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ABSTRACT 12 
 13 
How neurons encode behavior is a fundamental question. Neuronal ensembles increase or 14 
decrease activity during specific behaviors. However, it is unclear whether ensembles encode 15 
information solely via changes in activity levels, or whether changes in correlations between 16 
neurons carry additional information. We used microendoscopic GCaMP imaging to measure 17 
prefrontal activity while mice were either alone or engaged in social interaction. Using neural 18 
network classifiers to measure how well prefrontal neurons transmit information about social 19 
behavior to downstream neurons, we find that surrogate datasets which preserve dynamic 20 
correlations outperform those which preserve ensemble activity but not correlations. Notably, 21 
this ability of correlations to enhance the information transmitted by neuronal ensembles is lost 22 
in mice lacking the autism-associated gene Shank3. These results show that dynamically 23 
modulated correlations create patterns of coactive neurons which are behaviorally-specific and 24 
enhance the information transmitted by neuronal ensembles. Furthermore, this process may be 25 
disrupted in pathological states. 26 
 27 
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INTRODUCTION 29 
 30 
During behavior, the activity of neurons is organized with precise temporal relationships (1–3). 31 
For example, during certain behaviors, subsets of neurons may exhibit correlated activity in 32 
which they become active at the same time or within short windows of time. However, it is 33 
unknown whether this sort of temporal organization is simply a byproduct of the interconnected 34 
nature of neuronal networks (4), or contributes in a meaningful way to information encoding (5). 35 
Groups of co-active neurons represent an attractive computational unit for information 36 
processing because they should optimize temporal summation in downstream targets. Thus, 37 
increases in correlations might further augment post-synaptic responses when pre-synaptic 38 
activity increases, or enhance post-synaptic responses even when the total level of pre-synaptic 39 
activity remains constant. 40 
 41 
However, it is unclear whether behaviorally-driven changes in correlations actually encode 42 
additional behavioral information, beyond what is transmitted by changes in neuronal activity 43 
levels. In particular, with the advent of new technologies for simultaneously recording from large 44 
numbers of neurons in behaving animals, many studies have now shown that cortical ensembles 45 
encode behavioral information via increases or decreases in the activity of their constituent 46 
neurons. While correlations have been shown to contribute additional information for small 47 
groups (3-8 neurons) of cortical neurons (6), only a few studies have examined how correlations 48 
contribute to encoding within larger cortical ensembles. One study found that the identity of a 49 
conditioned stimulus was encoded in mean activity levels, but not in moment-to-moment 50 
patterns of co-activity (7). Another study found that in hippocampal region CA1, disrupting 51 
correlations impairs the decoding of position, head direction and speed, but did not directly 52 
examine whether correlations themselves are dynamically modulated to encode these behavioral 53 
variables (8). In particular, while multiple studies have shown that behavior can modulate 54 
correlations (3, 9) the functional significance of this has remained unclear, because changes in 55 
correlations might simply reflect variation in activity levels (10) rather than contributing 56 
additional information. 57 
 58 
To address these questions, we studied the mouse medial prefrontal cortex during simple social 59 
behaviors. The role of the medial prefrontal cortex in rodent social behavior is well-established 60 
(11–14). Many prefrontal neurons are recruited by social interaction (2, 13, 14) as well as social 61 
stimuli such as odors (15). These studies show that the activity levels of neuronal ensembles 62 
encode social behavior but have not examined whether changes in correlations between 63 
prefrontal neurons transmit additional information. Using microendoscopic GCAMP imaging in 64 
freely-moving mice, we identified prefrontal ensembles associated with social behavior. We used 65 
a neural network classifier to quantify how well these would transmit information about social 66 
behavior to downstream neurons. By examining the operation of this neural network and using 67 
surrogate datasets which preserve activity levels but either preserve or disrupt correlations, we 68 
find that changes in correlations enhance the information transmitted by neuronal ensembles. 69 
Notably, this was not the case in a mouse model of autism, demonstrating that this form of 70 
information transmission may be disrupted in pathological states. 71 
 72 
  73 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.05.238741doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.05.238741
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
  Frost et al. 4 

