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Abstract

Intertemporal choice requires choosing between a smaller reward available after a
shorter time delay and a larger reward available after a longer time delay. Previous
studies suggest that intertemporal preferences are formed by generating a subjective
value of the monetary rewards that depends on reward amount and the associated time
delay. Neuroimaging results indicate that this subjective value is tracked by ventral
medial prefrontal cortex (vmPFC) and ventral striatum. Subsequently, an accumulation
process, subserved by a network including dorsal medial frontal cortex (dmFC), dorsal
lateral prefrontal cortex (dlPFC) and posterior parietal cortex (pPC), selects a choice
based on the subjective values. The mechanisms of how value accumulation interacts
with subjective valuation to make a choice, and how brain regions communicate during
decision making are undetermined. We developed and performed an EEG experiment
that parametrically manipulated the probability of preferring delayed larger rewards. A
computational model equipped with time and reward information transformation,
selective attention, and stochastic value accumulation mechanisms was constructed and
fit to choice and response time data using a hierarchical Bayesian approach.
Phase-based functional connectivity between putative dmFC and pPC was found to be
associated with stimulus processing and to resemble the reconstructed accumulation
dynamics from the best performing computational model across experimental conditions.
By combining computational modeling and phase-based functional connectivity, our
results suggest an association between value accumulation, choice competition, and
frontoparietal connectivity in intertemporal choice.

Author summary

Intertemporal choice is a prominent experimental assay for impulsivity. Behavior in the
task involves several cognitive functions including valuation, action selection and
self-control. It is unknown how these different functions are temporally implemented
during the course of decision making. In the current study, we combined formal
computational models of intertemporal choice with a phase-based EEG measure of
activity across brain regions to show that functional connectivity between dmFC and
pPC reflects cognitive mechanisms of both visual stimulus processing and choice value
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accumulation. The result supports the notion that dynamic interaction between
frontopatietal regions instantiates the critical value accumulation process in
intertemporal choice.

Introduction 1

The ability to make future-oriented decisions is a key component of long-term 2

well-being [1–3]. Often, securing the largest cumulative reward requires forgoing 3

immediate gratification, and holding out for a long term reward. A decision that 4

requires an individual to choose among two or more rewards occurring at different time 5

points is referred to as an intertemporal choice. Neuroimaging studies have identified a 6

number of brain regions involved in intertemporal decision making [4–7], and scoped a 7

general framework for understanding the functions implemented by these neural 8

systems [8–10]. According to this framework, an intertemporal choice requires the 9

completion of a subjective value representation, and a choice selection 10

processes [4–6,9, 11, 12]. To construct a subjective value representation, the information 11

about the monetary value (i.e., reward) of a choice alternative and the amount of time 12

(i.e., delay) associated with it must be fused together. This subjective value 13

representation process is now widely acknowledged to be closely associated with neural 14

processes in the ventral striatum and the ventromedial prefrontal cortex (vmPFC) 15

across different experimental tasks [7, 8, 12]. 16

The process of choosing among intertemporal choice alternatives creates a type of 17

competition for choice selection, and consideration of different aspects of the 18

alternatives (e.g., reward and delay) creates different instantaneous subjective values, 19

which must be compared. We have argued that value comparison occurs by 20

accumulating stochastic evidence of the relative values of the choice options [13,14]. 21

This choice value accumulation process has been associated with a large brain network, 22

including dorsal medial frontal cortex (dmFC), dorsolateral prefrontal cortex (dlPFC) 23

and posterior parietal cortex (pPC) [12,15,16]. Disrupting brain activity using 24

transcranial magnetic stimulation (TMS) to bilaterally inhibit prefrontal cortex and 25

right pPC increases impulsive behavior [11,17], implicating these brain regions in the 26

consideration of future rewards. Harris et al. [18] exploited the temporal dynamics of 27

intertemporal choice with EEG and found two separate roles of dlPFC: top-down 28

attention filtering at early decision periods, and value modulation at late decision 29

periods. Although there is extensive research and general consensus about the 30

subjective valuation functions of vmPFC and ventral striatum, there is less consensus 31

about the functional roles of dlPFC, dmFC and pPC because most previous studies 32

have focused on only one specific region or mechanism. Such focus can be productive for 33

localizing a region’s functional role, but it leaves open the question of how neural 34

interaction between fronto-parietal regions contributes to decision-making. At least two 35

important questions wait to be explored: (1) Do fronto-parietal regions assume separate 36

or collaborative roles for making intertemporal choices? (2) What neural mechanisms 37

most closely adhere to the value accumulation process? 38

To answer these questions, our current study uses the temporal resolution of EEG to 39

probe the spatio-temporal covariates of cognitive mechanisms during intertemporal 40

choice tasks. We first built a computational cognitive model that posits multiple 41

potential mechanisms for the value accumulation process. We then determined the most 42

plausible representation for the value accumulation process by factorially fitting 43

different combinations of the model mechanisms to choice response time data 44

hierarchically across subjects. Once the best mechanisms had been identified, we used 45

the model to reconstruct the temporal dynamics of the value accumulation process, and 46

associated these model dynamics with inter-regional phase-based functional connectivity 47
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among putative dmFC, pPC and dlPFC sources estimated from EEG data. Our results 48

suggest that the functional connectivity between dmFC and pPC is a signature of the 49

value accumulation process. Specifically, the dmFC-pPC functional connectivity, 50

measured by theta-band phase clustering patterns in EEG data, is positively associated 51

with the competitive dynamics of the value accumulation process. This finding enhances 52

our understanding about the spatio-temporal neural correlates of intertemporal choice. 53

Results 54

Subjects completed a pretest session and an EEG session of the intertemporal choice 55

task. The purpose of the pretest session was to execute better control over subjects’ 56

behaviors and to adequately decide choice offers for the EEG session. Specifically, we 57

estimated two decision parameters for each subject according to a staircase procedure in 58

the pretest session, such that we could tempt each subject to choose the delayed option 59

with approximate probabilities of 0.1, 0.3, 0.5, 0.7, or 0.9 in the EEG session. We refer 60

to such expected probabilities of choosing delayed options as experimental PD 61

conditions throughout the text. 62

In every trial of the EEG session, a delay t was randomly selected from a range of 15 63

to 45 days. We then calculated and offered an amount r that would give PD of 0.1, 0.3, 64

0.5, 0.7, or 0.9; given the estimated parameters for the subject from the pretest session 65

and the selected delay for the trial (see Methods section for details). Fig 1a shows how 66

different PD conditions were constructed (left) based on how each subject combined 67

reward and delay information (right). For each subject, the combined rewards and 68

delays constitute five discounted values (VD) of the delayed option, illustrated as five 69

different colors on the plot. Then the VDs are mapped onto the five targeted PD values, 70

according to a sigmoid transform function. Fig 1b shows the temporal structure of 71

stimulus presentation. Delays (t) were presented first for 1000 milliseconds. The amount 72

information (r) was then shown and kept on screen until a choice was made or for a 73

maximum of 4000 milliseconds. The immediate reward was the same ($10) on every 74

trial, but it was only instructed to the subjects before the EEG session, instead of being 75

presented visually. EEG data were collected during the EEG session. 76

Fig 1. Experiment Design. (a) Discounted values of the delayed reward (VD)
corresponded to one of five expected choice probabilities (PD) for each subject. Delays
between 15-45 days were combined with different reward amounts (right panel) to map
varying delayed rewards to targeted choice probabilities (left panel). (b) Within-trial
sequential presentation of delay and amount information. Delays were presented first,
followed by amounts. A jittered intertrial interval of several hundred milliseconds
separated each trial.

