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Fig. 2. The PPI subnetworks for: 1) Metastatic patients A (GSM519217) and B (GSM615233); 2) Non-metastatic patients C (GSM615695) and D (GSM150990). The coloring of the node
is based on gene expression levels by 25% and 75% quantiles (blue=LOW, yellow=NORMAL, red=HIGH). based on the gene expression throughout the whole patient cohort. The size of

vertices corresponds to the relevance scores within one subnetwork. All the subnetworks are highly relevant compared to the rest of the PPI network. Green circles highlight targetable genes.

subsequent sequencing. Indeed, the MTB reports highlighted specific
genes that could be targeted therapeutically in each of the four patients:
In the non-metastatic LumA patient GSM 150990 ESR1 was proposed as
therapeutic target which is in line with current treatment regimens that use
hormone therapy as the main first line treatment of choice for this patient
subgroup. In contrast, in the metastatic LumA patient GSM615233 FOS
and PTPN11 were identified as novel actionable alterations. In the often
rapidly-relapsing basal-like patients HSPB1 and ERBB2 were identified
as common targets as well as MAPK3, AKT1 and ABL1 for the non-
metastatic patient GSM615695 or EGFR, MCL1, CTNNBI1, PTPN11
and JUN for the metastatic patient GSM519217, thereby suggesting

novel possibilities for combinatory or alternative treatments. Taken
together, GLRP provides subnetworks centered around known oncogenic
drivers that seem reasonable in the context of cancer biology and can
help to identify patient-specific cancer dependencies and therapeutic
vulnerabilities in the context of precision oncology.

4 Discussion

In our work we focused on the interpretability of a deep learning
method utilizing molecular networks as prior knowledge. We implemented
LRP for Graph-CNN and provided the sanity check of the developed
approach on the MNIST dataset. Essentially, the main aim of the paper
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Fig. 3. Signal transduction pathway analysis of subnetwork genes reported for 79 patients in 5 subtypes. (From left to right) Blue heatmap: 238 signaling pathways clustered according

to proportion of shared subnetwork genes; Orange heatmap: Enrichment significance of pathways in subnetwork genes combined from patients of given subtype. Darker orange indicates

higher significance; Purple heatmap: Median difference in matched pathway genes observed in pairwise comparisons of subnetwork gene sets from patients mapped to 33 pathways. Darker

purple indicates higher tendency of pairs of subnetwork gene sets to coincide with different pathway genes; Green heatmap: Enrichment significance of pathways in subnetwork genes of 79

patients. Darker green indicates higher significance. Corresponding subtypes and metastatic status are shown by the annotation above the heatmap. A detailed version of this figure capturing

pathway and sample names is provided in Supplementary Figure S2.

was to explain the prediction of metastasis for breast cancer patients by
providing an individual molecular subnetwork specific for each patient.
The patient-specific subnetworks provided interpretability of the deep
learning method and demonstrated clinically relevant results on the breast
cancer dataset.

Supposedly, the performance of Graph-CNN can be improved. The
batch normalization technique (Ioffe and Szegedy, 2015) that is used to
accelerate the training of deep neural networks is not seen to be available
for the Graph-CNN, so this can be the way to enhance its performance.
The LRP rule for batch normalization layers is yet another procedure to
be adapted for Graph-CNN.

Another possibility to identify genes (and construct subnetworks out
of them) influencing classifier decisions is to apply model-agnostic SHAP
and LIME explainability methods. LIME method provides explanations
of a data-point based on feature perturbations. The method samples
perturbations from a Gaussian distribution, ignoring correlations between
features. It leads to the instability of explanations that is not favourable
for personalised medicine. SHAP provides Shapley values for each
feature of a data-point as well but does not have such an issue, so we
attempted to derive patients-specific subnetworks applying TreeExplainer
and KernelExplainer from SHAP python module on Random Forest
and Graph-CNN respectively. The subnetworks were build on the basis
of HPRD PPI utilizing positive Shapley values, which were pushing
prediction to a higher probability of corresponding class (metastatic or
non-metastatic). The subnetworks obtained are mostly consisting from
single vertices. In contrast, the subnetworks from GLRP and Graph-CNN
are mostly connected. The SHAP’s DeepExplainer approach suitable for

convenient deep learning models is not applicable for Graph-CNN. The
model-agnostic KernelExplainer computes SHAP values out of a debiased
lasso regression. Reevaluating the model happens several thousands
numbers of times specified by a user as well as a small background dataset
needed for integrating out features. Hence, the KernelExplainer is not
scalable and application of it on Graph-CNN resulted in not connected
subnetworks as well.

