
AUTOMATIC INFERENCE OF DEMOGRAPHIC PARAMETERS USING
GENERATIVE ADVERSARIAL NETWORKS

Zhanpeng Wang1 Jiaping Wang1 Michael Kourakos2 Nhung Hoang2 Hyong Hark Lee2

Iain Mathieson3 Sara Mathieson1,†

1 Department of Computer Science, Haverford College, Haverford, PA1
2 Department of Computer Science, Swarthmore College, Swarthmore, PA2
3 Department of Genetics, University of Pennsylvania, Philadelphia, PA3
† Corresponding author: Sara Mathieson, smathieson@haverford.edu4

ABSTRACT

Population genetics relies heavily on simulated data for validation, inference, and intuition. In5

particular, since real data is always limited, simulated data is crucial for training machine learning6

methods. Simulation software can accurately model evolutionary processes, but requires many7

hand-selected input parameters. As a result, simulated data often fails to mirror the properties of8

real genetic data, which limits the scope of methods that rely on it. In this work, we develop a novel9

approach to estimating parameters in population genetic models that automatically adapts to data10

from any population. Our method is based on a generative adversarial network that gradually learns to11

generate realistic synthetic data. We demonstrate that our method is able to recover input parameters12

in a simulated isolation-with-migration model. We then apply our method to human data from the13

1000 Genomes Project, and show that we can accurately recapitulate the features of real data.14

Keywords Evolutionary modeling · Demographic inference · Generative adversarial network · Simulated data15

Introduction16

Simulation is a key component of population genetics. It helps to train our intuition, and is important for the development,17

testing, and comparison of inference methods. Because population genetic models such as the ancestral recombination18

and selection graphs [1, 2] are computationally intractable for inference but relatively easy to simulate, simulations are19

also heavily used for parameter inference. Approximate Bayesian Computation (ABC) [3] is a widely used example.20

Regardless of the application, the goal is to simulate data that is “realistic" in the sense that it resembles real data from21

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/

the populations of interest. Typically this is done by fixing some parameters that are fairly well-known, for example22

mutation and recombination rates, and then choosing other parameters to match some property of the real data, usually23

based on summary statistics. However, this involves searching over a high-dimensional parameter space, and an implicit24

weighting on the importance of different summary statistics. Often, parameters that create simulations that match one25

type of summary statistic (e.g. the site frequency spectrum) do not match others (e.g. linkage disequilibrium patterns)26

[4]. Here, we present a novel parameter learning approach using Generative Adversarial Networks (GANs). In this27

approach, “realistic” means “cannot be distinguished from real data by a machine learning algorithm”, specifically a28

convolutional neural network (CNN).29

Machine learning (ML) methods have been emerging more broadly as promising frameworks for population genetic30

inference. The high-level goal of training a ML method is to learn a function from the input (genetic data) to the31

output (evolutionary parameters). Some early efforts used machine learning to account for issues that arise with32

high-dimensional summary statistics [5–7]. More recently, machine learning approaches have used various forms of33

convolutional, recurrent, and “deep” neural networks to improve inference [8–12]. One of the goals of moving to these34

approaches was to enable inference frameworks to operate on the “raw” data (genotype matrices), which avoids the loss35

of information that comes from reducing genotypes to summary statistics. However, all these algorithms rely heavily on36

simulated datasets for training. In machine learning more broadly, data is often hand-labeled with “true” values – part37

of this data is used to train the model, and part is held aside to test the model. In population genetics, training data is38

extremely limited, and thus all approaches rely on simulations to train and validate ML models.39

Current simulators [13–19] are well equipped to replicate mechanisms of evolution, but require many user-selected40

input parameters including mutation rates, recombination and gene conversion rates, population size changes, natural41

selection, migration rates, and admixture proportions. We do not always have a good sense of what these parameters42

should be, especially in understudied populations and non-model species. For example, mutation and recombination43

rates estimated in one population are frequently used to simulate data for another, despite the fact that these rates differ44

between human populations [20–24].45

Generative models provide one route to simulating more realistic population genetic data. Typically, generative models46

create artificial data based directly on observed data, without an explicit underlying model. They have been used to47

create synthetic examples in a wide range of fields, from images and natural language to mutational effects [25] and48

single cell sequencing [26]. In particular, Generative Adversarial Networks (GANs) work by creating two networks49

that are trained together [27, 28]. One network (the generator) generates simulated data, while the other network (the50

discriminator) attempts to distinguish between “real” data and “fake” (synthetic) simulations. As training progresses,51

2

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/

the generator learns more about the real data and gets better at creating realistic examples, while the discriminator learns52

to pick up on subtle differences and gets better at distinguishing examples. After training is complete, the generator can53

be used to create new examples that are indistinguishable (by the discriminator) from real data, but where the ground54

truth is known (i.e. labeled data).55

Here we present a parametric GAN framework. The discriminator is a permutation-invariant CNN that takes as input56

a genotype matrix and classifies it as real data or synthetic data. Through training, the discriminator tries to get57

better at this binary classification task. The generator is a coalescent simulator that generates genotype data from58

a parameterized demographic history. We train the generator using a simulated annealing algorithm that proposes59

parameter updates leading to more discriminator confusion. We apply our method, called pg-gan, in a variety of60

scenarios to demonstrate that it is able to recapitulate the features of real genetic data. Although we focus on humans,61

the underlying methodology enables the simulation of any population or species, regardless of how much is known a62

priori about their specific evolutionary parameters. We anticipate that the approach outlined in this work will be useful63

in evaluating and strengthening the match between simulated and real data, especially for understudied populations that64

deviate from broad geographic groups. There has also been a push in the population genetics community to standardize65

simulation resources [29] – we see our method as contributing to the assessment and refinement of published models as66

they are applied to new datasets.67

Our approach is different from that outlined in [30], which uses a GAN to generate artificial genomes that mirror the68

