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Abstract

Motivation: Contemporary deep learning approaches show cutting-edge performance in a variety of
complex prediction tasks. Nonetheless, the application of deep learning in healthcare remains limited
since deep learning methods are often considered as non-interpretable black-box models. Layer-wise
Relevance Propagation (LRP) is a technique to explain decisions of deep learning methods. It is widely
used to interpret Convolutional Neural Networks (CNNs) applied on image data. Recently, CNNs started
to extend towards non-euclidean domains like graphs. Molecular networks are commonly represented as
graphs detailing interactions between molecules. Gene expression data can be assigned to the vertices
of these graphs. In other words, gene expression data can be structured by utilizing molecular network
information as prior knowledge. Graph-CNNs can be applied to structured gene expression data, for
example, to predict metastatic events in breast cancer. Therefore, there is a need for explanations showing
which part of a molecular network is relevant for predicting an event, e.g. distant metastasis in cancer, for
each individual patient.
Results: We extended the procedure of LRP to make it available for Graph-CNN and tested its applicability
on a large breast cancer dataset. We present Graph Layer-wise Relevance Propagation (GLRP) as a new
method to explain the decisions made by Graph-CNNs. We demonstrate a sanity check of the developed
GLRP on a hand-written digits dataset, and then applied the method on gene expression data. We show
that GLRP provides patient-specific molecular subnetworks that largely agree with clinical knowledge and
identify common as well as novel, and potentially druggable, drivers of tumor progression. As a result this
method could be potentially highly useful on interpreting classification results on the individual patient
level, as for example in precision medicine approaches or a molecular tumor board.
Keywords: gene expression data, explainable AI, personalized medicine, precision medicine,
classification of cancer, deep learning, prior knowledge, molecular networks.
Availability: https://gitlab.gwdg.de/UKEBpublic/graph-lrp https://frankkramer-lab.github.io/MetaRelSubNetVis/
Contact: tim.beissbarth@bioinf.med.uni-goettingen.de

1 Introduction
Gene-expression profiling as for example by DNA microarrays or

next generation sequencing are becoming more and more available as the
technologies become cheaper and quicker. As a result, high-throughput
technologies played a significant role in identifying predictive gene

signatures and discovering individual biomarkers in cancer prognosis
(Perera, Leha, and Beissbarth, 2019) Furthermore, high-throughput
sequencing produces huge amounts of data that can be used for deriving
clinical predictors for relapse events (e.g occurrence of metastases). At the
moment, deep learning techniques have shown prominent results in many
research fields with big and complex data.
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In recent years deep learning was applied to a wide range of problems
in various areas. Deep learning is a class of machine learning methods
based on neural networks that are aimed at the automatic learning of data
representations (features) from raw data. These neural network methods
demonstrated state-of-the-art performance in visual object recognition,
object detection and speech recognition. The deep learning breakthroughs
were made mostly on the data that have underlying Euclidean structure.
One of the successfully used deep learning methods applied on image
data are convolutional neural networks (CNNs) that exploit the grid-like
structure of images. In many cases data is structured in non-Euclidean
domains as well, for example networks in social sciences and molecular
networks in biology. Recently, deep learning methods extended to domains
like graphs and manifolds (Monti et al., 2017) Conventional deep learning
and CNNs are already used in the field of bioinformatics (Min, Lee, and
Yoon, 2016) drug discovery and genomics (LeCun, Bengio, and Hinton,
2015) Deep learning on graphs inspired further developments showing
promising results on metastatic events prediction (Chereda et al., 2019)
and subtypes classification (Rhee, Seo, and Kim, 2018) in breast cancer,
on modeling drug-drug interactions (Ma et al., 2018; Zitnik, Agrawal, and
Leskovec, 2018) and predicting protein-protein interactions (Leskovec,
2018)

Remarkably, deep neural networks are able to model complex
interaction between the input and output variables. Furthermore, multiple
hidden layers create multiple interactions between input features. This
complexity does not allow easy tracking of how a fixed input feature
influences the output, thus a neural network itself as a black-box machine
learning model does not give interpretable insights.

Decisions proposed by neural networks have to be explained for
the application in the clinical domain (Yang et al., 2018) Furthermore,
the European Union’s new General Data Protection Regulation (GDPR)
restricted automated decision making produced by, e.g., algorithms (2018
reform of EU data protection rules 2018) Article 13 Information to be
provided where personal data are collected from the data subject specifies
that the data controller (e.g. clinics) should provide the data subject (e.g.
patients) with “meaningful information about the logic involved”. Article
22 Automated individual decision-making, including profiling states that
“The data subject shall have the right not to be subject to a decision based
solely on automated processing”, unless the data subject gives a consent
with it (paragraph 2.c). Therefore, the combination of explainability and
the expressiveness of deep neural networks is yet a task to work on (Yang
et al., 2018)

Explanation methods for complex nonlinear models such as neural
networks (including convolutional) aim to interpret classification decisions
of a machine learning model in terms of input variables. These methods
can be categorized into two groups (Montavon et al., 2017) functional
approaches and message passing approaches. The first group of methods
produce explanations out of local analysis of a prediction including
the sensitivity analysis, Taylor series expansion, and model agnostic
approaches LIME (Ribeiro, Singh, and Guestrin, 2016) and SHAP
(Lundberg and Lee, 2017) The second group provides explanations by
running a backward pass in a computational graph, which generates a
prediction as its output. The Layer-Wise Relevance Propagation (LRP)
method (Bach et al., 2015) combines functional and message passing
approaches to generate relevances of each input feature. For a fixed input
feature, the relevance shows how much this feature influences the classifier
decision. The relevances are generated for each data point individually,
which is a huge advantage of this explainability method.