RESULTS 74 
 75 
Social interaction recruits prefrontal ensembles 76 
We implanted microendoscopes (nVoke; Inscopix) into the medial prefrontal cortex (mPFC) of 77 
adult wildtype C57/B6 mice (WT) to image calcium transients using GCaMP6f expressed under 78 
control of the human synapsin promotor. We imaged freely moving mice during an assay which 79 
sequentially introduced 2 novel juvenile mice to the home cage of the subject mouse, first during 80 
an initial (novel) epoch and then again during a subsequent (familiar) epoch. These four epochs 81 
of social interaction were interleaved with epochs during which the subject mouse was alone in 82 
its home cage (‘home cage’ epochs). The first 5 minutes of each interaction epoch was scored by 83 
a blinded observer, and each wild-type mouse spent approximately 10 minutes interacting with 84 
the juvenile mice (393 +/- 25 s during the novel epochs and 235 +/- 18 s during the familiar 85 
epochs, p = 0.00017, paired t test, n = 10 WT mice). 86 
 87 
We processed data using a modified PCA/ICA approach (16, 17) to identify neurons which were 88 
active during the imaging session. To minimize the influence of the surrounding neuropil on 89 
neuronal signals, we calculated the mean signal within each ROI, then subtracted the mean signal 90 
calculated from a circular annulus surrounding each ROI (Supplementary Figure 1). Casual 91 
inspection of calcium traces revealed that some neurons were more active during epochs of 92 
social interaction (compared to periods of home cage exploration), whereas others exhibited the 93 
opposite pattern (Figure 1A). Correspondingly, aligning calcium traces to the onset of social 94 
interaction revealed many neurons that either increased or decreased activity at the onset of 95 
interaction (Figure 1B). Fluorescence traces were converted to binary event rasters (see Methods 96 
for details of event detection), in which most neurons were “active” in less than 5% of frames 97 
(Figure 1C). As a population, imaged neurons were more active during social interaction (Figure 98 
1C, n = 663 neurons from 10 mice, percent time active in home cage: 1.8% +/- 0.1, percent time 99 
active during social interaction: 2.1 +/- 0.1%, p = 0.00002, paired t-test). There was a bimodal 100 
distribution of cells that were significantly more (>90th percentile, social: 152/663 neurons, home 101 
cage: 80/663 neurons; p < 0.00001, Chi-Squared Test) or less active (<10th percentile, social: 102 
128/663 neurons, home cage: 119/663 neurons; p = 0.5) during either social interaction or 103 
matched periods when mice were alone in their home cage, as compared to circularly shuffled 104 
datasets (Figure 1D). These correspond to neuronal ensembles which are specifically recruited 105 
or inhibited during social interaction, respectively. 106 
 107 
Using a neural network classifier to assess how well ensembles transmit information 108 
Next, we sought to determine how well these prefrontal ensembles would transmit information 109 
about social behavior to downstream neurons, i.e., measure how well downstream neurons could 110 
decode whether a mouse was engaged in social behavior based on input from prefrontal neurons. 111 
For this we used a simple neural network classifier that received input from the recorded 112 
neurons. Our rationale for using this kind of neural network classifier was threefold. First, a 113 
simple neural network measures information that is immediately and readily available to 114 
downstream neurons. Second, for a neural network with only one hidden layer, it is 115 
straightforward to examine the weights to determine how the network performs the 116 
classification. This can provide insight into exactly how the neural network is able to decode 117 
behavior from the input activity. Third, examining how various parameters of the neural network 118 
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affect its performance can provide additional clues about how information is represented within 119 
the input population. 120 
 121 
Figure 2A shows the design of the neural network classifier. The network consisted of a hidden 122 
layer containing 1000 units. We chose this number because it is both an order of magnitude 123 
larger than the number of input neurons and an order of magnitude smaller than the number of 124 
frames available for training (the latter helps ensure that there will be enough data to train the 125 
output weights). We simulated a different neural network for each mouse. Each hidden layer unit 126 
received input from a random subset of the prefrontal neurons from one mouse. I.e., each frame 127 
represents one timepoint and if neuron i is active in a frame then it provided an input of 1 to all 128 
the hidden units to which it is connected; otherwise it provides an input of 0. For each 129 
simulation, there was a fixed connection probability between each input neuron and each hidden 130 
layer unit. We tried different values for this connection probability in order to measure how 131 
classifier performance depends on the number of neurons that provide input to each hidden layer 132 
unit. Each hidden layer unit had an output weight which specifies how strongly that unit excites 133 
or inhibits a single output unit which classifies activity as belonging to periods in which a mouse 134 
was actively engaged in social interaction or alone in its home cage. E.g., output unit activity < 0 135 
corresponds to the social condition, while output unit activity > 0 corresponds to the home cage 136 
condition. These output weights were adjusted during training (see Methods for details of the 137 
training rule) while the pattern of input connectivity was fixed. This models the situation in 138 
which prefrontal neurons transmit information to a downstream population of neurons (the 139 
hidden layer) that decode behavior via their output weights. We initially trained networks on 140 
50% of the data (frames) and used the held-out data for testing. We trained and tested using 141 
intervals during which the mouse was actively engaged in social interaction or equivalent 142 
intervals when the mouse was alone in its home cage. 143 
 144 
Classifier performance is optimal for intermediate connection probabilities 145 
Classifier performance was strongly dependent on the probability that each input neuron was 146 
connected to each hidden unit. For the 8/10 datasets that could be classified above chance, 147 
classifier performance (measured on the 50% of data which was held-out during training) was 148 
near chance levels when the connection probability was < 0.1, but increased to a peak of 69 +/- 149 
3% (Figure 2B) for a connection probability of 0.3. Accuracy decreased dramatically when the 150 
connection probability increased to 0.5 indicating that connection probabilities ~0.2 - 0.4 are 151 
optimal. 152 
 153 
We also validated classifier performance by training and testing on surrogate datasets that were 154 
generated by ‘swap shuffling’ our original datasets. We created ‘swap shuffled’ surrogate 155 
datasets by randomly swapping blocks of activity between neurons (each block of activity = a set 156 
of consecutive frames during which the neuron was active). To understand this, think of the 157 
entire raster as a collection of blocks of activity. Each block occurs at a specific time, has a 158 
specific duration, and is associated with a particular neuron. Swap shuffling is equivalent to just 159 
shuffling the neurons associated with each block of activity (the start time and duration of each 160 
block do not change). For example, if neuron i originally became active at time t1 for n1 frames 161 
and neuron j was active at time t2 for n2 frames, then in the surrogate dataset neuron i might 162 
become active at t2 (but not at t1) while neuron j might become active at t1 (but not t2). Swap 163 
shuffling preserves the number of neurons active at each point in time (because the timing of 164 
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blocks of activity does not change). It also preserves the number of blocks of activity for each 165 
neuron, and this tends to preserve the overall level of activity of each neuron. Activity levels are 166 
not perfectly preserved, because blocks of activity can have different durations. Nevertheless, in 167 
practice, blocks of activity tend to have similar durations and the similarity between the mean 168 
activity level in each neuron before and after swap shuffling of entire datasets was 0.97 +/- 0.01. 169 
As expected, we found that neural network classifiers trained and tested on swap shuffled 170 
datasets performed near chance levels (Figure 2B). 171 
 172 
Prefrontal neurons that drive classifier performance exhibit dramatic behaviorally-driven 173 
changes in their correlations 174 
Next, we examined connections in trained networks to reveal factors which enable them to 175 
successfully classify social vs. home cage behavior (we analyzed networks with a connection 176 
probability = 0.3 since this maximized performance of the population). Each hidden layer unit 177 
has an output weight which measures how strongly it excites or inhibits the output unit that 178 
represents the ‘decision’ (social vs. home cage). Hidden units with output weights ~0 don’t 179 
contribute to this decision. By contrast, hidden units with strong negative or positive weights 180 
promote the social or home cage decision, respectively (Figure 3A). Therefore, we hypothesized 181 
that there might be important differences in the pattern of input to hidden units, depending on 182 
whether those hidden units have large positive or negative output weights. 183 
 184 
We arranged hidden layer units based on their output weights, i.e., the unit with the most 185 
negative weight was unit 1 and the unit with the most positive weight was unit 1000. Then we 186 
defined the 25 hidden layer units with the most negative weights as ‘social units’ and the 25 with 187 
the most positive weights as ‘home cage units’ (Figure 3B). For comparison we also defined the 188 
25 hidden layer units with the weights closest to zero as ‘neutral units.’ For each pair of hidden 189 
units, we computed the similarity between their inputs (i.e., the correlation between their input 190 
vectors; Figure 3C). We then plotted the average input similarity of each hidden unit to either 191 
the social or home cage units (Figure 3D) or the neutral units (Figure 3E). Social and home 192 
cage units tended to receive input from the same prefrontal neurons as other hidden layer units 193 
with the same preference, i.e., which also had negative or positive output weights. By contrast 194 
neutral units did not exhibit any such relationship. 195 
 196 
The preceding suggests that distinct ensembles of prefrontal neurons provide input to either 197 
social or home cage units. We hypothesized that there might be important features of activity in 198 