properties of real genomes. Their approach is a more classical GAN that does not include an evolutionary model, so69

the resulting artificial genomes are “unlabeled”. Such an approach is useful for creating proxy genomes that preserve70

privacy but still maintain realistic aggregate properties. However this synthetic data could not be used downstream71

to train or validate supervised machine learning methods since no evolutionary ground truth is known. Our hybrid72

approach combines the ability of GANs to create realistic data with the interpretability that comes from an explicit73

model of evolution.74

Materials and Methods75

At a high level, our method works by simulating data from an underlying evolutionary model, and comparing it to76

real data via a neural network discriminator. As the discriminator is trained, it tries to minimize a loss function that77

incentivizes learning the difference between real data and synthetic data. But at the same time, the generator refines the78

evolutionary model so that it recapitulates the features of real data and attempts confuse the discriminator. At the end,79

the evolutionary model can be used to simulate additional realistic data for use in downstream applications or method80

3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237834doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.05.237834
http://creativecommons.org/licenses/by-nc/4.0/

comparisons. Additionally, the parameters of the final evolutionary model can be interpreted to learn more about the81

population or species of interest.82

This type of GAN framework is not a traditional optimization problem – due to the dual nature of the generator and83

discriminator there are two optimization problems and the final “GAN confusion” can be used to assess the success of84

the algorithm – a low confusion (i.e. classification accuracy close to 1) indicates that the simulations are not capturing85

the real data and the discriminator is easily able to tell the difference between the two types of data. A high confusion86

(accuracy close to 0.5) ideally indicates the evolutionary model has created simulations that are well-matched to the real87

data. However, an accuracy close to 0.5 could also mean that the discriminator has not learned anything and is either88

flipping a coin when classifying examples, or classifying all examples as the same class. See Figure 1 for a diagram of89

the method. The inputs to the method are an evolutionary model and a set of real data. To create a series of training90

examples, the real data is divided into regions of length L and the middle biallelic S SNPs from each region are retained91

(encoded as 0/1). Regions with insufficient SNPs are centered and zero-padded. The simulated data is treated in the92

same fashion to ensure that the discriminator does not learn the difference between real and simulated data from a93

pre-processing inconsistency.94

Generated Data
(nxSx2 matrices)

Real Data
(nxSx2 matrices)

Binary classification: synthetic or real

Generate parameters for an
evolutionary model (e.g. N1, N2, N3)

Discriminator

up
da

te

mo
de

l update
model

Simulator (i.e. msprime)

N1

0 0 1 0 1 0 1
1 1 0 1 1 0 0
0 1 0 0 0 1 0

0 1 0 0 1 1 0
1 0 0 1 0 1 0
1 1 1 0 1 0 1

N2

N3
inputs

Figure 1: pg-gan algorithm overview. The inputs to our method are an evolutionary model and a set of real data
(orange). The parameters of the generator and discriminator (green) are updated in a unified training framework using
simulated annealing (generator) and backpropagation (discriminator). The generated data and real data are analyzed
one genotype matrix at a time, where n is the number of haplotypes and S is the number of SNPs retained in each
region. Inter-SNP distances are also fed in as a second channel, which provides the discriminator with information
about SNP density.

Generator. In image and video generation, the generator often takes the form of a CNN, since a large array of pixel95

information must be generated from a low-dimensional vector of noise (see Figure 1 of [31] for the architecture of a96

CNN-based image generator). For our purposes, we do not need to generate the individual genotypes for each training97

example, but we do need to generate candidate parameters for input into an evolutionary simulator (we use msprime98

4

in this study). Let ⇥ be the set of evolutionary parameters corresponding to model M⇥. These can be very flexible,99

including event times, effective population sizes, selection parameters, and rates of mutation, recombination, migration,100

and exponential growth. The goal of the generator is to select ⇥⇤ that causes the most discriminator confusion,101

or equivalently, minimizes the test data accuracy. In this binary classification problem, test accuracy is defined as102

the fraction of test datasets where the predicted class matches the true class. We let this test accuracy be denoted103

D(⇥, Xtest, ytest), where Xtest is held-aside test data (both real examples and examples simulated under M⇥), and ytest104

is a vector defining the true classes of each example. We occasionally simplify the notation and write the test accuracy105

as D(⇥). Using this lens, we can view the generator learning problem as minimizing the multivariate function D(⇥),106

while the discriminator is trying to maximize it. We alternate optimizing the discriminator using gradient descent,107

and optimizing the generator using simulated annealing [32] due to its flexible parameter updates and lack of reliance108

on an analytic gradient. In simulated annealing, initial parameter values are proposed and then gradually refined. A109

temperature is used to control whether or not new parameter proposals are accepted. The temperature usually begins110

at a high value, indicating that sub-optimal parameter choices may be accepted liberally to facilitate exploration of111

the entire parameter space. As training proceeds, the temperature “cools”, reducing the chance of accepting a poor112

parameter choice and allowing the method to converge on a set of parameters that optimizes the desired function.113

We initialize each evolutionary parameter by selecting a random value uniformly from a pre-defined range to form ⇥(0).114

Then the discriminator goes through an initial round of training using simulated data drawn from M⇥(0) . We set the115

temperature for simulated annealing T (0) = 1 and linearly decrease it to 0 over a fixed number of iterations that scales116

with the number of evolutionary parameters. During each training iteration, several new sets of candidate parameters117

are proposed, and evaluated based on the resulting discriminator confusion. The new set of parameters is proposed by118

sampling from a normal distribution around each current value, with variance based on the temperature (this allows the119

algorithm to explore the parameters space quickly in the beginning, and refine the estimates toward the end of GAN120

training). More formally, at iteration i, the candidate proposal for parameter p would be121

⇥(proposal)
p ⇠ N

⇣
⇥(i)

p ,�2 · T (i)
⌘

where �2 is the initial variance, which is based on the range of plausible values for each parameter. Out of the several122

candidate proposals, we choose the one that minimizes D(⇥, Xtest, ytest). Then we compare the test accuracy of the123

chosen proposal to that of the previous iteration. If the proposal reduces or maintains the test accuracy, we always124

accept it (down to a floor of 0.5, so we do not incentivize flipped classification results). If not, we use the simulated125

annealing temperature to help define a threshold for acceptance. Formally, if the proposal is ⇥ and the current parameter126

5

value at iteration i is ⇥(i), then the acceptance probability is127

paccept =
1� |2D(⇥)� 1|
1� |2D(⇥(i))� 1|

· T (i).