One of the tasks of clinical cancer research is to identify prognostic
gene signatures that are able to predict clinical outcome (Johannes et
al., 2010) From a machine learning perspective, the endpoint is usually
presented as a classification task, and the challenge is to find discriminative
features. However, the search for such molecular markers is based on

high-dimensional datasets, where the number of genes is much higher
than the number of patients. The “curse of dimensionality” leads to
instability in the feature selection process. Improvements can be made
by including prior knowledge of molecular networks (e.g. pathways)
into a machine learning algorithm. According to (Johannes et al., 2010)
the machine learning methods benefit from pathway knowledge since
genes are not treated as independent. This benefit is based on the
hypothesis that neighboring genes should have similar expression profiles.
Consequently, the decision of machine learning methods is formed by
predictive subnetworks. Furthermore, these subnetworks can differ from
one patient to another according to their expression profiles. Convenient
feature selection methods, that are utilizing prior knowledge (Johannes
et al., 2010; Binder and Schumacher, 2009) provide general features
that are the same for all patients. However, we adapted an existing LRP
technique to Graph-CNN (Defferrard, Bresson, and Vandergheynst, 2016)
which can incorporate a molecular network. Thus, we provide patient
specific subnetworks that are individual for each patient. According to the
knowledge of the authors, a feature selection method that benefits from
prior knowledge and provides patient-specific subnetworks has not been
shown before.

There are some recent interpretation methods specialized for graph-
neural networks. (Xie and Lu, 2019) and (Pope et al., 2019) provide
explainability methods that are exactly based on and crafted only for
Graph Convolutional Network of (Kipf and Welling, 2016) utilizing
convolutional architecture which is a simplified version of that of Graph-
CNN (Defferrard, Bresson, and Vandergheynst, 2016) we use. Ying et
al suggested a model-agnostic GNNExplainer that is suitable for node
classification, link prediction, and graph classification. The essence of our
classification task is to predict an occurrence of distant metastasis based on
gene expression data structured by a protein-protein interaction network.
Since each vertex of a molecular network has a corresponding gene
expression value as an attribute, we perform a graph-signal classification
task. Ying et al demonstrates a solution to explaining node classification,
but do not provide an application of their approach for a graph-signal
classification task. (Chereda et al., 2019) and (Rhee, Seo, and Kim, 2018)
already applied Graph-CNN (Defferrard, Bresson, and Vandergheynst,
2016) in this context. Hence, there is still a lack of methods explaining
Graph-CNN performing aforementioned machine learning task.

The novelty of our work consists of 2 parts. First, we present a
method delivering data-point (i.e. patient) specific explanations for Graph-
CNN (Defferrard, Bresson, and Vandergheynst, 2016) in the context
of graph-signal classification. Second, we show how these patient-
specific molecular subnetworks assist the need in personalized precision
medicine decisions via explaining patient-specific predictions of Graph-
CNN applied on a large breast cancer dataset. Breast cancer is the
second most common cancer in industrialized countries (Bray et al., 2018)
Patients often develop distant metastases that limit survival due to the
lack of curative treatment options (Bray et al., 2018) We interpret the
classifier’s inferences by patient-specific subnetworks that would explain
the differential clinical outcome and identify therapeutic vulnerabilities.

2 Materials and Methods

2.1 Breast Cancer Data

We applied our methods to a large breast cancer patient dataset that we
previously studied and preprocessed (Bayerlová et al., 2017) That data is
compiled out of 10 public microarray datasets measured on Affymetrix
Human Genome HG-U133 Plus 2.0 and HG-U133A arrays. The datasets
are available from the Gene Expression Omnibus (GEO) (Barrett et
al., 2013) data repository and have the accession numbers GSE25066,
GSE20685, GSE19615, GSE17907, GSE16446, GSE17705, GSE2603,
GSE11121, GSE7390, GSE6532. The RMA probe-summary algorithm
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(Irizarry et al., 2003) was used to process each of the datasets, and only
samples with metastasis-free survival were selected and combined together
on the basis of HG-U133A array probe names. Quantile normalization was
applied over all datasets. In the case of few probes mapping to one gene,
the probe with the highest average value was taken. In the end, we ended
up with 12179 genes per each patient. To formulate two classes for the
prediction task we selected 393 patients with distant metastasis occurred
within the first 5 years, and 576 patients without metastasis having the
last follow up between 5 and 10 years. Breast cancer molecular subtypes
for the patient samples were predicted in (Bayerlová et al., 2017) utilizing
genefu R-package (Gendoo et al., 2016)

2.2 Protein-Protein Interaction Network

We used the Human Protein Reference Database (HPRD) protein-protein
interaction (PPI) network (Keshava Prasad et al., 2009) to structure the
gene expression data. The database contains protein-protein interaction
information based on yeast two-hybrid analysis, in vitro and in vivo
methods. The PPI network is an undirected graph with binary interactions
between pairs of proteins. The graph is not connected. We mapped the
genes from the gene expression data to the vertices of the PPI network.
Resulting PPI graph has 7168 vertices (genes) matched, and 207 connected
components. The main connected component has 6888 vertices, and each
of the other 206 components has from 1 to 4 vertices. Further, we utilized
only the main connected component since the Graph-CNN requires graphs
to be connected.

2.3 Pathway Analysis

Enrichment of signal transduction pathways annotated in the TRANSPATH®

database version 2020.1 (Krull et al., 2003) in genes prioritized by GLRP
were analyzed using the geneXplain platform version 5.1 (Koschmann
et al., 2015) The analysis based on the Fisher’s exact test (Fisher, 1922)
was carried out for gene sets obtained for individual patients as well as
for their combination into subtype gene sets. The following calculations
were applied to investigate differences in pathway hits. Let P denote a
set of pathway genes and Si and Sk two subnetwork gene sets, so that
Pi = P ∩ Si and Pk = P ∩ Sk are the sets of pathway genes matched
by the two subnetworks. The difference 4Pi,k in matched pathway
genes was then calculated as |(Pi ∪ Pk) \ (Pi ∩ Pk)|/|Pi ∪ Pk| with
|Pi∪Pk| > 0. For each selected pathway, we calculated4Pi, k for each
pair of subnetworks and reported the median of examined pairs.