Furthermore, the sensitivity of Graph-CNN to the changes of prior
knowledge is still to be investigated. Authors in (Defferrard, Bresson, and
Vandergheynst, 2016) showed that for the MNIST images a random graph
connecting pixels significantly decreases the performance destroying local
connectivity. In our case, the permutation of the vertices of the PPI
network does not influence the classifier performance on standardized
gene expression data. Yet, PPI network is a small world network and
its degree distribution fits to the power law with the exponent o = 2.70. It
implies great connectivity between proteins and means that any two nodes
are separated by less than six hops. The filters of convolutional layers
cover a 7-hop neighborhood of each vertex, so we assume it still might
be enough to capture the gene expression patterns. In our future work we
will investigate how the properties of the prior knowledge influence the
performance and explainability of Graph-CNN.

The subnetworks generated by GLRP contained common potential
oncogenic drivers which indicates that they can extract the essential cancer
pathways. Indeed, our analyses identified genes associated with hormone
receptor positive breast cancer (e.g. ESR1, IL6ST, CD36, GLUL, RASA1)
in the networks from the patients with estrogen receptor positive, LumA
breast cancer and genes associated with the basal-like subtype (e.g. EGFR,
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SOX4, AKT1 as well as high levels of HNRNPK) in the basal-like patients,
underlining the biological relevance of the networks. Next to subtype-
specific genes, the networks contained several oncogenes that were found
in all four patients and could thus represent common drivers of breast
cancer initiation and progression. One example is the actin-binding protein
cofilin (CFL1) that regulates cancer cell motility and invasiveness (Wang,
Eddy, and Condeelis, 2007) Another interesting candidate is STAT3
which is activated in more than 40% of breast cancers and can cause
deregulated cell proliferation and Epithelial-to-Mesenchymal Transition
(EMT) (Banerjee and Resat, 2015) Our graphs not only displayed patient-
specific PPI subnetworks, but also concisely visualized the relevance of
each node and its expression levels. This information is potentially relevant
to judge the biological significance of the gene in a patient-specific context.

Next to the common genes found in all four networks, each network
was characterized by several special, cancer-associated genes which are of
high interest because they might represent patient-specific central signaling
nodes and therapeutic vulnerabilities. Some examples are PTPN11 that is
known to activate a transcriptional program associated with cancer stem
cells or the EMT-related genes SOX4 or VIM that might be responsible
for the high invasive capacity of the tumors and their early metastasis
formation (Bentires-Alj et al., 2004; Aceto et al., 2012; Sharma et al.,
2019; Zhang et al., 2012) Interestingly, the network of the metastatic
patient GSM615233 harbored the genes FABP4 and LPL which both
have been shown to interact with CD36, another highly expressed node
in the network, to support cell proliferation and counteract apoptosis
(Guaita-Esteruelas et al., 2016; Liang et al., 2018; Kuemmerle et al.,
2011) In contrast, in the non-metastatic patient GSM 150990 especially
the interleukin receptor IL6ST and the Ras GTPase-activating protein 1
(RASAL) seem to be interesting because for both high expression levels
have been linked with a favorable prognosis (Liu et al., 2014; Mathe et
al., 2015) In the other non-metastatic patient GSM615695 high levels of
HMGN?2 and PCBP1 were identified which both have been shown to be
able to inhibit cell proliferation (Shi et al., 2018; Fan et al., 2018) Although
the experimental validation for the networks is still missing, it is tempting
to speculate that these genes might contribute to the benign phenotype of
the tumor in these patients.

