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ABSTRACT 14 
 15 
How neurons encode behavior is a fundamental question. Neuronal ensembles increase or 16 
decrease activity during specific behaviors. However, it is unclear whether ensembles encode 17 
information solely via changes in activity levels, or whether changes in correlations between 18 
neurons carry additional information. We used microendoscopic GCaMP imaging to measure 19 
prefrontal activity while mice were either alone or engaged in social interaction. Using neural 20 
network classifiers to measure how well prefrontal neurons transmit information about social 21 
behavior to downstream neurons, we find that surrogate datasets which preserve dynamic 22 
correlations outperform those which preserve ensemble activity but not correlations. Notably, 23 
this ability of correlations to enhance the information transmitted by neuronal ensembles is lost 24 
in mice lacking the autism-associated gene Shank3. These results show that dynamically 25 
modulated correlations create patterns of coactive neurons which are behaviorally-specific and 26 
enhance the information transmitted by neuronal ensembles. Furthermore, this process can be 27 
disrupted in pathological states. 28 
 29 
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INTRODUCTION 31 
 32 
During behavior, the activity of neurons is organized with precise temporal relationships 33 
(deCharms and Merzenich, 1996; Cai et al., 2016; Liang et al., 2018). For example, during 34 
certain behaviors, subsets of neurons may exhibit correlated activity in which they become active 35 
at the same time or within short windows of time. However, it is unknown whether this sort of 36 
temporal organization is simply a byproduct of the interconnected nature of neuronal networks 37 
(Hebb, 1949), or contributes in a meaningful way to information encoding (Buzsáki, 2010). 38 
Groups of co-active neurons represent an attractive computational unit for information 39 
processing because they should optimize temporal summation in downstream targets. Thus, 40 
increases in correlations might further augment post-synaptic responses when pre-synaptic 41 
activity increases, or enhance post-synaptic responses even when the total level of pre-synaptic 42 
activity remains constant. 43 
 44 
However, it is unclear whether behaviorally-driven changes in correlations actually encode 45 
additional behavioral information, beyond what is transmitted by changes in neuronal activity 46 
levels. In particular, with the advent of new technologies for simultaneously recording from large 47 
numbers of neurons in behaving animals, many studies have now shown that cortical ensembles 48 
encode behavioral information via increases or decreases in the activity of their constituent 49 
neurons. While correlations have been shown to contribute additional information for small 50 
groups (3-8 neurons) of cortical neurons (Averbeck and Lee, 2006), only a few studies have 51 
examined how correlations contribute to encoding within larger cortical ensembles. One study 52 
found that the identity of a conditioned stimulus was encoded in mean activity levels, but not in 53 
moment-to-moment patterns of co-activity (Ahmed et al., 2020). Another study found that in 54 
hippocampal region CA1, disrupting correlations impairs the decoding of position, head 55 
direction and speed, but did not directly examine whether correlations themselves are 56 
dynamically modulated to encode these behavioral variables (Stefanini et al., 2020). In 57 
particular, while multiple studies have shown that behavior can modulate correlations (Vaadia et 58 
al., 1995; deCharms and Merzenich, 1996) the functional significance of this has remained 59 
unclear, because changes in correlations might simply reflect variation in activity levels (De La 60 
Rocha et al., 2007) rather than contributing additional information. 61 
 62 
To address these questions, we studied the mouse medial prefrontal cortex during simple social 63 
behaviors. The role of the medial prefrontal cortex in rodent social behavior is well-established 64 
(Yizhar et al., 2011; Brumback et al., 2017; Murugan et al., 2017; Selimbeyoglu et al., 2017). 65 
Many prefrontal neurons are recruited by social interaction (Brumback et al., 2017; Murugan et 66 
al., 2017; Liang et al., 2018) as well as social stimuli such as odors (Levy et al., 2019). These 67 
studies show that the activity levels of neuronal ensembles encode social behavior but have not 68 
examined whether changes in correlations between prefrontal neurons transmit additional 69 
information. Using microendoscopic GCAMP imaging in freely-moving mice, we identified 70 
prefrontal ensembles associated with social behavior. We used a neural network classifier to 71 
quantify how well these would transmit information about social behavior to downstream 72 
neurons. By examining the operation of this neural network and using surrogate datasets which 73 
preserve activity levels but either preserve or disrupt correlations, we find that changes in 74 
correlations enhance the information transmitted by neuronal ensembles. Notably, this was not 75 
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the case in a mouse model of autism (Shank3 knockout mice), demonstrating that this form of 76 
information transmission may be disrupted in pathological states. 77 
 78 
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RESULTS 80 
 81 
Social interaction recruits prefrontal ensembles 82 
We implanted microendoscopes (nVoke; Inscopix) into the medial prefrontal cortex (mPFC) of 83 
adult wildtype C57/B6 mice (WT) to image calcium transients using GCaMP6f expressed under 84 
control of the human synapsin promotor. We imaged freely moving mice during an assay which 85 
sequentially introduced 2 novel juvenile mice to the home cage of the subject mouse, first during 86 
an initial (novel) epoch and then again during a subsequent (familiar) epoch. These four epochs 87 
of social interaction were interleaved with epochs during which the subject mouse was alone in 88 
its home cage (‘home cage’ epochs). The first 5 minutes of each interaction epoch was scored by 89 
a blinded observer, and each wild-type mouse spent approximately 10 minutes interacting with 90 
the juvenile mice (393 +/- 25 s during the novel epochs and 235 +/- 18 s during the familiar 91 
epochs, p = 0.00017, paired t test, n = 10 WT mice). 92 
 93 
We processed data using a modified PCA/ICA approach (Mukamel, Nimmerjahn and Schnitzer, 94 
2009; Luongo, Horn and Sohal, 2016) to identify neurons which were active during the imaging 95 
session. To minimize the influence of the surrounding neuropil on neuronal signals, we 96 
calculated the mean signal within each ROI, then subtracted the mean signal calculated from a 97 
circular annulus surrounding each ROI (Supplemental Figure S1). Casual inspection of calcium 98 
traces revealed that some neurons were more active during epochs of social interaction 99 
(compared to periods of home cage exploration), whereas others exhibited the opposite pattern 100 
(Figure 1A). Correspondingly, aligning calcium traces to the onset of social interaction revealed 101 
many neurons that either increased or decreased activity at the onset of interaction (Figure 1B). 102 
Fluorescence traces were converted to binary event rasters (see Methods for details of event 103 
detection), in which most neurons were “active” in less than 5% of frames (Figure 1C). As a 104 
population, imaged neurons were more active during social interaction (Figure 1C, n = 663 105 
neurons from 10 mice, percent time active in home cage: 1.8% +/- 0.1, percent time active during 106 
social interaction: 2.1 +/- 0.1%, p = 0.00002, paired t-test). There was a bimodal distribution of 107 
cells that were significantly more (>90th percentile, social: 152/663 neurons, home cage: 80/663 108 
neurons; p < 0.00001, Chi-Squared Test) or less active (<10th percentile, social: 128/663 neurons, 109 
home cage: 119/663 neurons; p = 0.5) during either social interaction or matched periods when 110 
mice were alone in their home cage, as compared to circularly shuffled datasets (Figure 1D). 111 
These correspond to neuronal ensembles which are specifically recruited or inhibited during 112 
social interaction, respectively. 113 
 114 
Using a neural network classifier to assess how well ensembles transmit information 115 
Next, we sought to determine how well these prefrontal ensembles would transmit information 116 
about social behavior to downstream neurons. Since we and others have found that different 117 
prefrontal neurons are recruited during social vs. nonsocial behavior, we measured how well 118 
downstream neurons could decode whether a mouse was engaged in social behavior based on 119 
input from these prefrontal neurons. Later we will study how this was altered in Shank3 120 
knockout mice. For this we used a simple neural network classifier that received input from the 121 
recorded neurons. Our rationale for using this kind of neural network classifier was threefold. 122 
First, a simple neural network measures information that is immediately and readily available to 123 
downstream neurons. Second, for a neural network with only one hidden layer, it is 124 
straightforward to examine the weights to determine how the network performs the 125 
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classification. This can provide insight into exactly how the neural network is able to decode 126 
behavior from the input activity. Third, examining how various parameters of the neural network 127 
affect its performance can provide additional clues about how information is represented within 128 
the input population. 129 
 130 
Figure 2A shows the design of the neural network classifier. For clarity, we use the term 131 
‘neurons’ specifically to refer to actual prefrontal neurons (which provide input to the neural 132 
network), and ‘units’ to refer to simulated elements within the network. The network consisted of 133 
a hidden layer containing 1000 units. We chose this number because it is both an order of 134 
magnitude larger than the number of input neurons and an order of magnitude smaller than the 135 
number of frames available for training (the latter helps ensure that there will be enough data to 136 
train the output weights). We simulated a different neural network for each mouse. Each hidden 137 
layer unit received input from a random subset of the prefrontal neurons from one mouse. I.e., 138 
each frame represents one timepoint and if neuron i is active in a frame then it provided an input 139 