If we accept the proposed parameters then we set ⇥(i+1) ⇥ and run a round of discriminator training using these128

parameters. An important point is that we do not train the discriminator using the new parameter proposals unless they129

are accepted. During the candidate proposal phase, we are evaluating the parameter choices by testing only.130

Discriminator. For the architecture of the discriminator, we use a permutation-invariant CNN based on defiNETti [8].131

Each example within Xtrain and Xtest has shape (n, S, 2) where n is the number of haplotypes in the sample, S is the132

number of retained SNPs in a region of size L, and 2 indicates there is one channel for the genotypes and one channel for133

inter-SNP distances. The inter-SNP distances are duplicated down each column to allow this slice of the tensor to have134

the same shape as the genotype information. This also ensures that each convolutional filter processes the genotypes135

and associated distances at the same time. Alternatively, the convolutional layers can be used on the genotypes only, and136

the distances concatenated later as a vector. However, this approach does not allow the processing of the two channels137

to be as tightly coupled. We use convolutional filters of shape 1 ⇥ 5 (1 haplotype, 5 SNPs) to ensure that the order138

of haplotypes does not impact the results. After several convolutional layers, we condense the output by applying a139

column-wise permutation-invariant function. We experiment with both max and sum as permutation-invariant functions,140

and discuss the advantages of each. For models that consider multiple populations, we augment this framework to141

include separate permutation-invariant components for each population, then concatenate the flattened output before142

input into the dense layers at the end of the network. An illustration of our discriminator architecture is shown in Figure143

2.144

flatten

concatenate

dense layers,
softmax,
output

probabilities

synthetic/real

Co
nv

, R
eL

U

Co
nv

, R
eL

U permutation-
invariant
function

flatt
en

Co
nv

, R
eL

U

Co
nv

, R
eL

U permutation-
invariant
function

Population 1
(e.g. YRI)

Population 2
(e.g. CEU)

Figure 2: Multi-population discriminator architecture. Each example region is of shape (n, S, 2) where n is the
number of haplotypes (usually with n/2 from population 1 and n/2 from population 2). Note that the convolutional
filters for population 1 and 2 are shared (i.e. not separate weights) so that haplotype commonalities can be more easily
identified.

6

We train the discriminator using mini-batches of 50 training examples (chosen randomly such that roughly half are real145

and half are simulated). For each training iteration, we perform 200 batch training updates if the proposed parameters146

are accepted. This allows the discriminator to learn gradually, as the parameters are being refined. While a test accuracy147

close to 0.5 is desired by the end of training, the discriminator test accuracy may be close to this value early on in the148

training process simply because it has not learned anything yet. The goal is for the discriminator to be optimized to149

distinguish real from simulated data as much as possible and still be wrong half the time.150

Simulation study. To validate our approach, we first select the “real” dataset to be a simulated one, so that we can151

test whether the inferred parameters are correct. To assess a variety of different types of parameters, we choose an152

isolation-with-migration model (see Figure 3A) with six parameters. The parameters include three effective population153

sizes (Nanc for the ancestral population size, and N1 and N2 for the sizes of each population after the split). We154

also infer the split time Tsplit, and the strength of a directional migration pulse at time Tsplit/2. Finally, we infer the155

per-base, per-generation recombination rate. We evaluate the inferred parameters based on how well they match the156

“real” parameters.157

N1

N2
T2

Single Population,
growth (EXP)

N2

N1

N3

T1

T2
mig

Nanc

Out-of-Africa 2
(OOA2)

Nanc

T1

growth

N1

N2 N2

N1 N2

Tsplit

mig

Nanc

Isolation with
Migration (IM)

(A) (B) (C)

N2

N1

N3

T1

T2

Nanc

Post out-of-Africa
split (POST)

(D)

N1

Figure 3: Set of models. (A) A six parameter, two population isolation-with-migration model, which we use in the
simulation study. The migration event is a single pulse at time Tsplit/2, and can be in either direction. The final parameter
(not shown in this diagram) is the recombination rate. (B) A five parameter, single population exponential growth model,
which we use to infer histories for YRI, CEU, and CHB separately. (C) A seven parameter, two population model,
which we fit separately for YRI/CHB and YRI/CEU. The migration can be in either direction. (D) A six parameter, two
population model which we fit to CEU/CHB.

1000 Genomes data analysis. To demonstrate the effectiveness of our method on real data, we use the method to infer158

demographic parameters for both single- and multi-population models in humans. To ensure that the real data is as159

similar as possible to the simulated data, we run several pre-processing steps. We first divide each chromosome into160

L = 50kb regions. For each region, we retain it if at least 50% of the bases are inside callable regions, as defined by161

the “20120824” strict mask [33]. We filter out non-segregating and multi-allelic sites. For both the real and simulated162

7

data we recode the genotypes by setting the minor allele to the value “1” and the major allele to the value “0” so that163

the discriminator cannot learn to distinguish real data based on reference bias or ancestrally misidentified states. We164

select the test data randomly and hold it aside so it is not used for training. To mitigate the effects of correlated nearby165

regions, local variations in mutation and recombination rate, we sample regions randomly (for both training and testing).166

