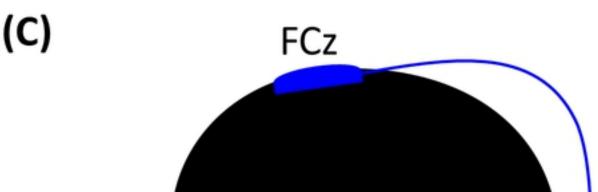
557	67.	Rutishauser U, Ross IB, Mamelak AN, Schuman EM. Human memory strength is predicted
558		by theta-frequency phase-locking of single neurons. Nature. 2010;464(7290):903–7.
559	68.	Reato D, Rahman A, Bikson M, Parra LC. Low-intensity electrical stimulation affects
560		network dynamics by modulating population rate and spike timing. J Neurosci.
561		2010;30(45):15067–79.
562	69.	Hanslmayr S, Matuschek J, Fellner MC. Entrainment of prefrontal beta oscillations
563		induces an endogenous echo and impairs memory formation. Curr Biol. 2014;24(8):904-
564		9.
565	70.	Klink K, Peter J, Wyss P, Klöppel S. Transcranial electric current stimulation during
566		associative memory encoding: Comparing tACS and tDCS effects in healthy aging. Front
567		Aging Neurosci. 2020;12:66.
568	71.	Thut G, Veniero D, Romei V, Miniussi C, Schyns P, Gross J. Rhythmic TMS causes local
569		entrainment of natural oscillatory signatures. Curr Biol. 2011;21(14):1176–85.
570	72.	Braun V, Sokoliuk R, Hanslmayr S. On the effectiveness of event-related beta tACS on
571		episodic memory formation and motor cortex excitability. Brain Stimul. 2017 Sep
572		1;10(5):910–8.
573	73.	Demeter E, Mirdamadi JL, Meehan SK, Taylor SF. Short theta burst stimulation to left
574		frontal cortex prior to encoding enhances subsequent recognition memory. Cogn Affect
575		Behav Neurosci. 2016;16(4):724–35.

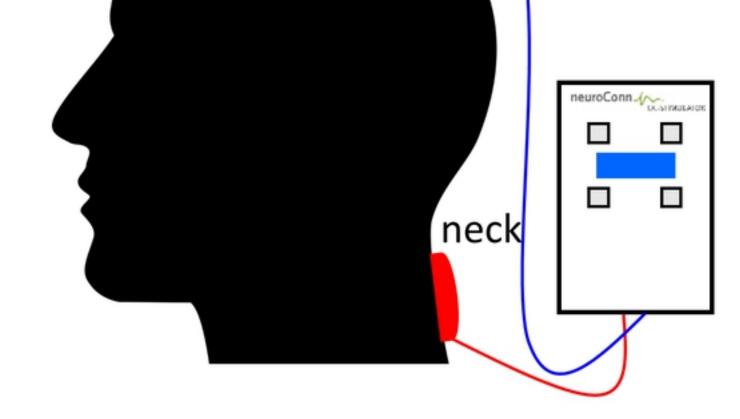
TACS, RPE & DECLARATIVE LEARNING

576	74.	Tambini A, Nee DE, D'Esposito M. Hippocampal-targeted theta-burst stimulation
577		enhances associative memory formation. J Cogn Neurosci. 2017;30(10):1452–72.
578	75.	Ezzyat Y, Kragel JE, Burke JF, Gorniak R, Rizzuto DS, Kahana MJ, et al. Direct brain
579		stimulation modulates encoding states and memory performance in humans. Curr Biol.
580		2017;27:1251–8.
581	76.	Hanslmayr S, Roux F. Human memory: Brain-state-dependent effects of stimulation. Curr
582		Biol. 2017;27(10):385–7.
583	77.	Bergmann TO. Brain state-dependent brain stimulation. Front Psychol. 2018;9:2108.
584	78.	Nguyen J, Deng Y, Reinhart RMG. Brain-state determines learning improvements after
585		transcranial alternating-current stimulation to frontal cortex. Brain Stimul.
586		2018;11(4):723–6.
587	79.	Fehér KD, Morishima Y. Concurrent electroencephalography recording curing
588		transcranial alternating current stimulation (tACS). JoVE (Journal Vis Exp.
589		2016;107:e53527.
590	80.	Kim K, Ekstrom AD, Tandon N. A network approach for modulating memory processes via
591		direct and indirect brain stimulation: Toward a causal approach for the neural basis of
592		memory. Neurobiol Learn Mem. 2016 Oct 1;134:162–77.
593	81.	Hanslmayr S, Axmacher N, Inman CS. Modulating human memory via entrainment of
594		brain oscillations. Trends Neurosci. 2019 Jul 1;42(7):485–99.
595	82.	Tavakoli A V, Yun K. Transcranial alternating current stimulation (tACS) mechanisms and

TACS, RPE & DECLARATIVE LEARNING


31


596 protocols. Front Cell Neurosci. 2017;11:214.