of 1 to all the hidden units to which it is connected; otherwise it provides an input of 0. For each 140 
simulation, there was a fixed connection probability between each input neuron and each hidden 141 
layer unit. We tried different values for this connection probability in order to measure how 142 
classifier performance depends on the number of neurons that provide input to each hidden layer 143 
unit. Each hidden layer unit had an output weight which specifies how strongly that unit excites 144 
or inhibits a single output unit which classifies activity as belonging to periods in which a mouse 145 
was actively engaged in social interaction or alone in its home cage. E.g., output unit activity < 146 
0.5 corresponds to the social condition, while output unit activity > 0.5 corresponds to the home 147 
cage condition. These output weights were adjusted during training (see Methods for details of 148 
the training rule) while the pattern of input connectivity was fixed. This models the situation in 149 
which prefrontal neurons transmit information to a downstream population of neurons (the 150 
hidden layer) that decode behavior via their output weights. We initially trained networks on 151 
50% of the data (frames) and used the held-out data for testing. We trained and tested using 152 
intervals during which the mouse was actively engaged in social interaction or equivalent 153 
intervals when the mouse was alone in its home cage. 154 
 155 
Classifier performance is optimal for intermediate connection probabilities 156 
Classifier performance was strongly dependent on the probability that each input neuron was 157 
connected to each hidden unit. For the 8/10 datasets that could be classified above chance, 158 
classifier performance (measured on the 50% of data which was held-out during training) was 159 
near chance levels when the connection probability was < 0.1, but increased to a peak of 69 +/- 160 
3% (Figure 2B; Supplementary Table 1) for a connection probability of 0.3. Accuracy 161 
decreased dramatically when the connection probability increased to 0.5 indicating that 162 
connection probabilities ~0.2 - 0.4 are optimal. 163 
 164 
We also validated classifier performance by training and testing on surrogate datasets that were 165 
generated by ‘swap shuffling’ our original datasets. We created ‘swap shuffled’ surrogate 166 
datasets by randomly swapping blocks of activity between neurons (each block of activity = a set 167 
of consecutive frames during which the neuron was active). To understand this, think of the 168 
entire raster as a collection of blocks of activity. Each block occurs at a specific time, has a 169 
specific duration, and is associated with a particular neuron. Swap shuffling is equivalent to just 170 
shuffling the neurons associated with each block of activity (the start time and duration of each 171 
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block do not change). For example, if neuron i originally became active at time t1 for n1 frames 172 
and neuron j was active at time t2 for n2 frames, then in the surrogate dataset neuron i might 173 
become active at t2 (but not at t1) while neuron j might become active at t1 (but not t2). Swap 174 
shuffling preserves the number of neurons active at each point in time (because the timing of 175 
blocks of activity does not change). It also preserves the number of blocks of activity for each 176 
neuron, and this tends to preserve the overall level of activity of each neuron. Activity levels are 177 
not perfectly preserved, because blocks of activity can have different durations. Nevertheless, in 178 
practice, blocks of activity tend to have similar durations and the similarity between the mean 179 
activity level in each neuron before and after swap shuffling of entire datasets was 0.97 +/- 0.01. 180 
As expected, we found that neural network classifiers trained and tested on swap shuffled 181 
datasets performed near chance levels (Figure 2B). 182 
 183 
Prefrontal neurons that drive classifier performance exhibit dramatic behaviorally-driven 184 
changes in their correlations 185 
Next, we examined connections in trained networks to reveal factors which enable them to 186 
successfully classify social vs. home cage behavior (we analyzed networks with a connection 187 
probability = 0.3 since this maximized performance of the population). Each hidden layer unit 188 
has an output weight which measures how strongly it excites or inhibits the output unit that 189 
represents the ‘decision’ (social vs. home cage). Hidden units with output weights ~0 don’t 190 
contribute to this decision. By contrast, hidden units with strong negative or positive weights 191 
promote the social or home cage decision, respectively (Figure 3A). Therefore, we hypothesized 192 
that there might be important differences in the pattern of input to hidden units, depending on 193 
whether those hidden units have large positive or negative output weights. 194 
 195 
We arranged hidden layer units based on their output weights, i.e., the unit with the most 196 
negative weight was unit 1 and the unit with the most positive weight was unit 1000. Then we 197 
defined the 25 hidden layer units with the most negative weights as ‘social units’ and the 25 with 198 
the most positive weights as ‘home cage units’ (Figure 3B). For comparison we also defined the 199 
25 hidden layer units with the weights closest to zero as ‘neutral units.’ For each pair of hidden 200 
units, we computed the similarity between their inputs (i.e., the correlation between their input 201 
vectors; Figure 3C). We then plotted the average input similarity of each hidden unit to either 202 
the social or home cage units (Figure 3D) or the neutral units (Figure 3E). Social and home 203 
cage units tended to receive input from the same prefrontal neurons as other hidden layer units 204 
with the same preference, i.e., which also had negative or positive output weights. By contrast 205 
neutral units did not exhibit any such relationship. 206 
 207 
The preceding suggests that distinct ensembles of prefrontal neurons provide input to either 208 
social or home cage hidden units. We hypothesized that there might be important features of 209 
activity in these ensembles that support the classification of social vs. home cage behavior. For 210 
example, one possibility is that prefrontal neurons which provide input to social units might tend 211 
to increase activity during social behavior, whereas prefrontal neurons which provide input to 212 
home cage units do the opposite. Surprisingly, this was not the case. In fact, both ensembles of 213 
prefrontal neurons significantly increased their activity when mice were engaged in social 214 
interaction (Figure 3F; social ensemble: mean activity level 1.4 +/- 0.3% in home cage vs. 1.8 215 
+/- 0.3% during social interaction, p < 0.05, sign-rank test; home cage ensemble: mean activity 216 
level 1.5 +/- 0.3% in home cage vs. 1.9 +/- 0.3% during social interaction, p < 0.001, sign-rank 217 
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test). Next, we examined pairwise correlations between the activity of prefrontal neurons within 218 
each ensemble. Strikingly, mean correlations within the social ensemble increased during social 219 
interaction (Figure 3G; (mean correlation coefficient between neurons in the social ensemble: 220 
0.009 +/- 0.002 in home cage vs. 0.012 +/- 0.002 during social interaction, p < 0.05). By 221 
contrast, there was a non-significant decrease in correlations within the home cage ensemble 222 
(Figure 3G; home cage ensemble mean correlation coefficient 0.011 +/- 0.02 in home cage vs. 223 
0.005 +/- 0.003 during social interaction, p=0.99, sign-rank). 224 
 225 
Thus, the ensemble of prefrontal neurons which provide input to the social units form an 226 
assembly that collectively becomes more co-active (correlated) during social behavior. In 227 
contrast, the prefrontal neurons which provide input to the home cage units increase their 228 
activity, but not their co-activity, during social behavior. This suggests that behaviorally-driven 229 
changes in correlations may contribute to the encoding of social behavior. 230 
 231 
Correlations enhance classifier performance 232 
How can we quantitatively assess the contribution of these correlations, which are behaviorally-233 
modulated, to classifier performance? Ideally we would first train a neural network on the 234 
original data. Then we would test this network’s ability to classify data which maintained 235 
behaviorally-driven changes in activity levels, but either removed or preserved the correlations. 236 
Indeed, we have already developed methods for shuffling that achieve these goals. First, to 237 
shuffle the data in a manner that maintains behaviorally-driven changes in activity levels, but 238 
disrupts correlations, we can swap shuffle activity, but do so within each behavioral condition 239 
rather than across the entire testing dataset. In other words, we first divide up the raster into 240 
separate subrasters for each 5 minute behavior epoch (when the mouse was either engaged in 241 
social interaction or alone in its home cage). Then we performed swap shuffling (as described 242 
above) separately on each subraster, before recombining these swap shuffled subrasters to create 243 
the swap shuffled surrogate dataset for testing. Because swap shuffling tends to preserve activity 244 
levels, and because we swap shuffled activity within a behavioral condition, neurons that 245 
increase or decrease activity during periods of social interaction in the original dataset also tend 246 
to do so in the swap shuffled surrogate dataset. 247 
 248 
To create surrogate datasets which preserve patterns of correlations as well as behaviorally-249 
driven changes in activity, we used a method that we published previously: SHuffling Activity to 250 
Preserve Correlations, or SHARC (Luongo et al., 2016). SHARC also re-assigns blocks of 251 
activity between neurons, but rather than doing so randomly, it instead follows an algorithm that 252 
achieves a target correlation matrix (in this case, the original correlation matrix) (Figure 4B-C). 253 
The full details of SHARC are presented in the Methods. Briefly: on each iteration, we randomly 254 
select one block of activity to be assigned to a new neuron. Instead of choosing the new neuron 255 
randomly, we first compute the difference between the target correlation matrix and the 256 
correlation matrix of the partially reconstructed surrogate dataset. Then we assign the block of 257 
