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Abstract 14 

1. Spatial and temporal trends in mosquito-borne diseases are driven by the locations and 15 

seasonality of larval habitat. One method of disease control is to decrease the mosquito 16 

population by removing habitat and/or reduce the likelihood of larvae developing into adults, 17 

known as larval source management (LSM). In malaria control, LSM is currently considered 18 

impractical in rural areas due to perceived difficulties in identifying target areas. High resolution 19 

drone mapping is being considered as a practical solution to address this barrier. In this paper, we 20 

use our experiences of drone-led larval habitat identification in Malawi to assess the accuracy and 21 

practicalities of this approach.  22 

2. Drone imagery and larval surveys were conducted in Kasungu district, Malawi between 2018-23 

2020. Water bodies and aquatic vegetation were identified in the imagery using both manual 24 

methods and geographical object-based image analysis (GeoOBIA) and the performance of the 25 

classifications were compared. Larval sampling sites were characterised by biotic factors visible in 26 

drone imagery (e.g. vegetation coverage, type), and generalised linear mixed models were used 27 

to determine their association with larval presence.    28 

3. Imagery covering an area of 8.9km2 across eight sites was captured.   Characteristics associated 29 

with rural larval habitat were successfully identified using GeoOBIA (e.g. median accuracy = 0.98, 30 

median kappa = 0.96 using a standard RGB camera), with a median of 18.3% being classed as 31 

surface water, compared to 20.1% using manual identification. The GeoOBIA approach, however, 32 

required greater processing time and technical skills. Larval samples were captured from 326 sites, 33 

and a relationship was identified between larval presence and vegetation (log-OR=1.44, p=0.01). 34 

Vegetation type was also a significant factor when considering late stage anopheline larvae only.   35 

4. Our study demonstrates the potential for drone-acquired imagery as a tool to support the 36 

identification of mosquito larval habitat in rural areas where malaria is endemic. There are, 37 

however, technical challenges to overcome before it can be smoothly integrated into malaria 38 

control activities. Further consultations between experts and stakeholders in the fields of drones, 39 
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image analysis and vector control are needed to develop more detailed guidance on how this 40 

technology can be most effectively exploited. 41 

 42 
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Introduction 46 

Malaria cases in Africa have reduced by over half in the last two decades making transmission more 47 

heterogeneous. This has led to a growth of studies applying spatial and temporal analyses to 48 

determine where and when remaining transmission foci exist (Stresman, Bousema, & Cook, 2019), 49 

and a focus on how new and existing control methods can be best utilised to reduce this residual 50 

transmission (Bousema et al., 2016; Hsiang et al., 2020; Sy et al., 2019).  51 

The geographical spread and extent of malaria transmission is limited by the seasonally-driven mosaic 52 

of water bodies available for female mosquitoes in which to lay their eggs. The ecology of preferred 53 

breeding grounds for mosquito oviposition vary both within and between species. For example, two 54 

of the main sibling species of the Anopheles gambiae sensu lato complex, An. gambiae and An. 55 

arabiensis, are found in transient, sunlit, small pools whereas Anopheles funestus is associated with 56 

more permanent, larger vegetated water (Nambunga et al., 2020). At the micro-geographic scale, the 57 

presence of mosquito larvae may differ over the course of just a few metres (Eneh, Fillinger, Borg 58 

Karlson, Kuttuva Rajarao, & Lindh, 2019; Gowelo et al., 2020; Musiime et al., 2020). Biotic and abiotic 59 

factors such as the presence of specific types of vegetation, microbiota, predators, algal density, 60 

shade, and water depth influence larval development.  61 

Mosquito larval populations are fixed in space for the duration of their development to adulthood. 62 

Typically, eggs hatch into larvae within 2-3 days of oviposition and take 5-10 days to metamorphosise 63 

into pupae, although the speed of this process is highly dependent on temperature (Beck-Johnson et 64 

al., 2013). One method of controlling diseases transmitted by mosquitoes is to reduce the population 65 

by reducing the availability of oviposition sites and/or reduce the likelihood that resulting larvae 66 

develop into the adult stage (World Health Organization, 2013). Larval source management (LSM) 67 

involves the environmental, biological or chemical manipulation of the environment in which 68 

mosquitoes are present for the purpose of targeting the immature, aquatic stages of the mosquito 69 

and hence reducing the adult mosquito population. In the early days of mosquito control, an 70 
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aggressive approach to searching and removing mosquito breeding sites was successful at reducing 71 

(and even eliminating) disease, with historical examples including its use during the construction of 72 

the Panama Canal in the early 20th Century, and its role in the elimination of Anopheles gambiae in 73 

Brazil by 1940 (Tusting et al., 2013).  In sub-Saharan Africa, LSM was responsible for large reductions 74 

in malaria incidence in Zambia copper mines between 1929 and 1949 (Fillinger & Lindsay, 2011). LSM 75 

is, however, a labour-intensive exercise and following the introduction of IRS by DDT in the 1950s and 76 

subsequently the development of ITNs in the 1990s, it fell out of favour as a viable control option, 77 

particularly in Africa where the long rainy seasons produce countless sites for Anopheles development 78 