Behavioral data 77

To confirm that subjects’ behavior was consistent with the experimental manipulation, 78

we first calculated the empirical PD as the proportion of delayed choice responses for 79

each subject in each experimental PD condition. Fig 2a illustrates that the empirical 80

PD (y-axis) during the EEG session closely matches the experimental PD (x-axis) 81

constructed from the pretest session. The solid bordered points correspond to the 82

average empirical PD across subjects, and they fall closely onto the diagonal line, 83

suggesting that our experimental stimuli produced patterns of choice response we 84

intended, despite some individual differences. To test that, we performed a 23 (subjects) 85

× 5 (experimental PD conditions) mixed effect logistic regression analysis with the PD 86
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condition as a repeated measure and subject as a random effect. We found a significant 87

effect of the experimental PD condition, and the estimated probability of choosing the 88

delayed option is 0.089, 0.287, 0.509, 0.759, and 0.869 for conditions PD = 0.1, 0.3, 0.5, 89

0.7, and 0.9, respectively. The match between the experimental PD and empirical PD 90

was thus confirmed. 91

Fig 2b depicts the mean response times for each subject (denoted as 92

semi-transparent dots) as a function of the experimental PD. The average response time 93

across subjects (denoted as the solid dots) shows a symmetric pattern where the average 94

response time is longest at the PD = 0.5 condition. To examine the symmetric relation 95

between response times and PD conditions, a mixed-effect regression model with 96

orthogonal polynomial terms was performed, where the PD condition was treated as a 97

fixed effect and subject was treated as a random effect. The mixed-effect regression 98

model suggested a significant effect of the quadratic experimental PD on the response 99

time (β̂ = −6457.88, t(3999.01) = −11.396, p = 2.12× 10−16) but did not yield 100

significant results for the first-order term of PD (β̂ = 290.17, t(3999.01) = 0.512, 101

p = 0.609). We also compared the quadratic model with a linear model in which the 102

quadratic term was removed, and we found that the quadratic model generated both 103

lower AIC and BIC values (AIC: 62524.41 and BIC: 62555.91) compared to the linear 104

model (AIC: 62650.22, BIC: 62675.42). Such a comparison result indicated that the 105

quadratic model better captured the response time data. Taken together, the behavioral 106

choice probability and response time results corroborate that our experimental 107

manipulation worked as intended. 108

Fig 2. Behavioral Data Results. (a) The values of empirical PD (actual proportion
of making delayed choices) are consistent with the experimental PD (theoretical
probability of choosing delayed options). (b) Response times are shown against
experimental PD. In both panels, the solid points correspond to the average value
across subjects, whereas the transparent points correspond to the individual value for
each subject. The black diagonal line in panel (a) illustrates the ideal equivalence
between the empirical and experimental PDs.

Behavioral modeling 109

In addition to analyses on manifest variables, we fit a computational model to the 110

behavioral data to gain insight into the underlying within-trial temporal dynamics of 111

intertemporal choice [15]. The model we adopted assumed a trade-off mechanism 112

between features of rewards and time delays in forming the representation of choice 113

alternatives [19]. Previous studies have shown that such attribute-wise models could 114

mimic various delay discounting curves in terms of subjective valuation [15] and that 115

these models explain choice probabilities and response times as well or better than 116

hyperbolic discounting models do [20–22]. Depending on specific experimental designs, 117

attribute-wise models can provide more information on temporal dynamics when 118

different attributes were presented sequentially (as in the current experimental design). 119

Similarly, attribute-wise models can be convenient to explain eye tracking data where 120

the process tracing data reveal which attribute is being processed [22]. Fig 3a shows a 121

graphical diagram of how the features of the stimuli (rI , rD, tI , tD) are mapped into a 122

choice variable (O) from several model mechanisms, such as a transformation of time 123

and reward values, moment-by-moment selective attention of attribute information, and 124

lateral inhibition during the value accumulation process. The model takes its inspiration 125

from decision field theory and its variants [21,23–25], and the leaky competing 126

accumulator (LCA) model [26,27]. 127
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Fig 3. Computational Cognitive Model of Intertemporal Choice. (a) The
model takes the objective value of rewards (i.e., rI and rD; blue nodes) and time delays
(i.e., tI and tD; yellow nodes), and converts these inputs to subjective representations
(i.e., Ir and It) through transformation parameters αr and αt, respectively. Features are
selected at each moment with the parameter ω, creating an integrated subjective value
of each alternative (i.e., the green node). Deliberation among the immediate and
delayed alternatives is modulated by lateral inhibition parameters βI and βD (i.e., the
orange node). Once an accumulator reaches a threshold amount of preference (θ), a
decision is made corresponding to the winning accumulator (i.e., the red node). (b)
Model fits from each model in (b), aggregated across subjects. (c) Model fitting results
in terms of a z-transformed BIC statistic for each model configuration (by row) and
each subject (by column). Each model variant is described on the left panel by a set of
empty or filled circles, where empty circles indicate that a parameter was free to vary,
whereas filled nodes indicate that a parameter was fixed. The model structures are
grouped by their number of free parameters: black (3), purple (4), blue (5), green (6)
and yellow (7). For the zBIC, lower values (blue) suggest better model performance.

In Fig 3a, the computational model converts information about the rewards (blue 128

nodes) and time delays (yellow nodes) for both immediate (I) and delayed (D) options 129

into subjective values. For this transformation, we assumed a power transformation [21]: 130

r∗x = rαr
x ,

t∗x = tαt
x .

The power transformation is intended to represent how subjects encode stimulus 131

values, where the reward rx and delay tx (x = I or D) information are transformed into 132

subjective representations r∗x and t∗x through the parameters αr and αt, respectively. 133

The reward and time delay can be viewed as two separate feature dimensions that 134

are selectively attended to at each moment in time t. Let w(t) denote the feature 135

dimension that is being attended at the moment t. For simplicity, we assume that w(t) 136

follows a Bernoulli distribution over time, such that 137

w(t) ∼ Bernoulli(ω), (1)

where ω is an attention parameter. We arbitrarily specified the values of w(t) such 138

that when w(t) = 0, attention was directed toward the time information, whereas when 139

w(t) = 1, attention was directed toward the reward information. Hence, estimates of the 140

ω parameter that are large (i.e., near one) indicate greater attention to the reward 141

information. 142

By selecting different featural dimensions to compare the immediate and delayed 143

options over time, an integrated representation of the subjective values of each 144

alternative (VI and VD) can be constructed as: 145

VI(t) = w(t)rαr

I + [1− w(t)]tαt

D ,

VD(t) = w(t)rαr

D + [1− w(t)]tαt

I .

In Fig 3a, this isolated subjective valuation is represented as the green node. As 146

shown in Fig 1, the time and reward information were not presented simultaneously, 147

and so for the first 1000 milliseconds the time information could have been processed 148

independently from the reward information (i.e. w(t) = 0). To account for this, we 149

assumed that the subjective values were constructed in a “piecewise” manner, such that 150

for the first 1000 milliseconds, 151
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VI(t) = tαt

D , and

VD(t) = tαt

I .

Hence, before the reward information is displayed (i.e., before one second), the 152

subjective value of VI and VD only contains the encoded value of time delay. Once the 153

reward information is presented (i.e., after one second), the subjective value oscillates 154

between the encoded values of reward and time delay, with the frequency of attention 155

determined by ω in Eq 1. Such a model formulation is strongly contingent on the 156

specifics of the experimental design and the temporal resolution of the neural 157

measurements. Given that we wished to connect the model’s temporal dynamics to 158

EEG measurements with high temporal resolution, we determined that capturing this 159

temporal contingency was crucial to successfully extracting a useful cognitive 160

representation of subjective value accumulation. 161

Beyond the issue of subjective valuation is the issue of deliberation among the 162

alternatives. Several studies suggest a key role for the effects of lateral inhibition and 163

leakage on the temporal dynamics of decision making [15,16,21,23,26–31]. The lateral 164

inhibition mechanism creates mutual competition between the immediate and delayed 165

options during the course of value accumulation. The leakage mechanisms allow for the 166

passive loss of information in the value accumulation process. For example, in our 167

previous work [15], we have shown that trial-to-trial variability in the lateral inhibition 168

parameter covaries with trial-to-trial measures of self control expressed in several of the 169

integration brain regions discussed in the introduction (e.g., dmFC and dlPFC), yet 170

were not linked to aspects of the valuation process (e.g., vmPFC). 171

Fig 3a illustrates how the subjective valuation node V is converted to the decision 172

variable A with the mechanisms of lateral inhibition denoted βI and βD, for the 173

immediate (I) and delayed (D) options, respectively. βI stands for the inhibition from 174

the delayed option to the immediate option, and βD stands for the inhibition from the 175

immediate option to the delayed option. Although not illustrated in Fig 3a, the model 176

also contains leakage mechanisms λI and λD to allow for the passive loss of information 177

in the value accumulation process. Due to some parameter instabilities, in all model fits 178

below, we do not estimate the leakage terms, but instead set them to λI = λD = 0.1 179

throughout. Finally, to allow for stochastic noise in the value accumulation process, we 180

assumed the presence of Gaussian noise at each moment in time, such that 181

δ(t) ∼ N(0, σ),

where N(a, b) denotes the normal distribution with mean a and standard deviation b. 182

Unlike the leakage term, the noise term σ was estimated in all model variants. 183

Together, the value accumulation process including lateral inhibition, leakage and 184

noise for each of immediate (AI) and delayed (AD) alternatives can be expressed as 185

AI(t) = AI(t− 1) + [VI(t)− λIAI(t− 1)− βIAD(t− 1)]ε+ δ(t)
√
ε

AD(t) = AD(t− 1) + [VD(t)− λDAD(t− 1)− βDAI(t− 1)]ε+ δ(t)
√
ε.