these ensembles that support the classification of social vs. home cage behavior. For example, 199 
one possibility is that prefrontal neurons which provide input to social units might tend to 200 
increase activity during social behavior, whereas prefrontal neurons which provide input to home 201 
cage units do the opposite. Surprisingly, this was not the case. In fact, both ensembles of 202 
prefrontal neurons significantly increased their activity when mice were engaged in social 203 
interaction (Figure 3F; social ensemble: mean activity level 1.4 +/- 0.3% in home cage vs. 1.8 204 
+/- 0.3% during social interaction, p < 0.05, sign-rank test; home cage ensemble: mean activity 205 
level 1.5 +/- 0.3% in home cage vs. 1.9 +/- 0.3% during social interaction, p < 0.001, sign-rank 206 
test).. Next, we examined pairwise correlations between the activity of prefrontal neurons within 207 
each ensemble. Strikingly, mean correlations within the social ensemble increased during social 208 
interaction (Figure 3G; (mean correlation coefficient between neurons in the social ensemble: 209 
0.009 +/- 0.002 in home cage vs. 0.012 +/- 0.002 during social interaction, p < 0.05). By 210 
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contrast, there was a non-significant decrease in correlations within the home cage ensemble 211 
(Figure 3G; home cage ensemble mean correlation coefficient 0.011 +/- 0.02 in home cage vs. 212 
0.005 +/- 0.003 during social interaction, p=0.99, sign-rank). 213 
 214 
Thus, the ensemble of prefrontal neurons which provide input to the social units actually form an 215 
assembly that collectively becomes more co-active during social behavior. In contrast, prefrontal 216 
neurons in the ensemble which provides input to the home cage units increase their activity, but 217 
not their co-activity, during social behavior. This suggests that changes in correlations associated 218 
with behavior may contribute to the encoding of social behavior. 219 
 220 
Correlations enhance classifier performance 221 
How can we quantitatively assess the contribution of these correlations, which are behaviorally-222 
modulated, to classifier performance? Ideally we would first train a neural network on the 223 
original data. Then we would test this network’s ability to classify data which maintained 224 
behaviorally-driven changes in activity levels, but either removed or preserved the correlations. 225 
Indeed, we have already developed methods for shuffling that achieve these goals. First, to 226 
shuffle the data in a manner that maintains behaviorally-driven changes in activity levels, but 227 
disrupts correlations, we can swap shuffle activity, but do so within each behavioral condition 228 
rather than across the entire testing dataset. In other words, we first divide up the raster into 229 
separate subrasters for each 5 minute behavior epoch (when the mouse was either engaged in 230 
social interaction or alone in its home cage). Then we performed swap shuffling (as described 231 
above) separately on each subraster, before recombining these swap shuffled subrasters to create 232 
the swap shuffled surrogate dataset for testing. Because swap shuffling tends to preserve activity 233 
levels, and because we swap shuffled activity within a behavioral condition, neurons that 234 
increase or decrease activity during periods of social interaction in the original dataset also tend 235 
to do so in the swap shuffled surrogate dataset. 236 
 237 
To create surrogate datasets which preserve patterns of correlations as well as behaviorally-238 
driven changes in activity, we used a method that we published previously: SHuffling Activity to 239 
Preserve Correlations, or SHARC (18). SHARC also re-assigns blocks of activity between 240 
neurons, but rather than doing so randomly, it instead follows an algorithm that achieves a target 241 
correlation matrix (in this case, the original correlation matrix) (Figure 4B-C). The full details of 242 
SHARC are presented in the Methods. Briefly: on each iteration, we randomly select one block 243 
of activity to be assigned to a new neuron. Instead of choosing the new neuron randomly, we 244 
first compute the difference between the target correlation matrix and the correlation matrix of 245 
the partially reconstructed surrogate dataset. Then we assign the block of activity to the neuron 246 
which will optimally reduce this difference. Finally, to maintain the mean activity level of each 247 
neuron, there is also an absolute limit on how many blocks of activity can be re-assigned to each 248 
neuron. We SHARC-shuffled each social or home cage subraster separately, then combined them 249 
to create a SHARC-shuffled surrogate dataset that preserves behaviorally-specific levels of 250 
activity and patterns of correlations. 251 
 252 
We verified that both swap and SHARC shuffled surrogate datasets preserved levels of activity 253 
observed during both social interaction and periods when mice were alone in their home cages. 254 
Specifically, we computed the correlation between vectors in which each element represents the 255 
activity level of one neuron during one behavioral condition, and quantified the correlation 256 
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between each real and surrogate dataset. For swap shuffled surrogate datasets, the similarity of 257 
activity levels (compared to real data) was 0.89 +/- 0.02 in the home cage and 0.82 +/- 0.04 258 
during social interaction. For SHARC shuffled surrogate datasets, the similarity of activity levels 259 
(compared to real data) was 0.88 +/- 0.03 in the home cage and 0.86 +/- 0.03 during social 260 
interaction (n = 10 mice/datasets). We also computed the similarity of the pattern of correlations 261 
between each surrogate dataset and the corresponding real dataset. In this case, only SHARC 262 
shuffled surrogate datasets preserved patterns of correlations. For swap shuffled surrogate 263 
datasets, the similarity of correlations to the real data was 0.01 +/- 0.01 in the home cage, and 264 
0.03 +/- 0.01 during social interaction. For SHARC shuffled surrogate datasets, the similarity 265 
was 0.50 +/- 0.05 in home cage and 0.55 +/- 0.03 during social interaction. 266 
 267 
We then trained classifiers on each dataset and tested each classifier using either swap or 268 
SHARC shuffled surrogate datasets generated from the same dataset using for training (Figure 269 
4C). Classifiers performed better than chance when tested with either surrogate dataset 270 
indicating that changes in activity levels encode behavioral information. However, performance 271 
was significantly higher for SHARC shuffled surrogates datasets than for swap shuffled ones 272 
(Figure 4D; classifier accuracy for SHARC shuffled surrogate datasets = 68 +/- 4%, classifier 273 
accuracy for swap shuffled surrogate datasets = 61 +/- 4%, p < 0.05, sign-rank test). This 274 
demonstrates that behaviorally-modulated patterns of correlations transmit additional 275 
information, beyond what is readily decodable from activity levels alone.  276 
 277 
Combinations of coactive neurons occur in a behaviorally-specific manner 278 
The fact that neural networks perform classification better for connection probabilities ~0.2 – 0.4 279 
than for connection probabilities < 0.1 indicates that the representations of social vs. home cage 280 
behavior are not linearly separable. (If the representations were linearly separable, then it should 281 
be possible to find a linear combination of single neuron activities which separate these 282 
behavioral conditions, i.e., a set of output weights associated with hidden units which each 283 
receive input from just one prefrontal neuron; this would correspond to a network that had a low 284 
connection probability and high classification accuracy). Together with the fact that classifier 285 
performance was higher for SHARC shuffled datasets than swap shuffled ones, this indicates that 286 
multineuron patterns of coactivity, rather than just levels of activity within neuronal ensembles, 287 
transmit information about social behavior. Therefore as a proof-of-concept, we directly 288 
examined whether 3-neuron patterns of coactivity occur in a behaviorally-specific manner. 289 
 290 
First, we quantified how often each possible 3-neuron combination occurred in real datasets. 291 
Then we calculated how often each of these combinations in datasets that had been swap-292 
shuffled (across the entirety of the dataset). For each real dataset we constructed 1000 swap-293 
shuffled datasets, and identified ‘enriched combinations,’ which occurred more often in real 294 
datasets than in 95% of swap shuffled surrogate datasets. Enriched combinations are those which 295 
occur more often in real datasets than expected based on the chance overlap of activity between 296 
marginally independent neurons. Finally, we quantified how many of these enriched 297 
combinations were behaviorally-specific, i.e., occurred exclusively during social or home cage 298 
epochs. Combinations could appear to be behaviorally-specific simply because they only 299 
occurred at a single timepoint. Therefore we also restricted our analysis to enriched combinations 300 
which occurred during multiple distinct bouts of social interaction and/or matched sets of 301 
intervals during home cage epochs. Many of these repetitively-occurring enriched combinations 302 
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were behaviorally-specific: 43.5% occurred during social interaction, 26.5% during home cage 303 
epochs, and 30% during both conditions. 304 
 305 
The selective occurrence of enriched combinations either during social interaction or when a 306 
mouse is alone in its home cage may reflect changes in single neuron activity (i.e., neurons that 307 
form a social combination are only active during the social condition), and/or changes in 308 
correlations (i.e., neurons are active in both conditions but only co-active during social 309 
behavior). To test the hypothesis that changes in correlations underlie the behavioral specificity 310 
of significant combinations, we examined the 3-neuron combinations that were specifically 311 
enriched during either periods of home cage exploration or social interaction (Figure 5). We 312 
defined specific enrichment as those combinations which occurred more often in real data than in 313 
95% of swap-shuffled surrogate datasets for one behavioral context, and less in real data than in 314 
50% of swap-shuffled surrogate datasets for the other behavioral context. Based on these criteria, 315 
12,408 3-neuron combinations were specifically enriched during social interaction, and 9,572 316 
were specifically enriched during home cage exploration. There were 55,696 instances in which 317 
a social and nonsocial 3-neuron combination overlapped in 2 out of 3 neurons. In 97.0% of these 318 