(Fillinger & Lindsay, 2011). As such, LSM is currently only recommended as a complementary vector 79 

control intervention to bed nets and IRS to target residual transmission and as a method of combating 80 

insecticide resistance (Killeen, 2014). While its value is acknowledged by WHO and national malaria 81 

control programmes (NMCPs) there are several barriers to its widespread implementation.  82 

The primary barrier to implementing LSM is the issue of determining where and when the intervention 83 

should be implemented. In rural settings the WHO recommend the application of LSM in areas where 84 

there is high coverage of long-lasting insecticidal nets (LLINs), evidence of outdoor biting and/or 85 

insecticide resistance and where larval sources are ‘few, fixed and findable’. Despite the lack of a clear 86 

definition of what can be considered ‘few’ or ‘findable’, this has led to many considering LSM to be 87 

impractical in rural areas with diffuse seasonal larval habitats. The perception of these terms may 88 

evolve as technology and processes for implementing LSM advance. This paper focuses on challenging 89 

the ‘findable’ component of this trio of conditions.  90 

Geospatial technology is rapidly evolving and what now constitutes as ‘findable’ may switch from less 91 

reliance on exhaustive ground-based searches to remotely sensed data. Drone mapping is being 92 

touted as at least equivalent (if not superior) to and more cost-effective than mapping larval habitat 93 

manually (Carrasco-Escobar et al., 2019; Hardy, Makame, Cross, Majambere, & Msellem, 2017) or 94 

using remotely sensed satellite imagery. While the latter can cover vast areas in a single day, images 95 
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are often obscured by clouds and although very high-resolution commercial satellite imagery exists, 96 

the resolution (at best 30 cm) is still inferior to that obtained by drones (2-10 cm) with the time of 97 

image captured out of the data user’s control.  98 

In this paper we explore the use of drones as a method for collecting very high resolution, 99 

contemporary imagery of an area for the purposes of identifying larval habitat. We tackle issues 100 

relating to the process of capturing drone imagery (by who, how much, how often), processing the 101 

images to extract the required information (what software, image classification methods, computer 102 

processing requirements), collecting ‘ground-truth’ data (entomological sampling), and subsequently 103 

summarising this information into recommendations that can be used by the control program 104 

implementers to guide their LSM activities. 105 

Materials and Methods 106 

Drone image capturing 107 

A series of image data capture exercises were conducted within Kasungu district, central Malawi in an 108 

area that has been designated by the Government of Malawi, in collaboration with UNICEF, as a 109 

‘humanitarian drone testing corridor’ (Fig. 1). Authorisation to conduct these flights was obtained 110 

from the Malawi Department of Civil Aviation. Malaria transmission occurs all year round in this area, 111 

with parasite prevalence in children between 2 and 10 years old estimated at 19% in 2017 (Chipeta et 112 

al., 2019). This transmission is potentially driven by a number of reservoirs which provide permanent 113 

sources of water within which female Anopheles can lay their eggs (Kibret, Lautze, McCartney, Nhamo, 114 

& Wilson, 2016). Images were captured over three visits in June 2018 (early dry season), October 2019 115 

(late dry season) and February 2020 (wet season) using two drones, both of which were able to 116 

capture images using a standard RGB camera, plus a near-infrared (NIR) camera. Both drones were 117 

purchased off-the-shelf from commercial vendors. The first was a multirotor (quadcopter) type aimed 118 

towards the ‘hobbyist’ market (the DJI Phantom 4 Pro), supplemented by an additional NIR sensor by 119 
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Sentera (Sentera, 2020). The second was a fixed-wing drone marketed towards the agriculture 120 

industry (eBee SQ) which incorporated a Parrot Sequoia multispectral camera. 121 

  122 

Figure 1: Locations of sites surveyed within the ‘humanitarian drone testing corridor’, centred on 123 

Kasungu town, Central Malawi (inset). Coordinates can be found in Table S1.  124 

Drone image processing 125 

Individual images captured during each mapping mission were stitched together into orthomosaics 126 

using the commercial image processing software Agisoft Metashape Professional (version 1.4.2). A 127 

subset of images captured during the wet season were classified using a geographical object-based 128 

image analysis (GeoOBIA), using the LargeScaleMeanShift algorithm within the open source software 129 

Orfeo Toolbox (version 7.1.0), applied within the QGIS environment (version 3.8.1). GeoOBIA involves 130 

grouping contiguous pixels into ‘objects’ or ‘segments’ such that each segment is relatively 131 

homogenous (within a prespecified threshold) with respect to pixel characteristics. In this instance, 132 
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pixels were grouped into segments according the values of red, green, blue and elevation, with the 133 

latter being estimated using photogrammetric methods within Agisoft Metashape and then rescaled 134 

to lie between 0-255 to match the scale of the RGB values.  We used trial and error to select the 135 

optimal segmentation parameters i.e. the spatial radius, range radius and minimum segment size. The 136 

smoothing radius determines how the amount by which the image is smoothed or filtered prior to the 137 

segmentation algorithm being implemented, whereas the range radius determines the similarity 138 

between pixels for grouping within the same segment. Similarity in this context refers to the Euclidean 139 

distance between two pixels. Supervised classification was then undertaken to assign each segment 140 

to one of 12 land cover classes (Table S2), including open water and aquatic vegetation (floating, 141 

emerging, submerged) based on the characteristics of that segment. Table S3 displays the segment-142 

level characteristics used, which incorporated characteristics related to segment texture (Haralick 143 

textural features (Haralick, Dinstein, & Shanmugam, 1973)) in addition to a range of water and 144 

vegetation indices. The mean and variance of each of these were used in the classification. 145 