(2)

Although the model is actually a continuous diffusion process, Eq 2 is written as the 186

recursive numerical approximation of the process in the Euler method [32]. The term ε 187

denotes a discrete time step in the accumulation process. We set ε = 0.1 in our 188

approximation of the model’s dynamics. 189

There are two other dynamics of the model to discuss before finalizing the model 190

specification, and both relate to boundaries that the accumulators AI and AD take. 191

First, there is a threshold parameter θ that designates when enough value has 192

accumulated for either option to trigger a response. On the presentation of the stimulus, 193

both accumulators race to this threshold value θ, and a choice is made that corresponds 194
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to the accumulator that reaches the threshold first. Additionally, we specified that the 195

accumulation process started at a fixed distance away from the threshold value θ. The 196

starting point was fixed to be θ/5. Fig 3a illustrates that the accumulation process 197

produces the response, designated as the red node O. For our purposes, we assumed a 198

common threshold for both accumulators, and this parameter is estimated for every 199

model variant we discuss below. Second, there is a lower boundary on the accumulation 200

process, such that no accumulator can go below zero. This assumption follows the 201

tradition of the Leaky Competing Accumulator model and is based off the principle that 202

neurons cannot have negative firing patterns. To enforce this constraint, we specified 203

that 204

Ai(t) =

{
0 if Ai(t) ≤ 0

Ai(t) if Ai(t) > 0
i ∈ {I,D}.

Model simulation 205

To help explain how the model works, Fig 4 illustrates the evolving value accumulation 206

for the delayed (red) and immediate (blue) options under nine factorial combinations of 207

delayed amount of reward (columns) and time delay (rows), compared to a fixed 208

immediate $10 option. In each panel, multiple trajectories represent independently 209

simulated trials to convey the across-trial variability with constant inputs of reward and 210

time delays. As our experimental design first presents delay information, the first 211

one-second of value accumulation only considers time (i.e., ω(t) = 0). As such, the 212

accumulation during the first one-second period shows an advantage of the immediate 213

option and the shape of the growth of preference is only affected by varied time delay 214

(from top to bottom row), not by the amount of reward (from left to right columns). 215

After the one-second period, the rate of value accumulation for the options accelerate 216

based on a combination of both reward and delay, which can be seen by inspecting both 217

rows and columns. Both alternatives compete to arrive at the threshold value first, at 218

which time a corresponding response is triggered. 219

Fig 4. The Effects of Reward and Delay on Accumulation Dynamics.
Simulated accumulation trajectories from the model under a factorial combination of
reward (columns) and time delays (rows) for the delayed option, where the immediate
option was held constant at $10 now. Each combination of reward and time delay was
simulated 100 times, where the accumulation process starts as 0.2θ and ends once one
accumulator reaches θ. In each panel, the immediate option is represented as blue
trajectories, whereas the delayed option is represented in red. Other parameters were
set to the following values: αr = αt = 0.7, σ = 1, λI = λD = 0.5, βI = βD = 0.5,
ω = 0.9, θ = 20, ε = 0.01.

Model fitting and model selection 220

The computational model explains intertemporal choice behaviors as a series of 221

processes that include value transformation, attention selection and value accumulation 222

with leakage and lateral inhibition mechanisms. To determine which cognitive 223

mechanisms are most important in terms of quantitatively accounting for the behavioral 224

data, we adopted a Bayesian model selection approach. We first constructed different 225

model configurations depending on which model parameters were freely estimated and 226

which had fixed values. The left side of Fig 3c illustrates the fifteen different model 227

variants we evaluated, where open or filled circles indicate that parameters αr, αt, ω, 228

βI , and βD are either freely estimated or fixed for each individual, respectively. Each of 229
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the five parameters was set to a particular constant value when they were fixed and not 230

freely estimated. Namely, we set αr = 1, αt = 1, ω = 0.9, βI = 0, and βD = 0. We 231

chose to set ω to 0.9 because we suspected reward information would be prioritized 232

asymmetrically because delay information was presented first and in isolation for the 233

first second. Recall that for the first second, ω is set to zero for all models. In addition 234

to these settings, we also freely estimated the accumulation threshold θ, 235

moment-to-moment noise σ, and an additional non-decision time parameter τ for each 236

model variant. 237

We fit each configuration to all behavioral data in a hierarchical Bayesian framework, 238

meaning that each parameter just discussed was estimated for each subject, along with 239

group-level parameters in the hierarchy (see Methods section for details of model 240

parameter estimation). Once the fifteen model variants in Fig 3c were fit to data, we 241

compared among the models by calculating a z-transformed Bayesian information 242

criterion (BIC; [33]) metric, which is based on the model’s overall fit to data, penalized 243

by the model’s complexity, and standardized across the model variants. Fig 3c depicts 244

the degree to which each model configuration (rows) fit the behavioral data for each 245

subject (columns), where lower values of zBIC (i.e., blue colors) indicate better model 246

performance. Despite considerable individual differences in the best performing model, 247

Fig 3c shows that some model configurations fit consistently better than others. In 248

particular, Models 7, 10, 11, and 14 performed the best within this set of models. To 249

better evaluate model performance at the aggregate level, Fig 3b shows the zBIC scores 250

aggregated across subjects for each model. The aggregated model performance result 251

affirmed the relative performance superiority of Models 7, 10, 11, and 14, with Model 11 252

performing particularly well. 253

To ensure that Model 11 is the best performing model among all tested model 254

configurations, we further compared the best five models in Table 1 in terms of both log 255

likelihood values and zBIC values, and we found that Model 11 and Model 14 fit almost 256

equally well. Model 14 showed a slight advantage in log likelihood values but Model 11 257

had the lowest zBIC. To incorporate the models’ fits to individual subjects when 258

evaluating the models, we ranked the zBIC values across model configurations for each 259

subject, and counted the number of subjects having the lowest zBIC values for each 260

model configuration. We also summed up the zBIC rank across subjects for each model 261

to account for all the subjects. In this metric, having a lower summed rank indicates 262

better performance by the model. Table 1 shows that Model 14 outperformed any other 263

model for 9 out of 23 subjects, but it did struggle to fit certain subjects, such as subject 264

9, 14, and 16 (as suggested in Fig 3c). Model 11 worked best for 7 out of 23 subjects, 265

and it had the lowest sum of zBIC rank. Model 11 also had a satisfactory fit to all the 266

subjects according to Fig 3c. Together, we selected Model 11 as containing the most 267

plausible representation mechanisms to explain our behavioral data. Hence, the model 268

performed best when the following parameters were free to vary across subjects: αt, βI , 269

and βD. To get a sense of the optimal parameter values, we computed the maximum a 270

posteriori (MAP) values from estimated posterior distributions for each parameter from 271

both Model 11 (S1 Table) and Model 14 (S2 Table). 272

Although the model evaluation process assessed model performance in a relative 273

sense (i.e., performance across models), it is also important to assess performance in an 274

absolute sense. To do this, we evaluated how well the model fit the empirical data by 275

simulating behavioral measures (i.e., choice response time) from the model, under the 276

best parameter estimates obtained for each subject, 10 times for every trial and every 277

subject. We inspected the simulation results by comparing the simulated behavioral 278

data with the experimental data. Fig 5a illustrates the accuracy of Model 11’s (i.e., the 279

best performing model) fit to the behavioral measurements. In each panel, summaries of 280

simulated data from Model 11 are shown against the same summaries of the 281
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experimental data. The top panel shows the mean response times, whereas the bottom 282

panel shows the probability of choosing the delayed option, for each subject and 283

condition combination. Fig 5a shows that the majority of points fall on the diagonal 284

line in the plot, suggesting close agreement of the model’s predictions and the empirical 285

data. As another way to compare the simulated data against the experimental data for 286

Model 11, we also plotted the choice and response time joint distributions across PD 287

conditions in S3 Fig, which again confirmed that the simulated data match 288

experimental data. As a comparison, we also inspected Model 14, by comparing the 289

simulated data and experimental data in terms of behavioral summaries, choice and 290

response time distributions across PD conditions (S4 Fig). Given the similar likelihood 291

values of Model 11 and Model 14, it is not surprising that Model 11 (the best 292

performing one) shows similar performance compared with Model 14 (the second best 293

performing one), when evaluating aggregate model fit. 294

Table 1. Comparison of the Best Five Models. The log likelihood (or zBIC)
values are computed by averaging log likelihood (or zBIC) values across subjects.
“Count of lowest zBIC” is obtained by counting the number of subjects having the lowest
zBIC given a certain model variant. “Sum of zBIC rank” sums up the individual rank of
zBIC across subjects given a model variant.

Model Log Likelihood zBIC Count of lowest zBIC Sum of zBIC rank

11 −215.805 −0.586 7 55
14 −214.196 −0.551 9 77
7 −225.208 0.091 3 97
10 −224.925 0.483 3 146
12 −228.872 0.563 0 134

Note: The first column serves an the index for each model configuration, corresponding
to the model index in Fig 3.