2.4 Problem formulation

We focus on explaining classifier decisions of Graph-CNN adapting
existing LRP approaches for graph convolutional layers. LRP should be
applied as a postprocessing step to a model already trained for the machine
learning task. The task is formulated as a binary classification of gene
expression dataX ∈ Rn×m to target variable Y ∈ {0, 1}n representing
the appearance of a distant metastatic event. n is a number of samples
(patients) and m is a number of features (genes). The information of the
molecular network is presented as an undirected graph G = (V,E,A),
where V and E denote the sets of vertices and edges respectively. A is
the adjacency matrix of dimensionality m × m. A row x of the gene
expression matrixX contains data from one patient and can be mapped to
the vertices of the graphG. In such a way, values of x are interpreted as a
graph signal.

A trained neural network can be represented as a function f : Rm+ →
[0, 1] mapping the positive input to the probability of the output class. The
input x is a set of gene expression values x = {xg} where g denotes a
particular gene. The function f(x) computes the probability that a certain
pattern of gene expression values is present w.r.t to the output class. LRP

methods apply propagation rules from the output of the neural network to
the input in order to quantify the relevance score Rg(x) for each gene g.
These relevances show how much gene g influences the prediction f(x) :

∀x : f(x) =
∑
g

Rg(x). (1)

Equation (1) (Montavon et al., 2017) demonstrates that the relevance
scores are calculated w.r.t every input data point x.

2.5 Graph Convolutional Neural Network and Layer-wise
Relevance propagation

Usual CNNs learn data representations on grid-like structures. The Graph-
CNN (Defferrard, Bresson, and Vandergheynst, 2016) as a deep learning
technique is designed to learn features on graphs. The convolution on
graphs is used to capture localized patterns of a graph signal. This operation
is based on spectral graph theory. The main operator to investigate the
spectrum of a graph is the graph Laplacian L = D − A, where D is
a weighted degree matrix, and A is a weighted adjacency matrix. L is
a real symmetric positive semidefinite matrix that can be diagonalized
such that L = UΛUT , where Λ = diag ([λ1, . . . , λm]) is a diagonal
non-negative real valued matrix of eigenvalues, matrix U is composed
of eigenvectors. Matrices U and UT define the Fourier and the inverse
Fourier transform respectively. According to the convolution theorem, the
operation of graph convolution can be viewed as a filtering operation:

y = hθ(L)x = hθ(UΛUT )x = Uhθ(Λ)UT x, (2)

where x, y ∈ Rm, and the filter hθ(Λ) is a function of eigenvalues
(graph frequencies). To localize filters in space, the authors in (Defferrard,
Bresson, and Vandergheynst, 2016) decided to use a polynomial
parametrization

hθ(Λ) =

K−1∑
k=0

θkΛk, (3)

where θ ∈ Rk is a vector of parameters. The order of the polynomial,
which is equal to K − 1, specifies the local K − 1 hop neighborhood.
The neighborhood is determined by the shortest path distance. The
polynomial filter can be computed recursively, as a Chebyshev expansion,
which is commonly used in graph signal processing to approximate
kernels (Hammond, Vandergheynst, and Gribonval, 2011) The Chebyshev
polynomial Tk(x) of order k is calculated as Tk(x) = 2xTk−1(x) −
Tk−2(x) with T0 = 1 and T1 = x. The Chebyshev expansion applies for
values that lie in [−1, 1], therefore, the diagonal matrix of eigenvalues Λ

has to be derived from a rescaled Laplacian L = (D −A)/λmax − In.
Thus, the filtering operation can be rewritten as

y = hθ(Λ)x =

K−1∑
k=0

θkTk(L)x = [x̄0, . . . , x̄K−1] θ, (4)

where x̄k = 2Lx̄k−1− x̄k−2 with x̄0 = x and x1 = Lx. The transition
in equation 4 is done according to the observation

(
UΛUT

)k
= UΛkUT .

The filtering at the convolutional layer boils down to an efficient sequence
ofK−1 sparse matrix-vector multiplications and one dense matrix-vector
multiplication (Defferrard, Bresson, and Vandergheynst, 2016)

LRP is based on the theoretical framework of deep Taylor
decomposition. The function f(x) from equation (1) can be decomposed
in terms of the Taylor expansion at some chosen root point x∗ so that
f(x∗) = 0. The first order Taylor expansion of f(x) is:

f(x) = f(x∗) +
m∑
g=1

∂f

∂x

∣∣∣
x=x∗

· (xg − x∗g) + ε = 0 +
m∑
g=1

Rg(x) + ε

(5)
where the relevances Rg(x) are the partial differentials of the function
f(x). The details of how to choose a good root point are described
in Montavon et al., 2017. The f(x) represents a neural network which
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consists of multiple layers and each layer consists of several neurons.
A neuron receives a weighted sum of its inputs and applies a nonlinear
activation function. The idea of the deep Taylor decomposition is to
perform a first order Taylor expansion at each neuron of the neural
network. These expansions allow to produce relevance propagation rules
that compute relevances at each layer in a backward pass. The rules
redistribute the relevance from layer to layer starting from output until the
input is reached. The value of the output represents the model’s decision
which is equal to the total relevance detected by the model.

LRP is commonly applied to deep neural networks consisting of layers
with rectified linear units (ReLU) nonlinearities. In our experiments, we
use only this activation function. Let i and j be the neurons at two
consecutive layers at which the relevance should be propagated from j

to i. The neurons are of the type:

aj = max

(
0,
∑
i

aiwij + bj

)
. (6)

Noticeably, the layers of this type always have non-negative
activations. The relevance propagation rule is the following:

Ri =
∑
j

aiw
+
ij∑

i aiw
+
ij + ε

Rj , (7)

where w+
ij corresponds to the positive weights wij and ε stabilizes

numerical computations (Yang et al., 2018) We set ε to 1−10. Equation (7)
depicts the z+ rule coming from deep Taylor decomposition (Montavon
et al., 2017) The z+ rule is commonly applied to the convolutional and
fully connected layers. It favours the effect of only positive contributions
to the model decisions. The first input layer can have other propagation
rules that are specific to the domain (Montavon, Samek, and Müller, 2018)
In our work we used the rule (7) for the input layer as well since the gene
expression data has positive values.

