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We developed a spatially explicit community
occupancy model based on Markov random fields
that accounts for spatial auto-correlation and
interspecific interactions in occupancy while also
accounting for interspecific interaction in detection.
Simulation showed the model can distinguish different
mechanisms of environmental sorting competition and
spatial-autocorrelation. We applied our model to camera
trap data from a Fisher(Pekania pennanti)-Marten(Martes
americana) and Coyote(Canis latrans)-Fox(Vulpes
vulpes) system in Apostle Island National Lakeshore.
Results showed the observed partitioning pattern
between marten and fisher distributions could be better
explained by a flipped mainland-island source-sink
pattern rather than competition, while we detected some
evidence that on top of the mainland-island source-sink
pattern, there was a positive association between fox and
coyote that deserved further study.
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Introduction
Drivers of distributions of species and community

structures are among the most important questions in
ecology. There exists various classical theories e.g. niche
theory (Hutchinson (1957)), and Lotka-Voterra models Lotka
(1910); Volterra (1928). These theories concentrated
on species-specific characteristics interacting with the
environment and considered presence as a function of
niche optimizing and inter-species interactions. Conceptually,
in these approaches, species were ecologically unique
and modeling geographic patterns conditioned on site
characteristics in a high-dimensional niche space and all
interactions happened in such space (e.g. niche partitioning).
This paradigm emphasizes drivers associated with differences
in species life histories. In contrast, (MacArthur and Wilson
(2001)) emphasized the importance of random patch-level
colonization and extinction probabilities in forming species
richness patterns which further was adopted by Stephen
Hubbell’s neutral theory on community assemblage (Hubbell
(2001), see Volkov et al. (2003) for a review). Meta-population
modelling was another example of spatial explicit theory
emphasized the importance of dispersal (Hanski (1983)). This
paradigm emphasized differences in patch characteristics,
especially their geographic arrangements.

Recent research suggested that communities reflect both
species- and patch-level drivers, i.e . neither species
nor sites were exchangeable. Leibold et al. (2004)
extended meta-population models to community assembly,
and considered the spatial process and natural history
processes at the same time. The relative influence of species
characteristics and site characteristics remained unclear in
most communities. Research on plant communities (e.g.

Lasky et al. (2017)), marine systems (e.g. Shurin et al.
(2009); Göthe et al. (2013); Meyer (2017)), and microbial
systems to separate species characteristics and spatial
characteristics in both experimental and natural communities
(see Logue et al. (2011) for a review) suggested that a
gradient from almost fully spatial-driving to almost fully natural
history-driving in community assemblage. Island systems
provide useful natural experiments for exploring community
assembly dynamics Kadmon and Allouche (2007) although
most studies have occurred in tropical systems which tend
to be biologically rich Sklenář et al. (2014); Hubbell (1997),
however, even in typical island settings neither large mammal
communities nor temperate systems have generated much
attention. Reasons may include cryptic life histories of
large mammals and the relative rarity of temperate island
archipelagos.

It is important to model different processes explicitly
to understand their relative importance(Cottenie (2005);
Dray et al. (2006)). Probabilistic Graph Modeling (PGMs,
Koller and Friedman (2009)) is a general framework for
modeling systems with unspecified dependence structures
(e.g. competition between species, spatial auto-correlation
between sites). Markov Random Field modeling (MRF) is a
kind of PGM that defines joint distributions of sets of random
variables linked by non-directed graphics which allow cycles
(Vanmarcke (2010); Cressie (1992)). MRF has long been
used to model spatial correlations in ecology and agriculture,
e.g. in spatial ecology (Hughes et al. (2011); Hepler et al.
(2018)), as well as temporal analysis (Zhu et al. (2005)) and
interspecific interactions (Harris (2016)). It was also widely
used for modeling networks in social systems (West et al.
(2014)), genetic associations (Wei and Li (2007)), as well as
competing species (Harris (2016)).