Value accumulation dynamics reconstructed from the behavioral model 295

The purpose of the model selection process was to identify the most plausible 296

representation of value accumulation to explain the pattern of choices and response 297

times across conditions. Our ultimate goal was to use this most plausible representation 298

to interpret the temporal dynamics in our EEG data. Fig 5b provides an example of the 299

model’s accumulation dynamics, and how well they fit to an individual subject. The top 300

row shows the time course (0 - 5 seconds) of the modeled accumulation process for each 301

of delayed (red) and immediate (blue) accumulators, where each line indicates one 302

simulated trial. Across the five PD conditions, the delayed and immediate accumulators 303

race toward a common threshold. In each condition, the initial delay information causes 304

some initial preference for the immediate option. However, once the reward information 305

is presented (i.e., after one second), the delayed option gains preference, and the rate of 306

this gain varies by condition, where the PD = 0.1 condition is slowest, and the PD = 0.9 307

is fastest. This rate differential produces a dynamic that results in the delayed option 308

being strongly preferred in the PD = 0.9. The impact of such a condition-wise pattern 309

on the predicted behavioral output is shown in the middle row of the simulated data: a 310

lower proportion of delayed choices are made in the PD = 0.1 condition, a higher 311

proportion is made in the PD = 0.9 condition, and a approximately equal proportion of 312

delayed and immediate choices are made in the PD = 0.5 condition. These predictions 313

closely match the shape of the choice RT distributions from the experiment, which are 314
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shown in the bottom row. 315

Fig 5. Model 11’s Fit to Data and Value Accumulation Representation. (a)
The top panel shows the model’s predicted response time (RT) are shown against the
experimental RT for each subject and condition, whereas the bottom panel shows the
model’s predicted choice probability (for the delayed option) against the experimental
data. (b) The columns show aspects associated with the five PD conditions, whereas the
rows correspond to simulated value accumulation dynamics (top), predicted choice RT
distributions from the model (middle), and empirical choice RT distributions (bottom).
In all panels, red colors correspond to delayed options, whereas blue colors correspond
to immediate options. In panels in the middle and bottom rows, choice probabilities can
be inferred by assessing the relative heights of the two histograms.

We applied a quantitative measure - absolute balance of evidence (ABOE; [34]) that 316

summarizes accumulation dynamics for each experimental PD condition. Specifically, we 317

wanted to know how much competition occurred between the two alternatives across the 318

conditions. In the model, competition reflects the degree to which each alternative is 319

being considered, relative to the other alternative. Here, the difference between the 320

evidence values of each accumulator is used to reflect competition: larger differences 321

suggest less competition, whereas smaller values suggest more competition. Fig 6a 322

conceptually illustrates the calculation of the ABOE measure with two single-trial 323

examples of value accumulation. The left panel shows a situation in which competition 324

is low, whereas the right panel shows a situation in which competition is high. For the 325

two single trials, ABOE is conceptualized as the distance between the evidence of the 326

two accumulators at the time a choice is made. In the case of low competition, the 327

immediate accumulator keeps growing before reaching the threshold, while the delayed 328

accumulator climbs with a lower speed and is unable to catch up to the immediate 329

accumulator. As a comparison, in the case of high competition, the delayed accumulator 330

rises after one second at a fast rate, gradually catching up with the immediate 331

accumulator and reaching the threshold first. Across panels, the distance between the 332

accumulators was larger in the low competition scenario relative to the high competition 333

scenario. 334

Fig 6. The Calculation of Absolute Balance of Evidence (ABOE). (a) Two
single-trial examples of the value accumulation process with low (left) or high (right)
competition between the two accumulators. For the two single trials, ABOE is
conceptualized as the distance between the evidence of the two accumulators at the
time a choice is made (denoted by the length of the line segments). (b) Resulting
ABOE of the model simulations across the five PD conditions.

After calculating the ABOE for each simulation, we averaged the ABOEs across 335

conditions, such that 336

ABOEc =
1

Nc

∣∣∣∣∣
Nc∑
i

(AIi −ADi)

∣∣∣∣∣ , (3)

where ABOEc refers to the absolute balance of evidence for condition PD = c, Nc 337

refers to the number of simulated trials in experimental condition PD = c, and the AIi 338

and ADi refer to the instantaneous evidence of simulated trial i of immediate and 339

delayed accumulators at the choice time, respectively. Fig 6b compares ABOE across 340

five PD conditions. The ABOE value was lowest at condition PD = 0.5, and was highest 341

at condition PD = 0.1. Such a pattern of ABOE across PD conditions suggests that 342

choices were most difficult to make in the PD = 0.5 condition, but were relatively easier 343
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in the PD = 0.1 and PD = 0.9 conditions. Taken together, the simulated accumulation 344

processes depicted in Fig 5b and the summary measure ABOE in Fig 6b suggest a 345

symmetric pattern from PD = 0.1 to PD = 0.9, where the accumulation process was the 346

most difficult due to competition at the PD = 0.5 condition. 347

Theoretically, by virtue of the ABOE measure, one could identify different degrees of 348

value competition between the reward amount and time delay that was accumulated 349

during the trial. The first second in the time course, however, does not contain any 350

presentation of reward amount, and so the degree of value accumulation in this time 351

period is only driven by the magnitude of time delay. This particular time window has 352

to be accounted for separately when we summarize the value accumulation dynamics. 353

Temporal dynamics of functional connectivity from EEG 354

Electrodes and ERPs 355

We analyzed the event-related potentials (ERPs) on several electrodes of EEG data 356

after the extracted epochs were transformed to current source density (CSD) estimates 357

(see Methods section). The ERPs were calculated based on a set of electrodes that were 358

considered to correspond to dmFC, left/right pPC, and left/right dlPFC. Table 2 listed 359

the different sets of electrodes in the analysis, the approximately corresponding 360

electrodes in the International 10/20 system, and the respective putative brain areas. 361

We included those electrodes in the ERPs analysis and the following ISPC analysis 362

based off previous studies. For example, the putative electrode E6 that represents dmFC 363

region corresponds to FCz electrode in 10/20 system [35, 36], and the FCz electrode has 364

been implicated with decision related functions in other domains [37,38]. The location 365

of F3 and F4 have been localized to Brodmann area 46 [39], roughly corresponding with 366

dlPFC [40]. The location of TP3 and TP4 have been localized to Brodmann area 40 (or 367

the inferior parietal lobule) [39], which constitutes the lateral part of pPC [41]. 368

Fig 7 illustrates the ERPs calculated based on these electrodes, representing brain 369

activity within dmFC, bilateral dlPFC, and bilateral pPC, respectively. We separated 370

trials based on PD conditions to examine whether there is any difference in EEG 371

amplitude associated with PD. We focused on two time windows (0-500ms and 372

1000-1500ms) each following the presentation of time delay and reward amount, due to 373

the visual increase after each stimulus presentation. For each putative brain area, we 374

ran a two-way mixed ANOVA with two fixed factors (PD condition and time window) 375

and subject as random factor. The analyses did not yield any significant difference in 376

the EEG amplitude for dmFC, in terms of either PD (F (4, 202) = 0.2004, p = 0.938) or 377

time window (F (1, 202) = 3.2034, p = 0.075). The analysis performed on dlPFC also 378

suggested no significant difference in EEG amplitude for either PD 379

(F (4, 202) = 0.5247, p = 0.718) or time window (F (1, 202) = 3.4534, p = 0.065). For 380

pPC, we identified a significant difference between the two time windows 381

(F (1, 202) = 41.6499, p < 0.0001), but no significant difference on PD 382

(F (4, 202) = 0.3405, p = 0.850). Next, we tested whether the EEG amplitude in each 383

time window and each brain area was significantly different from the baseline level. For 384

dmFC, the EEG amplitude in both time windows was significantly different from zero 385

(0-500ms: t(22) = 2.9109, p = .008; 1000-1500ms: t(22) = 3.1187, p = 0.005). For pPC, 386

the EEG amplitude in time window 0-500ms was significantly different from zero 387

(t(22) = 2.7463, p = 0.012). Other tests did not yield significant result (pPC 388

1000-1500ms: t(22) = 0.818, p = 0.422; dlPFC 0-500ms: t(22) = 0.4567, p = 0.652; 389

dlPFC 1000-1500ms: t(22) = 1.157, p = 0.260) 390
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Fig 7. ERPs from Putative dmFC, dlPFC, and pPC for each PD condition.
ERPs were calculated on the preprocessed EEG data after CSD transformation to
reduce volume conduction. Three panels from top to bottom show scalp electrical
activities approximately located to dmFC, dlPFC, and pPC, respectively. Trials were
aligned by the onset of time delay presentation, and the time course extends from -500
ms to 2000 ms. Two dashed lines indicate the presentation of time delay (0ms) and
reward amount (1000ms). Trials were separated by PD conditions for comparison.

Table 2. Details of the Electrodes Used in the ERPs and ISPC analyses.