Classification was undertaken using a set of 1800 segments all of which were firstly manually classified 146 

by the research team. One-third of the segments (n = 600) were within a 400m by 400m area and were 147 

used to train the classification algorithm. An additional one-third were in the same 400m by 400m 148 

area and were used for evaluating the accuracy of the classification within the same geographical area 149 

used for training (spatial interpolation), whereas the remaining 600 segments were distributed 150 

outside of the area used for training (spatial extrapolation). Classification was undertaken in R (version 151 

3.6.1) using the caret package and the Random Forests classification algorithm (Kuhn, 2008). Manually 152 

classified segments within the 400m by 400m area were randomly split into training and testing 153 

segments. A ten-fold cross validation approach was used to determine the optimal tuning parameters 154 

for the Random Forests algorithm, and the resulting model was then applied to the testing segments. 155 

An accuracy statistic (% of classifications that were correct), and the Cohen’s kappa agreement statistic 156 

(Cohen, 1960) were then calculated for the interpolated and extrapolated testing segments initially 157 

considering all 12 land cover classes, followed by a reduced classification that only differentiated 158 
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between surface water (open water and aquatic vegetation) and any other class. The classification 159 

was then applied to the entire 600m by 800m area, and the percentage of the area classed as being 160 

covered in surface water was calculated. This process of randomly splitting the segments into training 161 

and testing groups was repeated 100 times, and the median and inter-quartile range of the resulting 162 

accuracy, kappa agreement and percentage surface water cover were reported.  163 

A manual classification of surface water was also undertaken which involved systematically scanning 164 

through the image and creating a polygon around each area of surface water. The surface area of the 165 

image manually identified as being covered in water was then compared with that classified as surface 166 

water using the automated approach.  The time taken and the computer resources required for each 167 

of these tasks were also recorded. 168 

An overview of the image capture, processing and classification procedures is presented in Fig. 2. 169 

  170 
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Figure 2: Processes undertaken to identify larval habitat from drone imagery. 171 

 172 

Entomological sampling 173 

Larval surveys were conducted concurrently to the drone image capture during each field visit (Fig. 1). 174 

Permission to collect these data were obtained from the Kasungu District Council, Kasungu Water 175 

Board and private landowners. As the first two field visits were undertaken during the dry season, 176 

sampling was focused in and around permanent water bodies which in this case were local reservoirs 177 

that provide drinking water and irrigation to the area. Sampling was undertaken at regular intervals 178 

around the periphery of reservoirs. Reservoirs were selected purposively based on their proximity to 179 

Kasungu town (for accessibility) and their proximity to human settlements. The third visit was 180 

conducted during the wet season, and sampling was focused around one of the reservoirs sampled in 181 

the previous dry season. Both temporary and permanent water bodies were sampled, with sampling 182 

sites identified from drone imagery captured the previous day. A subset of sites was sampled on four 183 

consecutive days to determine their consistency with respect to larval presence.  184 

At each site, the presence and number of larvae were recorded using 10 repeated dips of the surface 185 

water, categorised by stage (L1/L2 or L3/L4) and either anopheline or culicine. To characterise malaria 186 

vectors in Kasungu as part of our broader efforts to understand transmission in the area, we raised all 187 

anopheline larvae to adult stage and identified morphologically to species (Coetzee, 2020). The 188 

location, description and photographs of each site were recorded using an Android Smartphone and 189 

Open Data Kit (ODK).  These photographs were later used to classify each site according to the amount 190 

and type of vegetation present plus turbidity. A generalised linear mixed model was then fitted to the 191 

resulting presence/absence data to predict the likelihood that larvae were present from biotic site 192 

information obtained via drone imagery (vegetation type, coverage, turbidity). Models were fitted to 193 

presence/absence data for any larvae irrespective of stage or genus, and for late stage larvae only as 194 

characteristics of habitat containing late stage larvae are considered by WHO to be of greater 195 
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importance than early stage (World Health Organization, 2013). The productivity of the sampled sites 196 

with respect to the number of early or late stage larvae collected was also considered. 197 

Results 198 

Image capturing 199 

During the three sampling periods we captured a total of 10 distinct areas in Kasungu, covering an 200 

area of 8.9km2. The two drones significantly differ in relation to operational costs, equipment and 201 

software requirements and usage. Tables 1 and 2 describe the primary differences in relation to initial 202 

costs and operational usage respectively. The fixed wing drone (eBeeSQ) had a greater initial cost than 203 

the multirotor Phantom 4 Pro due to it being inclusive of a NIR sensor, costing approximately £7000 204 