Due to a recent flourish of camera-trapping research,
ecologists now can get vast amounts of detection
and non-detection data which can be used to infer
presence-absence (P/A) of moderate to large-sized animals.
However, imperfect detection (e.g. false absence due to
animal detection constrain) remains a challenge (Kéry and
Schmidt (2008)). Occupancy modeling (MacKenzie et al.
(2003)) addresses imperfect detection and infers true P/A
and detection rates from repeat sampling. This idea was
also explored by computer vision and image modeling
communities earlier (e.g. after development of the EM
(Expectation-Maximization) algorithm which allows maximum
likelihood estimation when models depend on unobserved
latent variables (e.g. true occupancy Dempster et al. (1977))).
MRF with imperfect observations were also explored in the
image reconstruction context (Chalmond (1989), Ibáñez and
Simó (2003)). Following the basic framework of hierarchical
modeling, we can build various occupancy-like models
based on the idea that observations are samples taken from
detection distributions conditioned on unobserved latent
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true patterns that follow other characteristic distributions.
Multispecies occupancy models developed by Rota et al.
(2016) used a multinomial-logistic regression which estimated
different predictors for different coexistence patterns. Kéry
and Royle (2008) used a hierarchical structure to model
species interactions that can be viewed as a Bayes network
(Koller and Friedman (2009)). These techniques facilitate
research on assembly of animal communities on both island
and other landscapes. However neither Kéry and Royle
(2008) nor Koller and Friedman (2009) can model interactions
of species and spatial correlations simultaneously. Since for
Rota et al. (2016), the number of possible patterns were too
large and for Kéry and Royle (2008) the spatial correlation
had a non-direct nature. In contrast, MRF models allowed
cycles in the interaction network, i.e. there was no need for
a root species that all other species were conditioned on,
meanwhile, MRF was the classical model for modeling spatial
autocorrelations. Thus MRF-based occupancy-like models
could be an alternative choice for joint modeling of site and
species-specific drivers. The objective of this study was to
develop a model that can capture spatial auto-correlation and
interspecific interactions while controlling for environmental
predictors and, consequently, understanding the drivers of
distributions of competing species pairs in the Apostle Islands
National Lakeshore (APIS, Wisconsin, USA).

We focus on two pairs of plausibly competing species:
fisher(Pekania pennanti)-marten(Martes americana) (FM
system) and coyote(Canis latrans)-red fox(Vulpes vulpes)
(CF system). In APIS, 30% of sites with fisher detections
also had marten detections and 15% of sites that had
marten detections also had fisher detections (2014-2017),
in contrast, 64% of sites that had red fox detections also
had coyote detections and while 28% of sites that had
coyote detections also had red fox detections (Fig.1). Our
goal was to understand reasons why competing species
pairs show different coexistence patterns on landscape. In
niche-based theories, a partition pattern like fisher and
marten could be understood as spatial niche partitioning
due to competition, while coexistence could be achieved
by partitioning other niche dimensions such as time. In
these theories, competition was a factor promoting partition
pattern. In dispersal related theories, species were more
likely to exist close to the source of dispersing individuals
which is usually a stable mainland population, if species were
independent, they would coexist on islands closer to mainland
with higher probability subject to dispersal capability. Since
we observe a spatially partitioned pattern for fisher-marten,
it may be explained by competition (niche-based)or different
source-sink dynamics(dispersal-based). Significanlty we
observe that marten tend to occur on more distant islands.
For coyote and fox, coexistance at closer islands, could be
explained by dispersal from mainland but we also would like to
evaluate whether there exists any association between them
other than mainland distance dependency.

For the FM system, we pose two working hypothesis for
the observed pattern:

1) Distribution of both species on the islands reflect similar
mainland-distance dependency (spatial effects). while
separation at the site level was due to competition
(interaction effects)

2) Distribution of both species on the islands reflect
differing mainland-distance dependencies but show
minor competition at the site level.

For the CF system, we pose two working hypothesis for the
observed pattern:

1) Distribution of both species in the islands reflect spatial
factors. Coexistence facilitated by separation in time.

2) Trophic position and life-history drives distribution (foxes
avoid coyotes at the site level[interaction effects]),
spatial effects at the island level are minor.