Electrodes in the 128 channel system International 10/20 system Putative brain areas

E6 FCz dmFC
E51, E52, E59 TP3 left pPC
E91, E92, E97 TP4 right pPC
E27, E28, E35 F3 left dlPFC

E110, E117, E123 F4 right dlPFC

pISPC between putative dmFC, pPC, and dlPFC 391

We analyzed functional connectivity in the EEG data by calculating intersite phase 392

clustering (ISPC). ISPC measures the extent to which phase clustering patterns are 393

similar across different sites, therefore serving as a measure of the time-dependent 394

connectivity strengths between putative brain regions [42]. The pISPC standardizes 395

ISPC by calculating the percent change in ISPC with respect to the grand average ISPC 396

over the time window of interest (see Methods section). We chose dmFC as the seed 397

region, as we have previously found its association with value accumulation activity 398

using fMRI [43]. The connectivity was established between dmFC and other regions 399

previously identified important in intertemporal choice, including bilateral pPC and 400

bilateral dlpFC. Each brain area was localized by a set of electrodes listed in Table 2. 401

Fig 8a shows the calculated pISPC result between putative dmFC and left pPC 402

(left), and between putative dmFC and right pPC (right), as a function of time and 403

frequency. In each panel, two clusters of increased pISPC emerge after trial onset and 404

after one second in the trial time course, where the increase of pISPC after one second 405

occurs at around 4 - 8 Hz for both dmFC-left pPC and dmFC-right pPC. The increase 406

of pISPC after trial onset occurs at a wider frequency band: around 7 - 15 Hz for 407

dmFC-left pPC and around 4 - 15 Hz for dmFC-right pPC. Note that in our 408

experimental design, the time points zero and one second correspond to the presentation 409

of delay and reward amount, respectively. Fig 8b shows the functional connectivity 410

between dmFC and dlPFC based on the pISPC. In contrast with dmFC-pPC, the 411

connectivity between dmFC and dlPFC did not yield the obviously increased pISPC. 412

Although previous studies have identified gamma frequency band (30 - 90 Hz) in EEG 413

activity as reflecting evidence accumulation mechanisms [44,45], the present study 414

localized the informative frequency band to lower frequency, especially to theta band (4 415

- 8 Hz). Therefore, we focused subsequent analyses on theta band activity and tested for 416

increases of pISPC following the stimulus presentation by analyzing pISPC within the 417

time windows 0 - 0.3 s and 1 - 1.3 s (demarcated by black borders in Fig 8). Following 418

the presentation of the time delay information, there was an increase of functional 419

connectivity between dmFC and right pPC, but not between dmFC and left pPC (left: 420

t(22) = 1.9829, p = 0.06; right: t(22) = 2.5135, p = 0.0198). Following the presentation 421

of the reward information, there was an increase of functional connectivity between 422

dmFC and bilateral pPC after the presentation of the reward amount (left: 423

t(22) = 3.1714, p = 0.0044; right: t(22) = 3.0492, p = 0.0059). Similarly, we performed 424
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one-sample t-tests to investigate functional connectivity between dmFC and dlPFC. 425

However, only the left dlPFC yielded a significant difference after the presentation of 426

the time delay (t(22) = 2.2723, p = 0.0332), whereas other combinations did not show 427

statistical differences neither after the presentation of the time delay (right: 428

t(22) = 1.9237, p = 0.0674), nor after the presentation of the reward (left: 429

t(22) = 1.8397, p = 0.0793, right: t(22) = 0.8363, p = 0.4120). Taken together, the 430

functional connectivity between dmFC and dlPFC did not show obvious activation 431

patterns compared to dmFC-pPC. Hence, we focused on the functional connectivity 432

between dmFC and pPC for subsequent analyses. 433

Fig 8. Functional Connectivity among Putative dmFC, pPC, and dlPFC.
Each time-frequency plot shows how functional connectivity (pISPC) changes across the
trial time course (0 - 5 seconds) and frequency values, where 0 seconds on the x-axis
corresponds to the onset of delay information. Each plot averages all subjects and five
PD conditions. The black boxes indicate the selected time-frequency range (theta band;
0 - 0.3 s and 1 - 1.3 s) for performing associated statistical analyses.

dmFC-pPC pISPC across PD conditions 434

Given the evidence of increased functional connectivity at two time windows, we 435

subsequently explored the possible mechanisms underlying this result. Because the 436

functional connectivity results temporally coincide with the presentation of the delay 437

and amount information, we suspected that the functional connectivity between the 438

pPC and dmFC may simply reflect visual processing of stimulus information. To 439

examine this possibility, we performed a repeated t-test between the two time windows 440

for both the left and right pPC, but found no significant evidence of a statistical 441

difference (left: t(22) = 1.4916, p = 0.15; right: t(22) = 0.6433, p = 0.6433), further 442

suggesting that the connectivity may be related to visual stimulus processing. However, 443

many previously established studies suggest that the time delay and reward amount are 444

integrated into a subjective representation, and a subsequent value accumulation 445

process determines the choice. The key question that our experiment is well poised to 446

address is whether the dmFC-pPC connectivity can provide insight into the cognitive 447

processes that underlie these choices. 448

To investigate whether connectivity is related to the cognitive aspects of our task, 449

rather than just visual information, we tested whether neural communications between 450

the two regions are mediated by the subjective valuation of the stimuli. To this end, we 451

performed similar time-frequency analyses of the functional connectivity between 452

putative dmFC and putative pPC, separated by each PD condition. Fig 9a illustrates 453

how temporal dynamics of functional connectivity at different frequency bands vary 454

across five PD conditions. As the increase of connectivity is mostly contained within the 455

time course of 0 - 2 seconds, we omitted plotting other time ranges for visual clarity. 456

We observed that the two clusters of increased pISPC exhibit varied magnitudes across 457

PD conditions, and this pattern appears symmetric across the five conditions: the 458

magnitude increases from PD = 0.1 to PD = 0.5, and then decreases from PD = 0.5 to 459

PD = 0.9, where the magnitude is highest at condition PD = 0.5. This symmetric 460

variation is precisely the pattern predicted by our ABOE measure of value accumulation 461

dynamics, but this pattern is not predicted from the visual properties of the stimuli 462

alone. Furthermore, the symmetric pattern of pISPC was found only after the 463

presentation of the reward information, and not the presentation of the time 464

information (i.e., the first aspect of the stimulus). Taken together, we conclude that the 465

connectivity result is unlikely to be driven purely by stimulus processing interactions 466

alone, and may instead be modulated by a value accumulation mechanism. 467
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Fig 9. Functional Connectivity between Putative dmFC and Bilateral pPC
across PD Conditions. (a) Time-frequency analyses of pISPC between putative
dmFC and pPC for each experimental PD condition from 0.1 to 0.9, where zero seconds
on the x-axis correspond to the onset of delay information. The time-frequency plots
show the average connectivity values of dmFC-left pPC and dmFC-right pPC. (b)
Topographical plots of functional connectivity between E6 (putative dmFC) and all
other electrodes across four separate time windows within the frequency band 4 - 8 Hz
at PD = 0.5. (c) A contrast topographical plot showing the difference of ISPC values
between the time window 3 (i.e. 1 - 1.3 seconds) and time window 1 (i.e. 0 - 0.3
seconds) in (b).

We further examined the topographical characteristics across time windows for the 468

PD = 0.5 condition, which had the largest pISPC between dmFC and pPC. Fig 9b 469

shows topographical plots of the pISPC between the seed region E6 (putative dmFC) 470

and all other scalp electrodes, as an indicator of the change of connectivity across space 471

and time. The connectivity is stronger between E6 and parietal electrodes than between 472

E6 and all other electrodes, indicating that frontoparietal functional connectivity 473

dynamics are dominant compared with frontal connectivity dynamics. Such strong 474

frontoparietal connectivity exists after both delay and reward information, but yields 475

stronger activation following reward information. To better illustrate this effect, Fig 9c 476

shows the contrast between the topographical connectivity values between 1 - 1.3 477

seconds and 0 - 0.3 seconds, where the difference is most pronounced in the left parietal 478

areas. As such, although there is no statistically significant difference between the two 479

time windows for the dmFC-pPC connectivity, the topographical plots suggest the 480

existence of a difference when considering the large set of left posterior electrodes. This 481

result further supports the notion that the increase in connectivity in the 1 - 1.3 second 482

time window is not only simply about processing of visual information; rather, it may 483

be associated with the competition between two value accumulators. 484

Theta-band dmFC-pPC pISPC across PD and across time delays 485

To closely examine the possibility that the subjective valuation process mediates 486

functional connectivity, Fig 10a compares the pISPC across the five PD conditions 487

within theta frequency band of 4 - 8 Hz. The locally maximum pISPC results occur at 488

around time 0 - 0.3 seconds and 1 - 1.3 seconds, where the height of each curve is 489

modulated by experimental condition. Fig 10c shows the average of the pISPC result 490

corresponding to the each presentation of delay and amount information. We performed 491

a mixed-effect regression analysis of pISPC with the experimental PD as the predictor 492

variable and subject as the random variable. To observe any quadratic trends with PD, 493

we included both first-order and second-order PD terms in the regression model. We fit 494

the regression model on both time windows, and the result indicated no significant 495

quadratic association between PD and pISPC at the time window 0 - 0.3 seconds 496