To avoid processing the real data on-the-fly during training, we follow a data extraction pipeline to convert the real167

regions into HDF5 format [34, 35]. From each 50kb region we retain a fixed number of SNPs (either 24 or 36) and the168

associated inter-SNP distances. The number of haplotypes is flexible (due to the permutation-invariant framework), so169

we use between 196 and 198, matching the minimum number of individuals in each 1000 Genomes population.170

For the single population analysis, this leaves 49,276 training examples (91.5% of all regions). For the two-population171

models, we keep the same total sample size, taking half the haplotypes from each population. This enables us to take172

two training examples from each region for a total of 98,552 examples for the two-population models.173

We test three models (Figure 3B-D). The single-population model has five parameters: two effective population sizes174

N1 and N2, two size-change points T1 and T2, and the rate of exponential growth in the recent past. We fit this model to175

three human populations from the 1000 Genomes project: YRI (West African), CEU (European), and CHB (East Asian).176

The second model is a simplified two-population Out-of-Africa model. There are seven parameters: four effective177

population sizes, two time-change points, and a migration pulse that can be in either direction, allowing for migration178

between African and non-African populations. We fit this model to two pairs of populations: YRI/CEU and YRI/CHB.179

The third model represents the post-out-of-Africa split between the ancestors of Europeans and East Asians. In this180

six parameter model we do not include migration, but allow a pre-split bottleneck. We fit this model to the pair of181

populations CEU/CHB.182

Summary statistics. As a qualitative assessment of our results, we compare summary statistics computed on both the183

real data and data simulated under our inferred parameters. We note that our goal is explicitly not to match summary184

statistics, as matching some types of statistics can bias the resulting fitted model. In addition, we currently do not185

have an exhaustive or sufficient set of summary statistics that could be used to identify model parameters directly in a186

likelihood framework. However, summary statistics can give us a sense of which features of real data agree with our187

simulations and which do not.188

To that end, we use seven summary statistics. In all cases, we use 5000 regions of real data and 5000 regions of189

simulated data to compute the statistics. Each region is 50kb long, with 36 SNPs retained.190

• SFS: we compute the site frequency spectrum (SFS) by counting the number of singletons, doubletons, etc in191

each of 5000 regions of real and simulated data. We plot the first 10 entries.192

8

• Inter-SNP distances: we plot the distribution of inter-SNP distances for both the real and simulated data193

(measured in base pairs). This provides a general measure of SNP density.194

• LD: we compute linkage-disequilibrium (LD) by clustering pairs of SNPs based on their inter-SNP distance.195

We divide these distances into 10 bins and average the correlation r2 within each one.196

• Tajima’s D: we plot the distribution of Tajima’s D, computed separately for each region.197

• Pairwise heterozygosity: we plot the distribution of pairwise heterozygosity (⇡), computed separately for198

each region.199

• Number of haplotypes: we plot the distribution of number of haplotypes for each region.200

• Fst: for the two-population split models, we use Hudson’s Fst to measure population differentiation [36].201

Our pg-gan software uses a tensorflow [37] backend and is available open-source at https://github.com/202

mathiesonlab/pg-gan. Data Availability Statement: all data included in this work is publicly available through the203

1000 Genomes Project https://www.internationalgenome.org/ [33].204

Results205

Simulation study. To validate our method, we first create a “real” dataset using simulated data, so we know the true206

evolutionary parameters. Using the six-parameter IM model described in the Methods section, we begin by inferring one207

parameter at a time, fixing all others to their true values. We initialize the parameter to infer by choosing a random value208

uniformly from the parameter’s range, defined in Table 1. Throughout, we also fix the mutation rate to 1.25⇥ 10�8 per209

base per generation.210

Table 1: Parameter ranges. When inferring a parameter, we initialize its value by drawing a value uniformly from the
given ranges. For each parameter update, we do not allow the parameter to go outside its range. Whenever we noticed
a parameter moving against a boundary, we increased the range. Overall the ranges are meant to be plausible values
based on previous studies or reasonable evolutionary events.

Parameter min max units
NA 1000 20000 individuals
NB 1000 20000 individuals
Ne 1000 20000 individuals

reco 1⇥ 10�9 1⇥ 10�7 per base per generation
Nanc 1000 25000 individuals
Tsplit 500 20000 generations
mig -0.2 0.2 per generation
N1 1000 30000 individuals
N2 1000 30000 individuals

growth 0 0.05 per generation
N3 1000 30000 individuals
T1 1500 5000 generations
T2 100 1500 generations

9

https://github.com/mathiesonlab/pg-gan
https://github.com/mathiesonlab/pg-gan
https://github.com/mathiesonlab/pg-gan
https://www.internationalgenome.org/

For the parameter updates, we set the initial variance �2 to the parameter range divided by 10. During each iteration,211

we choose 5 independent candidate parameters, and select the one that minimizes test accuracy. We tested updating one212

parameter each iteration vs. updating all the parameters each iteration, and generally found that updating one at a time213

led to more stable and consistent results.214

We ran our method on the full set of six parameters for this model, performing joint inference. The results are shown215

in Figure 4. Points closer to red indicate earlier in the GAN training, and blue indicate the end of training. The216

y-axis shows the test accuracy. We see that in general, pg-gan is able to find parameter values that cause the optimal217

discriminator test accuracy of 0.5 (the final test accuracy here was 0.518), and the inferred values are close to the218

true values used for the “real” data. Some of the training iteration points are aligned vertically since we update one219

parameter at a time – if a parameter is not updated that iteration, the test accuracy could change while that parameter220

value remains the same. Note that sometimes early in training, the test accuracy is low (close to 0.5) simply because the221

discriminator has learned nothing and essentially guesses randomly.222

begin end

Figure 4: IM model joint parameter inference on simulated data. In this scenario we jointly infer this six parameters
of the IM model from Figure 3A. Each point shows the discriminator accuracy and parameter value at a single iteration.
Colors indicate the training iteration, with red being closer to the beginning of training and blue closer to the end.