activity to the neuron which will optimally reduce this difference. Finally, to maintain the mean 258 
activity level of each neuron, there is also an absolute limit on how many blocks of activity can 259 
be re-assigned to each neuron. We SHARC-shuffled each social or home cage subraster 260 
separately, then combined them to create a SHARC-shuffled surrogate dataset that preserves 261 
behaviorally-specific levels of activity and patterns of correlations. 262 
 263 
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We verified that both swap and SHARC shuffled surrogate datasets preserved levels of activity 264 
observed during both social interaction and periods when mice were alone in their home cages. 265 
Specifically, we computed the correlation between vectors in which each element represents the 266 
activity level of one neuron during one behavioral condition, and quantified the correlation 267 
between each real and surrogate dataset. For swap shuffled surrogate datasets, the similarity of 268 
activity levels (compared to real data) was 0.89 +/- 0.02 in the home cage and 0.82 +/- 0.04 269 
during social interaction. For SHARC shuffled surrogate datasets, the similarity of activity levels 270 
(compared to real data) was 0.88 +/- 0.03 in the home cage and 0.86 +/- 0.03 during social 271 
interaction (n = 10 mice/datasets). We also computed the similarity of the pattern of correlations 272 
between each surrogate dataset and the corresponding real dataset. In this case, only SHARC 273 
shuffled surrogate datasets preserved patterns of correlations. For swap shuffled surrogate 274 
datasets, the similarity of correlations to the real data was 0.01 +/- 0.01 in the home cage, and 275 
0.03 +/- 0.01 during social interaction. For SHARC shuffled surrogate datasets, the similarity 276 
was 0.50 +/- 0.05 in home cage and 0.55 +/- 0.03 during social interaction. 277 
 278 
We then trained classifiers on each dataset and tested each classifier using either swap or 279 
SHARC shuffled surrogate datasets generated from the same dataset using for training (Figure 280 
4C). Classifiers performed better than chance when tested with either surrogate dataset 281 
indicating that changes in activity levels encode behavioral information. However, performance 282 
was significantly higher for SHARC shuffled surrogates datasets than for swap shuffled ones 283 
(Figure 4D; classifier accuracy for SHARC shuffled surrogate datasets = 68 +/- 4%, classifier 284 
accuracy for swap shuffled surrogate datasets = 61 +/- 4%, p < 0.05, sign-rank test). This 285 
demonstrates that behaviorally-modulated patterns of correlations transmit additional 286 
information, beyond what is readily decodable from activity levels alone.  287 
 288 
Combinations of coactive neurons occur in a behaviorally-specific manner 289 
Interestingly, neural networks perform classification better for connection probabilities ~0.2 – 290 
0.4 than for connection probabilities < 0.1. When the connection probability is low, each hidden 291 
unit receives input from individual prefrontal neurons or small groups of neurons. By contrast, 292 
when the input probability is higher, hidden units receive input from larger groups of prefrontal 293 
neurons. This suggests that training proceeds more efficiently when the network represents 294 
information about social vs. home cage behavior using multineuron combinations, instead of 295 
activity within individual neurons or small groups. Together with the fact that classifier 296 
performance was higher for SHARC shuffled datasets than swap shuffled ones, this indicates that 297 
multineuron patterns of coactivity, rather than just levels of activity within neuronal ensembles, 298 
transmit information about social behavior. Therefore as a proof-of-concept, we directly 299 
examined whether 3-neuron patterns of coactivity occur in a behaviorally-specific manner. We 300 
examined 3-neuron combinations because they measure network structure beyond pairwise 301 
correlations and are the building blocks of larger combinations. One could in principle analyze 302 
larger combinations, but because of the limited numbers of neurons and frames in our datasets, 303 
there is not always adequate statistical power to resolve larger combinations, i.e., to detect large 304 
numbers of combinations that occur more often in real datasets than expected by chance. 305 
 306 
First, we quantified how often each possible 3-neuron combination occurred in real datasets. 307 
Then we calculated how often each of these combinations occurred in datasets that had been 308 
swap-shuffled (across the entirety of the dataset). For each real dataset we constructed 1000 309 
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swap-shuffled datasets, and identified ‘enriched combinations,’ which occurred more often in 310 
real datasets than in 95% of swap shuffled surrogate datasets. Enriched combinations are those 311 
which occur more often in real datasets than expected based on the chance overlap of activity 312 
between marginally independent neurons. Finally, we quantified how many of these enriched 313 
combinations were behaviorally-specific, i.e., occurred exclusively during social or home cage 314 
epochs. Combinations could appear to be behaviorally-specific simply because they only 315 
occurred at a single timepoint. Therefore we also restricted our analysis to enriched combinations 316 
which occurred during multiple distinct bouts of social interaction and/or matched sets of 317 
intervals during home cage epochs. Many of these repetitively-occurring enriched combinations 318 
were behaviorally-specific: 43.5% occurred during social interaction, 26.5% during home cage 319 
epochs, and 30% during both conditions. 320 
 321 
The selective occurrence of enriched combinations either during social interaction or when a 322 
mouse is alone in its home cage may reflect changes in single neuron activity (i.e., neurons that 323 
form a social combination are only active during the social condition), and/or changes in 324 
correlations (i.e., neurons are active in both conditions but only co-active during social 325 
behavior). To test the hypothesis that changes in correlations underlie the behavioral specificity 326 
of significant combinations, we examined the 3-neuron combinations that were specifically 327 
enriched during either periods of home cage exploration or social interaction (Figure 5). We 328 
defined specific enrichment as those combinations which occurred more often in real data than in 329 
95% of swap-shuffled surrogate datasets for one behavioral context, and less in real data than in 330 
50% of swap-shuffled surrogate datasets for the other behavioral context. Based on these criteria, 331 
12,408 3-neuron combinations were specifically enriched during social interaction, and 9,572 332 
were specifically enriched during home cage exploration. There were 55,696 instances in which 333 
a social and nonsocial 3-neuron combination overlapped in 2 out of 3 neurons. In 97.0% of these 334 
cases, the neuron which was part of a social 3-neuron combination (triplet) but left out of the 335 
overlapping home cage triplet was part of a different 3-neuron combination that was enriched 336 
during homecage exploration (Figure 5, top right).  Conversely, the neuron which was part of a 337 
nonsocial triplet but left out of the overlapping social 3-neuron combination was part of a 338 
different socially-enriched 3-neuron combination in 99.1% of cases (Figure 5, bottom right). 339 
Overall, an average of 71 enriched homecage combinations contained the neuron missing from 340 
the social triplet, and 85 enriched social combinations contained the neuron missing from 341 
homecage triplets. Thus, the specificity of a combination of co-active neurons for social vs. 342 
nonsocial behavior does not occur simply because some neurons were only active during one 343 
condition, but rather reflects the dynamic reorganization of patterns formed by neurons which are 344 
active in both conditions, i.e., changes in correlations. This – the behaviorally-specific 345 
occurrence of multineuron patterns of coactivity – represents the substrate through which 346 
correlations can add to the behavioral information transmitted by neuronal ensembles. 347 
 348 
Socially-enriched combinations are deficient in Shank3 KO mice 349 
We were curious whether there might be conditions under which these phenomena – the 350 
occurrence of multineuron combinations of coactivity during social behavior, and the ability of 351 
correlations to enhance the transmission of information about social behavior – might be 352 
impaired. To explore this, we performed microendoscopic GCaMP imaging in mice lacking the 353 
autism-associated gene Shank3 (Peça et al., 2011; Duffney et al., 2015; Chen et al., 2020). These 354 
mice have been extensively studied as models of Phelan-McDermid syndrome, which often 355 
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includes autism as a clinical feature. Shank3-/- (KO) mice are known to have social deficits, and 356 
indeed, we found that compared to wild-type (WT) littermates, they spend significantly less time 357 
interacting with novel juvenile mice (Figure 6A). 358 
 359 
We compared patterns of prefrontal activity in Shank3 KO mice and their WT littermates. As in 360 
WT mice, in Shank3 KO mice, many prefrontal neurons either increase or decrease activity 361 
during social interaction. However, compared to WT mice, the fraction of neurons whose activity 362 
increases during social interaction was significantly higher, whereas the fraction whose activity 363 
decreases was significantly lower (Figure 6B-C; 22% of 260 WT neurons vs. 39% of 290 KO 364 
neurons increased activity above the 90th percentile of shuffled data during social interaction, chi 365 
squared = 17.7, p < 0.0001; 25% of WT vs. 15% of KO neurons decreased activity below the 366 
10th percentile of shuffled data during social interaction, chi squared = 8.2, p < 0.0001). Thus, 367 
Shank3 KO mice recruit abnormal neuronal ensembles during social behavior. We hypothesized 368 
that this might reflect a network-level disorganization that affects the normal patterning of 369 
activity during social behavior. 370 
 371 
Indeed, we found that in KO mice a significantly smaller fraction of the 3-neuron combinations 372 
observed during social interaction were strongly enriched, i.e., occur more often in actual data 373 
than in 99.9% of swap-shuffled surrogate datasets (Figure 6D). This suggests that even though 374 
more neurons (i.e., larger ensembles), were recruited during social behavior in KO mice, these 375 