(β̂ = −13.489, t(92) = −1.139, p = 0.2575), but a significant quadratic association 497

between PD and pISPC at the time window 1 - 1.3 seconds (β̂ = −60.445, 498

t(92) = −4.710, p = 8.74e− 06). We did not observe any linear association between PD 499

and pISPC on either time window. Therefore, consistent with the quadratic association 500

between PD and response time in Fig 2b, we observed a quadratic relation between the 501

experimental PD and pISPC on time window 1 - 1.3 s for dmFC-pPC connectivity. We 502

also performed the same analyses based on separate dmFC-left pPC and dmFC-right 503

pPC, and obtained the same pattern of results. Specificially, there were significant 504

quadratic associations between PD and pISPC at the time window 1 - 1.3 seconds (left: 505

β̂ = −55.221, t(92) = −3.380, p = 0.00106; right: β̂ = −65.670, t(92) = −4.155, 506
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p = 7.29e− 05), but were not significant quadratic associations at the time window 0 - 507

0.3 seconds (left: β̂ = −5.947, t(92) = −0.397, p = 0.6922; right: β̂ = −21.029, 508

t(92) = −1.388, p = 0.1685). 509

Fig 10. Comparison of the dmFC-pPC pISPC across PD Conditions and
Time Delays. (a) The pISPC values across time for each PD condition (lines), where
pISPC is calculated between dmFC and bilateral pPC. The two time windows shaded
with gray denote the 0 - 0.3 second period (i.e., after delay presentation) and 1 - 1.3
second period (i.e., after amount presentation). (b) The pISPC values across time for
each time delay condition (lines), where pISPC is calculated between dmFC and
bilateral pPC. The three time delay conditions correspond to time delays of 15 - 25
days, 26 - 35 days, and 36 - 45 days. (c) The mean pISPC for each PD condition within
0 - 0.3 second period and within 1 - 1.3 second period. The asterisk denotes a
significant quadratic association at the α = 0.05 level, whereas “ns” denotes no
significant quadratic association at the α = 0.05 level. The dotted lines indicate the
fitted quadratic regression functions. (d) The mean pISPC for each time delay condition
within 0 - 0.3 second period and within 1 - 1.3 second period. The asterisk denotes a
significant pairwise difference at the α = 0.05 level, whereas “ns” denotes no significant
difference across conditions at the α = 0.05 level. For both c and d, the error bars
denote the ±1 standard error where values below zero are not shown on the plot.

We observed that the average of pISPC varied across experimental PD during time 510

window 1 - 1.3 s, but not during 0 - 0.3 s. This result is consistent with our 511

experimental manipulation, as subjects were only shown the time delay information at 0 512

- 0.3 s, and so we do not expect the role of PD during this time period. On the contrary, 513

because the time delay is the only information presented before 1 second, it is 514

reasonable to consider whether the dmFC-pPC connectivity is modulated by the 515

magnitude of time delays, similar to the observation that accumulation dynamics were 516

only affected by time delay in Fig 4. To investigate this possibility, we binned the time 517

delays across all subjects to three different groups: Short Delay (15 - 25 days), Medium 518

Delay (26 - 35 days), and Long Delay (36 - 45 days) and compared the dmFC-pPC 519

connectivity associated with each group. Fig 10b shows the pISPC measure 520

corresponding to each of the delay groups across 0 - 2 seconds. Interestingly, we 521

observed a clear separation of pISPC magnitude during 0 - 0.3 s, but not during 1 - 1.3 522

s. We computed the average value of pISPC within each time window for each delay 523

group, illustrated in Fig 10d. We carried out a repeated measure ANOVA with the 524

delay information as an independent variable for both time windows. The ANOVA 525

model suggested a significant difference across three delay groups in the 0 - 0.3 second 526

period (F (2, 44) = 3.457, p = 0.0403). The post-hoc analysis with Bonferroni’s 527

correction further suggested a significant difference between Long vs. Short comparison 528

(t(44) = 2.625, p = 0.0313), but non-significant results on other two comparisons 529

(Medium vs. Short: t(44) = 1.447, p = 0.3264; Long vs. Medium: t(44) = 1.178, 530

p = 0.4723). The same repeated measure ANOVA was performed for the 1 - 1.3 second 531

period, but it did not yield any significant results (F (2, 44) = 0.588, p = 0.56). 532

Together, we concluded that the magnitude of pISPC was modulated by the time delay 533

in the 0 - 0.3 second period, with higher pISPC associated with longer time delay. 534

Combining the above findings during 0 - 0.3 s and during 1 - 1.3 s, we observed that 535

the magnitude of pISPC is modulated by the time delay before the amount of reward is 536

presented, and is afterwards modulated by the experimental PD, which represents the 537

integral information of both time delay and amount of reward. Given that experimental 538

PD is closely associated with the amount of value competition between two choice 539

alternatives, pISPC can be viewed as an indicator of general value accumulation, such 540

that it tracks either the value of time delay when only time delay is available, or the 541
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amount of value competition when both time delay and amount of reward are available. 542

Discussion 543

In this article, we have shown that fronto-parietal connectivity is an expression of 544

valuation accumulation within an intertemporal choice task. We have also shown that a 545

computational model in which subjective values are constructed through 546

moment-to-moment sampling of feature dimensions exhibits patterns of choice 547

competition that closely resembles the pattern of connectivity results across conditions 548

of our experiment. In this section, we first discuss the relevance of the cognitive 549

mechanism we identified from our behavioral data. We then discuss the connectivity 550

results, and what they might suggest from a cognitive perspective. Finally, we discuss 551

how our neural results can be more fully integrated into computational models in future 552

work. 553

Cognitive mechanisms of intertemporal choice 554

In this study, we constructed a model in which a few different mechanisms could explain 555

temporal discounting behavior, such as distorted encoding of the stimuli, attention 556

prioritization to the delay information, or an inability to suppress the shorter sooner 557

option. Fifteen different models were constructed from this overarching structure, each 558

of which possessed a unique configurations of mechanisms. In addition to the core 559

parameters θ, τ , and σ, our current study revealed that model performance was best 560

achieved when the following three additional parameters were allowed to freely vary 561

across subjects: αt, βI , and βD. 562

In a previous application [15], we used a similar model to account for behavioral 563

data from another intertemporal choice task. In a similar analysis, a factorial model 564

fitting exercise suggested that model performance was best achieved when ω, βI , and 565

βD were freely estimated – similar to Model 13 presented here. The consensus of the 566

lateral inhibition terms βI and βD across the two studies suggest that these mechanisms 567

are strong contributors in explaining valuation accumulation dynamics within 568

intertemporal choice. By contrast, we can speculate about the disagreement between ω 569

and αt on two grounds. 570

First, in contrast to the design presented in [15], our current experimental design 571

showed the time delay and amount of reward for the delayed option sequentially. Here, 572

we adjusted the model to account for the sequential structure by first allowing 573

subjective valuation of the alternatives to accumulate for the first second on the basis of 574

only delay information. Once the reward information was presented, the model 575

performed identically to that presented in [15]. Additionally, when parameters are not 576

freely estimated, a choice must be made as to what value these fixed parameters should 577

take. In [15], ω was set to 0.5, where attention is equally divided between the two 578

dimensions. Here, we set ω to 0.9 in light of the potential asymmetry that might ensue, 579

due to the delay information being presented first, and in isolation. Although we also 580

tested ω = 0.5, with negligible difference in model performance, it is possible that these 581

fixed parameter choices could at least partially explain the differences between the 582

results. Second, it is also possible that choosing between a delayed option and a fixed 583

immediate option in our study, and choosing between two delayed options (i.e., a 584

shorter sooner and a larger later option) in [15], can partially induce the use of different 585

mechanisms in the choice process. 586
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Frontoparietal functional connectivity 587

The present study identified that phase-based frontoparietal functional connectivity 588

between putative dmFC and pPC was associated with the degree of competition 589

occurring in the value accumulation process. This finding is in line with previous 590

studies where EEG gamma band activity reflected the gradual accumulation of evidence 591

in value-based decision making tasks [44]. [45] adopted simultaneous EEG–fMRI 592

approach and identified the posterior-medial frontal cortex (PMFC) as the spatial 593

correlates of such accumulation mechanisms. In addition, they found that the PMFC 594

exhibited task-dependent coupling with the vmPFC and the striatum. Our study 595

further endorsed the proposition of an evidence accumulation process during 596

value-based decision making, and extended it with a choice task modulated by higher 597

level of self-control rather than a preference-based hedonic decision making task in [45]. 598