cases, the neuron which was part of a social 3-neuron combination (triplet) but left out of the 319 
overlapping home cage triplet was part of a different 3-neuron combination that was enriched 320 
during homecage exploration (Figure 5, top right).  Conversely, the neuron which was part of a 321 
nonsocial triplet but left out of the overlapping social 3-neuron combination was part of a 322 
different socially-enriched 3-neuron combination in 99.1% of cases (Figure 5, bottom right). 323 
Overall, an average of 71 enriched homecage combinations contained the neuron missing from 324 
the social triplet, and 85 enriched social combinations contained the neuron missing from 325 
homecage triplets. Thus, the specificity of a combination of co-active neurons for social vs. 326 
nonsocial behavior does not occur simply because some neurons were only active during one 327 
condition, but rather reflects the dynamic reorganization of patterns formed by neurons which are 328 
active in both conditions, i.e., changes in correlations. This – the behaviorally-specific 329 
occurrence of multineuron patterns of coactivity – represents the substrate through which 330 
correlations can add to the behavioral information transmitted by neuronal ensembles. 331 
 332 
Socially-enriched combinations are deficient in Shank3 KO mice 333 
We were curious whether there might be conditions under which these phenomena – the 334 
occurrence of multineuron combinations of coactivity during social behavior, and the ability of 335 
correlations to enhance the transmission of information about social behavior – might be 336 
impaired. To explore this, we performed microendoscopic GCaMP imaging in mice lacking the 337 
autism-associated gene Shank3 (19–21). These mice have been extensively studied as models of 338 
Phelan-McDermid syndrome, which often includes autism as a clinical feature. Shank3-/- (KO) 339 
mice are known to have social deficits, and indeed, we found that compared to wild-type (WT) 340 
littermates, they spend significantly less time interacting with novel juvenile mice (Figure 6A). 341 
 342 
We compared patterns of prefrontal activity in Shank3 KO mice and their WT littermates. As in 343 
WT mice, in Shank3 KO mice, many prefrontal neurons either increase or decrease activity 344 
during social interaction. However, compared to WT mice, the fraction of neurons whose activity 345 
increases during social interaction was significantly higher, whereas the fraction whose activity 346 
decreases was significantly lower (Figure 6B-C; 22% of 260 WT neurons vs. 39% of 290 KO 347 
neurons increased activity above the 90th percentile of shuffled data during social interaction, chi 348 
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squared = 17.7, p < 0.0001; 25% of WT vs. 15% of KO neurons decreased activity below the 349 
10th percentile of shuffled data during social interaction, chi squared = 8.2, p < 0.0001). Thus, 350 
Shank3 KO mice recruit abnormal neuronal ensembles during social behavior. We hypothesized 351 
that this might reflect a network-level disorganization that affects the normal patterning of 352 
activity during social behavior. 353 
 354 
Indeed, we found that in KO mice a significantly smaller fraction of the 3-neuron combinations 355 
observed during social interaction were strongly enriched, i.e., occur more often in actual data 356 
than in 99.9% of swap-shuffled surrogate datasets (Figure 6D). This suggests that even though 357 
more neurons (i.e., larger ensembles), were recruited during social behavior in KO mice, these 358 
may have been less well-organized, such that the occurrence of socially-enriched patterns of 359 
activity is obscured by ‘noise,’ i.e., patterns formed by the chance overlap of activity between 360 
neurons that fire in a largely independent fashion. Notably, this deficiency was specific for social 361 
interaction. The fraction of 3-neuron combinations that were strongly enriched during home cage 362 
exploration (in comparison to swap-shuffled surrogate datasets) was similar in WT and KO mice 363 
(Figure 6D). 364 
 365 
Correlations do not enhance the transmission of information about social behavior in 366 
Shank3 KO mice 367 
The preceding shows that even though social behavior robustly recruits neuronal ensembles in 368 
Shank3 KO mice, the organization of these ensembles into multineuron combinations is 369 
disorganized. This suggests that the ability of patterns of co-activity to encode information about 370 
social behavior may be impaired in these mice. To test this, we directly examined whether 371 
correlations contribute to the transmission of information about social behavior in Shank3 KO 372 
mice. As before, we generated swap and SHARC shuffled surrogate datasets, then tested the 373 
ability of classifiers trained on the original datasets (from Shank3 KO mice) to classify activity 374 
associated with behavior during social interaction vs. in home cage. While we still observed 375 
above chance classification accuracy using a classifier with a connection probability of 0.3, there 376 
was no longer an increase in performance when correlations were preserved in SHARC shuffled 377 
surrogate datasets as compared to swap shuffled ones (Figure 6E; classifier accuracy: 62 +/ 4% 378 
for SHARC vs 63 +/- 2% for swap shuffled surrogate datasets, p = 0.47, sign-rank test). Thus, in 379 
Shank3 KO mice, multineuron patterns of coactivity during social behavior are disturbed, and 380 
correlations no longer add to the information about social behavior transmitted by prefrontal 381 
ensembles. 382 
  383 
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DISCUSSION 384 
 385 
During complex behaviors, the brain can use many strategies to represent information about the 386 
external environment and internal state of the organism. The term ‘ensemble’ is often used to 387 
refer to a group of neurons whose activity is similarly modulated (either increased or decreased) 388 
during specific behaviors (1, 22–26). It is generally accepted that ensembles transmit behavioral 389 
information via changes in the activity levels of their constituent neurons. On the other hand, 390 
many studies have also shown that correlations between neurons can change during specific 391 
behaviors (3, 9) or behavioral states (27–29). Importantly, correlations reflect changes in 392 
coactivity which exceed those expected to occur simply because of changes in the activity levels 393 
of the individual neurons (10). I.e., when an ensemble becomes more active, its correlations 394 
could go up, down, or remain unchanged. By optimizing synaptic interactions such as temporal 395 
summation, changes in correlated activity could potentially enhance the behavioral information 396 
transmitted by changes in ensemble activity, or transmit entirely different types of information, 397 
e.g., about internal states. Correlations have been studied extensively for the isolated retina 398 
responding to visual stimuli (30). However, how correlations in recurrently connected cortical 399 
circuits such as the mPFC encode behavior has been more difficult to discern. 400 
 401 
Here, we addressed this question using microendoscopic GCaMP imaging to measure activity 402 
from many (~80-100) prefrontal neurons during social behavior in mice. We used multiple 403 
approaches to disentangle the respective contributions of activity and correlations to the 404 
encoding of behavior. First, we used a simple neural network, in which prefrontal neurons 405 
provide input, there is one hidden layer, and a single output unit classifies social vs. nonsocial 406 
behavior, to quantify how well prefrontal ensembles would transmit information about social 407 
behavior to downstream neurons. We extended a method we previously published, (18), to non-408 
randomly shuffle datasets in order to preserve both behaviorally-modulated correlations and 409 
ensemble activity. This enabled us to compare the amount of information about social behavior 410 
transmitted by either SHARC-shuffled surrogate datasets or randomly-shuffled surrogates which 411 
preserved ensemble activity but not correlations. In this way, we found that correlations enhance 412 
the amount of information that prefrontal ensembles transmit about social behavior. Indeed, 413 
when we examined connections within neural network classifiers, we found that prefrontal 414 
neurons which serve to detect social behavior increase their correlations during social behavior 415 
(whereas neurons which detect nonsocial behavior do not). 416 
 417 
Correlations measure neuronal coactivity that occurs more often than expected based on the 418 
chance overlap of activity between neurons. Thus, in accordance with our finding that behavior 419 
modulates correlations, we found that multineuron patterns of coactivity which occur more often 420 
than expected by chance are behaviorally-specific. We then directly examined these 421 
behaviorally-specific and statistically-enriched combinations of coactive neurons. We found that 422 
they tend to be composed of neurons which are active in both conditions but only coactive in 423 
one, rather that neurons which are only active in one condition. 424 
 425 
Interestingly, these statistically-enriched patterns of coactivity were specifically deficient during 426 
social behavior in mice lacking the autism-associated gene Shank3. Accordingly, in Shank3 KO 427 
mice, surrogate datasets which preserve behaviorally-modulated correlations failed to transmit 428 
more information about social behavior compared to randomly shuffled datasets which only 429 
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preserved ensemble activity. This shows that the ability of correlations to enhance the 430 
transmission of information about social behavior is not automatic, and can in fact be disrupted 431 
in pathological states. 432 
 433 
What is the meaningful size of ensembles in the cortex? 434 
Complex behavior is possible because the brain reliably encodes features pertaining to the 435 
external environment as well as the internal state of the organism. These features may be 436 
encoded by the modulation of activity in neuronal ensembles (1, 22–26). How many neurons are 437 
needed to reliably encode an aspect of behavior? This is an important question because the 438 
capacity, robustness against noise, generalization ability, etc., of a network depend on how many 439 
neurons encode specific pieces of information. 440 
 441 
We explored this question, not by measuring actual connections, but rather by asking what 442 
connection probability would optimize the ability of a downstream network to classify behavior 443 
based on input from prefrontal ensembles. Peak classifier performance occurred for connection 444 
probabilities ~0.2 - 0.3. Performance was markedly lower when the connection probability was 445 
0.5. This is surprising because a connection probability of 0.5 would maximize the entropy of 446 