may have been less well-organized, such that the occurrence of socially-enriched patterns of 376 
activity is obscured by ‘noise,’ i.e., patterns formed by the chance overlap of activity between 377 
neurons that fire in a largely independent fashion. Notably, this deficiency was specific for social 378 
interaction. The fraction of 3-neuron combinations that were strongly enriched during home cage 379 
exploration (in comparison to swap-shuffled surrogate datasets) was similar in WT and KO mice 380 
(Figure 6D). 381 
 382 
Correlations do not enhance the transmission of information about social behavior in 383 
Shank3 KO mice 384 
The preceding shows that even though social behavior robustly recruits neuronal ensembles in 385 
Shank3 KO mice, the organization of these ensembles into multineuron combinations is 386 
disorganized. This suggests that the ability of patterns of co-activity to encode information about 387 
social behavior may be impaired in these mice. To test this, we directly examined whether 388 
correlations contribute to the transmission of information about social behavior in Shank3 KO 389 
mice. As before, we generated swap and SHARC shuffled surrogate datasets, then tested the 390 
ability of classifiers trained on the original datasets (from Shank3 KO mice) to classify activity 391 
associated with behavior during social interaction vs. in home cage. While we still observed 392 
above chance classification accuracy using a classifier with a connection probability of 0.3, there 393 
was no longer an increase in performance when correlations were preserved in SHARC shuffled 394 
surrogate datasets as compared to swap shuffled ones (Figure 6E; classifier accuracy: 62 +/ 4% 395 
for SHARC vs 63 +/- 2% for swap shuffled surrogate datasets, p = 0.47, sign-rank test). Thus, in 396 
Shank3 KO mice, multineuron patterns of coactivity during social behavior are disturbed, and 397 
correlations no longer add to the information about social behavior transmitted by prefrontal 398 
ensembles. 399 
  400 
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DISCUSSION 401 
 402 
During complex behaviors, the brain can use many strategies to represent information about the 403 
external environment and internal state of the organism. The term ‘ensemble’ is often used to 404 
refer to a group of neurons whose activity is similarly modulated (either increased or decreased) 405 
during specific behaviors (Sakurai, 1999; Cai et al., 2016; Sakurai et al., 2018; Corder et al., 406 
2019; Ghandour et al., 2019; Gründemann et al., 2019). It is generally accepted that ensembles 407 
transmit behavioral information via changes in the activity levels of their constituent neurons. On 408 
the other hand, many studies have also shown that correlations between neurons can change 409 
during specific behaviors (Vaadia et al., 1995; deCharms and Merzenich, 1996) or behavioral 410 
states (Abeles et al., 1995; Pinto et al., 2013; Dadarlat and Stryker, 2017). Importantly, 411 
correlations reflect changes in coactivity which exceed those expected to occur simply because 412 
of changes in the activity levels of the individual neurons (De La Rocha et al., 2007). I.e., when 413 
an ensemble becomes more active, its correlations could go up, down, or remain unchanged. By 414 
optimizing synaptic interactions such as temporal summation, changes in correlated activity 415 
could potentially enhance the behavioral information transmitted by changes in ensemble 416 
activity, or transmit entirely different types of information, e.g., about internal states. 417 
Correlations have been studied extensively for the isolated retina responding to visual stimuli 418 
(Schneidman et al., 2006). However, how correlations in recurrently connected cortical circuits 419 
such as the mPFC encode behavior has been more difficult to discern. 420 
 421 
Here, we addressed this question using microendoscopic GCaMP imaging to measure activity 422 
from many (~40-100) prefrontal neurons during social behavior in mice. We used multiple 423 
approaches to disentangle the respective contributions of activity and correlations to the 424 
encoding of behavior. First, we used a simple neural network, in which prefrontal neurons 425 
provide input, there is one hidden layer, and a single output unit classifies social vs. nonsocial 426 
behavior, to quantify how well prefrontal ensembles would transmit information about social 427 
behavior to downstream neurons. Notably, classifier performance was at chance levels when 428 
hidden layer units only received input from one or a few prefrontal neurons, but was significantly 429 
higher when hidden units combined activity from 20-30% of prefrontal neurons. This suggests 430 
the network can be trained to discriminate social vs. nonsocial behavior most efficiently when 431 
each output weight corresponds to the activity in a large ensemble (representing ~20-30% of the 432 
network), rather than the activity of an individual prefrontal neuron or a small group. 433 
 434 
Next, we extended a method we previously published, (Luongo et al., 2016), to non-randomly 435 
shuffle datasets in order to preserve both behaviorally-modulated correlations and ensemble 436 
activity. This enabled us to compare the amount of information about social behavior transmitted 437 
by either SHARC-shuffled surrogate datasets or randomly-shuffled surrogates which preserved 438 
ensemble activity but not correlations. In this way, we found that correlations enhance the 439 
amount of information that prefrontal ensembles transmit about social behavior. Indeed, when 440 
we examined connections within neural network classifiers, we found that prefrontal neurons 441 
which serve to detect social behavior increase their correlations during social behavior (whereas 442 
neurons which detect nonsocial behavior do not). 443 
 444 
Correlations measure neuronal coactivity that occurs more often than expected based on the 445 
chance overlap of activity between neurons. Thus, in accordance with our finding that behavior 446 
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modulates correlations, we found that multineuron patterns of coactivity which occur more often 447 
than expected by chance are behaviorally-specific. We then directly examined these 448 
behaviorally-specific and statistically-enriched combinations of coactive neurons. We found that 449 
they tend to be composed of neurons which are active in both conditions but only coactive in 450 
one, rather that neurons which are only active in one condition. 451 
 452 
Interestingly, these statistically-enriched patterns of coactivity were specifically deficient during 453 
social behavior in mice lacking the autism-associated gene Shank3. Accordingly, in Shank3 KO 454 
mice, surrogate datasets which preserve behaviorally-modulated correlations failed to transmit 455 
more information about social behavior compared to randomly shuffled datasets which only 456 
preserved ensemble activity. This shows that the ability of correlations to enhance the 457 
transmission of information about social behavior is not automatic, and can in fact be disrupted 458 
in pathological states. 459 
 460 
Similar to other recent studies (Ahmed et al., 2020; Stefanini et al., 2020), we have studied 461 
activity using binary activity rasters derived from GCaMP imaging. However, an important note 462 
is that any method of quantifying neural activity has limitations, such that there could be 463 
additional ways that neurons encode information which are not well resolved using this 464 
approach. 465 
 466 
What is the meaningful size of ensembles in the cortex? 467 
Complex behavior is possible because the brain reliably encodes features pertaining to the 468 
external environment as well as the internal state of the organism. These features may be 469 
encoded by the modulation of activity in neuronal ensembles (Sakurai, 1999; Cai et al., 2016; 470 
Sakurai et al., 2018; Corder et al., 2019; Ghandour et al., 2019; Gründemann et al., 2019). How 471 
many neurons are needed to reliably encode an aspect of behavior? This is an important question 472 
because the capacity, robustness against noise, generalization ability, etc., of a network depend 473 
on how many neurons encode specific pieces of information. 474 
 475 
We explored this question, not by measuring actual connections, but rather by asking what input 476 
connection probability would optimize the ability of a downstream network to classify behavior 477 
based on input from prefrontal ensembles. Note: input connections in neural network classifiers 478 
do not necessarily correspond to actual connections in the brain – rather they provide information 479 
about the size and nature of groups of neurons across which information should be combined to 480 
most efficiently decode behavior. Peak classifier performance occurred for connection 481 
probabilities ~0.2 - 0.3. Performance was markedly lower when the connection probability was 482 
0.5. This is surprising because a connection probability of 0.5 would maximize the entropy of 483 
each connection; correspondingly, the number of distinct input combinations to a hidden unit is 484 
maximized when it receives connections input from half the input neurons. Thus, from the 485 
standpoint of encoding social behavior, combining activity from 20-30% of the input neurons 486 
may achieve some synergy that becomes degraded when the activity of additional neurons is 487 
included. This suggests that whatever mechanism normally generates behaviorally-meaningful 488 
patterns of coactivity in prefrontal neurons, the size of these patterns is limited to about 20-30% 489 
of the network. In the brain, nonrandom network connectivity (Alex M. Thomson, David C. 490 
West, Yun Wang, 2002; Jiang et al., 2015) may similarly produce correlated activity / coactivity 491 
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within neurons that represent a specific subset of a larger population (Ko et al., 2011; Litwin-492 
Kumar and Doiron, 2012).  493 
 494 
Combinatorial codes vs. sequential patterns of activity 495 
Like many recent studies, we measured population-level activity in the mouse neocortex using 496 
genetically encoded calcium indicators. These indicators transduce neuronal spiking on 497 
timescales ~100 msec. Thus correlated activity / ‘coactivity’ imply that neurons jointly increase 498 
their activity within windows ~100 msec, and do not necessarily imply synchronous spiking on 499 
faster timescales (milliseconds or even tens of miliseconds). At the same time, correlated activity 500 