(inclusive of an educational discount), compared to £3,300 for a standard (RGB sensor) Phantom 4 Pro 205 

drone on which a NIR sensor was retrofitted. The eBeeSQ also required a high-spec laptop (£1000+) 206 

on which to run the software required to plan and conduct missions, whereas the Phantom 4 Pro was 207 

operated using free apps installed on GPS-enabled Android or iOS smartphone or tablet devices. On 208 

an operational level, the primary differences are between the flight times per battery, and the ease of 209 

use (Table 2). While, overall the Phantom 4 Pro is easier to use due to the small amount of open space 210 

required for take-off and landing, its limited battery life means that to cover a relatively modest area 211 

of 1km2, 2-3 individual flights are needed depending on whether a fixed launch site is used or whether 212 

this is adapted to minimise flight time. This comes at a cost of both time and money, particularly given 213 

each battery comes at a price of £150. The eBeeSQ fixed wing drone requires less energy to fly and 214 

therefore batteries last approximately twice as long (up to 1 hour in comparison to 30 minutes) than 215 

the Phantom 4 Pro. Therefore, while the time required to cover 1km2 is longer (66 minutes compared 216 

to 38 minutes when flown at 120m above sea level [asl] which an 80% overlap in captured images), 217 

this area can be comfortably covered using two batteries and a single launch site, meaning that in 218 

practice the process is more efficient. The fixed-wing drone is however more difficult to operate than 219 
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the Phantom 4 Pro, requires a larger space for take-off and landing, and therefore cannot be used in 220 

more densely vegetated areas. 221 

Table 1: Comparison of approximate costs required to capture and process imagery captured by the 222 

Phantom 4 Pro (rotor) and eBeeSQ (fixed wing).  223 

   Phantom 4 

Pro 

GBP 

(£) 

eBeeSQ  GBP (£) 

Costs Initial costs Standard drone RGB only £1500 RGB only N/A 

  Supplementary 

sensor 

Sentera NDVI £1800 Parrot 

Sequoia 

£7000+ 

 Supplementary 

hardware 

 Tablet £150 High spec 

laptop  

£1000+ 

  Spare batteries <=30 mins 

flight time 

(per battery) 

£150  <=1hr flight 

time (per 

battery) 

£90 

 Supplementary 

software 

Mission 

planning 

Pix4D 

capture 

£0 eMotion Ag £0 

  Image 

processing 

Agisoft 

MetaShape 

Professional 

Edition 

(Educational 

Licence) 

£425 Agisoft 

MetaShape 

Professional 

Edition 

(Educational 

Licence) 

£425 

  Image 

classification 

Orfeo 

Toolbox 

£0 Orfeo 

Toolbox 

£0 

 224 
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Table 2: Practical and operational differences between the drones used in this study 225 

  Phantom 4 Pro eBee SQ 

Type of drone  Multirotor/multicopter  Fixed wing 

Battery life (mins)  30 60 

Practical flight time, 

accounting for take-off 

and landing (mins) 

 22 45 

Area (km2) covered per 

battery  

120m asl and 80% 

overlap 

0.49 0.64 

Time (mins) required to 

cover 1km2 

120m asl and 80% 

overlap 

38 66 

    

Image resolution at 

120m asl (cm/pixel) 

RGB camera 3.3 3.7 

 NIR sensor 11 11cm 

    

Ease of use Mission planning Via app on 

tablet/smartphone 

Via software installed 

on laptop computer 

 Take-off and landing Vertical take-off and 

landing 

Manual launch, and 

gradual descent in 

clear area 

 226 

Image processing & classification 227 

We used Agisoft Metashape to process all images captured. Using the Phantom 4 Pro flying at 120m 228 

above surface level, with an 70% overlap in images, a total of 782 individual images (6.2GB) covered 229 
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an area of 1.77km2. Processing these images in Agisoft Metashape in order to produce an orthomosaic 230 

of the area and an accompanying digital surface model took a total of 250 minutes using a computer 231 

with an Intel Core i7-6700 processor, 32GB RAM, resulting in an orthomosaic with a spatial resolution 232 

of 3cm (file size = 4.2GB). A subset of the image covering an area of 0.48km2 (800m by 600m, file size 233 

= 1.9GB) was then selected for classification (Fig. 3). 234 

Figure 3: Image captured by the Phantom 4 Pro in Kasungu in February 2020 covering 800m by 235 

600m, with each grid representing 200m by 200m. Grids 4, 5, 7 and 8 were used for training the 236 

classification algorithm, and an assessment of its accuracy was made using features both within this 237 

area (interpolation) and in the surrounding grids (extrapolation). 238 

A set of 1800 training and testing segments were then generated for the 12 identified land classes 239 

(Table S2), plus an additional category representing areas that were in shadow. The study area was 240 

partitioned into cells of 200m by 200m, labelled as cells 1-8 (Figure 3), and the training and testing 241 

segments were proportionally distributed throughout the cells as follows: two thirds (1200) of 242 

segments were within cells 4, 5, 7 & 8 covering an area of 400m by 400m. We refer to these as the 243 

internal segments. One third of segments (600) were within the remaining cells (1-3, 6, 9, 10-12) which 244 

we refer to as external segments.  245 
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Segmentation was performed using Orfeo Toolbox (OTB) functions within the QGIS environment. 246 