each connection; correspondingly, the number of distinct input combinations to a hidden unit is 447 
maximized when it receives connections input from half the input neurons. Thus, from the 448 
standpoint of encoding social behavior, combining activity from 20-30% of the input neurons 449 
must achieve some synergy that becomes degraded by including activity from additional 450 
neurons. This suggests that whatever mechanism normally generates behaviorally-meaningful 451 
patterns of coactivity in prefrontal neurons, the size of these patterns is limited to about 20-30% 452 
of the network. This may reflect nonrandom network connectivity (31, 32) which produces 453 
correlated activity / coactivity within defined neuronal subgroups (33, 34).  454 
 455 
Combinatorial codes vs. sequential patterns of activity 456 
Like many recent studies, we measured population-level activity in the mouse neocortex using 457 
genetically encoded calcium indicators. These indicators transduce neuronal spiking on 458 
timescales ~100 msec. Thus correlated activity / ‘coactivity’ imply that neurons jointly increase 459 
their activity within windows ~100 msec, and do not necessarily imply synchronous spiking on 460 
faster timescales (milliseconds or even tens of miliseconds). At the same time, correlated activity 461 
/ coactivity on these timescales should be differentiated from sequential activity of neurons 462 
observed during the performance of sequential behaviors (i.e. spatial navigation or overtrained 463 
tasks) in which the activity of specific neurons corresponds to moving through a specific location 464 
or performing a specific portion of a complex task. As discussed above, in the neocortex 465 
correlations and coactivity likely reflect recurrent neural network connectivity (33). By contrast, 466 
sequential patterns of neuronal activation can occur simply as a byproduct of the arrangement of 467 
spatial locations along a trajectory, the stereotyped order in which cues are encountered during a 468 
task, etc. 469 
 470 
Relevance to disease states 471 
Interestingly, in Shank3 KO mice, which exhibit social deficits, the mPFC successfully recruits 472 
specific neuronal ensembles during social interaction. However the organization of these 473 
ensembles into statistically-enriched patterns of coactivity is disrupted, and correlations fail to 474 
enhance the transmission of information by these ensembles. Thus, the computational units by 475 
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which information is processed in the mPFC appears to be inefficient, i.e., social behavioral 476 
recruits an abnormally large number of neurons at the expense of the precise temporal patterning 477 
of this activity. This central finding is similar to other findings in rodent models of autism at both 478 
the single neuron and network levels (15, 19, 35). In particular, we found an increase in the 479 
recruitment of prefrontal neurons during social interaction. This mirrors a recent study which 480 
found hyperdynamic response to whisker stimulation in the same mice (19), possibly reflecting 481 
GABAergic circuit dysfunction and/or homeostatic compensations (36). Here, we show how 482 
such exaggerated responses and enlarged neural ensembles may disrupt information transmission 483 
by degrading the ratio between signal (statistically meaningful patterns of coactivity) and noise 484 
(the random overlap of activity between neurons). 485 
  486 
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MATERIALS AND METHODS 487 
 488 
Behavior: C57/B6 mice were obtained from Jackson Laboratories. We utilized adult mice of 489 
either sex housed and bred in the UCSF animal facility. Adult mice were habituated to the room 490 
and observer for 3 days prior to test day. All videos were subsequently scored by a blinded 491 
observer. For imaging experiments, 5 WT and 4 KO littermates were generated through crosses 492 
between Shank3 heterozygous parents and injected with AAV5.Syn.GCaMP6f.WPRE.SV40. We 493 
included an additional 5 WT mice which were injected with 494 
AAV5.Syn.GCaMP6m.WPRE.SV40 (37). Viruses were obtained from Penn Viral Core. 495 
Injections and 500 um GRIN lens (Inscopix) implantations were carried out in 8-12 week old 496 
mice to express GCamp6f in prefrontal cortical neurons under control of the human Synapsin 497 
promotor. Mice were anesthetized with 2% isoflurane and mounted in a stereotactic frame. 498 
Craniotomies were made according to stereotaxic coordinates relative to Bregma. Coordinates 499 
for injection into mPFC were (in mm relative to Bregma): +1.7 anterior–posterior (AP), –0.3 500 
mediolateral (ML) and –2.75 dorsoventral (DV), and GRIN lenses were implanted at the same 501 
AP and ML coordinates, to a depth of 2.25. We subsequently attached baseplates for attaching 502 
the microendoscope, ~4 weeks later depending on GCamp expression. Mice were habituated 503 
for three days with the scope attached, prior to test day. On test day, mice were habituated with 504 
the scope turned on, then imaged in alternating home cage and social epochs. During social 505 
epochs, one of 2 novel sex-matched juvenile mouse was introduced to the test mouse’s 506 
homecage, in sequential order so that there were two ‘novel’ epochs, followed by two ‘familiar’ 507 
epochs interleaved with ‘home cage’ epochs during which the juvenile mice were removed and 508 
the test mouse was free to explore its home cage. The first and last home cage epoch were 10 509 
minutes in length; the others were 5 minutes in length. Each social epoch lasted 10 minutes but 510 
only the first 5 minutes were recorded and scored. During each behavioral epoch, observer was 511 
not in the room. Interaction epochs were defined from the moment test mouse first sniffed the 512 
juvenile conspecific or object, until the test mouse turned away. Videos were recorded using 513 
Anymaze, and scored by a blinded observer. For the bulk of analysis we pooled data across 10 514 
WT mice. Shank3 KO mice were compared only to recordings from WT littermates. 515 
 516 
Image acquisition and segmentation: Images were acquired using an Inscopix nVoke 517 
micreoendoscope attached to a laptop computer and synced to a separate video acquisition 518 
computer running Anymaze. Frame rate was 20 Hz and the laser power was 0.2 mW. Acquisition 519 
was performed using 2x2 pixel binning, then subsequently downsampled again by 2.  520 
 521 
We segmented neuronal signals using a modified PCA/ICA approach(16, 17), modified so that 522 
each segment was expressed as a binary ROI consisting of pixels representing a single neuron. 523 
To deconvolve neuronal signals from background neuropil signals, we subtracted the mean 524 
signal from each identified segment from the mean value in pixels surrounding the edge of the 525 
segment (we excluded pixels that belonged to another ROI). Signals were subsequently lowpass 526 
filtered to remove high frequency noise using the Matlab command: designfilt('lowpassfir', 527 
'PassbandFrequency', 0.5, 'StopbandFrequency', .65, 'PassbandRipple', 1, 'StopbandAttenuation', 528 
25). All signal traces shown represent normalized versions of the dF/F0 trace, where F0 is 529 
estimated by the median value in the surround region. Threshold based event detection was 530 
performed on the traces by detecting increases in dF/F0 exceeding 3σ over one second, then only 531 
keeping those events which exceeded a 15σ increase over two seconds, and a total area under the 532 
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curve of 250σ. As there were occasional downward deflections due to surround subtraction, we 533 
instituted a final parameter requiring that the peak cross an absolute value of dF/F0 = 0.0125. σ is 534 
the standard deviation of dF/F0, calculated over the least active 50% of the movie. In some cases 535 
these parameters were adjusted slightly to optimize event detection to > 95% sensitivity and 536 
specificity, based on visual inspection, for each movie. After identifying these events in the 537 
GCaMP signal from a cell, the cell was considered “active” during the entire period from the 538 
beginning of an event until the GCaMP signal decreased 30% from the peak of the event, up to a 539 
maximum of 2 seconds. The peak of the event was defined as the local maximum of the entire 540 
event, from the beginning of the event until dF/F0 returned to the pre-event baseline value. 541 
Calcium traces from segmented neurons were visually inspected and a small number of segments 542 
were removed if they did not appear to represent a single, unduplicated neuron. We restricted 543 
further analysis to those mice with 25 or more active neurons.  We then created 2-dimensional 544 
event rasters consisting of detected events for each neuron over the course of the experiment.  545 
 546 
Detection of behaviorally modulated neurons: To determine the response of individual neurons 547 
to behavioral context, we averaged the activity of each neuron during frames corresponding to 548 
periods of social interaction, or to a temporally matched set of frames during the preceding home 549 
cage epoch. We then created a ‘null distribution’ for each neuron that represents the percent of 550 
time active expected in each condition based on chance, by circularly shuffling the data 10,000 551 
times. We then compared the activity of each neuron during either social interaction or home 552 
cage exploration to this null distribution. Neurons were considered positively modulated if they 553 
exceeded the 90th percentile of that observed in circularly-shuffled datasets, and negatively 554 
modulated if the percent of frames that a neuron was active during a given context was below the 555 
10th percentile of observations from circularly-shuffled data. 556 
 557 
SHARC: SHARC (SHuffling Activity to Rearrange Correlations) is an iterative method for 558 
generating surrogate datasets. SHARC nonrandomly shuffles blocks of activity within a raster to 559 
generate a new (surrogate) raster in which the pairwise correlations between neurons match a 560 
target correlation matrix (17). Here we apply this previously-published method, with 561 
modifications to also preserve the activity level in each neuron (Figure 4B). 562 
 563 
To begin, note that each raster is equivalent to a collection of blocks of activity. Each block of 564 
activity is defined by the time at which it begins, its duration, and the neuron which is active. On 565 
each iteration one block of activity is randomly chosen and assigned to a new neuron as follows. 566 
Suppose block i has been chosen to be re-assigned. First, we find all the blocks of activity that 567 
overlap with block i. Next, we selected the subset of these blocks for which new cell identities 568 
had already been assigned. Call this set X. Let rj represent the number of timepoints over which 569 