In order to propagate relevance through the filtering (4) we rewrite it
as follows:

y =

K−1∑
k=0

θkTk(L)x =
[
L̄0, . . . , L̄K−1

]
θx = Wx, (8)

where matrix W ∈ Rm×m connects nodes y and x. The computation of
matrixW is done as:W =

[
L̄0, . . . , L̄K−1

]
θ, where L̄k = 2LL̄k−1−

L̄k−2 with L̄0 = I and L̄1 = L are the Chebyshev polynomials of the
Laplacian matrix.

Each convolutional layer has Fin channels
[
x1, . . . , xFin

]
∈

R
m×Fin
+ in the input feature map and Fout channels [y1, . . . , yFout ] ∈

Rm×Fout of the output feature map. We consider the values of output
feature maps before applying ReLU non-linearities on them. The Fin ×
Fout vectors of the Chebyshev coefficients θi,j ∈ Rk are the layer’s
trainable parameters. The input feature map can be transformed into a

vector x̂ =
[
xT1 , . . . , x

T
Fin

]T
∈ R

m·Fin
+ . We adapt equation (8) to

compute the jth channel of the output feature map based on the input
feature map:

yj =
[
L̄0, . . . , L̄K−1

]
·
[
θ1,j , . . . , θFinj

]
·
[
xT1 , . . . , x

T
Fin

]T
=
[
L̂1,j , . . . , L̂Fin,j

]
·
[
xT1 , . . . , x

T
Fin

]T
= Ŵj × x̂ ∈ Rm

(9)

where L̂i,j =
[
L̄0, . . . , L̄K−1

]
θi,j ∈ Rm×m, Ŵj =[

L̂1,j , . . . , L̂Fin,j

]
∈ Rm×m·Fin

Since the jth channel of the output feature map is connected through
the matrix-vector multiplication with the input feature map, Ŵj can
be treated as a matrix of weights joining two fully-connected layers.
Therefore, the relevance Rjy ∈ Rm+ from the jth output channel can be

propagated to the input feature map relevance Rjx̂ ∈ R
m·Fin
+ according

to the rule (7). Overall, the relevance propagated from the output feature
map to the input feature map is:

Rx̂ =

Fout∑
j=1

Rjx̂ ∈ R
m·Fin
+ . (10)

For running LRP on graph convolutional layers one needs to compute
huge and dense matrices Ŵj . It requires K − 2 sparse matrix-matrix
multiplications and one sparse to dense matrix-matrix multiplication.
The computations for relevance propagation are heavier and much more
memory demanding compared to the filtering (4).

2.6 Validation

To check the biological relevance of subnetwork genes prioritized by
GLRP we also used the gene expression data from human umbilical vein
endothelial cells (HUVECs) treated or not treated with tumor necrosis
factor alpha TNFα (Rhead et al., 2020) The data, provided by the same
authors (GEO database series: GSE144803), is suitable for a binary
classification task and is balanced. The data was quantile normalized
and mapped to the vertices of HPRD PPI resulting in 7798 genes in
the main connected component. We compared gene sets identified in
our subnetworks to gene modules and differentially expressed genes in
response to TNFα identified by (Rhead et al., 2020) (Supplementary File
S1). (Rhead et al., 2020) used weighted gene co-expression network
analysis (WGCNA) (Zhang and Horvath, 2005) constructing networks
as gene modules. Associations between subnetwork genes sets and 16
gene modules defined by (Rhead et al., 2020) as well as 589 upregulated
genes (log-fold change > 0.5, FDR < 0.01), 425 downregulated genes (log-
fold change < -0.5, FDR < 0.01) and the combined set of 1014 DE genes
were analyzed using the Functional classification tool of the geneXplain
platform (Kolpakov et al., 2011) Fisher test calculations were carried out
with a total contingency table count corresponding to the number of genes
in (Rhead et al., 2020, file S1 of) after mapping to Ensembl (Yates et al.,
2020) gene ids (10022 genes).

3 Results
3.1 Sanity check of the implemented graph LRP

To initially validate our implemented LRP we applied Graph-CNN on
the MNIST dataset (Lecun et al., 1998) in the same way as described in the
paper (Defferrard, Bresson, and Vandergheynst, 2016) The MNIST dataset
contains 70,000 images of hand-written digits each having a size of 28 by
28 pixels. To apply Graph-CNN on the image data, we constructed an 8
nearest-neighbors graph similarly to the schema proposed in (Defferrard,
Bresson, and Vandergheynst, 2016) with the exception that all the weights
are equal to 1. The weight 1 is more natural for the graph connecting
neighboring image pixels. Thus, each image is a graph signal represented
by node attributes - pixel values. We achieved high classification accuracy
(99.02%) on the test set for the Graph-CNN, which is comparable to the
performance of classical CNN (99.33%) reported in (Defferrard, Bresson,
and Vandergheynst, 2016) The number of parameters were the same for
both methods.

Usually, to manage box-constrained pixel values, the special pixel
specific LRP rule is applied for the input layer (Montavon et al., 2019)
This pixel specific rule highlights non only the digits itself, but also the
contours of the digits (Montavon, Samek, and Müller, 2018, Figure 13 of)
In contrast, the rule (7) highlights only those positively relevant parts of
the image where the signal of the digit is present. We kept the propagation
rule (7) for the input and all other layers in all our experiments. Further,
we visually compared on the same digits how the heatmaps generated by
implemented GLRP correspond to the heatmaps generated by usual LRP
procedure applied on classical CNN (figure 1).
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Fig. 1. From left to right: initial image, LRP on classical CNN and GLRP on Graph-CNN.

The heatmaps were rendered only for the classes predicted by classical
CNN and Graph-CNN. In this case the classes are “6” and “3”. For the
Graph-CNN a bigger part of the digit is relevant for the classification since
the covered neighborhood can be expanded up to 24 hops. Graph-CNN’s
filters are isotropic, thus they tend to cover roundish areas that concern
rounded patterns (curves) of the digit (Supplementary Figure S1).