Figure 4 demonstrates the impact of varying values of the spatial and range radius on the resulting 247 

segmentation and the time taken to perform this segmentation over a 100m by 100m area using the 248 

computer specifications previously specified (see Methods). While increasing the spatial radius 249 

provided a more adequate balance between over-segmentation (single discrete features of interest 250 

being split into many segments) and under-segmentation (multiple discrete features of interest being 251 

grouped into a single segment), this came at the price of substantially increasing the processing time. 252 

Additional processing time is required to calculate the segment-level summaries (mean, variance) of 253 

each of the variables being used to classify the imagery, with processing time increasing as the number 254 

of segments increases.  255 

Figure 4: Examples of the segmentation process under different values for spatial radius s (0 ,10, 30), 256 

range radius r (25, 50) with a minimum segment size of 100. Time t corresponds to the time taken in 257 

seconds to segment a 100m by 100m image with a spatial resolution of 3cm using the 258 

LargeScaleMeanShift algorithm in Orfeo Toolbox. This process includes calculating the mean and 259 

variance of the RGB and elevation values for each segment. 260 
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The segmentation process was then applied to the entire 800m by 600m area using the parameters 261 

10 (spatial radius), 25 (range radius) and 200 (minimum segment size), creating close to 800,000 262 

segments. The total processing time, which includes calculating the segment-level mean and variance 263 

of the RGB and elevation values, was 24.5 hours with an additional 15 hours taken to calculate the 264 

mean and variance of each of the additional variables under consideration (Table S2). Two 265 

classifications were then undertaken, one of which included the NIR-derived variables and one of 266 

which did not.  267 

The resulting accuracies of these classifications are presented in Table 3, and a representation of the 268 

classified output from one area of Kasungu excluding NIR-derived variables is shown in Fig. 5, with the 269 

resulting image which includes NIR-derived variable presented in Figure S1. The corresponding 270 

variable importance plots are available in the SI (Figure S2). The results are very similar for both models 271 

fitted with and without the NIR-derived variables. The variable making the greatest contribution to 272 

the classification model in both cases is the mean elevation, with mean red, blue, green and brightness 273 

also important. While the NIR-derived variables NDVI and SAVI make the greatest contribution to the 274 

classification algorithm in the second model (Figure S2), Table 3 indicates that the inclusion of NIR-275 

derived variables does not make any significant impact on classification accuracy, with overall median 276 

interpolated accuracy obtained using NIR-derived variables being marginally lower (0.904) than that 277 

obtained without using NIR-derived variables (0.910). There is a clear drop in both accuracy and kappa 278 

agreement when considering data from the extrapolation area, with accuracy reducing to 0.761 and 279 

0.798 when considering overall accuracy without and with NIR-derived variables respectively. This 280 

reduction in classification quality is less pronounced when considering surface water (open water or 281 

aquatic vegetation) accuracy alone compared with trying to distinguish between all 12 land cover 282 

classes. Trends in values of kappa are similar.  283 

There is a close agreement in the percentage of the 400m by 600m area that is covered in surface 284 

water obtained by fitting the model with and without NIR-derived variables (without NIR: median = 285 
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18.3%; with NIR: median = 16.6%), with more variability observed in the NIR-inclusive models (Table 286 

3). A manual review of the image, independently undertaken by two researches, resulted in a larger 287 

percentage of the area being identified as surface water (21.2% and 20.1% by researchers 1 and 2 288 

respectively), with the intersection of these two outputs (our ‘manual surface water classification’ ) 289 

covering 20.1% of the area. This process of manual classification took approximately two hours to 290 

complete. 291 

 292 

Table 3: Summaries of classification accuracy (proportion of segments correctly classified) and kappa 293 

agreement for all 12 classes (overall) and for surface water (including open water and aquatic 294 

vegetation) versus all other classes for GeoOBIA obtained with and without NIR-derived variables.  295 

 Area Without NIR-derived 

variables 

With NIR-derived variables 

  Median IQR Median IQR 

Overall accuracy Interpolated  0.910 0.898-0.917 0.904 0.899-0.908 

 Extrapolated  0.761 0.754-0.772 0.798 0.758-0.811 

Surface water 

accuracy 

Interpolated  0.983 0.980- 0.986 0.982 0.979-0.986 

 Extrapolated  0.942 0.941-0.947 0.936 0.931-0.939 

      

Overall kappa Interpolated  0.902 0.888-0.909 0.895 0.890-0.900 

 Extrapolated  0.738 0.731-0.750 0.779 0.735-0.793 

Surface water 

kappa 

Interpolated  0.960 0.954-0.967 0.958 0.950-0.967 

 Extrapolated  0.873 0.868-0.881 0.855 0.844-0.864 
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% surface water All 18.3 17.3-20.9 16.6 15.7-22.0 

 296 

 297 

Figure 5: Example of a classification obtained for the entire study area using the random forests 298 

algorithm without including NIR-derived variables (left), with a more detailed view of a smaller area 299 

comparing the original image (top right) with the classified image (bottom right). 300 