Figure 1. Detection of 4 target species on the islands, 0 (red): not detected, 1
(green): detected, dots represent camera locations on the APIS

Methods
Study Area.
APIS is located on the southwest shore of Lake Superior
(USA) and lies in the transition zone between temperate
and boreal forest regions. APIS is distinct from tropical
islands (where much research on community assembly has
occurred) because of severe winters and relative low primary
productivity. Ten species of native carnivores were detected
during 2014-2017 Allen et al. (2017) (Fig.1). How these
species coexist and how richness differs between islands is a
fundamental question for understanding community dynamics
in temperate island systems.

Camera Trapping Surveys.
During 2014-2017, APIS staff and collaborators conducted
camera-trapping surveys to determine distributions and
relative abundances of mammal carnivores in the National
Lakeshore Allen et al. (2017). Twenty-one of 22 islands which
make up the archipelago were surveyed using a 1km2 lattice
(grid) sampling frame. Within each grid cell there was one
camera trap. Baits were placed on 1/2 cameras at deployment
and at the remaining 1/2 during mid-deployment camera
checks. Since there was no full snapshot of the whole island
system at any time, we assume the underlying distribution did
not change during the survey period. We divided surveys into
60-day blocks to create repeat observations.

Spatial Explicit Community Occupancy Analysis using
Binary Markov Random Field Model.
We used a binary Markov Random Field (MRF) model
(a.k.a. Ising model Ising (1925)) to model the distribution
of competing species in a spatial explicit manner. Coding
of true occupancy status followed the convention in network
science, i.e. +1 for presence and −1 for absence. This
symmetric coding was more conventional in physics but
less so in ecology. Models with a centering term that
modeled the "large scale" response due to environmental
predictors (centered autologistic model Hughes et al. (2011))
which tried to detect auto-correlation in the residuals of
large scale response due to environment were used in
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ecology. However theoretical studies on this model by Wolters
(2017) suggested better performance of a symmetrical coding
rather than centering the model when associations (e.g.
competition, spatial autocorrelations) were expected strong
and because centered models will predicted non-linear
relationships between strength of association and log odds
of two species being coexist/co-absent while symmetrical
coding did not have this problem. Further, symmetrical
coding avoided the cross product between different terms
(i.e. environment and interactions) in the negative potential
function (log probability mass function (pmf) up to a constant
difference) of this model (Koller and Friedman (2009)) which
helped us to evaluate relative contributions of different
mechanisms. Further parameters of a symmetrical-coding
model had better conditional interpretation, e.g. regression
coefficient β was the conditional log odds of presence given
all other sites and species. This property was important
in understanding strength of different mechanisms (Blanchet
et al. (2020), argument 2).

To make comparisons between spatial and interspecific
drivers in shaping species’ spatial distributions in the islands,
two components were considered simultaneously in the
graph associated with the joint distribution: 1) a nearest
neighborhood spatial autocorrelation at camera-site level (site
level hereafter,Hepler et al. (2018)) within and among islands
and 2) local species associations at site level (We assume
that partial associations reflect interactions, similar to Harris
(2016)). We denote the design matrix for environmental
covariates as X and response of certain species k (k =
1,2..,w) to environment X as βk. Further in this case
study, due to the different nature of site linkages within and
across islands, inter-island and intra-island correlations were
modeled separately. We denote the strength parameters of
these two correlations as ηex and ηin, and known adjacency
matrix Dex, Din (eqn.1). Mainland-island with linkage
matrix Dml shares the same strength of inter-island spatial
autocorrelation in this study. We denote the presence and
absence vector of species i on the landscape as Zi Then the
joint distribution of all species at all sites has form:

P (Z1, ...,Zw|θ)∝ exp[
w∑
k=1

(XβkZk

+ηexk ZTk Dml

+1
2η

in
k ZTk DinZk

+1
2η

ex
k ZTk DexZk

+
∑
l>k

γlkZTk Zl)]

(1)

Note that the first term accounts for an environment
response (mainland-island effect), the second accounts for
mainland-island process (as a special environment predictor,
mainland-island spatial effect), the third term accounts
for intra-island spatial auto-correlations (spatial effect), the
fourth term accounts for inter-island spatial auto-correlations
(and can be other types of auto-correlations) and the last
term accounts for all inter-specific interactions. In the
mainland-island setting, we assumed that there were no
inter-island spatial auto correlation so Dex has all 0 as its
entriess.