block j  X overlaps with block i, and let nj represent the identity of the cell assigned to block j  570 
X. Li and Lj are the lengths of blocks i and j, respectively. Then we constructed a vector, 571 

𝑃ሬ⃗௜ ൌ෍
𝑟௝

ඥ𝐿௜𝐿௝
ቀ𝐶௡ೕ െ 𝐶′௡ೕቁ

௝∈௑

 572 

where 𝐶௡ೕ represents row j of the target correlation matrix, i.e. the target correlations between 573 

neuron nj and the other neurons, and 𝐶′ሬሬሬ⃗ ௡ೕ contains the current values of the correlations between 574 

neuron nj and the other neurons based on the blocks of activity that have already been re-575 
assigned. This step can be thought of as “guessing” which cell should be assigned to a particular 576 
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block of activity by first figuring out what other cells are active at the same time, then choosing 577 
cells which are strongly correlated with these known active cells. Note that we assign values of 578 

𝑃ሬ⃗௜  (i.e., construct “guesses” about which cell should be active), using the difference between the 579 

current correlation matrix (𝐶′௡ೕ) and the target correlation matrix (𝐶௡ೕ), in order to identify cell 580 

pairs for which the current correlation deviates from the target value, and force the new 581 
correlation matrix to progressively approximately the target correlation matrix. 582 

We set elements of 𝑃ሬ⃗௜ to zero if the corresponding neuron had already been assigned to a block 583 

of activity that overlaps with block i, i.e. element nj of 𝑃ሬ⃗௜ was set to zero  j  X. Finally, we 584 

assigned block i to the neuron corresponding to the maximum value of 𝑃ሬ⃗௜. This can be thought of 585 
as choosing the cell that represents the “consensus” based on tallying up all of the “guesses” 586 
about which cells “should” be assigned to the block of activity being considered. 587 
 588 

When all the elements of 𝑃ሬ⃗௜ were zero, e.g. because there no overlapping blocks of activity have 589 
had new cell identities assigned yet, then we chose a cell in order to match the originally 590 
observed level of activity. Specifically, after every iteration, we kept a log of the net number of 591 
blocks of activity that each neuron had donated or received. We used this vector to create a 592 
weighted probability whereby events from neurons which had received a net positive number of 593 
blocks were more likely to be chosen to be reassigned. To further ensure that the total number of 594 
active events for each neuron in the surrogate dataset was similar to the real dataset, if the 595 
difference between the number of blocks gained – lost in the reassignment process exceeded +10 596 
for a particular neuron, then that neurons was no longer eligible to receive additional blocks of 597 
activity.  598 
 599 
We extended this approach to generate surrogate datasets by shuffling data within shorter time 600 
windows (i.e., individual behavioral epochs). Here a discrete set of frames is chosen, 601 
corresponding to a subraster of the original raster. By repeating the process described above for 602 
each subrasters, then recombining the shuffled subrasters, we generate a complete shuffled 603 
dataset. 604 
 605 
Classifier: We designed and trained a neural network to classify behavior (periods when a mouse 606 
was alone in its home cage vs. engaged in social interaction). This network contained 1000 units 607 
in a hidden layer, each of which received input from specific prefrontal neurons (from the real 608 
dataset). Thus, in each frame the activity of each hidden layer unit was just the summed activity 609 
of the connected prefrontal neurons. Each hidden layer unit had an output weight that 610 
represented the strength of its connection to a single output unit. On each frame the activity of 611 
the output unit was computed as: 612 
 613 

𝑦 ൌ
1

1൅ 𝑒ି∑௪೔௫೔
 614 

 615 
where wi is the output weight from hidden unit i and xi is the activity of hidden unit i. 616 
 617 
When we performed training and testing using the same dataset, we divided the dataset into 618 
alternating blocks of 500 frames for training vs. testing (in other cases we used the real dataset 619 
for training, then tested using a surrogate dataset). We restricted training or testing to frames in 620 
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which mice were scored as actively engaged in social interaction (or matched frames during 621 
periods when the mouse was alone in its home cage). We also limited training / testing to frames 622 
with at least 3 active neurons. 623 
 624 
We trained the output weights by performing 500 passes through the training data (each pass 625 
visited all of the training frames in a random order). On each training timestep, we calculated y, 626 
the activity of the output unit, and then adjusted each output weight based on: 627 
 628 