597

598 Supporting Information

- 599 **S1 Tables. Stimulus Material.**
- 600 S2 File. Sensations Questionnaire.

Figure1

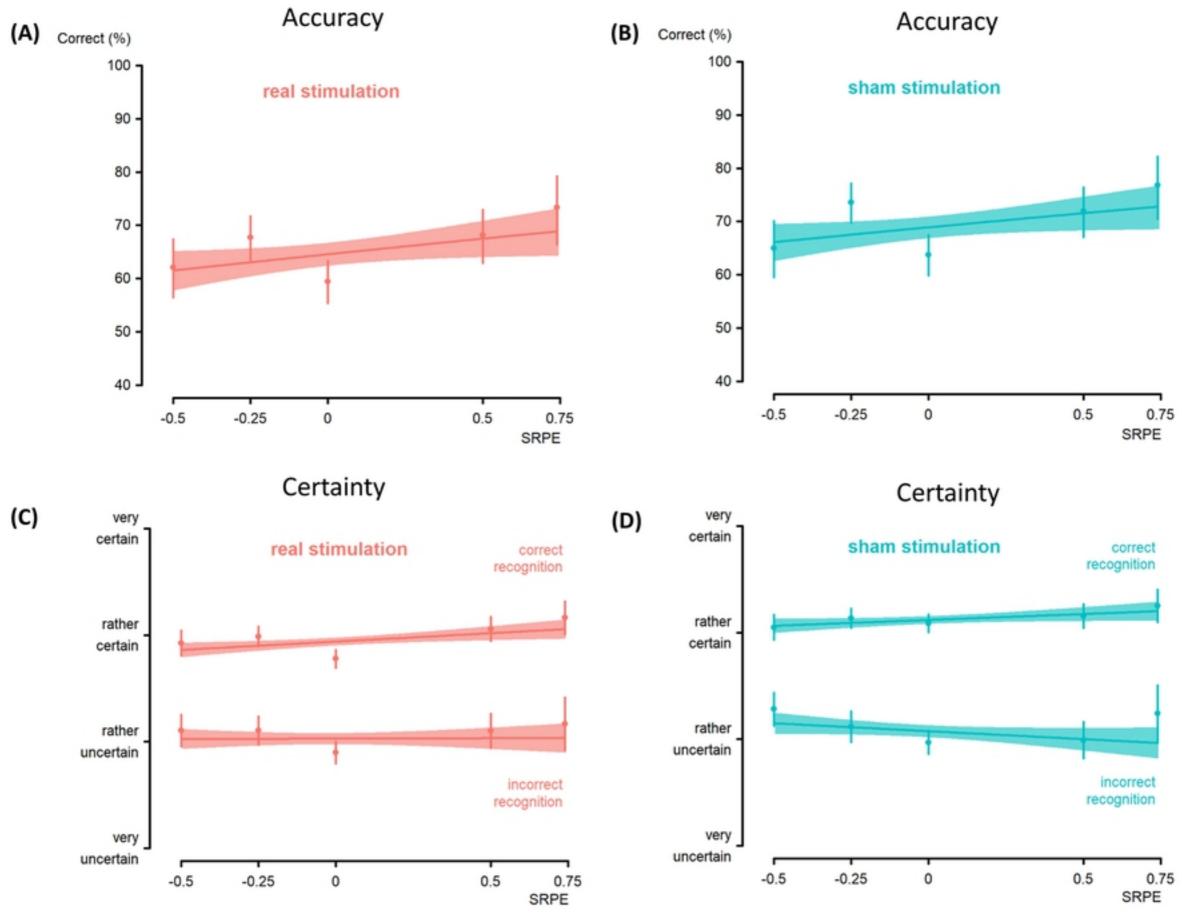


Figure2