Accounting for Imperfect Detection and Short-term
Interactions.
Following the logic of occupancy-like modeling (MacKenzie
et al. (2003)), we model observed detection-nondetection as
repeated samples from a detection process. Associations in
short-term detection can also be informative about species
interaction. We further assume that the interspecific
interactions are local (i.e. no spatial auto correlations
considered in the detection process). We used another
binary MRF (Ising model) conditioned on occupancy status of
species to model the detection process. In total there were two
binary MRF models 1) latent occupancy 2) detection condition
on occupancy. Only species occupying a certain site will be
included in the detection MRF and species not occupying will
have probability of non-detection of 1. Formally, denote ykij
as species k’s detection status at site i during period j. The
likelihood function at site i and detection period j is given by
eqn.2.

P (y1ij ,y2ij , ...|Z1i,Z2i, ...,θ)∝

exp(
w∑
k=1

[Xdet
ij β

det
k ykijIZki=1

+
∑
l>k

γdetlk ykijylijIZki=1IZli=1])

(2)

which I{} is the indicator function and IZli=1 = 1 only if
Zli = 1 and IZli=1 = 0 otherwise. The indicator function
will "knock out" the species from detection interaction if it
was not occupying that site. The reasoning behind this
knocking out was that we assume that non-detection was
caused by absence of species thus should be understand as a
do-calculus (Pearl (1995)) rather than conditioning. Unlike the
occupancy part, this conditional likelihood function is tractable
for reasonable numbers of species (e.g. < 10) because of
the relatively small size of the underlying graph. The joint
likelihood function of the whole detection history, conditioned
on occupancy was the product of each site and period. The
joint (unnormalized) likelihood function of observed detection
data then can be calculated by multiplying eqn.1 and eqn.2.
The missing Zs can be estimated similarly with unknown
parameters.

Priors were set to be vague normal distributions. Due to
the relative small number of repeats and lack of environmental
variation in our APIS case study. We put a normal prior with
variance 0.1 on intercept of detection (0.95 HDR for detection
rate: [0.22,0.78]) as part of our assumptions. Again this was
not necessary for the model per se (as seen in simulation),
but part of the case study. Sensitivity analysis on this part
was also conducted. Posterior distributions were simulated
through a Markov chain Monte Carlo (MCMC) algorithm
(Hastings (1970)). To overcome the double-intractable nature
of the posterior (Murray et al. (2012); Møller et al. (2006)),
we followed the single parameter change method proposed
by Murray et al. (2012). The full description of the algorithm
used can be found in Appendix S1. Diagnostic evaluation of
MCMC results were done using R package coda (Plummer
et al. (2006)).

Selection Between Stepping-Stone and Mainland-Island
Model.
We compared two general models for spatial auto-correlation
between islands in this study.
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Table 1. Model Parameters

Parameter Dimension Ecological Meaning Remarks

Ykij ,ykij {-1,1} detection of species k at site i and detection period j data
n integer number of sites considered known
w integer number of species considered known
p,p′ integer number of predictors in occupancy/detection known
Xdet
ij n×p environmental predictors for detection site i period j known

X n×p environmental predictors for all sites known
Dml n×1 distance from mainland, special in case study known
Din,Dex n×n adjacency matrix for intra/inter island auto-correlation known
Zk {−1,1}n Latent occupancy of species k latent
βk p×1 response of species k to environment in occupancy estimate
βdetk p′×1 response of species k to environment in detection estimate
ηexk 1×1 strength of (intra-island) spatial auto-correlation for species k estimate
ηink 1×1 strength of inter-island spatial/temporal auto-correlation for species k estimate
γlk 1×1 interspecific association between spp.k and spp.l in occupancy estimate
γdetlk 1×1 interspecific association between spp.k and spp.l in detection estimate

Figure 2. Dependence structure on single island, with two species Square indicates observed detections while circle indicates latent occupancy, green shows 1
or detection/occupancy, edges indicates conditional dependence. Upper parts showed species 1 while lower was for species 2, note that only if two species coexist
can there be an edge between the detection

1) A stepping-stone model assumed that sites at edge
of an island can be a neighbor to sites on another island
in a MRF sense. We assign this linkage using Delaunay
triangulation (Okabe et al. (2009), Fig.S1). Strength of
correlation was assumed to decay exponentially through the
normalized distance (Shurin et al. (2009)). Sites on the closest
islands have linkage to mainland and the log odds of having
species occupying such site decay exponentially through the
normalized distance to mainland (Shurin et al. (2009)).