3.2 Genes selected by GLRP correlate with modules
identified by gene co-expression network analysis

We trained a Graph-CNN on gene expression data mentioned in the
section 2.6 to classify HUVECs treated or not treated with TNFα. We
utilized Graph-CNN architecture consisting of 2 convolutional layers with
4 and 8 filters respectively followed by one hidden fully connected layer
with 128 nodes. No pooling was used. The performance of the method is the
same as for Random Forest in 10-fold cross validation. Mean 100*AUC,
accuraccy, and F1-weighted are 99.49, 96.25 % and 96.06 %. To utilize
the GLRP, we retrained Graph-CNN on 70 randomly selected samples and
applied it on the 8 test samples (4 treated and 4 not treated) to propagate
the relevances correspondingly to correctly predicted class. For each out
of 8 test samples, we constructed a subnetwork selecting 140 the most
relevant genes and deleting singletones, that lead to subnetworks consisting
of mainly 130 vertices. Remarkably, the green gene module, which was
the most strongly correlated one with TNFα upregulation (Rhead et al.,
2020) showed significant association (adjusted p-value < 0.05) with the
combined set of subnetwork genes, with genes found in the majority of
subnetworks and also with 5 of the 8 subnetworks (Supplementary File
S1). At the same significance level the turquoise gene module described in
(Rhead et al., 2020) was strongly associated with 2 of 8 subnetworks and
with genes found in all 8 subnetworks. In addition, both the green and the
turquoise modules showed moderate association (adjusted p-value < 0.1)
with the majority of gene sets defined on the basis of the test subnetworks.
Furthermore, we found strong or moderately significant overlap between
upregulated genes and subnetwork gene sets. These results demonstrate
partial agreement between gene sets suggested by LRP, another gene
network analysis and classical differential expression analysis. Hence, the
LRP-based subnetworks gathered biologically meaningful genes and may
even complement the other approaches in revealing important properties
of the underlying biological systems. Additionally, another two gene sets
were compared with WCGNA modules: the intersection of subnetworks
genes and genes that occur more than in 4 test samples subnetworks.
Notably, the individual subnetworks shared more genes with the green
and turquoise WGCNA modules than those described gene sets, pointing
out the ability of GLRP to identify sample-specific genes.

3.3 GLRP to deliver patient-specific subnetworks
We applied the developed layer-wise relevance propagation on the

Graph-CNN trained on gene expression data from section 2.1. The gene
expression data was structured by a protein-protein interaction network.
The prediction task was to classify patients into 2 groups, metastatic and
non-metastatic. For that, we had two output neurons of the neural network

Table 1. Performance of Graph-CNN on metastatic event prediction,
depending on normalization.

Method Std 100*AUC Accuracy, % F1-weighted, %

Graph-CNN - 82.57±1.25 76.07±1.30 75.82±1.33
Random Forest - 81.27±1.66 74.23±1.73 73.47±1.84
Graph-CNN + 82.16±1.25 76.18±1.36 75.86±1.35
Random Forest + 81.40±1.76 74.74±1.67 74.00±1.82
glmgraph + 80.88±1.37 75.14±1.30 74.73±1.39

showing the probability of these two classes. The architecture of the Graph-
CNN is the same as in our previous study (Chereda et al., 2019) and gene
expression data was initially standardized for the training. For the non-
image data to standardize the input features is the usual practice. However,
in case of standardization, the input features are treated independently. For
an image, since the neighboring pixels are highly correlated, if the pixel
values are standardized across the dataset this can distort its pattern quite
significantly and lead to misinterpretation. Analogically, standardization
of microarray data changes expression patterns of genes located in the same
neighborhood of a molecular network. This might affect the explainability
of the Graph-CNN that we aim at. Therefore, we now train the Graph-
CNN directly on the quantile normalized data avoiding the additional
standardization step. Instead, we subtracted the minimal value (5.84847)
of the data from each cell of the gene expression matrix to keep the gene
expression values non-negative. If initially, GE data was lying in [5.84847,
14.2014] now it is in the interval [0.0, 8.3529]. This transformation allows
us to apply the LRP propagation rule (7), and to preserve original gene-
expression patterns in local neighborhoods of the PPI network. For the
comparison we provide the performance of a ’glmgraph’ method (Chen
et al., 2015) implementing network-constrained sparse regression model
using HPRD PPI network and Random Forest without any prior knowledge
as baselines. glmgraph was not evaluated on non-standardized data, since it
has convergence issues in this case. The results of a 10-fold cross validation
are depicted in Table 1. The metrics were averaged over folds and the
standard errors of their means were calculated.

The LRP was applied as a post hoc processing. We trained the
Graph-CNN on 90% of data, keeping the same hyperparameters from
the 10-fold cross validation procedure, and 10% served as a test set. After
that, we selected patients from the test set and propagated the relevance
only from the Graph-CNN’s output node corresponding to the correctly
predicted class. The most frequently selected features are summarized
in Supplementary Table S1. The eukaryotic translation elongation factor
EEF1A1 which is overexpressed in the majority of breast cancers and
protects tumor cells from proteotoxic stress (Lin et al., 2018) was the sole
factor that was selected in all of the 97 test set patients. Other frequently
selected features in both non-metastatic as well as metastatic patients
included genes such as the Epithelial-to-Mesenchymal-Transition (EMT)-
related gene VIM (46/58 non-metastatic, 30/39 metastatic patients), the
extracellular matrix protein FN1 (43/58 non-metastatic, 22/39 metastatic
patients), the actin cytoskeleton regulator CFL1 (7/58 non-metastatic,
7/39 metastatic patients) as well as the estrogen receptor ESR1 28/58
non-metastatic, 10/39 metastatic patients) that are all known to be linked
with breast cancer development and progression (Sharma et al., 2019;
Wang, Eddy, and Condeelis, 2007; Lin et al., 2019; Feng et al., 2018) This
indicates that our method successfully identified relevant key players with
a general role in breast tumorigenesis.

Additionally, we show individualized PPI subnetworks delivered
for four correctly predicted breast cancer patients (Table 2) from the
microarray data set. Two of them had been assigned with the most
common subtype luminal A (LumA), while the other two suffered from
the highly aggressive basal-like subtype. In each group one patient with
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Table 2. Patients that the PPI subnetworks are generated for.