/ coactivity on these timescales should be differentiated from sequential activity of neurons 501 
observed during the performance of sequential behaviors (i.e. spatial navigation or overtrained 502 
tasks) in which the activity of specific neurons corresponds to moving through a specific location 503 
or performing a specific portion of a complex task. As discussed above, in the neocortex 504 
correlations and coactivity likely reflect recurrent neural network connectivity (Ko et al., 2011). 505 
By contrast, sequential patterns of neuronal activation can occur simply as a byproduct of the 506 
arrangement of spatial locations along a trajectory, the stereotyped order in which cues are 507 
encountered during a task, etc. 508 
 509 
Relevance to disease states 510 
Interestingly, in Shank3 KO mice, which exhibit social deficits, the mPFC successfully recruits 511 
specific neuronal ensembles during social interaction. However these ensembles are enlarged, 512 
their organization into statistically-enriched patterns of coactivity is disrupted, and correlations 513 
between neurons fail to enhance the information that these ensembles transmit. Thus, the 514 
computational units by which information is processed in the mPFC appears to be inefficient, 515 
i.e., social behavioral recruits an abnormally large number of neurons at the expense of the 516 
precise temporal patterning of this activity. This central finding is similar to other findings in 517 
rodent models of autism at both the single neuron and network levels (Hamm et al., 2017; Levy 518 
et al., 2019; Chen et al., 2020). In particular, we found an increase in the recruitment of 519 
prefrontal neurons during social interaction. This mirrors a recent study which found 520 
hyperdynamic response to whisker stimulation in the same mice (Chen et al., 2020), possibly 521 
reflecting GABAergic circuit dysfunction and/or homeostatic compensations (Nelson and 522 
Valakh, 2015). (Note: these findings cannot be ascribed simply to the fact that Shank3 KO mice 523 
spend less time engaged in social interaction than their wild-type littermates; reduced interaction 524 
time would tend to reduce statistical power and thereby reduce the number of neurons that 525 
change their activity more than expected by chance.) 526 
 527 
Increased excitatory activity causing decreased signal-to-noise ratio (SNR) has long been posited 528 
to contribute to the pathophysiology of autism (Rubenstein and Merzenich, 2003). However the 529 
exact nature of ‘signal’ and ‘noise’, and the specific mechanism through which excessive activity 530 
degrades the SNR have been unclear. Here, we show how enlarged neural ensemble recruitment 531 
by specific behavioral conditions disrupts information transmission by degrading the ratio 532 
between statistically meaningful patterns of coactivity (the signal) and the random overlap of 533 
activity between neurons (noise). 534 
  535 
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METHODS 536 
 537 
Behavior: C57/B6 mice were obtained from Jackson Laboratories. We utilized adult mice of 538 
either sex housed and bred in the UCSF animal facility. Adult mice were habituated to the room 539 
and observer for 3 days prior to test day. All videos were subsequently scored by a blinded 540 
observer. For imaging experiments, 5 WT and 4 KO littermates were generated through crosses 541 
between Shank3 heterozygous parents and injected with AAV5.Syn.GCaMP6f.WPRE.SV40. We 542 
included an additional 5 WT mice which were injected with 543 
AAV5.Syn.GCaMP6m.WPRE.SV40 (Chen et al., 2013). Viruses were obtained from Penn Viral 544 
Core. Injections and 500 um GRIN lens (Inscopix) implantations were carried out in 8-12 week 545 
old mice to express GCamp6f in prefrontal cortical neurons under control of the human Synapsin 546 
promotor. Mice were anesthetized with 2% isoflurane and mounted in a stereotactic frame. 547 
Craniotomies were made according to stereotaxic coordinates relative to Bregma. Coordinates 548 
for injection into mPFC were (in mm relative to Bregma): +1.7 anterior–posterior (AP), –0.3 549 
mediolateral (ML) and –2.75 dorsoventral (DV), and GRIN lenses were implanted at the same 550 
AP and ML coordinates, to a depth of 2.25. We subsequently attached baseplates for attaching 551 
the microendoscope, ~4 weeks later depending on GCamp expression. Mice were habituated 552 
for three days with the scope attached, prior to test day. On test day, mice were habituated with 553 
the scope turned on, then imaged in alternating home cage and social epochs. During social 554 
epochs, one of 2 novel sex-matched juvenile mouse was introduced to the test mouse’s 555 
homecage, in sequential order so that there were two ‘novel’ epochs, followed by two ‘familiar’ 556 
epochs interleaved with ‘home cage’ epochs during which the juvenile mice were removed and 557 
the test mouse was free to explore its home cage. The first and last home cage epoch were 10 558 
minutes in length; the others were 5 minutes in length. Each social epoch lasted 10 minutes but 559 
only the first 5 minutes were recorded and scored. During each behavioral epoch, observer was 560 
not in the room. Interaction epochs were defined from the moment test mouse first sniffed the 561 
juvenile conspecific or object, until the test mouse turned away. Videos were recorded using 562 
Anymaze, and scored by a blinded observer. For the bulk of analysis we pooled data across 10 563 
WT mice. Shank3 KO mice were compared only to recordings from WT littermates. 564 
 565 
Image acquisition and segmentation: Images were acquired using an Inscopix nVoke 566 
micreoendoscope attached to a laptop computer and synced to a separate video acquisition 567 
computer running Anymaze. Frame rate was 20 Hz and the laser power was 0.2 mW. Acquisition 568 
was performed using 2x2 pixel binning, then subsequently downsampled again by 2.  569 
 570 
We segmented neuronal signals using a modified PCA/ICA approach (Mukamel, Nimmerjahn 571 
and Schnitzer, 2009; Luongo, Horn and Sohal, 2016), modified so that each segment was 572 
expressed as a binary ROI consisting of pixels representing a single neuron. I.e., we used the 573 
output from the PCA/ICA to identify a set of contiguous pixels which represent a neuron, then 574 
averaged fluorescence signals across those pixels. To deconvolve neuronal signals from 575 
background neuropil signals, we also subtracted the mean signal from each identified segment 576 
from the mean value in pixels surrounding the edge of the segment (we excluded pixels that 577 
belonged to another ROI). Signals were subsequently lowpass filtered to remove high frequency 578 
noise using the Matlab command: designfilt('lowpassfir', 'PassbandFrequency', 0.5, 579 
'StopbandFrequency', .65, 'PassbandRipple', 1, 'StopbandAttenuation', 25). All signal traces 580 
shown represent normalized versions of the dF/F0 trace, where F0 is estimated by the median 581 
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value in the surround region. Threshold based event detection was performed on the traces by 582 
detecting increases in dF/F0 exceeding 3σ over one second, then only keeping those events 583 
which exceeded a 15σ increase over two seconds, and a total area under the curve of 250σ. As 584 
there were occasional downward deflections due to surround subtraction, we instituted a final 585 
parameter requiring that the peak cross an absolute value of dF/F0 = 0.0125. σ is the standard 586 
deviation of dF/F0, calculated over the least active 50% of the movie. In some cases these 587 
parameters were adjusted slightly to optimize event detection to > 95% sensitivity and 588 
specificity, based on visual inspection, for each movie. After identifying these events in the 589 
GCaMP signal from a cell, the cell was considered “active” during the entire period from the 590 
beginning of an event until the GCaMP signal decreased 30% from the peak of the event, up to a 591 
maximum of 2 seconds. The peak of the event was defined as the local maximum of the entire 592 
event, from the beginning of the event until dF/F0 returned to the pre-event baseline value. 593 
Calcium traces from segmented neurons were visually inspected and a small number of segments 594 
were removed if they did not appear to represent a single, unduplicated neuron. We restricted 595 
further analysis to those mice with 25 or more active neurons.  We then created 2-dimensional 596 
event rasters consisting of detected events for each neuron over the course of the experiment.  597 
 598 
Detection of behaviorally modulated neurons: To determine the response of individual neurons 599 
to behavioral context, we averaged the activity of each neuron during frames corresponding to 600 
periods of social interaction, or to a temporally matched set of frames during the preceding home 601 
cage epoch. We then created a ‘null distribution’ for each neuron that represents the percent of 602 
time active expected in each condition based on chance, by circularly shuffling the data 10,000 603 
times. We then compared the activity of each neuron during either social interaction or home 604 
cage exploration to this null distribution. Neurons were considered positively modulated if they 605 
exceeded the 90th percentile of that observed in circularly-shuffled datasets, and negatively 606 
modulated if the percent of frames that a neuron was active during a given context was below the 607 
10th percentile of observations from circularly-shuffled data. 608 
 609 
SHARC: SHARC (SHuffling Activity to Rearrange Correlations) is an iterative method for 610 
generating surrogate datasets. SHARC nonrandomly shuffles blocks of activity within a raster to 611 
generate a new (surrogate) raster in which the pairwise correlations between neurons match a 612 
target correlation matrix (Luongo, Horn and Sohal, 2016). Here we apply this previously-613 
published method, with modifications to also preserve the activity level in each neuron (Figure 614 
4B). 615 
 616 
To begin, note that each raster is equivalent to a collection of blocks of activity. Each block of 617 
activity is defined by the time at which it begins, its duration, and the neuron which is active. On 618 
each iteration one block of activity is randomly chosen and assigned to a new neuron as follows. 619 
Suppose block i has been chosen to be re-assigned. First, we find all the blocks of activity that 620 
overlap with block i. Next, we selected the subset of these blocks for which new cell identities 621 
had already been assigned. Call this set X. Let rj represent the number of timepoints over which 622 