1000 Genomes data analysis. We first analyzed three populations (YRI, CEU, and CHB) separately, each under the223

five-parameter model with recent exponential growth. We pre-processed the data and modified the simulations in a224

10

variety of ways to test the effect on the discriminator accuracy. For all results presented below, we used n = 198 (size of225

CEU) and S = 36. We group our experiments into algorithmic changes and modeling changes. In terms of algorithmic226

modifications (see Figure 5A), we use max as the permutation-invariant function in the CNN architecture, and then227

sum. We generally find that sum causes the discriminator to learn more slowly, allowing the generator time to find good228

parameter choices. max sometimes causes the discriminator to converge quickly, easily distinguishing the real from229

simulated data before the generator can move to a promising location in the parameter space. We also experiment with230

updating one parameter at a time, rather than all parameters. For CEU in particular, algorithmic changes did not change231

the results dramatically, but for YRI, using the sum function and updating one parameter at a time allowed the training232

process to find more realistic parameters.233

In terms of modeling changes (Figure 5B), we first fit a one-parameter demographic model with a single constant234

population size, fixing both the recombination and mutation rates to 1.25⇥ 10�8 per base per generation. We contrast235

this result with the five-parameter exponential growth model. Finally, we allow the recombination rate to vary by236

drawing from the distribution of HapMap combined recombination rates [38]. Both these modifications allow for more237

flexible simulations, which improved our results. The summary of these results for all populations is shown in Figure 5.238

The minimum discriminator accuracy is around 60%. That is, the discriminator can still distinguish real and simulated239

data slightly better than random, probably indicating that there are still features of the data that we are not capturing.240

(A) (B)

Figure 5: 1000 Genomes single population analysis. (A) Results of algorithmic modifications. We vary the
permutation-invariant (PI) function between max and sum, with sum usually producing better results. We also vary the
parameter update approach (all at once vs. one at a time). (B) Results of modeling modifications. We use a constant
population size for the first group of bars, then move to the five-parameter exponential growth model (Figure 3B). We
also sample recombination rates from HapMap in the last group of bars, instead of fixing the recombination rate. Note
that the last set of bars in both figures is the same, representing our optimal algorithmic and modeling choices.

Inferred parameters for each population under the five-parameter exponential growth model are shown in Table 2, and241

correspond to the optimal algorithm and modeling choices from Figure 5. The Out-of-Africa bottleneck (N2) is very242

11

apparent in CEU and CHB, with a much more modest reduction in YRI. The per-generation growth rate for YRI is243

likely overestimated, possibly because the start of exponential growth (T2) is underestimated.244

Table 2: 1000 Genomes single population parameter inference. Inferred parameters for the exponential growth
model (see Figure 3B) in YRI, CEU, and CHB. These parameters correspond to the optimal algorithm and modeling
choices from the last set of bars in Figure 5. We generally infer similar parameters for CEU and CHB.

Population N1 N2 growth T1 T2

YRI 29,781 18,404 0.0498 1,989 309
CEU 24,121 5,448 0.0104 3,287 526
CHB 23,055 5,079 0.0103 3,837 677

As an independent assessment of our results, we compare the summary statistics between real data and data simulated245

under the parameter choices corresponding to various scenarios from Figure 5 (see Methods for a description of the246

summary statistics). In Figure 6 we show two sets of summary statistics for YRI. On the left we show the five-parameter247

demography results with a fixed recombination rate, and on the right we use the HapMap recombination rates. While248

some statistics match closely, others are less well-matched, consistent with the discriminator being imperfectly confused.249

Full sets of summary statistics for YRI, CEU, and CHB are shown in Figures S1-S3.250

5-param demography, fixed recombination 5-param demography, HapMap recombination

Figure 6: YRI: single population model. Summary statistic comparison between YRI data from the 1000 Genomes
Project and data simulated under our inferred parameters for each scenario. Left: simulated data under the 5-
parameter exponential growth model with a fixed recombination rate. Right: same exponential growth model but with
recombination rates sampled from the HapMap recombination map.

For all our real data results, we use two checks to ensure that a low test accuracy is not simply the result of the251

discriminator failing to learn anything. First we look for a high test accuracy at some point during training, which252

12

typically means that for some parameter combinations and discriminator weights, the real and simulated data were253

easily distinguished. Second, we check the final confusion matrix for the test data to make sure that all datasets are not254

simply classified in the same way (all real or all synthetic). Both these checks are satisfied for all real data analysis.255

Lastly, we ran our method on 1000 Genomes data from two populations. To represent the Out-of-Africa event, we use256

two pairs of populations separately: YRI/CEU and YRI/CHB, using the model from Figure 3C. We also use CEU/CHB257

with the model from Figure 3D to represent the post-out-of-Africa split between the ancestors of Europeans and East258

Asians. The resulting test accuracies are shown in Figure 7. The YRI/CEU and YRI/CHB results are comparable259

with the single population analysis, but the CEU/CHB test accuracy is much higher, indicating that this model or260

the resulting parameter inference is not a good match for this dataset. For YRI/CEU and YRI/CHB, we provide the261

parameter inference results in Table 3. For both pairs of populations, we infer the “back-migration” of ancestors of262

non-Africans back into Africa observed in [39]. Here, this is represented as a single migration pulse with a negative263

migration proportion.264

(A)

Hudson’s Fst

Hudson’s Fst

(B)

(C)

YRI/CEU

YRI/CHB

Figure 7: 1000 Genomes two population analysis. (A) Test accuracy results on the population split models for
YRI/CEU, YRI/CHB, and CEU/CHB. The Out-of-Africa models and parameter inference for YRI/CEU and YRI/CHB
generally seem to do well, but the CEU/CHB split model and/or parameter inference does not result in simulated data
that matches real data (much more easily distinguishable). (B-C) Fst summary statistic comparison for the YRI/CEU
and YRI/CHB splits.