Patient’s ID Subtype Metastatic
event

Time of Meta-
stases, years

Last follow-up,
years

GSM519217 Basal 1 0.9 -
GSM615233 LumA 1 0.79 -
GSM615695 Basal 0 - 5.38
GSM150990 LumA 0 - 9.93

early metastasis was picked and one who did not develop any within at
least 5 years of follow-up.

The generated PPI subnetworks are displayed in Figure 2. The gene
expression level and the relevance score are visualized as the node’s color
and size, respectively. The patient-specific subnetworks were created by
selecting the PPI’s vertices with the highest relevance scores. The sequence
of pictures in order ABCD is the same as in the table.

Interestingly, the networks of both LumA patients contained ESR1
which fits well since this subtype is considered as estrogen receptor positive
(Perou et al., 2000) In contrast, genes often associated with the basal-
like subtype and a poor prognosis such as MCL1, CTNNB1, EGFR or
SOX4, were found in the basal-like patient GSM519217 suggesting that
the generated networks are capable of extracting breast cancer subtype-
specific features. The comparison of the subnetworks of the non-metastatic
and the metastatic patients furthermore revealed some patient-specific
genes which might give valuable information about specific mechanisms
of tumorigenesis and therapeutic vulnerabilities in the respective patient.
In general, it seemed that the subnetworks of the non-metastatic patients
contained more genes that have been linked to better prognostic outcomes
such as JUP, PCBP1 and HMGN2 in GSM615695 (Bailey et al., 2012;
Shi et al., 2018; Fan et al., 2018) or RASA1, IL6ST, KRT19 and RPS14
in GSM150990 (Liu et al., 2014; Mathe et al., 2015; Saha et al., 2018;
Zhou et al., 2013) while the networks of both metastatic patients harbored
genes that are known to be involved in aggressive tumor growth or therapy
resistance which might explain the early metastatic spread in these patients.
Some examples are CDK1, SFN and XPO1 in GSM519217 (Alexandrou
et al., 2019; Neve et al., 2006; Taylor et al., 2019) or CAV1, PTPN11 and
FTL in GSM615233 (Qian et al., 2019; Aceto et al., 2012; Chekhun et al.,
2013)

However, not only the presence of specific genes might be important,
but also their overall expression level. Our analyses identified e.g. the EMT-
related gene VIM as one of the most relevant nodes in the subnetworks of
both metastatic patients in which the gene was highly expressed (>75%
quantile based on the gene expression throughout the whole patient cohort).
In contrast, VIM was also present in the subnetworks of the two non-
metastatic patients, however, with a lower relevance and a particularly low
expression (<25% quantile). VIM is an important marker for EMT and
high expression levels correlate with a motile, mesenchymal-like cancer
cell state, thus making VIM an essential effector of metastasis (Sharma
et al., 2019)

A comparison of subnetwork genes of 79 correctly predicted test set
patients to a database of signal transduction pathways confirmed significant
enrichment of pathways that have previously been associated with cancer
disease mechanisms such as the EGF, ER-alpha, p53 and TGFbeta
pathways as well as Caspase and beta-catenin networks. Comparisons
were performed for each patient as well as for subtype gene sets formed
by combining subnetwork genes of patients associated with a breast cancer
subtype. Results for the 238 signaling pathways from the TRANSPATH®

database that were significantly enriched with subtype genes are visualized
in Figure 3. Differences in enrichment significance may suggest that the
importance of some signaling pathways detected this way is subtype-
specific, e.g. for YAP ubiquitination or the VE-cadherin network (orange

Table 3. Actionable genes identified by the MTB Report workflow. Genes from
the PPI subnetworks were matched to known genomic alterations (Known Var)
that predict either response or resistance to drugs (Predicts). High and low gene
expression were matched to gain of function (GoF) and loss of function (LoF)
genomic variants, respectively.

Patient Gene Expression Known
Var

Predicts

615695 HSPB1 normal expression response to gemcitabine
ABL1 high GoF response to ABL TK inhibitors

(imatinib, desatininb, ponatinib,
regorafenib. . .)

AKT1 high GoF response to PI3K, AKT, MTOR
inhibitors; resistance to BRAF
inhibitors

ERBB2 high GoF response to ERBB2, EGFR,
MTOR, AKT inhibitors

MAPK3 high GoF resistance to EGFR inhibition

519217 HSPB1 normal expression response to gemcitabine
CTNNB1 high GoF response to everolimus +

letrozole; resistance to
Tankyrase inhibitors

EGFR high GoF response to EGFR, ERBB2,
HSP90 and MEK inhibitors

ERBB2 high GoF response to ERBB2, EGFR,
MTOR, AKT inhibitors

JUN high overexpr response to irbesartan
(angiotensin II antagonist)

MCL1 high GoF resistance to anti-tubulin agents
PTPN11 high GoF response to MEK inhibitors

615233 FOS high overexpr response to irbesartan
(angiotensin II antagonist)

PTPN11 high GoF response to MEK inhibitors

150990 HSPB1 normal expression response to gemcitabine
ESR1 high GoF response to novel ER degraders,

fulvestrant, tamoxifen

heatmap, Fig. 3, see also Supplementary Table S2 for details). The
pattern of enrichment found on the level of cancer subtypes coincided
well with the findings for subnetwork genes of individual patients revealing
several molecular networks with elevated significance in both subtype and
patient gene sets such as the EGF pathway, although the patient-level
visualization did not suggest subtype-specific enrichment (green heatmap,
Fig. 3). One source of these observations can be that patient subnetworks
tend to be associated with certain pathways but cover different pathway
components (genes). We therefore compared pathway genes in pairs of
patient subnetworks for the 33 largest pathways. In 18 pathways the
median pair of patient subnetworks differed in 33% or more of the genes
matched within a pathway (see also Supplementary Table S3 for details).
These results demonstrate that the subnetworks obtained by Graph-CNN
were enriched with common signaling pathways relevant for the respective
disease and can assign patient-specific priorities to pathway components.

Finally, we tested whether the subnetworks can also be used for
finding potentially targetable genetic vulnerabilities that could open new
options for personalized treatment decisions. We applied the “MTB report”
methodology described in (Perera-Bel et al., 2018) to identify actionable
genes present in the subnetworks. For that, we extended the algorithm to
match high expression with gain of function alterations, and low expression
with loss of function alterations. The results are summarized in Table 3.