block j  X overlaps with block i, and let nj represent the identity of the cell assigned to block j  623 
X. Li and Lj are the lengths of blocks i and j, respectively. Then we constructed a vector, 624 

�⃗�
𝑟

𝐿 𝐿
𝐶 𝐶′

∈

 625 
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where 𝐶  represents row j of the target correlation matrix, i.e. the target correlations between 626 

neuron nj and the other neurons, and 𝐶′⃗  contains the current values of the correlations between 627 

neuron nj and the other neurons based on the blocks of activity that have already been re-628 
assigned. This step can be thought of as “guessing” which cell should be assigned to a particular 629 
block of activity by first figuring out what other cells are active at the same time, then choosing 630 
cells which are strongly correlated with these known active cells. Note that we assign values of 631 

�⃗�   (i.e., construct “guesses” about which cell should be active), using the difference between the 632 

current correlation matrix (𝐶′ ) and the target correlation matrix (𝐶 ), in order to identify cell 633 

pairs for which the current correlation deviates from the target value, and force the new 634 
correlation matrix to progressively approximately the target correlation matrix. 635 

We set elements of �⃗�  to zero if the corresponding neuron had already been assigned to a block 636 

of activity that overlaps with block i, i.e. element nj of �⃗�  was set to zero  j  X. Finally, we 637 

assigned block i to the neuron corresponding to the maximum value of �⃗� . This can be thought of 638 
as choosing the cell that represents the “consensus” based on tallying up all of the “guesses” 639 
about which cells “should” be assigned to the block of activity being considered. 640 
 641 

When all the elements of �⃗�  were zero, e.g. because there no overlapping blocks of activity have 642 
had new cell identities assigned yet, then we chose a cell in order to match the originally 643 
observed level of activity. Specifically, after every iteration, we kept a log of the net number of 644 
blocks of activity that each neuron had donated or received. We used this vector to create a 645 
weighted probability whereby events from neurons which had received a net positive number of 646 
blocks were more likely to be chosen to be reassigned. To further ensure that the total number of 647 
active events for each neuron in the surrogate dataset was similar to the real dataset, if the 648 
difference between the number of blocks gained – lost in the reassignment process exceeded +10 649 
for a particular neuron, then that neurons was no longer eligible to receive additional blocks of 650 
activity.  651 
 652 
We extended this approach to generate surrogate datasets by shuffling data within shorter time 653 
windows (i.e., individual behavioral epochs). Here a discrete set of frames is chosen, 654 
corresponding to a subraster of the original raster. By repeating the process described above for 655 
each subrasters, then recombining the shuffled subrasters, we generate a complete shuffled 656 
dataset. 657 
 658 
Classifier: We designed and trained a neural network to classify behavior (periods when a mouse 659 
was alone in its home cage vs. engaged in social interaction). This network contained 1000 units 660 
in a hidden layer, each of which received input from specific prefrontal neurons (from the real 661 
dataset). Thus, in each frame the activity of each hidden layer unit was just the summed activity 662 
of the connected prefrontal neurons. Each hidden layer unit had an output weight that 663 
represented the strength of its connection to a single output unit. On each frame the activity of 664 
the output unit was computed as: 665 
 666 

𝑦
1

1 𝑒 ∑  667 

 668 
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where wi is the output weight from hidden unit i and xi is the activity of hidden unit i. 669 
 670 
When we performed training and testing using the same dataset, we divided the dataset into 671 
alternating blocks of 500 frames for training vs. testing (in other cases we used the real dataset 672 
for training, then tested using a surrogate dataset). We restricted training or testing to frames in 673 
which mice were scored as actively engaged in social interaction (or matched frames during 674 
periods when the mouse was alone in its home cage). We also limited training / testing to frames 675 
with at least 3 active neurons. 676 
 677 
We trained the output weights by performing 500 passes through the training data (each pass 678 
visited all of the training frames in a random order). On each training timestep, we calculated y, 679 
the activity of the output unit, and then adjusted each output weight based on: 680 
 681 