As such, our study postulated that the evidence accumulation mechanism may subserve 599

a variety of decision making tasks. Also, the phase-based functional connectivity that 600

we identified from EEG was between putative dmFC and putative pPC, extending from 601

previous focus on within-frontal connectivity dynamics. Although it may be 602

problematic to directly compare the spatial correlates of accumulation dynamics across 603

different studies due to the different task structure and different modality of neural 604

measures, some consensus between the two results is assuring. Future studies may shed 605

light on the connections between these different studies. 606

Previous investigations of connectivity dynamics in intertemporal choice mostly 607

relied on fMRI. For example, [12, 46] investigated the connectivity between vmPFC and 608

dlPFC, as evidence for the mechanism of self-control that the dlPFC has on the 609

putative valuation region vmPFC. [13] identified functional connectivity between the 610

vmPFC and three regions of dlPFC, bilateral pPC and dmFC, as a partial support for 611

the value accumulation mechanism of the three regions. Our study was unable to 612

localize the vmPFC or the ventral striatum due to the low spatial resolution of EEG 613

measurements for sites distal from the scalp. Instead, our results add to our knowledge 614

about how frontoparietal connectivity relates to choice competition in the accumulation 615

process. Across these results, is not yet clear whether the connectivity between the 616

dmFC and the pPC reflects a genuine connection between the two anatomical regions, 617

or a common connection with vmPFC. Interestingly, we did not find such phase-based 618

connectivity between dmFC and dlPFC. 619

Links between brain and behavior 620

In this study, we constructed value accumulation dynamics from a computational model 621

and related them to connectivity dynamics in our EEG data. Such a link between the 622

two modalities is considered purely theoretical [47], and is relatively weak from the 623

perspective of statistical power. A more integrated approach would be to use the neural 624

dynamics to directly drive the computational model [48–51], or to use the covariation 625

betwen their trial-to-trial fluctuations to modulate and constrain the compuational 626

model [52,53]. Although an ideal neural measure would have trial-level information to 627

substantiate mechanistic claims [15,54–56], functional connectivity measured by ISPC 628

requires several trials to establish a reliable measure, making a trial-level analytic 629

approach infeasible for such precise linking in our study. Another possibility would be 630

to establish a link to the computational model at the moment-by-moment level, which 631

would further exploit the temporal resolution of EEG data provided by EEG measures. 632

For example, a time-frequency analysis on the reconstructed accumulation trajectories 633

might reveal similar information with respect to time and frequency, compared to a 634

time-frequency result in ISPC. 635

Although providing high temporal resolution, EEG suffers from limited spatial 636
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resolution. The dmFC and pPC electrodes we identified provide tentative connections of 637

the anatomical regions. However, it is difficult or impossible to establish connectivity 638

results for other important deep structures or subcortical regions, such as vmPFC and 639

ventral striatum. Therefore, the previous finding of connectivity between vmPFC and 640

dlPFC cannot be replicated from purely EEG analysis. Due to the limitations of both 641

approaches, a combination of EEG and fMRI, or even more modalities could provide a 642

workaround on the measurement limitations and offer complementary correlates of 643

neural activity. The idea of fusing EEG and fMRI is not novel, and there have been 644

attempts using simultaneous fMRI and EEG on various decision making tasks including 645

intertemporal choice (e.g. [57–59]. We argue that including cognitive representations for 646

the behavioral data will also be an important connective medium, which has been 647

discussed in detail elsewhere [56,60–63]. 648

Beyond hyperbolic discounting 649

Our model assumed that delay and reward amount are evaluated separately and are 650

combined through direct comparison before being integrated into subjective values. 651

This contrasts starkly with the standard mechanistic view of intertemporal choice 652

(e.g. [64, 65]). The standard model posits that subjective value is first calculated for 653

both options using hyperbolic discounting. Decision making follows through comparison 654

of subjective values. Daniel Read and colleagues have challenged this view [66] by 655

pointing out that discounting across a time delay is not consistent with discounting 656

across subintervals of that delay (i.e. discounting between 0 and t′ and between t′ and t 657

can be greater than simply between 0 and t, where 0 < t′ < t, a phenomenon known as 658

subadditivity). Scholten and Read [19] have proposed a new model of discounting that 659

accounts for these effects and that simultaneously accommodates hyperbolic discounting. 660

Their model is mechanistically similar to the model presented here, and we have also 661

shown that our model provides excellent fits to hyperbolic discounting patterns [15]. A 662

further significant advantage of our feature-based process model is that it provides a 663

means to incorporate order dependence in intertemporal preference. In this experiment 664

we showed delay information ahead of reward amount and our findings suggest that 665

participants are influenced by this asynchrony so that decision making begins from 666

biased starting points once reward information is presented, corresponding to well 667

documented order effects in intertemporal choice (e.g., [67]). A next step for our 668

modeling efforts will be to extend the generality of phenomena that feature-based 669

process models accommodate. 670

Methods 671

Subjects 672

A total of 25 healthy adults participated in this study (12 females, ages 19-35 years, 673

median 22 years). All subjects gave written informed consent before completing the 674

experiment and all procedures were approved by Stanford University’s Institutional 675

Review Board. Two subjects were excluded due to data collection problems resulting in 676

excessive artifacts in the EEG data. Data from the remaining 23 subjects were analyzed 677

(12 females, ages 19-35 years, median 22 years). 678

Experimental design 679

Subjects completed a pretest session and an EEG session of the intertemporal choice 680

task, with EEG acquired only in the second session. A similar experimental design has 681
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been used in our previous fMRI studies [13–15]. The pretest session used a staircase 682

procedure to measure each individual’s discount rate k, assuming a hyperbolic 683

discounting function, 684

V (r, t) =
r

1 + kt
,

where V is the subjective value of a reward (in $), r is the monetary amount offered 685

(in $), and t is the delay (in days; t = 0 for payment available “Today”). After 686

completing the behavioral pretest task, we fit a softmax decision function to subjects’ 687

choices. We assumed that the likelihood of choosing the delayed reward (PD) was given 688

by a softmax rule, 689

PD =
1

1 + e−m(VD−VI)
,

where m accounts for individual sensitivity to changes in discounted value, VI is the 690

value of the smaller sooner option (in $, t = 0 for all choices in this task), and VD is the 691

value of the larger later option. Using a maximum likelihood procedure, decision 692

parameters (k and m) were estimated from the data obtained during the staircase task 693

and used to generate stimuli for the EEG session. In this way, we were able to 694

systematically manipulate the expected probability of choosing the delayed reward (PD) 695

as the within-subject independent variable for the EEG session. 696

The staircase procedure used during the first task required subjects to select between 697

a delayed reward (of r dollars available at delay t) and a fixed immediate reward of $10 698

(VI). For any choice, indifference between the immediate and delayed options implies a 699

discount rate of k = (r − VI)(VIt). We refer to this implied equivalence point as keq. 700

Our procedure amounted to varying keq until indifference was reached. Specifically, we 701

began with keq = 0.02, and if the subject chose the delayed reward, keq decreased by a 702

step size of 0.01 for the next trial. Otherwise, keq increased by the same amount. Every 703

time the subject chose both a delayed and an immediate offer within five consecutive 704

trials, the step size was reduced by 5%. Subjects completed 60 trials of this procedure, 705

and we placed no limits on the response time in this pretest session. 706

In the EEG session, we selected a 1000 ms separation between the presentation of 707

delay and amount information to maintain a minimal epoch length that allowed 708

subjects to make accurate intertemporal decisions. We wished to minimize the epoch 709

length to ensure subject’s continual engagement and accurate time-locked signals in the 710

EEG data. The 1000 ms separation was sufficient to allow us to distinguish between 711

neural responses to delay and amount presentations with EEG. In addition, the 712

sequential design allowed us to keep subjects fixated on the center of the screen, 713

minimizing eye movement artifacts. After removing trials with excessive eye movements, 714

the median number of trials across subjects was 179. Except for one subject left with 715

only 115 trials after trial rejection (indexed as subject 15 in Fig 3c), trial numbers for 716

other subjects were in the range of 168-180. 717

EEG recordings and preprocessing 718

EEG data was collected using a 128 channel Geodesic Sensor Net (Electrical Geodesics, 719

Inc., Eugene OR, USA), with a 500 Hz sampling rate, using the vertex as reference. 720

During pre-processing, we re-referenced to the average reference, epoched trials from 721

-1500 to +6500 ms around the onset of delay presentation, baseline corrected trials using 722

the average from 0 to 5000 ms, and band-pass filtered the data at 0.5 - 200 Hz. Trials 723

were visually inspected and rejected if excessive artifacts were present. Normally 724
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occurring artifacts were rejected using an independent component analysis algorithm 725

from the EEGLab toolbox [68]. Epochs were then transformed to current source density 726