Although information about the presence of actionable genetic variants
is missing from our patient microarray data, the information generated
by the PPI subnetworks could be used to define specific panels for
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Fig. 2. The PPI subnetworks for: 1) Metastatic patients A (GSM519217) and B (GSM615233); 2) Non-metastatic patients C (GSM615695) and D (GSM150990). The coloring of the node
is based on gene expression levels by 25% and 75% quantiles (blue=LOW, yellow=NORMAL, red=HIGH). based on the gene expression throughout the whole patient cohort. The size of
vertices corresponds to the relevance scores within one subnetwork. All the subnetworks are highly relevant compared to the rest of the PPI network. Green circles highlight targetable genes.

subsequent sequencing. Indeed, the MTB reports highlighted specific
genes that could be targeted therapeutically in each of the four patients:
In the non-metastatic LumA patient GSM150990 ESR1 was proposed as
therapeutic target which is in line with current treatment regimens that use
hormone therapy as the main first line treatment of choice for this patient
subgroup. In contrast, in the metastatic LumA patient GSM615233 FOS
and PTPN11 were identified as novel actionable alterations. In the often
rapidly-relapsing basal-like patients HSPB1 and ERBB2 were identified
as common targets as well as MAPK3, AKT1 and ABL1 for the non-
metastatic patient GSM615695 or EGFR, MCL1, CTNNB1, PTPN11
and JUN for the metastatic patient GSM519217, thereby suggesting

novel possibilities for combinatory or alternative treatments. Taken
together, GLRP provides subnetworks centered around known oncogenic
drivers that seem reasonable in the context of cancer biology and can
help to identify patient-specific cancer dependencies and therapeutic
vulnerabilities in the context of precision oncology.

4 Discussion
In our work we focused on the interpretability of a deep learning

method utilizing molecular networks as prior knowledge. We implemented
LRP for Graph-CNN and provided the sanity check of the developed
approach on the MNIST dataset. Essentially, the main aim of the paper
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Fig. 3. Signal transduction pathway analysis of subnetwork genes reported for 79 patients in 5 subtypes. (From left to right) Blue heatmap: 238 signaling pathways clustered according
to proportion of shared subnetwork genes; Orange heatmap: Enrichment significance of pathways in subnetwork genes combined from patients of given subtype. Darker orange indicates
higher significance; Purple heatmap: Median difference in matched pathway genes observed in pairwise comparisons of subnetwork gene sets from patients mapped to 33 pathways. Darker
purple indicates higher tendency of pairs of subnetwork gene sets to coincide with different pathway genes; Green heatmap: Enrichment significance of pathways in subnetwork genes of 79
patients. Darker green indicates higher significance. Corresponding subtypes and metastatic status are shown by the annotation above the heatmap. A detailed version of this figure capturing
pathway and sample names is provided in Supplementary Figure S2.

was to explain the prediction of metastasis for breast cancer patients by
providing an individual molecular subnetwork specific for each patient.
The patient-specific subnetworks provided interpretability of the deep
learning method and demonstrated clinically relevant results on the breast
cancer dataset.

Supposedly, the performance of Graph-CNN can be improved. The
batch normalization technique (Ioffe and Szegedy, 2015) that is used to
accelerate the training of deep neural networks is not seen to be available
for the Graph-CNN, so this can be the way to enhance its performance.
The LRP rule for batch normalization layers is yet another procedure to
be adapted for Graph-CNN.

Another possibility to identify genes (and construct subnetworks out
of them) influencing classifier decisions is to apply model-agnostic SHAP
and LIME explainability methods. LIME method provides explanations
of a data-point based on feature perturbations. The method samples
perturbations from a Gaussian distribution, ignoring correlations between
features. It leads to the instability of explanations that is not favourable
for personalised medicine. SHAP provides Shapley values for each
feature of a data-point as well but does not have such an issue, so we
attempted to derive patients-specific subnetworks applying TreeExplainer
and KernelExplainer from SHAP python module on Random Forest
and Graph-CNN respectively. The subnetworks were build on the basis
of HPRD PPI utilizing positive Shapley values, which were pushing
prediction to a higher probability of corresponding class (metastatic or
non-metastatic). The subnetworks obtained are mostly consisting from
single vertices. In contrast, the subnetworks from GLRP and Graph-CNN
are mostly connected. The SHAP’s DeepExplainer approach suitable for

convenient deep learning models is not applicable for Graph-CNN. The
model-agnostic KernelExplainer computes SHAP values out of a debiased
lasso regression. Reevaluating the model happens several thousands
numbers of times specified by a user as well as a small background dataset
needed for integrating out features. Hence, the KernelExplainer is not
scalable and application of it on Graph-CNN resulted in not connected
subnetworks as well.

Furthermore, the sensitivity of Graph-CNN to the changes of prior
knowledge is still to be investigated. Authors in (Defferrard, Bresson, and
Vandergheynst, 2016) showed that for the MNIST images a random graph
connecting pixels significantly decreases the performance destroying local
connectivity. In our case, the permutation of the vertices of the PPI
network does not influence the classifier performance on standardized
gene expression data. Yet, PPI network is a small world network and
its degree distribution fits to the power law with the exponentα = 2.70. It
implies great connectivity between proteins and means that any two nodes
are separated by less than six hops. The filters of convolutional layers
cover a 7-hop neighborhood of each vertex, so we assume it still might
be enough to capture the gene expression patterns. In our future work we
will investigate how the properties of the prior knowledge influence the
performance and explainability of Graph-CNN.