In the two-population scenario, we compute summary statistics on each population separately, shown in Figure 8 for265

the YRI/CEU split. We see close agreement between the statistics for real and simulated data in the two-population266

Out-of-Africa scenario, indicating that modeling the additional complexity of the split leads to more realistic simulated267

13

Table 3: 1000 Genomes two-population parameter inference. Inferred parameters for the Out-of-Africa model (see
Figure 3C) fit to YRI/CEU and YRI/CHB. We generally see similar results for both pairs of populations, with a lower
test accuracy for YRI/CEU, indicating a closer match to the real data.

Populations Nanc mig N1 N2 N3 T1 T2

YRI/CEU 21,763 -0.0796 4,263 26,975 29,803 3,647 1,051
YRI/CHB 24,782 -0.1117 3,924 28,176 29,302 4,919 1,499

data. YRI/CHB statistics are shown in Figure S4 – for the YRI samples these statistics are not quite as closely matched,268

which fits with the slightly higher test accuracy for this scenario. CEU/CHB statistics are shown in Figure S5 – in this269

scenario the simulated statistics show deviation from the real data, also fitting with the higher test accuracy.270

YRI samples from YRI/CEU split CEU samples from YRI/CEU split

Figure 8: YRI/CEU: two population model. Summary statistic comparison real 1000 Genomes data and data
simulated under the inferred parameters from Table 3 (first row). Left: statistics computed on YRI samples only. Right:
statistics computed on CEU samples only. Sites with count zero are segregating in only one population.

Computational Resources. The runtime of our method is around 12-15 hours using a Quadro P5000 GPU. As the271

number of parameters increases, we increase the number of training iterations linearly, which adds to the runtime.272

Pre-processing the real data takes 8-10 hours per population or scenario (i.e. two population split model). The resulting273

file sizes are 5.3G for single populations and 11G for pairs of populations, which are loaded into memory during274

training. To reduce the demand for RAM, it would also be possible to break up these files into smaller units and to load275

them in as needed during training.276

14

Discussion277

In this work we present a method for automatically creating realistic simulated genetic data. Our pg-gan algorithm is278

a more holistic approach to parameter inference than methods that are based on summary statistics. Our generative279

adversarial framework simultaneously trains a generator to produce reasonable evolutionary parameters and a discrimi-280

nator to distinguish real data from simulated. We use real data during training to make sure the simulations capture281

realistic genomic features. We demonstrate the use of our method in an isolation-with-migration simulation setting and282

create simulated data that mirrors three human populations individually, and in pairs. In these single-population models,283

we achieve discriminator accuracy close to 60%, indicating strong, albeit imperfect, confusion between the real and284

simulated data. The approach is highly flexible and can automatically fit any parameterized model to any genomic data.285

It is particularly useful for understudied populations or species, since any unknown parameters can be included in the286

model and learned.287

The approach also yields a natural way of evaluating and refining simulation pipelines. If simulations are easily288

distinguished from real data, then the model is not producing realistic simulations. We easily reach perfect (50%)289

discriminator confusion in simulations but with real data, even for humans where we have a good understanding of290

parameter ranges and likely models, our best accuracy is around 60%. This is likely because there are features of the real291

data that our models do not include, for example heterogeneity in mutation rates, limited power to detect rare variants,292

inaccessible regions of the genome, and the effects of natural selection. It would be possible to incorporate these effects293

and evaluate their impact. In particular, heterogeneity can be modeled by fitting a distribution to parameters, rather294

than a point estimate. More generally, in our current implementation, the topology of the demographic model needs to295

be specified ahead of time. However, it would be possible to extend our method to explore the space of demographic296

models more broadly to automatically learn the topology as well as the parameters of the model. In that case, many297

different models would likely produce data indistinguishable from real data.298

A concern for training the discriminator is overfitting due to unbalanced training data. The amount of real data is299

fixed, but the number of simulated examples can be unlimited. There are many ways to guard against overfitting neural300

networks, including regularization, dropout [40], and architecture modifications. An important line of future research301

will include optimizing the training procedure in the presence of limited real data. In addition to discriminator choices,302

the real data can also be processed to maximize the number of regions, including reducing the number of haplotypes303

(which allows for multiple regions per locus), reducing the size of each locus, or increasing the number of SNPs retained304

from each locus (retaining 36 SNPs from a 50kb region is generally very conservative in humans, and it is not a problem305

if some regions have fewer SNPs). This type of optimization needs to be balanced with potential loss of information.306

15

Another approach is to make use of transfer learning [41]. In transfer learning, the parameters of an ML model are307

initialized by training on a large dataset, then “fine-tuned” by training on a smaller number of examples from the target308

dataset. In our case, a large dataset like the 1000 Genomes could be used to find a “good guess” for weights of the309

discriminator, then these parameters could be fine-tuned using data with fewer regions or sequenced individuals.310

Another potential asymmetry comes from the fact that the generator parameters are being updated at the same time311

that the discriminator is being trained. The training of both components needs to be balanced – if the discriminator312

learns the difference between real and simulated data too quickly, the generator might not have a chance to explore313

a parameter space that would actually cause confusion. On the other hand, if the discriminator learns too slowly, all314

generator updates might look equally confusing. In our experiments, the former situation is more common, but the path315

of training should always be monitored to guard against the latter.316

Future developments will include integrating more realistic features of real data and applying our approach to non-317

human species. In terms of methodological development, we aim to integrate transfer learning and develop interpretative318

approaches for the CNN discriminator, in order to investigate alignment between its hidden layers and traditional319

summary statistics. Modern machine learning has proved to be powerful in many domains, and our work emphasizes320

that this is true for population genetics as well. However, machine learning in population genetics requires novel321

architectures, for example our parametric generator and multi-population CNN discriminator – innovations that will be322

useful for future development of ML methods in the field.323

Acknowledgments324

The authors would like to thank Joe Cammisa for extensive computational support.325