∆𝑤௜ ൌ 𝜀𝑦ሺ1െ 𝑦ሻሺ𝑦 െ 𝑧ሻ𝑥௜ 629 
 630 

where z is the correct classification of the frame (0 for social behavior, 1 for home cage) and  631 
the learning rate, was set to 0.05. 632 
 633 
Following training, we examined the pattern of input connections and output weights. The 634 
distribution of output weights was roughly gaussian and centered near 0. We identified the 635 
selection of prefrontal neurons most likely to be connected to hidden layer units with large 636 
positive or negative weights. Hidden layer units with large negative or positive output weights 637 
bias classification towards the social or home cage condition, respectively. Therefore, we refer to 638 
the 25 hidden units with the most negative or positive weights as ‘social’ or ‘home cage’ units 639 
respectively. We calculated the number of input connections between each prefrontal neuron and 640 
the 25 home cage units or 25 social units. We then defined ‘home cage’ or ‘social’ ensembles as 641 
the 20% of prefrontal neurons with the most input connections to home cage or social units, 642 
respectively. As described in the main text, we then analyzed properties of these two ensembles. 643 
 644 
Quantification of multineuron combinations: Estimating chance overlap between activity of 645 
largely independent neurons requires accounting for two factors. First, neurons with higher 646 
activity are more likely to overlap by chance with other neurons. Second, overall network 647 
activity is dynamic over time, creating a tendency for otherwise independent neurons to be 648 
recruited at similar times. Thus, it is necessary to identify combinations which occur more often 649 
than expected based on 1) the activity levels of the constituent neurons, and 2) the fact that 650 
activity in a network is not constant over time. We can do this by quantifying the occurrence of 651 
combinations in datasets which have been shuffled to preserve 1) the overall level of activity in 652 
each neuron, and 2) the total level of activity in the network at each point in time. 653 
  654 
3 neuron combinations were quantified by identifying each combination present in frames in 655 
which 2 or more neurons were active.  The number of frames each combination was active in 656 
real data was stored in a n-dimensional matrix. Surrogate datasets were then generated from 657 
event rasters by swapping the identity of neurons associated with detected events (periods of 658 
activity). As the timing of events themselves is unchanged, and only the identity of the 659 
participating neurons are exchanged, this preserves both the number of events per frame and the 660 
number of events that each neuron participates in. Therefore, the total number of combinations in 661 
each frame and over the course of the experiment (i.e., the sum of occurrences across all 662 
combinations) is also preserved. The total number of combination occurrences in which a given 663 
neuron participates would also tend to be preserved in these swap-shuffled surrogate datasets.  664 
 665 
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We then quantified how often each combination occurred in real vs. swap-shuffled data. By 666 
comparing how often each combination occurred in real data vs. in 1,000 swap-shuffled 667 
surrogate dataset, we were able to quantify how ‘enriched’ each combination was, compared to 668 
the level of occurrence expected by chance based on the activity levels of its constituent neurons 669 
(and the overall temporal pattern of network activity). We expressed enrichment as a percentile, 670 
calculated relative to swap-shuffled surrogate data, e.g., the 100th percentile indicates that a 671 
particular combination occurred more often in real data than in all 1,000 surrogate datasets. 672 
Further analysis was restricted to ‘enriched combinations’, i.e., combinations that occurred more 673 
often in real datasets than in 95% of surrogate datasets. 674 
 675 
Statistical analysis: Neurons and significant combinations from all animals and groups were 676 
pooled and counted as single units. Proportions were compared using chi-squared test. Activity 677 
levels were compared using paired t-tests (2-sided), unless otherwise noted. Where applicable, 678 
error bars denote standard error. 679 
  680 
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 798 
Figure 1. Social interaction modulates activity levels within prefrontal ensembles. 799 
A. Mice were imaged across 9 consecutive behavioral epochs (each lasting 5 min) during which 800 

they were either alone in their homecage or interacted with one of two novel sex-matched 801 

juvenile mice introduced to the homecage (‘M1’ or ‘(M2’). Each novel mouse was 802 

subsequently re-introduced to the home cage during a familiar epoch. GCaMP traces during 803 

show examples of neurons that appear to increase or decrease activity during social epochs 804 

(see arrows at the right of each trace).  805 
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B. Mean z-scored GCaMP traces for all neurons recorded from wild-type mice (663 neurons 806 

from 10 mice) aligned to the onset of social interaction during the first bout of interaction 807 

within each social epoch. 808 

C. Cumulative plot showing the distribution of activity levels for individual neurons during 809 

homecage epochs or periods of social interaction (percent time active in homecage: 1.8% +/- 810 

0.1, percent time active during social interaction: 2.1 +/- 0.1%, p = 0.00002, paired t-test; n = 811 

663 neurons from 10 WT mice).  812 

D. Scatter-plot showing the activity of each neuron during each behavioral condition, expressed 813 

as a percentile relative to a null distribution generated by circularly shuffling that neuron’s 814 

activity. Activity levels during social interaction or while the mouse was alone in its home 815 

cage are plotted on the x and y axis, respectively. Kernel density plots along the axes indicate 816 

the fraction of neurons whose activity was at a given percentile of the null distribution. 817 

Neurons with activity > 90th percentile of shuffled datasets (green dotted line) were 818 

considered to be positively modulated, whereas neurons with activity < 10th percentile (green 819 

dotted line) were considered to be negatively modulated during each behavior (>90th 820 

percentile, social: 152/663 neurons, home cage: 80/663 neurons; p < 0.00001, chi-squared 821 

test; <10th percentile, social: 128/663 neurons, home cage: 119/663 neurons; p = 0.5, chi-822 

squared test).  823 
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 824 
Figure 2. Classifying behavior from prefrontal ensembles using a simple neural network. 825 
A. We constructed a neural network consisting of a single hidden layer (containing 1000 units) 826 

which were connected to a single output unit. The thickness of lines between each hidden 827 

layer unit and the output unit reflects the magnitude of the output weight. Positive and 828 

negative weights are indicated by solid and dashed lines, respectively. Each hidden layer unit 829 

received input from a random subset of prefrontal neurons from one real dataset. For clarity, 830 

we have only shown input connections to two hidden layer units (which are differentiated by 831 

their blue and red colors) – output weights from other hidden units are shown in black. The 832 
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output weight from each hidden layer neuron was iteratively updated during training. We 833 

trained the classifier to distinguish periods marked as home cage exploration or social 834 

interaction by dividing a dataset into 500-frame blocks, and then using alternating blocks for 835 

training or testing. 836 

B. The classifier performed poorly (near chance) when the input connection probability 837 

(governing the number of prefrontal neurons that provided input to each hidden layer unit) 838 

was <10%. Classification accuracy was above chance in 8/10 mice and increased to a peak of 839 

69 +/- 3% in these mice, before decreasing again for connection probabilities >30%. The 840 

classifier performed near chance levels when we trained and tested using data that had been 841 

randomly swap-shuffled.   842 

  843 
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 844 
 845 
Figure 3. Classifier weights reveals an ensemble that increases correlations during social 846 
behavior and detects social behavior. 847 
A. Example histogram depicting the distribution of output weights assigned to connections 848 

between hidden layer units and the output unit over the course of training.  849 
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B. Matrix of input connections for hidden units which detect the social (left) or home cage 850 

condition (right). The hidden layer units (x-axis) have been arranged in order of increasing 851 

output weights to identify ‘social units’ (25 most negative output weights) and ‘home cage 852 

units’ (25 largest positive output weights). Prefrontal neurons (y-axis) have been arranged in 853 

order of their preference for social interaction vs. home cage, i.e. the difference between their 854 

activity levels in the two conditions. 855 

C. Correlation matrix showing the input similarity, i.e., the pairwise correlation between binary 856 

vectors representing the input connections to each pair of hidden layer units. Hidden layer 857 

units are arranged in order of increasing output weight. Red and blue rectangles indicate 858 

correlations with social or home cage units, respectively. A gaussian filter with a standard 859 

deviation of 3 was applied to the 1000x1000 matrix to improve visualization.  860 

D. For each hidden layer unit, we plotted its average input similarity to either the 25 social units 861 

(red) or the 25 home cage units (blue). Hidden layer units (x-axis) are again arranged by 862 

output weight. Social units had similar patterns of input compared to each other but not to 863 

home cage units and vice-versa. 864 

E. The average input similarity of each hidden layer unit to 25 hidden layer units with near-zero 865 

output weights (‘neutral units’; black rectangle in C).  866 

F. We defined social and home-cage (HC) ensembles as the 20% of prefrontal neurons most 867 

likely to provide input to the social or home cage units, respectively. The mean activity of 868 

both home cage and social ensembles increased during social interaction compared to the 869 

home cage condition (social ensemble: mean activity level 1.4 +/- 0.3% in home cage vs. 1.8 870 

+/- 0.3% during social interaction, p < 0.05, sign-rank test; home cage ensemble: mean 871 

activity level 1.5 +/- 0.30% in home cage vs. 1.9 +/- 0.3% during interaction, p < 0.001, sign-872 

rank test). 873 

G. Correlations between neurons in the same ensemble increased during social interaction for 874 

the social ensemble but for the home cage ensemble (mean correlation coefficient between 875 

neurons in the social ensemble: 0.009 +/- 0.002 in home cage vs. 0.012 +/- 0.002 during 876 

social interaction, p < 0.05; home cage ensemble mean correlation coefficient 0.011 +/- 0.02 877 

in home cage vs. 0.005+/- 0.003 during social interaction, p=0.99, sign-rank). 878 
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 879 
Figure 4. Correlations transmit additional information that is not efficiently conveyed by 880 
changes in activity levels alone. 881 
A. Cartoon illustrating that information about behavior may be encoded through changes in 882 

activity levels, correlations between neurons, or both. When behavior modulates activity 883 

levels, correlations in two behavioral conditions may differ or be the same, and vice-versa. 884 
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B. To disentangle the roles of activity levels and correlations in transmitting information we 885 

used two different methods to create shuffled (surrogate) datasets which preserve changes in 886 

activity levels, but either do or do not preserve patterns of correlations. We made random, 887 

reciprocal swaps of activity between neurons to generate surrogate datasets which maintained 888 

network activity in each frame as well as the number of blocks of activity for each neuron. 889 