∆𝑤 𝜀𝑦 1 𝑦 𝑦 𝑧 𝑥  682 
 683 

where z is the correct classification of the frame (0 for social behavior, 1 for home cage) and  684 
the learning rate, was set to 0.05. 685 
 686 
Following training, we examined the pattern of input connections and output weights. The 687 
distribution of output weights was roughly gaussian and centered near 0. We identified the 688 
selection of prefrontal neurons most likely to be connected to hidden layer units with large 689 
positive or negative weights. Hidden layer units with large negative or positive output weights 690 
bias classification towards the social or home cage condition, respectively. Therefore, we refer to 691 
the 25 hidden units with the most negative or positive weights as ‘social’ or ‘home cage’ units 692 
respectively. We calculated the number of input connections between each prefrontal neuron and 693 
the 25 home cage units or 25 social units. We then defined ‘home cage’ or ‘social’ ensembles as 694 
the 20% of prefrontal neurons with the most input connections to home cage or social units, 695 
respectively. As described in the main text, we then analyzed properties of these two ensembles. 696 
 697 
Quantification of multineuron combinations: Estimating chance overlap between activity of 698 
largely independent neurons requires accounting for two factors. First, neurons with higher 699 
activity are more likely to overlap by chance with other neurons. Second, overall network 700 
activity is dynamic over time, creating a tendency for otherwise independent neurons to be 701 
recruited at similar times. Thus, it is necessary to identify combinations which occur more often 702 
than expected based on 1) the activity levels of the constituent neurons, and 2) the fact that 703 
activity in a network is not constant over time. We can do this by quantifying the occurrence of 704 
combinations in datasets which have been shuffled to preserve 1) the overall level of activity in 705 
each neuron, and 2) the total level of activity in the network at each point in time. 706 
  707 
3 neuron combinations were quantified by identifying each combination present in frames in 708 
which 2 or more neurons were active.  The number of frames each combination was active in 709 
real data was stored in a n-dimensional matrix. Surrogate datasets were then generated from 710 
event rasters by swapping the identity of neurons associated with detected events (periods of 711 
activity). As the timing of events themselves is unchanged, and only the identity of the 712 
participating neurons are exchanged, this preserves both the number of events per frame and the 713 
number of events that each neuron participates in. Therefore, the total number of combinations in 714 
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each frame and over the course of the experiment (i.e., the sum of occurrences across all 715 
combinations) is also preserved. The total number of combination occurrences in which a given 716 
neuron participates would also tend to be preserved in these swap-shuffled surrogate datasets.  717 
 718 
We then quantified how often each combination occurred in real vs. swap-shuffled data. By 719 
comparing how often each combination occurred in real data vs. in 1,000 swap-shuffled 720 
surrogate dataset, we were able to quantify how ‘enriched’ each combination was, compared to 721 
the level of occurrence expected by chance based on the activity levels of its constituent neurons 722 
(and the overall temporal pattern of network activity). We expressed enrichment as a percentile, 723 
calculated relative to swap-shuffled surrogate data, e.g., the 100th percentile indicates that a 724 
particular combination occurred more often in real data than in all 1,000 surrogate datasets. 725 
Further analysis was restricted to ‘enriched combinations’, i.e., combinations that occurred more 726 
often in real datasets than in 95% of surrogate datasets. 727 
 728 
Statistical analysis: Neurons and significant combinations from all animals and groups were 729 
pooled and counted as single units. Proportions were compared using chi-squared test. Activity 730 
levels were compared using paired t-tests (2-sided), unless otherwise noted. Where applicable, 731 
error bars denote standard error. Values of the classifier performance (accuracy) were generated 732 
by averaging after re-running the training / testing procedure at least 25 times. 733 
  734 
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 851 
Figure 1. Social interaction modulates activity levels within prefrontal ensembles. 852 
A. Mice were imaged across 9 consecutive behavioral epochs (each lasting 5 min) during which 853 

they were either alone in their homecage or interacted with one of two novel sex-matched 854 

juvenile mice introduced to the homecage (‘M1’ or ‘(M2’). Each novel mouse was 855 

subsequently re-introduced to the home cage during a familiar epoch. GCaMP traces during 856 

show examples of neurons that appear to increase or decrease activity during social epochs 857 

(see arrows at the right of each trace).  858 
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B. Mean z-scored GCaMP traces for all neurons recorded from wild-type mice (663 neurons 859 

from 10 mice) aligned to the onset of social interaction during the first bout of interaction 860 

within each social epoch. 861 

C. Cumulative plot showing the distribution of activity levels for individual neurons during 862 

homecage epochs or periods of social interaction (percent time active in homecage: 1.8% +/- 863 

0.1, percent time active during social interaction: 2.1 +/- 0.1%, p = 0.00002, paired t-test; n = 864 

663 neurons from 10 WT mice).  865 

D. Scatter-plot showing the activity of each neuron during each behavioral condition, expressed 866 

as a percentile relative to a null distribution generated by circularly shuffling that neuron’s 867 

activity. Activity levels during social interaction or while the mouse was alone in its home 868 

cage are plotted on the x and y axis, respectively. Kernel density plots along the axes indicate 869 

the fraction of neurons whose activity was at a given percentile of the null distribution. 870 

Neurons with activity > 90th percentile of shuffled datasets (green dotted line) were 871 

considered to be positively modulated, whereas neurons with activity < 10th percentile (green 872 

dotted line) were considered to be negatively modulated during each behavior (>90th 873 

percentile, social: 152/663 neurons, home cage: 80/663 neurons; p < 0.00001, chi-squared 874 

test; <10th percentile, social: 128/663 neurons, home cage: 119/663 neurons; p = 0.5, chi-875 

squared test).    876 
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 877 
Figure 2. Classifying behavior from prefrontal ensembles using a simple neural network. 878 
A. We constructed a neural network consisting of a single hidden layer (containing 1000 units) 879 

which were connected to a single output unit. The thickness of lines between each hidden 880 

layer unit and the output unit reflects the magnitude of the output weight. Positive and 881 

negative weights are indicated by solid and dashed lines, respectively. Each hidden layer unit 882 

received input from a random subset of prefrontal neurons from one real dataset. For clarity, 883 

we have only shown input connections to two hidden layer units (which are differentiated by 884 

their blue and red colors) – output weights from other hidden units are shown in black. The 885 

output weight from each hidden layer neuron was iteratively updated during training. We 886 

trained the classifier to distinguish periods marked as home cage exploration or social 887 

interaction by dividing a dataset into 500-frame blocks, and then using alternating blocks for 888 

training or testing. 889 

B. The classifier performed poorly (near chance) when the input connection probability 890 

(governing the number of prefrontal neurons that provided input to each hidden layer unit) 891 

was <10%. Classification accuracy was above chance in 8/10 mice and increased to a peak of 892 

69 +/- 3% in these mice, before decreasing again for connection probabilities >30%. The 893 
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classifier performed near chance levels when we trained and tested using data that had been 894 

randomly swap-shuffled.   895 

  896 
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 897 
 898 
Figure 3. Classifier weights reveals an ensemble that increases correlations during social 899 
behavior and detects social behavior. 900 
A. Example histogram depicting the distribution of output weights assigned to connections 901 

between hidden layer units and the output unit over the course of training.  902 
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B. Matrix of input connections for hidden units which detect the social (left) or home cage 903 

condition (right). The hidden layer units (x-axis) have been arranged in order of increasing 904 

output weights to identify ‘social units’ (25 most negative output weights) and ‘home cage 905 

units’ (25 largest positive output weights). Prefrontal neurons (y-axis) have been arranged in 906 

order of their preference for social interaction vs. home cage, i.e. the difference between their 907 

activity levels in the two conditions. 908 

C. Correlation matrix showing the input similarity, i.e., the pairwise correlation between binary 909 

vectors representing the input connections to each pair of hidden layer units. Hidden layer 910 

units are arranged in order of increasing output weight. Red and blue rectangles indicate 911 

correlations with social or home cage units, respectively. A gaussian filter with a standard 912 

deviation of 3 was applied to the 1000x1000 matrix to improve visualization.  913 

D. For each hidden layer unit, we plotted its average input similarity to either the 25 social units 914 

(red) or the 25 home cage units (blue). Hidden layer units (x-axis) are again arranged by 915 

output weight. Social units had similar patterns of input compared to each other but not to 916 

home cage units and vice-versa. 917 

E. The average input similarity of each hidden layer unit to 25 hidden layer units with near-zero 918 

output weights (‘neutral units’; black rectangle in C).  919 

F. We defined social and home-cage (HC) ensembles as the 20% of prefrontal neurons most 920 

likely to provide input to the social or home cage units, respectively. The mean activity of 921 

both home cage and social ensembles increased during social interaction compared to the 922 

home cage condition (social ensemble: mean activity level 1.4 +/- 0.3% in home cage vs. 1.8 923 

+/- 0.3% during social interaction, p < 0.05, sign-rank test; home cage ensemble: mean 924 

activity level 1.5 +/- 0.30% in home cage vs. 1.9 +/- 0.3% during interaction, p < 0.001, sign-925 

rank test). 926 

G. Correlations between neurons in the same ensemble increased during social interaction for 927 

the social ensemble but for the home cage ensemble (mean correlation coefficient between 928 

neurons in the social ensemble: 0.009 +/- 0.002 in home cage vs. 0.012 +/- 0.002 during 929 

social interaction, p < 0.05; home cage ensemble mean correlation coefficient 0.011 +/- 0.02 930 

in home cage vs. 0.005+/- 0.003 during social interaction, p=0.99, sign-rank). 931 
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 932 
Figure 4. Correlations transmit additional information that is not efficiently conveyed by 933 
changes in activity levels alone. 934 
A. Cartoon illustrating that information about behavior may be encoded through changes in 935 

activity levels, correlations between neurons, or both. When behavior modulates activity 936 

levels, correlations in two behavioral conditions may differ or be the same, and vice-versa. 937 
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B. To disentangle the roles of activity levels and correlations in transmitting information we 938 

used two different methods to create shuffled (surrogate) datasets which preserve changes in 939 

activity levels, but either do or do not preserve patterns of correlations. We made random, 940 

reciprocal swaps of activity between neurons to generate surrogate datasets which maintained 941 

network activity in each frame as well as the number of blocks of activity for each neuron. 942 