The subnetworks generated by GLRP contained common potential
oncogenic drivers which indicates that they can extract the essential cancer
pathways. Indeed, our analyses identified genes associated with hormone
receptor positive breast cancer (e.g. ESR1, IL6ST, CD36, GLUL, RASA1)
in the networks from the patients with estrogen receptor positive, LumA
breast cancer and genes associated with the basal-like subtype (e.g. EGFR,
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SOX4, AKT1 as well as high levels of HNRNPK) in the basal-like patients,
underlining the biological relevance of the networks. Next to subtype-
specific genes, the networks contained several oncogenes that were found
in all four patients and could thus represent common drivers of breast
cancer initiation and progression. One example is the actin-binding protein
cofilin (CFL1) that regulates cancer cell motility and invasiveness (Wang,
Eddy, and Condeelis, 2007) Another interesting candidate is STAT3
which is activated in more than 40% of breast cancers and can cause
deregulated cell proliferation and Epithelial-to-Mesenchymal Transition
(EMT) (Banerjee and Resat, 2015) Our graphs not only displayed patient-
specific PPI subnetworks, but also concisely visualized the relevance of
each node and its expression levels. This information is potentially relevant
to judge the biological significance of the gene in a patient-specific context.

Next to the common genes found in all four networks, each network
was characterized by several special, cancer-associated genes which are of
high interest because they might represent patient-specific central signaling
nodes and therapeutic vulnerabilities. Some examples are PTPN11 that is
known to activate a transcriptional program associated with cancer stem
cells or the EMT-related genes SOX4 or VIM that might be responsible
for the high invasive capacity of the tumors and their early metastasis
formation (Bentires-Alj et al., 2004; Aceto et al., 2012; Sharma et al.,
2019; Zhang et al., 2012) Interestingly, the network of the metastatic
patient GSM615233 harbored the genes FABP4 and LPL which both
have been shown to interact with CD36, another highly expressed node
in the network, to support cell proliferation and counteract apoptosis
(Guaita-Esteruelas et al., 2016; Liang et al., 2018; Kuemmerle et al.,
2011) In contrast, in the non-metastatic patient GSM150990 especially
the interleukin receptor IL6ST and the Ras GTPase-activating protein 1
(RASA1) seem to be interesting because for both high expression levels
have been linked with a favorable prognosis (Liu et al., 2014; Mathe et
al., 2015) In the other non-metastatic patient GSM615695 high levels of
HMGN2 and PCBP1 were identified which both have been shown to be
able to inhibit cell proliferation (Shi et al., 2018; Fan et al., 2018) Although
the experimental validation for the networks is still missing, it is tempting
to speculate that these genes might contribute to the benign phenotype of
the tumor in these patients.

All patient-specific subnetworks contained relevant drug targets that
have been largely studied in breast cancer (e.g. ERBB2, ESR1, EGFR,
AKT1). Yet, resistance mechanisms in breast cancer targeted therapies
represent a big challenge; many of the identified therapeutic approaches
have failed (Nakai, Hung, and Yamaguchi, 2016) due to the highly
interconnected nature of signaling pathways and potential circumvents.
A promising way forward could involve the molecular characterization of
the tumor with transcriptomics and a parallel culture of patient-derived
organoids. PPI networks could elucidate the right combination strategy by
identifying central signaling nodes. Different therapeutic strategies could
be tested on organoids and confirm the best strategy that synergistically
blocks cancer cell escape routes and minimizes the emergence of survival
mechanisms. Only the identification of relevant mechanisms of action
for cell survival as well as of the factors involved in resistance for each
patient, together with a more precise and personalized characterization
of each cancer phenotype, may provide useful improvements in current
therapeutic approaches.

5 Conclusion
We present a novel Graph-CNN based feature selection method that

benefits from prior knowledge and provides patient-specific subnetworks.
We adapted the existing Layer-wise Relevance Propagation technique
to the Graph-CNN, demonstrated it on MNIST data, and showed its
applicability on a large breast cancer dataset. Our new approach generated
individual patient-specific molecular subnetworks that influenced the

model’s decision in the given context of a classification problem. The
subnetworks selected by the developed method utilizing general prior
knowledge are relevant for prediction of metastasis in breast cancer.
They contain common as well as subtype-specific cancer genes that
match the clinical subtype of the patients, together with patient-specific
genes that could potentially be linked to aggressive/benign phenotypes.
In the context of a breast cancer dataset GLRP provides patient-
specific explanations for the Graph-CNN that largely agree with clinical
knowledge, include oncogenic drivers of tumor progression and can help
to identify therapeutic vulnerabilities. We therefore conclude that our
method GLRP in combination with Graph-CNN is a new, useful and
interpretable machine learning approach for high-dimensional genomic
data-sets. Generated classifiers rely on prior knowledge of molecular
networks and can be interpreted by patient-specific subnetworks driving
the individual classification result. These sub-networks can be visualized
and interpreted in a biomedical context on the individual patient level. This
approach could thus be useful for precision medicine approaches such as
for example the molecular tumorboard.

Supporting information
Supplementary File S1. Subnetwork genes obtained for 8 test

samples and analysis of their association with gene modules reported
by (Rhead et al., 2020) as well as differentially expressed (DE) genes.
Worksheet Subnetwork genes 8 samples provides identifiers and gene
symbols of 167 subnetwork genes, in how many and in which samples
they were selected. Worksheet Gene module enrichment presents results of
Fisher test calculations comparing subnetwork gene sets to gene modules
and DE gene sets. Each row contains data for a DE gene set or a gene
module consisting of the total group size and column tripletts with p-value,
adjusted p-value as well as the number of hits, respectively, observed in
comparisons to the union of genes from 8 subnetworks, the set of genes
occurring in the majority, the set of genes found in all of the subnetworks
and each of the 8 samples. Highlighted are rows corresponding to green and
turquoise gene modules, which were most often significantly associated
with subnetwork gene sets (grey), adjusted p-values below 0.05 (red) and
between 0.05 and 0.1 (yellow).

Supplementary Figure S1. Visualization of 2 out of 32 learned
filters of the 1st convolutional layer of graph CNN classifying MNIST
digits on the 8-nearest-neighbours graph.

Supplementary Figure S2. Signal transduction pathway analysis of
subnetwork genes reported for 79 correctly classified test set patients
in 5 subtypes.

Supplementary Table S1. Frequency of gene selection in top 10 of
highly relevant genes among metastatic and non-metastatic patients.

Supplementary Table S2. 238 signal transduction pathways from
the TRANSPATH® database that were significantly enriched (FDR <
0.05) in subnetwork genes associated with 5 cancer subtypes.
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