All patient-specific subnetworks contained relevant drug targets that
have been largely studied in breast cancer (e.g. ERBB2, ESR1, EGFR,
AKT1). Yet, resistance mechanisms in breast cancer targeted therapies
represent a big challenge; many of the identified therapeutic approaches
have failed (Nakai, Hung, and Yamaguchi, 2016) due to the highly
interconnected nature of signaling pathways and potential circumvents.
A promising way forward could involve the molecular characterization of
the tumor with transcriptomics and a parallel culture of patient-derived
organoids. PPI networks could elucidate the right combination strategy by
identifying central signaling nodes. Different therapeutic strategies could
be tested on organoids and confirm the best strategy that synergistically
blocks cancer cell escape routes and minimizes the emergence of survival
mechanisms. Only the identification of relevant mechanisms of action
for cell survival as well as of the factors involved in resistance for each
patient, together with a more precise and personalized characterization
of each cancer phenotype, may provide useful improvements in current
therapeutic approaches.

5 Conclusion

We present a novel Graph-CNN based feature selection method that
benefits from prior knowledge and provides patient-specific subnetworks.
We adapted the existing Layer-wise Relevance Propagation technique
to the Graph-CNN, demonstrated it on MNIST data, and showed its
applicability on a large breast cancer dataset. Our new approach generated
individual patient-specific molecular subnetworks that influenced the

model’s decision in the given context of a classification problem. The
subnetworks selected by the developed method utilizing general prior
knowledge are relevant for prediction of metastasis in breast cancer.
They contain common as well as subtype-specific cancer genes that
match the clinical subtype of the patients, together with patient-specific
genes that could potentially be linked to aggressive/benign phenotypes.
In the context of a breast cancer dataset GLRP provides patient-
specific explanations for the Graph-CNN that largely agree with clinical
knowledge, include oncogenic drivers of tumor progression and can help
to identify therapeutic vulnerabilities. We therefore conclude that our
method GLRP in combination with Graph-CNN is a new, useful and
interpretable machine learning approach for high-dimensional genomic
data-sets. Generated classifiers rely on prior knowledge of molecular
networks and can be interpreted by patient-specific subnetworks driving
the individual classification result. These sub-networks can be visualized
and interpreted in a biomedical context on the individual patient level. This
approach could thus be useful for precision medicine approaches such as
for example the molecular tumorboard.

Supporting information

Supplementary File S1. Subnetwork genes obtained for 8 test
samples and analysis of their association with gene modules reported
by (Rhead et al., 2020) as well as differentially expressed (DE) genes.
Worksheet Subnetwork genes 8 samples provides identifiers and gene
symbols of 167 subnetwork genes, in how many and in which samples
they were selected. Worksheet Gene module enrichment presents results of
Fisher test calculations comparing subnetwork gene sets to gene modules
and DE gene sets. Each row contains data for a DE gene set or a gene
module consisting of the total group size and column tripletts with p-value,
adjusted p-value as well as the number of hits, respectively, observed in
comparisons to the union of genes from 8 subnetworks, the set of genes
occurring in the majority, the set of genes found in all of the subnetworks
and each of the 8 samples. Highlighted are rows corresponding to green and
turquoise gene modules, which were most often significantly associated
with subnetwork gene sets (grey), adjusted p-values below 0.05 (red) and
between 0.05 and 0.1 (yellow).

Supplementary Figure S1. Visualization of 2 out of 32 learned
filters of the 1st convolutional layer of graph CNN classifying MNIST
digits on the 8-nearest-neighbours graph.

Supplementary Figure S2. Signal transduction pathway analysis of
subnetwork genes reported for 79 correctly classified test set patients
in 5 subtypes.

Supplementary Table S1. Frequency of gene selection in top 10 of
highly relevant genes among metastatic and non-metastatic patients.

Supplementary Table S2. 238 signal transduction pathways from
the TRANSPATH® database that were significantly enriched (FDR <
0.05) in subnetwork genes associated with 5 cancer subtypes.
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