However, these datasets destroyed the correlation structure. In a second set of surrogate 943 

datasets we used SHARC to iteratively generate surrogates in which the correlation structure 944 

was also maintained.  945 

C. To maintain dynamic changes in activity levels and correlations that are associated with the 946 

two behavioral conditions we swap-shuffled or performed SHARC separately for each 947 

behavioral epoch, then concatenated the 9 resulting surrogate subrasters to create each 948 

surrogate dataset. 949 

D. We trained a classifier (with a connection probability = 0.3) on each real dataset, then tested 950 

that classifier on swap or SHARC-shuffled surrogate datasets generated from that real 951 

dataset. Accuracy was significantly higher for the SHARC-shuffled surrogates, which 952 

maintain the behaviorally-modulated correlations found in the original dataset (accuracy for 953 

SHARC shuffled surrogate datasets = 68 +/- 4%, classifier accuracy for swap shuffled 954 

surrogate datasets = 61 +/- 4%, p < 0.05, sign-rank test, n = 10 mice). 955 

  956 
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 957 
Figure 5. Behaviorally-specific patterns of coactivity are formed by neurons that are active 958 

in both conditions, but coactive with different partners in each condition. 959 

Left: We identified combinations of 3 neurons that are specifically enriched during one 960 

behavioral condition (occurring more often during social interaction than in 95% of surrogate 961 

datasets, and occurring less often during home cage exploration than in 50% of surrogate 962 

datasets, or vice-versa). We then identified overlapping combinations occurring during the 963 

opposite behavioral condition in which a single neuron was ‘left out.’ In other words, we 964 

identified combinations from the two conditions that overlapped in exactly two neurons. 965 

Right, top: Histogram showing the number of distinct 3 neuron home cage combinations that 966 

contain the neuron which participates in a social combination but is ‘left out’ during home cage 967 

behavior. Right, bottom: Histogram showing the number of distinct 3 neuron social 968 

combinations that contain the neuron which participates in a home cage combination but is ‘left 969 
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out’ during social interaction. In the vast majority of cases, neurons that are ‘left out’ in one 970 

condition are still active during that condition and participate in other combinations. 971 

  972 
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 973 
 974 
Figure 6. Shank3 KO mice have disorganized ensembles for which correlations fail to 975 
enhance the transmission of information about social behavior. 976 
A. The mean time that Shank3 KO mice or wild-type (WT) littermates spend interacting with a 977 

novel juvenile mouse of the same sex during a 5 min assay. Data has been pooled from 8 978 
unimplanted WT mice as well as the 5 implanted WT mice used for microendoscopic 979 
imaging, and 5 unimplanted KO mice in addition to the 4 implanted mice used for imaging. 980 
For implanted mice we used the average of interaction time for the 2 novel mice. Pooled data 981 
showed decreased interaction in KO mice (173 +/- 12 s vs. 120 +/- 18 s for WT and KO 982 
respectively, p < 0.05, t-test). The un-implanted cohort alone shows a similar significant 983 
decrease in interaction time for KO mice (165 +/- 15 s vs 110 +/- 16 s for WT and KO 984 
respectively, p < 0.05, t-test). In the implanted cohort there was a similar trend toward 985 
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decreased interaction for KO mice (186 +/- 20 s vs 133 +/- 37 s, for WT and KO 986 
respectively, p = 0.21, t-test). 987 

B. (Similar to Fig. 1D). Scatter-plot showing the activity of each neuron during each behavioral 988 
condition, expressed as a percentile relative to a null distribution generated by circularly 989 
shuffling that neuron’s activity. Activity levels during social interaction or while the mouse 990 
was alone in its home cage are plotted on the x and y axis, respectively. Kernel density plots 991 
along the axes indicate the fraction of neurons whose activity was at a given percentile of the 992 
null distribution. Neurons with activity > 90th percentile of shuffled datasets (green dotted 993 
line) were considered to be positively modulated, whereas neurons with activity < 10th 994 
percentile (green dotted line) were considered to be negatively modulated during each 995 
behavior. Data is plotted for Shank3 KO mice (red) and WT littermates (blue) (mean 996 
percentile of activity during social interaction, WT: 50 +/- 2 percentile; KO: 64 +/- 2 997 
percentile; p < 0.0001 by 2-sample t-test; mean percentile of activity during home cage, WT: 998 
47 +/- 2 percentile; KO: 51 +/- 2 percentile; p = 0.1, t-test).  999 

C. Bar graph showing the fraction of neurons whose activity was positively or negatively 1000 
modulated (>90th percentile or <10th percentile) during social interaction. The proportion of 1001 
neurons which increased activity during social interaction was significantly greater in KO 1002 
mice (22% in WT vs. 39% in KO, chi-squared = 17.7, p < 0.0001), whereas the 1003 
downregulated ensemble was significantly smaller in KO mice (25% in WT vs. 15% in KO, 1004 
chi-squared test, 8.2, p < 0.005). Error bars denote the binomial S.E.M. algebraically derived 1005 
from total number of neurons and the proportion that were modulated in the specified 1006 
direction. 1007 

D. The proportion of 3 neuron combinations occurring during home cage exploration that are 1008 
enriched > the 99.9th percentile compared to swap-shuffled datasets was similar across WT 1009 
(Blue; 7.6%) and KO (Red; 7.8%) mice. By contrast, the proportion of 3 neuron 1010 
combinations occurring during social interaction that are enriched > 99.9th percentile 1011 
compared to swap-shuffled datasets was 7.5% in WT compared to only 3.4% in KO mice 1012 
(total number of home cage combinations: 4,187 in 5 WT mice, and 5,878 in 4 KO mice; 1013 
total number of social combinations: 5,487 in 5 WT mice, 16,326 in 4 KO mice). The top 1014 
two plots show histograms of enrichment for the home cage (upper) or social conditions 1015 
(middle); the lower panel is a bar graph showing the fraction of these combinations that were 1016 
specifically enriched above the 99.9th percentile (chi-squared = 165, p < 0.0001). Error bars 1017 
denote the S.E.M. algebraically derived from the binomial distribution, the number of 3 1018 
neuron combinations in each condition, and the proportion of those combinations that were 1019 
enriched.  1020 

E. Performance of classifier trained on real datasets and tested on surrogate datasets. 1021 
Performance was not better (and was non-significantly worse) when correlation structure was 1022 
maintained using SHARC (classifier accuracy: 62 +/ 4% for SHARC vs 63 +/- 2% for swap 1023 
shuffled surrogate datasets, p = 0.47, sign-rank test). 1024 

 1025 
 1026 
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 1028 
 1029 
 1030 
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 1031 
Supplemental Figure S1. Spatial Decorrelation of Neuronal Signals.  1032 

A. Example image (top) and individual neuron GCaMP traces (bottom) from prefrontal cortex 1033 
imaged with implanted endoscope. 1034 

B. The average GCaMP signal from a region of interest (ROI), corresponding to one neuron, was 1035 
corrected by subtracting the average GCaMP signal from the surrounding pixels, in order to 1036 
spatially deconvolve signals from each ROI vs. the surrounding neuropil. Examples traces from a 1037 
single neuron are shown. 1038 

C. The pairwise correlation matrix between signals from different neurons is shown (calculated 1039 
from 550 seconds of activity from a single wildtype mouse), for the original GCaMP signals (top 1040 
left), the surround signals (top right), the surround-subtracted signals (bottom left), and the 1041 
surround-subtracted signals after lowpass filtering (bottom right).  1042 

 1043 
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 1044 

Supplemental Table S1. Details for each mouse included in this study. 1045 

The table shows the genotype, sex, number of imaged neurons, and peak classifier accuracy 1046 
(performance when half the data was used for training and half for testing). Figure 2 showed how 1047 
classifier accuracy depends on the input connection probability; because their performance was 1048 
not >50% for multiple input connection probabilities, WT mice 3 & 5 (marked with #) were not 1049 
included in this illustrative plot. However, we did not exclude data from these mice in any 1050 
analyses. WT mice 1-5 were wild-type littermates of Shank3 KO mice. WT mice 6-10 (indicated 1051 
by italics) were not littermates of Shank3 KO mice and were therefore not included as WT 1052 
controls for the analyses shown in Figure 6. 1053 
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