 301 

Entomological surveys 302 

During three separate field visits (June 2018, October 2019, and February 2020) a total of 326 larval 303 

sites were sampled (available through the Figshare repository (Stanton, 2020)). During the dry periods 304 

these samples were focused along the shorelines of larger permanent water bodies (296 sites), with a 305 

mixture of 30 temporary and permanent sites surveyed during the wet season. Both anopheline and 306 

culicine larvae were found throughout the area during each sampling period (56% of sites sampled), 307 

with the lowest proportion of positive sites found in the late dry season (76% in June 2018, 16% in 308 

October 2019, 70% in February 2020). No clear sympatry was observed between anopheline and 309 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.237933doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.05.237933
http://creativecommons.org/licenses/by/4.0/


19 
 

culicine larvae in this study. For example, of the 321 sites where late stage larvae data were recorded 310 

(excluding 5 sites with missing data), larvae were observed in 31% (101) of samples with only 7% (24) 311 

sites containing both anophelines and culicines. In the area surrounding the Malangano site (Fig. 3) in 312 

February 2020, we morphologically identified 177 out of 297 anopheline specimens to species level, 313 

finding a predominance of An. gambiae s.l. (87.6%) followed by An. coustani (8.5%) and very few An. 314 

pretoriensis (2.3%) and An. funestus (1.7%). 315 

At each site, GPS coordinates were recorded using the ODK app, photographs were taken using a 316 

smartphone, and aerial imagery was captured (Fig. 6). Samples were taken within approximately one 317 

metre of where the researcher stood to record the coordinate, however, as GPS coordinates have an 318 

accuracy of approximately three metres it was not possible to pinpoint precisely where the samples 319 

were taken within the aerial imagery.  320 

 321 

 322 

 323 
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 324 

Figure 6: Examples of sampling sites where anopheline larvae were found. The top row indicates the 325 

precise GPS location captured using ODK (yellow circle), the expected sampling area based on these 326 

coordinates (1m radius), and the expected accuracy of the coordinates (3m radius), overlaid on top of 327 

the drone imagery. The middle row presents the classified imagery for these sites and the bottom row 328 

contains photographs of each site taken at the time of sampling.   329 

Using the photographs, we characterised each site according to presence/absence of larvae and 330 

sample site characteristics including dominant vegetation type (none, floating, submerged, emerging), 331 

vegetation cover (none, <1 3⁄ , 1 3⁄  - 2 3⁄ , >2 3⁄ ) and turbidity. Vegetation was present in most sites 332 

sampled (284/326, 87%). Of these, 64% (183) contained emergent vegetation, 20% (57) contained 333 

submerged and 15% (44) contained floating vegetation. Vegetation cover varied evenly across sites, 334 

with 32% having low (0-1/3) coverage, 35% having moderate (1/3-2/3 coverage) and 33% having high 335 

(>2/3) coverage. There was an interaction between vegetation type and coverage, such that sites with 336 

floating vegetation rarely had high vegetation coverage. With regards to turbidity, 40% (129) of sites 337 

were classed as turbid whereas the remaining 60% (197) were clear. 338 

Table 4: Summaries of the larval sampling sites by presence/absence of mosquito larvae found. A 339 

similar table for late stage (L3-L4) larvae can be found in the SI (Table S4). 340 

  Any Larvae 

  Absent Present Total 

  N (%) N (%) N 

Sampling period 2018 (early dry 

season) 

31 24 97 76 128 

2019 (late dry 

season) 

141 84 27 16 168 
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2020 (wet season) 9 30 21 70 30 

       

Vegetation Yes 148 52 136 48 284 

 No 33 79 9 21 42 

       

Dominant 

vegetation type 

None 33 79 9 21 42 

Floating 27 61 17 39 44 

Submerged 30 53 27 47 57 

Emerging 91 50 92 50 183 

       

Vegetation 

cover 

0 33 79 9 21 42 

<𝟏 𝟑⁄  56 62 35 38 91 

𝟏 𝟑⁄  - 𝟐 𝟑⁄  52 53 46 47 98 

>𝟐 𝟑⁄  40 42 55 58 95 

       

Turbidity Turbid 74 57 55 43 129 

Clear 107 54 90 46 197 

       

Total  181 56 145 44 326 

 341 

A strong interaction was observed between vegetation type and coverage, therefore when fitting the 342 

GLMMs to the presence/absence data we did not consider these variables in the model 343 

simultaneously, but rather explored which of the two resulted in the best fitting model with regards 344 

to AIC.  After counting for the effect of sampling period and site, there was a strong association 345 

between the presence of vegetation and the likelihood of any larvae (log-OR=1.44, p=0.01), however 346 
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accounting for vegetation coverage or vegetation type did not improve the model further. When 347 

considering Anopheles L3 and L4 larvae only, the model was improved when vegetation type was 348 

considered such that larvae were more likely to be present when emerging (log-OR=1.14, p=0.07) or 349 

submerged (log-OR=1.90, p=0.01) vegetation were available, compared to sites with no vegetation. 350 

With regards to productivity, while there was variability in the abundance of larvae sampled per site 351 