References326

[1] Robert C Griffiths and Paul Marjoram. An ancestral recombination graph. In IMA, volume 87, page 257, 1997.327

[2] Claudia Neuhauser and SM Krone. Ancestral processes with selection. Theor. Pop. Biol, 51:210–237, 1997.328

[3] Mark A Beaumont, Wenyang Zhang, and David J Balding. Approximate Bayesian computation in population329

genetics. Genetics, 162(4):2025–2035, 2002.330

[4] Annabel C Beichman, Tanya N Phung, and Kirk E Lohmueller. Comparison of single genome and allele frequency331

data reveals discordant demographic histories. G3: Genes, Genomes, Genetics, 7(11):3605–3620, 2017.332

[5] Michael GB Blum and Olivier François. Non-linear regression models for Approximate Bayesian Computation.333

Statistics and computing, 20(1):63–73, 2010.334

16

[6] Roy Ronen, Nitin Udpa, Eran Halperin, and Vineet Bafna. Learning natural selection from the site frequency335

spectrum. Genetics, 195(1):181–193, 2013.336

[7] Sara Sheehan and Yun S Song. Deep learning for population genetic inference. PLoS computational biology, 12337

(3):e1004845, 2016.338

[8] Jeffrey Chan, Valerio Perrone, Jeffrey Spence, Paul Jenkins, Sara Mathieson, and Yun Song. A likelihood-free339

inference framework for population genetic data using exchangeable neural networks. In Advances in Neural340

Information Processing Systems, pages 8594–8605, 2018.341

[9] Lex Flagel, Yaniv Brandvain, and Daniel R Schrider. The unreasonable effectiveness of convolutional neural342

networks in population genetic inference. Molecular biology and evolution, 36(2):220–238, 2019.343

[10] Luis Torada, Lucrezia Lorenzon, Alice Beddis, Ulas Isildak, Linda Pattini, Sara Mathieson, and Matteo Fumagalli.344

ImaGene: a convolutional neural network to quantify natural selection from genomic data. BMC bioinformatics,345

20(9):337, 2019.346

[11] Jeffrey R Adrion, Jared G Galloway, and Andrew D Kern. Predicting the landscape of recombination using deep347

learning. Molecular Biology and Evolution, 37(6):1790–1808, 2020.348

[12] Théophile Sanchez, Jean Cury, Guillaume Charpiat, and Flora Jay. Deep learning for population size history349

inference: design, comparison and combination with approximate Bayesian computation. BioRxiv, 2020.350

[13] Richard R Hudson. Generating samples under a Wright–Fisher neutral model of genetic variation. Bioinformatics,351

18(2):337–338, 2002.352

[14] Kosuke M Teshima and Hideki Innan. mbs: modifying Hudson’s ms software to generate samples of DNA353

sequences with a biallelic site under selection. BMC bioinformatics, 10(1):166, 2009.354

[15] Gregory Ewing and Joachim Hermisson. MSMS: a coalescent simulation program including recombination,355

demographic structure and selection at a single locus. Bioinformatics, 26(16):2064–2065, 2010.356

[16] Laurent Excoffier, Isabelle Dupanloup, Emilia Huerta-Sánchez, Vitor C Sousa, and Matthieu Foll. Robust357

demographic inference from genomic and SNP data. PLoS Genet, 9(10):e1003905, 2013.358

[17] Andrew D Kern and Daniel R Schrider. Discoal: flexible coalescent simulations with selection. Bioinformatics,359

32(24):3839–3841, 2016.360

[18] Jerome Kelleher, Alison M Etheridge, and Gilean McVean. Efficient coalescent simulation and genealogical361

analysis for large sample sizes. PLoS computational biology, 12(5):e1004842, 2016.362

17

[19] Benjamin C Haller and Philipp W Messer. SLiM 3: Forward genetic simulations beyond the Wright–Fisher model.363

Molecular biology and evolution, 36(3):632–637, 2019.364

[20] Anjali G Hinch, Arti Tandon, Nick Patterson, Yunli Song, Nadin Rohland, Cameron D Palmer, Gary K Chen, Kai365

Wang, Sarah G Buxbaum, Ermeg L Akylbekova, et al. The landscape of recombination in African Americans.366

Nature, 476(7359):170–175, 2011.367

[21] Kelley Harris. Evidence for recent, population-specific evolution of the human mutation rate. Proceedings of the368

National Academy of Sciences, 112(11):3439–3444, 2015.369

[22] Kelley Harris and Jonathan K Pritchard. Rapid evolution of the human mutation spectrum. Elife, 6:e24284, 2017.370

[23] Iain Mathieson and David Reich. Differences in the rare variant spectrum among human populations. PLoS371

genetics, 13(2):e1006581, 2017.372

[24] Michael D Kessler, Douglas P Loesch, James A Perry, Nancy L Heard-Costa, Daniel Taliun, Brian E Cade,373

Heming Wang, Michelle Daya, John Ziniti, Soma Datta, et al. De novo mutations across 1,465 diverse genomes374

reveal mutational insights and reductions in the Amish founder population. Proceedings of the National Academy375

of Sciences, 117(5):2560–2569, 2020.376

[25] Adam J Riesselman, John B Ingraham, and Debora S Marks. Deep generative models of genetic variation capture377

the effects of mutations. Nature methods, 15(10):816–822, 2018.378

[26] Romain Lopez, Jeffrey Regier, Michael B Cole, Michael I Jordan, and Nir Yosef. Deep generative modeling for379

single-cell transcriptomics. Nature methods, 15(12):1053–1058, 2018.380

[27] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,381

and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing systems, pages382

2672–2680, 2014.383

[28] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784,384

2014.385

[29] Jeffrey R Adrion, Christopher B Cole, Noah Dukler, Jared G Galloway, Ariella L Gladstein, Graham Gower,386