(CSD) using the CSD toolbox [69]. CSD transformations of EEG data reduce the 727

influence of volume conduction across the scalp and constrain the effect of cortical 728

sources to within ≤ 5cm2 from the given electrode, facilitating the analysis of oscillatory 729

neural activity and localization of activity from recordings at the scalp [70,71]. 730

Intersite phase clustering 731

We analyzed functional connectivity in the EEG data by performing statistical tests of 732

intersite phase clustering (ISPC). ISPC quantifies the time-dependent connectivity 733

strengths between putative brain regions by measuring the consistency of the difference 734

of phase angles between a pair of electrodes [42]. To obtain ISPC from our EEG data, 735

we convolved CSD-EEG epochs with a set of Morlet wavelets, which are defined as 736

e−i2πfte−t
2/2σ2

, where t is time, f is frequency, and σ defines the width of each 737

frequency band in terms of cycles. We constructed wavelets for 30 frequencies, from 738

2− 30Hz in logarithmic steps, and varied the width for each of these wavelets, from 739

6− 10 cycles, also in logarithmic steps. We computed ISPC between pairwise electrodes 740

by extracting the phase angle (φ) from the convolved signal, and then calculated 741

ISPCk,j(t) =
1

N

∣∣∣∣∣
N∑
n=1

e−i(φk(t,n)−φj(t,n))

∣∣∣∣∣ ,
where N is the number of trials and φk(t, n) is the instantaneous phase angle for 742

electrode k in trial n at time t. This equation provides a measure for the consistency of 743

the difference of phase angles between a pair of electrodes k and j. A perfectly 744

consistent difference would result in a value of 1 in the equation above and imply strong 745

functional connectivity, independent of amplitude co-variation [72] Uniformly 746

distributed differences would produce a value of 0 and suggest lack of functional 747

connectivity between two brain regions. 748

The above ISPC measure can be standardized as pISPC, by calculating the percent 749

change in ISPC with reference to the grand average ISPC over the time window of 750

interest within every frequency band, such that 751

pISPCk,j(t) =
ISPCk,j(t)− 1

Ns

∑
s ISPCk,j(s)

1
Ns

∑
s ISPCk,j(s)

,

where the average ISPC is calculated within the time range of interest, denoted by s, 752

and Ns denotes the number of time points in the time range. Therefore, pISPC provides 753

us with a relative measure of increases in functional connectivity that can be compared 754

between experimental conditions, for any time window and frequency band. Our 755

analyses spanned the frequency range of 2 - 30 Hz in logarithmic steps and the time 756

window of interest is from 0 - 5 seconds from the onset of delay presentation. The time 757

window from 0 to 5 seconds is used as the reference to calculate pISPC. Compared with 758

the convolved time windows from -1.5 to +6 seconds, the ISPC analyses have ignored 759

the edges of the convolved time windows and so should not reflect edge artifacts. 760

Model parameter estimation 761

We fit our behavioral model to individual data in a hierarchical Bayesian framework. 762

For simplicity and based on our previous analyses, model parameters at the subject 763

level were assumed to be distributed according to a normal distribution with group 764
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means and standard deviations as the shape parameters. Specifically, we assumed that 765

for each subject j, 766

log(θj) ∼ N(θµ, θσ),

log(σj) ∼ N(σµ, σσ),

log(τj) ∼ N(τµ, τσ),

αr,j ∼ N(αrµ, α
r
σ)I(0, 1),

αt,j ∼ N(αtµ, α
t
σ)I(0, 1),

ωj ∼ N(ωµ, ωσ)I(0, 1),

βD,j ∼ N(βDµ , β
D
σ )I(0, 1),

βI,j ∼ N(βIµ, β
I
σ)I(0, 1),

where I(a, b) denotes an indicator function on the interval (a, b). For the group mean 767

parameters, we specified the following informative priors after ensuring that the prior 768

predictive distributions created reasonable ranges for subject-level parameter values: 769

θµ ∼ N(4, .5),

σµ ∼ N(2, .5),

τµ ∼ N(−1, .5),

αrµ, α
t
µ ∼ N(1, 1.2),

ωµ ∼ N(.9, 1.2),

βIµ, β
D
µ ∼ N(.03, 1.2).

We adopted similarly informative priors for the group-level standard deviation 770

parameters, such that 771

θσ, σσ, τσ, α
r
σ, α

t
σ, ωσ, β

I
σ, β

D
σ ∼ Γ(4, 10),

where Γ(a, b) indicates the Gamma distribution with shape parameter a, and rate 772

parameter b. 773

When fitting each model configuration to behavioral data, due to the analytically 774

intractable stochastic process, we approximated the likelihood function using 775

likelihood-free Bayesian estimation techniques [73–75]; namely, we used the probability 776

density approximation (PDA; [76]) method. The PDA method was nested within a 777

Gibbs ABC algorithm [77] to allow for likelihood-free approximations of the subject-level 778

parameters, but direct posterior sampling of group-level parameters. To facilitate 779

efficient sampling of the joint posterior distribution, we used differential evolution with 780

Markov chain Monte Carlo (DE-MCMC; [78,79]). We used 24 concurrent chains for 781

1000 iterations, following a burn-in period of 1000 iterations, resulting in 24000 samples 782

of the joint posterior distribution. A migration step [79,80] was used with probability 783

0.1 for the first 250 iterations, after which time the migration step was terminated. We 784

also used a purification step every 10 iterations to ensure that the chains were not stuck 785

in spuriously high regions of the approximate posterior distribution [81]. Visual 786

inspection was performed on the chains to ensure that chains converged well. 787

Parameter recovery 788

We carried out a recovery study, showing in S2 Fig that our modeling fitting procedure 789

was able to provide a good recovery for all parameters from Model 11 (the best 790

performing model), over a wide range of values that correspond to individual MAP 791

estimates from the experimental data. In particular, we simulated the synthetic data for 792

July 28, 2020 21/28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2020. ; https://doi.org/10.1101/2020.08.05.237578doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.05.237578
http://creativecommons.org/licenses/by/4.0/


each subject using the MAP estimates from Model 11. The MAP estimates were 793

practically calculated as the average values of the last 100 iterations from the Markov 794

chains. Given the synthetic data of each subject, we followed the same procedures to 795

recover the model parameter, as were performed for actual experimental data. 796

Supporting information 797

S1 Fig. Distribution of Maximum a posteriori (MAP) parameter 798

estimates across subjects from Model 11 (the best performing model). Each 799

panel corresponds to one of the six free parameters (θ, σ, τ , αt, βI , and βD) in Model 800

11. θ, σ, and τ are constrained to be positive values whereas αt, βI , and βD are 801

constrained to be between 0 and 1, under the estimation procedure described in 802

Methods section. See S1 Table for detailed values of individual parameter estimates. 803

S2 Fig. Parameters recovery. Each panel in this figure shows the recovered 804

individual parameter values from synthetic data against the estimated parameter values 805

from actual data. The six parameters are the freely estimated parameters in Model 11 806

(the best performing model). Each data point in each panel indicates one single subject, 807

where x-axis corresponds to the MAP parameter estimates from actual data and y-axis 808

represents the MAP parameter estimates from the synthetic data. We calculated the 809

Pearson correlation coefficient for each parameter between the estimated parameter 810

values and recovered parameter values and showed in each panel. For visual clarity, we 811

excluded one outlier parameter value from one subject (subject 14). 812

S3 Fig. Posterior prediction of choice and response time distributions 813

from Model 11 (the best performing model). Five panels correspond to the five 814

PD experimental conditions. For each panel, the histograms denote the observed data, 815

where response times associated with immediate choices were plotted on the negative 816

x-axis and response times associated with delayed choices were plotted on the positive 817

x-axis. The overlaid black lines denote the simulated data, with simulated response 818

times separated according to the simulated choices similarly. The comparison of 819

experimental data and simulated data endorses the successful model fit of Model 11. 820

S4 Fig. Posterior prediction of choice and response time distributions and 821

summary statistics from Model 14 (the second best performing model). 822

This figure presents similar model performance summaries as we did for Model 11. The 823

summary statistics (left) corresponds to Fig 5a for Model 11, and the choice and 824

response time distribution (right) corresponds to S3 Fig. 825

S1 Table. Maximum a posteriori (MAP) individual parameter estimates 826

from Model 11 (the best performing model). The listed six parameters were 827

freely estimated in Model 11, with other parameters as fixed values: αr = 1, ω = 0.9. 828

Note that parameters θ, σ, and τ were estimated in the logarithmic space, and the 829

MAP values presented in the table have been transformed back to their respective 830

original space. 831

S2 Table. Maximum a posteriori (MAP) individual parameter estimates 832

from Model 14 (the second best performing model). The listed six parameters 833

were freely estimated in Model 11, with another parameter ω fixed as 0.9. Note that 834

parameters θ, σ, and τ were estimated in the logarithmic space, and the MAP values 835

presented in the table have been transformed back to their respective original space. 836
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