(145 sites, min = 1, median = 4, max = 56), there were insufficient high productivity sites to formally 352 

explore any trends in their characteristics. 353 

During the wet season, 10 sites were repeatedly sampled over four days, with larvae consistently 354 

observed in four sites and no larvae being found on at least one day in the remaining six sites. We 355 

observed that due to changes in the environment it was difficult to resample the same locations across 356 

larger time scales. Temporary surface water observed in the wet season dried up even after just a few 357 

days without rain and shorelines of permanent water bodies varied substantially both between 358 

seasons and between the same season over consecutive years (Fig. 7).  For example, we observed that 359 

images captured later in the dry season (October) in 2019 were wetter than those captured in the 360 

early dry season (June) in 2018 at the Chitete reservoir. 361 

 362 
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Figure 7: Comparisons of aerial images captured at different seasonal time points. Left images display 363 

a comparison between consecutive dry (Oct 2019) and wet (Feb 2020) seasons around the Malangano 364 

dam. Right images display comparisons between dry seasons over two consecutive years (June 2018, 365 

Oct 2019) around the Chitete dam. 366 

Discussion 367 

Image capturing  368 

Image capture using drones inevitably leads to technical and skills-based challenges and we highlight 369 

a few of these here in the context of searching for water bodies in a rural setting. Aside from hardware 370 

and software issues we noted that flight experience was a key requirement to determine optimal flight 371 

times as neither the rotor or fixed wing drone could be flown in wet or windy conditions, and we 372 

experience the impact of extreme weather on the hardware with multiple occasions of  over-heating 373 

on warm days. This highlighted the need for extensive drone piloting training by the operator. The 374 

country’s drone regulations also need to be taken into careful consideration. In Malawi, data capture 375 

was facilitated by the relationship between UNICEF and the Department of Civil Aviation and a toolkit 376 

is currently being developed to outline the procedures that need to be followed by those wishing to 377 

fly drones for non-commercial purposes (https://www.updwg.org/wp-378 

content/uploads/2019/12/Malawi-RPA-Toolkit-2019_Dec.-Final.pdf). While regulations vary by 379 

country, national civil aviation authorities are also requiring drone pilots to obtain accredited 380 

qualifications and seek appropriate permissions before using drones for research or humanitarian 381 

purposes. Training courses which cover both the operational and regulatory aspects of drone flying 382 

are currently quite sparse in sub-Saharan Africa and this may require future pilots to travel outside of 383 

their own country to gain the necessary experience. Should a malaria control implementer wish to use 384 

drone imagery within their programmes, they may therefore incur significant expense both in 385 

purchasing the equipment and training their staff. A solution to this would be to outsource the image 386 

capturing to qualified drone pilots operating in the area.  387 
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An additional bottleneck is the availability of hardware within the country of operation. While it may 388 

be possible to purchase off-the-shelf drones in-country, should any technical issues arise, obtaining 389 

part replacements or repairs becomes problematic and expensive. Investments are therefore being 390 

made in ‘home-grown’ drones, to support local economies, decrease the cost of equipment, and make 391 

repairs much more easily accessible. In Malawi for example, MicroMek (https://www.micromek.net/) 392 

manufacture the low-cost fixed wing drone known as EcoSoar (Standridge, 2018), for both 393 

transporting goods and capturing imagery.  394 

 395 

Image processing 396 

Processing drone imagery to create the orthomosaics is time-consuming, requires a high-spec 397 

computer and a large capacity for data storage. Therefore, to use this imagery in the field, an NMCP 398 

would require people skilled in both image capture and processing, plus access to the relevant 399 

software. These skills are not usually taught as part of standard drone pilot training, however this may 400 

change as the potential for using drone technology for humanitarian purposes is increasingly realised. 401 

For example, the African Drone and Data Academy was launched in January 2020 in Malawi to build 402 

capacity in both drone piloting and drone image processing and analysis (UNICEF, 2020).  403 

Image classification is appealing because once the algorithm has been trained, it can simply be applied 404 

to any additional imagery captured without any or only a little additional data being required. In our 405 

analysis we showed that there was a decline in classification accuracy in areas within very close 406 

proximity to that used to train the algorithm and noted that even in this small area there were 407 

important land cover classes in the extrapolation area that did not appear in the training area e.g. red 408 

algae in the water. This challenge is likely to be exacerbated when considering areas further apart, or 409 

data collected at different time points. As more data are collected these limitations may be overcome, 410 

however in the short term, the effort required by the end-user e.g. an individual NMCP to train a 411 

classification algorithm may outweigh its benefits. In this demonstration we implemented a 412 
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geographical object-based classification approach which generated the segments and computing 413 

segment-level characteristics prior to training and applying the classification algorithm. The segment-414 

generating process can be very time-consuming depending on the values of the segmentation 415 

parameter referred to as the spatial radius, and the size of the area being classified. While other 416 

classification techniques such as pixel-based classification may be quicker to perform, an object-based 417 

approach is the most appropriate for very high-resolution images such as that generated by drones 418 

(Pande-Chhetri, Abd-Elrahman, Liu, Morton, & Wilhelm, 2017). The cost and benefits of accuracy 419 

against processing time therefore need to be considered should an NMCP wish to perform image 420 

classification in-house. The role of additional sensors in the image classification process is also unclear. 421 