Christopher C Kyriazis, Aaron P Ragsdale, Georgia Tsambos, Franz Baumdicker, et al. A community-maintained387

standard library of population genetic models. BioRxiv, pages 2019–12, 2020.388

[30] Burak Yelmen, Aurélien Decelle, Linda Ongaro, Davide Marnetto, Corentin Tallec, Francesco Montinaro, Cyril389

Furtlehner, Luca Pagani, and Flora Jay. Creating artificial human genomes using generative models. bioRxiv, page390

769091, 2019.391

18

[31] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional392

generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.393

[32] Martin Pincus. Letter to the editor—a Monte Carlo method for the approximate solution of certain types of394

constrained optimization problems. Operations research, 18(6):1225–1228, 1970.395

[33] 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature, 526(7571):396

68–74, 2015.397

[34] Alistair Miles. Extracting data from VCF files, 2017. URL http://alimanfoo.github.io/2017/06/14/398

read-vcf.html.399

[35] Alistair Miles. Estimating Fst, 2015. URL http://alimanfoo.github.io/2015/09/21/estimating-fst.400

html.401

[36] Richard R Hudson, Montgomery Slatkin, and Wayne P Maddison. Estimation of levels of gene flow from DNA402

sequence data. Genetics, 132(2):583–589, 1992.403

[37] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy404

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael405

Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat406

Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,407

Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,408

Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on409

heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available from tensorflow.org.410

[38] International HapMap Consortium et al. A second generation human haplotype map of over 3.1 million SNPs.411

Nature, 449(7164):851, 2007.412

[39] Christopher Bernard Cole, Sha Joe Zhu, Iain Mathieson, Kay Prfüer, and Gerton Lunter. Ancient admixture into413

Africa from the ancestors of non-Africans. bioRxiv, 2020.414

[40] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple415

way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):1929–1958,416

2014.417

[41] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge and data418

engineering, 22(10):1345–1359, 2010.419

19

http://alimanfoo.github.io/2017/06/14/read-vcf.html
http://alimanfoo.github.io/2017/06/14/read-vcf.html
http://alimanfoo.github.io/2017/06/14/read-vcf.html
http://alimanfoo.github.io/2015/09/21/estimating-fst.html
http://alimanfoo.github.io/2015/09/21/estimating-fst.html
http://alimanfoo.github.io/2015/09/21/estimating-fst.html
https://www.tensorflow.org/

Supplementary Material

Automatic inference of demographic parameters using Generative

Adversarial Networks

Zhanpeng Wang1, Jiaping Wang1, Michael Kourakos2, Nhung Hoang2, Hyong Hark Lee2, Iain Mathieson3,
Sara Mathieson1,†

1 Department of Computer Science, Haverford College, Haverford, PA
2 Department of Computer Science, Swarthmore College, Swarthmore, PA
3 Department of Genetics, University of Pennsylvania, Philadelphia, PA
† Corresponding author: Sara Mathieson, smathieson@haverford.edu

1

1-param demography, fixed reco fixed reco

PI function: max 5-param demography, HapMap reco

Figure S1: YRI: single population model. Summary statistic comparison between YRI data from the
1000 Genomes project and simulated data under the inferred parameters from the various scenarios in the
main text (see Figure 5). Subfigure titles above refer to differences from our “optimal” model in the lower
right. Upper left: simulated data under a constant population size with fixed recombination rate. Upper
right: simulated data under a 5-parameter exponential growth model with fixed recombination rate Lower
left: Same as lower right but with a max permutation-invariant (PI) function. Lower right: Optimal model
with sum permutation-invariant function, 5-parameter model, and HapMap recombination rates.

2

1-param demography, fixed reco fixed reco

PI function: max 5-param demography, HapMap reco

Figure S2: CEU: single population model. Summary statistic comparison between CEU data from the
1000 Genomes project and simulated data under the inferred parameters from the various scenarios in the
main text (see Figure 5). Subfigure titles above refer to differences from our “optimal” model in the lower
right. Upper left: simulated data under a constant population size with fixed recombination rate. Upper
right: simulated data under a 5-parameter exponential growth model with fixed recombination rate Lower
left: Same as lower right but with a max permutation-invariant (PI) function. Lower right: Optimal model
with sum permutation-invariant function, 5-parameter model, and HapMap recombination rates.

3

1-param demography, fixed reco fixed reco

PI function: max 5-param demography, HapMap reco

Figure S3: CHB: single population model. Summary statistic comparison between CHB data from the
1000 Genomes project and simulated data under the inferred parameters from the various scenarios in the
main text (see Figure 5). Subfigure titles above refer to differences from our “optimal” model in the lower
right. Upper left: simulated data under a constant population size with fixed recombination rate. Upper
right: simulated data under a 5-parameter exponential growth model with fixed recombination rate Lower
left: Same as lower right but with a max permutation-invariant (PI) function. Lower right: Optimal model
with sum permutation-invariant function, 5-parameter model, and HapMap recombination rates.

4

YRI samples from YRI/CHB split CHB samples from YRI/CHB split

Figure S4: YRI/CHB: two population model. Summary statistic comparison real 1000 Genomes data
and data simulated under the inferred parameters from Table 3 (second row). Left: statistics computed on
YRI samples only. Right: statistics computed on CHB samples only. Note that we have non-segregating sites
when considering each population separately, but not when we consider them together.

5

CEU samples from CEU/CHB split CHB samples from CEU/CHB split

Figure S5: CEU/CHB: two population model. Summary statistic comparison real 1000 Genomes data
and data simulated under the inferred parameters from the CEU/CHB split model Figure 3D. Left: statistics
computed on CEU samples only. Right: statistics computed on CHB samples only. Lower panel: Fst, which
we note is much less closely matched than for YRI/CEU or YRI/CHB. Note that we have non-segregating
sites when considering each population separately, but not when we consider them together.

6