However, these datasets destroyed the correlation structure. In a second set of surrogate 890 

datasets we used SHARC to iteratively generate surrogates in which the correlation structure 891 

was also maintained.  892 

C. To maintain dynamic changes in activity levels and correlations that are associated with the 893 

two behavioral conditions we swap-shuffled or performed SHARC separately for each 894 

behavioral epoch, then concatenated the 9 resulting surrogate subrasters to create each 895 

surrogate dataset. 896 

D. We trained a classifier (with a connection probability = 0.3) on each real dataset, then tested 897 

that classifier on swap or SHARC-shuffled surrogate datasets generated from that real 898 

dataset. Accuracy was significantly higher for the SHARC-shuffled surrogates, which 899 

maintain the behaviorally-modulated correlations found in the original dataset (accuracy for 900 

SHARC shuffled surrogate datasets = 68 +/- 4%, classifier accuracy for swap shuffled 901 

surrogate datasets = 61 +/- 4%, p < 0.05, sign-rank test, n = 10 mice). 902 

  903 
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 904 
Figure 5. Behaviorally-specific patterns of coactivity are formed by neurons that are active 905 

in both conditions, but coactive with different partners in each condition. 906 

Left: We identified combinations of 3 neurons that are specifically enriched during one 907 

behavioral condition (occurring more often during social interaction than in 95% of surrogate 908 

datasets, and occurring less often during home cage exploration than in 50% of surrogate 909 

datasets, or vice-versa). We then identified overlapping combinations occurring during the 910 

opposite behavioral condition in which a single neuron was ‘left out.’ In other words, we 911 

identified combinations from the two conditions that overlapped in exactly two neurons. 912 

Right, top: Histogram showing the number of distinct 3 neuron home cage combinations that 913 

contain the neuron which participates in a social combination but is ‘left out’ during home cage 914 

behavior. Right, bottom: Histogram showing the number of distinct 3 neuron social 915 

combinations that contain the neuron which participates in a home cage combination but is ‘left 916 
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out’ during social interaction. In the vast majority of cases, neurons that are ‘left out’ in one 917 

condition are still active during that condition and participate in other combinations. 918 

  919 
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 920 
 921 
Figure 6. Shank3 KO mice have disorganized ensembles for which correlations fail to 922 
enhance the transmission of information about social behavior. 923 
A. The mean time that Shank3 KO mice or wild-type (WT) littermates spend interacting with a 924 

novel juvenile mouse of the same sex during a 5 min assay. Data has been pooled from 8 925 
unimplanted WT mice as well as the 5 implanted WT mice used for microendoscopic 926 
imaging, and 5 unimplanted KO mice in addition to the 4 implanted mice used for imaging. 927 
For implanted mice we used the average of interaction time for the 2 novel mice. Pooled data 928 
showed decreased interaction in KO mice (173 +/- 12 s vs. 120 +/- 18 s for WT and KO 929 
respectively, p < 0.05, t-test). The un-implanted cohort alone shows a similar significant 930 
decrease in interaction time for KO mice (165 +/- 15 s vs 110 +/- 16 s for WT and KO 931 
respectively, p < 0.05). In the implanted cohort there was a similar trend toward decreased 932 
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interaction for KO mice (186 +/- 20 s vs 133 +/- 37 s, for WT and KO respectively, p = 933 
0.21). 934 

B. (Similar to Fig. 1D). Scatter-plot showing the activity of each neuron during each behavioral 935 
condition, expressed as a percentile relative to a null distribution generated by circularly 936 
shuffling that neuron’s activity. Activity levels during social interaction or while the mouse 937 
was alone in its home cage are plotted on the x and y axis, respectively. Kernel density plots 938 
along the axes indicate the fraction of neurons whose activity was at a given percentile of the 939 
null distribution. Neurons with activity > 90th percentile of shuffled datasets (green dotted 940 
line) were considered to be positively modulated, whereas neurons with activity < 10th 941 
percentile (green dotted line) were considered to be negatively modulated during each 942 
behavior. Data is plotted for Shank3 KO mice (red) and WT littermates (blue) (mean 943 
percentile of activity during social interaction, WT: 50 +/- 2 percentile; KO: 64 +/- 2 944 
percentile; p < 0.0001 by 2-sample t-test; mean percentile of activity during home cage, WT: 945 
47 +/- 2 percentile; KO: 51 +/- 2 percentile; p = 0.1, t-test).  946 

C. Bar graph showing the fraction of neurons whose activity was positively or negatively 947 
modulated (>90th percentile or <10th percentile) during social interaction. The proportion of 948 
neurons which increased activity during social interaction was significantly greater in KO 949 
mice (22% in WT vs. 39% in KO, chi-squared = 17.7, p < 0.0001), whereas the 950 
downregulated ensemble was significantly smaller in KO mice (25% in WT vs. 15% in KO, 951 
chi-squared test, 8.2, p < 0.005). Error bars denote the binomial S.E.M. algebraically derived 952 
from total number of neurons and the proportion that were modulated in the specified 953 
direction. 954 

D. The proportion of 3 neuron combinations occurring during home cage exploration that are 955 
enriched > the 99.9th percentile compared to swap-shuffled datasets was similar across WT 956 
(Blue; 7.6%) and KO (Red; 7.8%) mice. By contrast, the proportion of 3 neuron 957 
combinations occurring during social interaction that are enriched > 99.9th percentile 958 
compared to swap-shuffled datasets was 7.5% in WT compared to only 3.4% in KO mice 959 
(total number of home cage combinations: 4,187 in 5 WT mice, and 5,878 in 4 KO mice; 960 
total number of social combinations: 5,487 in 5 WT mice, 16,326 in 4 KO mice). The top 961 
two plots show histograms of enrichment for the home cage (upper) or social conditions 962 
(middle); the lower panel is a bar graph showing the fraction of these combinations that were 963 
specifically enriched above the 99.9th percentile (chi-squared = 165, p < 0.0001). Error bars 964 
denote the S.E.M. algebraically derived from the binomial distribution, the number of 3 965 
neuron combinations in each condition, and the proportion of those combinations that were 966 
enriched.  967 

E. Performance of classifier trained on real datasets and tested on surrogate datasets. 968 
Performance was not better (and was non-significantly worse) when correlation structure was 969 
maintained using SHARC (classifier accuracy: 62 +/ 4% for SHARC vs 63 +/- 2% for swap 970 
shuffled surrogate datasets, p = 0.47, sign-rank test). 971 

 972 
 973 
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 974 
Supplementary Figure 1. Spatial Decorrelation of Neuronal Signals.  975 

A. Example image (top) and individual neuron GCaMP traces (bottom) from prefrontal cortex 976 
imaged with implanted endoscope. 977 

B. The average GCaMP signal from a region of interest (ROI), corresponding to one neuron, was 978 
corrected by subtracting the average GCaMP signal from the surrounding pixels, in order to 979 
spatially deconvolve signals from each ROI vs. the surrounding neuropil. Examples traces from a 980 
single neuron are shown. 981 

C. The pairwise correlation matrix between signals from different neurons is shown (calculated 982 
from 550 seconds of activity from a single wildtype mouse), for the original GCaMP signals (top 983 
left), the surround signals (top right), the surround-subtracted signals (bottom left), and the 984 
surround-subtracted signals after lowpass filtering (bottom right).  985 
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