In this analysis we compared the classification accuracy using imagery captured from a standard 422 

camera only (RGB), plus additional imagery captured by a much more expensive NIR sensor. While our 423 

performance metrics indicated very little difference in the accuracy obtained using the two 424 

approaches, a more extensive investigation would need to be undertaken over a more 425 

environmentally diverse area before we can conclude whether or not there is a benefit to 426 

incorporating this additional technology. 427 

A more practical solution to ‘automated’ image classification may be to persevere with the less 428 

efficient, but lower skilled task of manual classification. This task is, however, not without its 429 

drawbacks, as human error can easily miss small areas, or misclassify water containing a lot of aquatic 430 

vegetation as land and vice versa. These latter ‘missed’ areas are of significance, as Anopheles 431 

mosquitoes are generally found in water containing vegetation. The fact that there was a 10% 432 

discrepancy in the manual classification undertaken by two independent researchers, both of whom 433 

were familiar with the study area, demonstrates the fallibility in this method.  434 

As with the drone image capture, an alternative is to outsource these activities to an organisation 435 

which specialises in image processing and classification. Additionally, cloud-based computing services 436 

such as DroneDeploy’s Map Engine (DroneDeploy, 2018) and Google Earth Engine (Mutanga & Kumar, 437 
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2019) could be used as these allow individuals/groups to harness the power of remote servers to 438 

manage and manipulate the data. This approach could facilitate the development of more automated 439 

habitat classification approaches i.e. using data from other organisations, previous field or 440 

professional expertise in remote sensing to develop classification algorithms that don’t require the 441 

use of bespoke training data. The TropWet tool developed by Hardy, Oakes, & Ettritch (2020) is a 442 

demonstration of this in which satellite imagery (Landsat, 30m resolution) is automatically classified 443 

for a user-specified area and time period using a Google Earth Engine interface.   444 

There are still practical challenges with these approaches, particularly relating to the upload of large 445 

image files to enable these processes to be undertaken remotely, however these may be preferable 446 

to the more technical challenge of managing the data in-house.   447 

 448 

Entomological survey 449 

Larval surveys are an important part of the process of LSM both to confirm the species of mosquitoes 450 

found in the area, to characterise the types of surface water where larvae are likely to be found, and 451 

to monitor the progress of any subsequent intervention. Larval surveys are however a time-consuming 452 

process, particularly when undertaken during the wet season during which areas become inaccessible 453 

following heavy rains. The role of drones in LSM is not to completely remove the need for larval 454 

surveys, but to help differentiate between water bodies with respect to their potential as larval habitat 455 

and/or to differentiate sites according to their potential larval productivity.  456 

We note that in our study that vegetation coverage appears to be important when considering 457 

presence/absence of late stage Anopheles larvae, with coverage correlated with the type of vegetation 458 

found i.e. coverage of floating vegetation was likely to be less than that of emergent or submerged 459 

vegetation. A full understanding the larval ecology of the local individual malaria vectors would greatly 460 

assist a targeted LSM approach aided by drone-imagery support. In south-eastern Tanzania, a basic 461 
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characterisation of An. funestus larval habitats provides support that this species occupies small 462 

spring-fed pools, permanent natural ponds and slow-moving waters each of which fall under the ‘few, 463 

fixed and findable’ paradigm (Nambunga et al., 2020). In a recent study in Southern Malawi (Gowelo 464 

et al., 2020), An. arabiensis was the dominant species, with high densities being found in aquatic 465 

habitats surrounded by bare soil. A species-specific approach to identifying larval habitat using drone 466 

imagery may therefore be required, with imagery captured throughout the year to better understand 467 

the temporal dynamics of larval habitat and thereby optimise the impact of any potential intervention. 468 

These images could further be used to monitor the progress of LSM campaigns with, for example, a 469 

more accurate estimates of LSM coverage and demonstratable changes in the landscape because of 470 

habitat removal/modification. Further entomological surveillance remains pivotal to establish where 471 

and when LSM should be deployed and measure the impact of the intervention on malaria 472 

transmission potential.  473 

Conclusions 474 

Our study demonstrates the potential for drone imagery to be used as a tool to support the 475 

identification of mosquito larval habitat in rural areas where malaria is endemic. While this technology 476 

has the capacity to complement the more labour-intensive approach of identifying larval habitat from 477 

the ground, there are technical challenges to overcome before it can be smoothly integrated into 478 

malaria control activities. We believe that outsourcing the capturing and processing of drone imagery 479 

to private companies with the equipment and skills necessary to extract the required information is a 480 

more practical approach to developing equivalent skills in house. These services are becoming 481 

increasingly available in other sectors such as agriculture, forestry and environmental monitoring and 482 

there are promising developments in the African drone sector to support this local capacity. We do 483 

however continue to emphasise that drone imagery should not be used to completely replace larval 484 

surveys. Instead we envisage that this technology could provide supplementary information which 485 

may help to reduce the time spent finding locations to be sampled, monitor environmental changes 486 
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over time and help to guide the frequency and scale of any LSM intervention, ultimately increasing its 487 

potential for success. Further consultations between experts and stakeholders in the fields of drones, 488 

image analysis and vector control are needed to develop more detailed guidance on how this 489 

technology can be most effectively exploited. 490 
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