2) A mainland-island model assumed that sites on different
islands were conditionally independent given their distance
to mainland, the log odds of having species occupying a
site decayed exponentially through the normalized distance
to mainland(Shurin et al. (2009)).

Bayes Factor (BF), a Bayesian generalization of Likelihood

ratio test, can be used for model selection (Gelman et al.
(2013)). We can calculate the posterior predictive distribution
of data following Raftery et al. (2006). One obstacle to
using BF in this model is the intractable likelihood function.
However we could follow Descombes et al. (1999) to use an
augmentation method to cancel out the intractable normalizing
constant in likelihood (Appendix. ). Since the ratio is also
estimated, robustness diagnostics following Descombes et al.
(1999) could be conducted.

. Different processes can drive coexistence to different
directions, e.g. environmental sorting promotes coexistance
while competition promotes partitioning. A different question,
compared with the strength and direction of each process
was: in the observed pattern, what was the contributes of
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each process? For instance, it is possible that species A
and B compete, however we observe that they still coexist
because of environmental sorting? In this case, we may argue
that competition destabilized the observed (coexisting) pattern
because it prefers partitioning while environmental sorting
stabilized the observed pattern because it favors a coexisting
pattern. We propose to use negative potential functions (a.k.a.
Hamiltonian) as a statistic to evaluate the contribution of each
term on the observed pattern. This proposal was inspired
by the original statistical physics convention in which each
term in the negative potential function was an energy of
different form(Koller and Friedman (2009)). These statistics
also were used in various fields in analysis of stability of
systems (Ezaki et al. (2017); Becker and Karplus (1997)).
Statistically, a negative potential function can be viewed
as a log probability mass function (pmf) up to a constant
difference. Large positive terms stablize the observed pattern
(by making probability of this term large). Note that this
was the contribution on the probability mass of the observed
pattern, i.e. a high positive contribution to the negative
potential function means the corresponding term made the
probability mass on the observed pattern high. Hence we
avoid using the term log likelihood since the contribution was
to understand as which mechanism (term) made the observed
pattern more likely to occur here, i.e. a parameter was fixed
and we were evaluating probability mass of the observed
patterns. Posterior distributions for different terms of negative
potential functions were calculated using posterior samples of
occupancy status and model parameters. All implementations
were in R (R Core Team (2019)) and C++ (Eddelbuettel
and Sanderson (2014); Eddelbuettel and François (2011)).
Implementations can be found on author’s github here.

Simulations.
Simulations were conducted using the same spatial
arrangement of APIS’ camera trapping grids, as well as
regular grids sized 10× 10, 15× 15, 20× 20 and 25× 25.
On APIS’ camera grids, we tested three mechanisms: 1)
Competition, 2) No-interaction and 3) Sorting. In competition
simulations, two species had same reaction to environment
(or distance to mainland for APIS) and a negative association.
In no-interaction simulations, two species had opposite
reaction to environment or distance to mainland (represent
niche difference/flipped source sink) and no association.
In sorting simulation, two species had same but relative
weak reaction to environment or mainland distance and a
positive association. There were spatial auto-correlations on
all mechanisms. On regular girds, we tested two species
on a random draw landscape with one environmental
predictor (note that we did not randomize this environment)
while on APIS, we used distance to mainland as the
predictor since there was a lack of environmental variations.
Detailed simulation settings see Table.S1 and Table. S2. In
simulations, all parameters had vague priors.

Posterior Predictive Checking.
We performed posterior predictive distribution checks using
6 statistics in the APIS case study. They were; 1) the
frequency of detection for fisher and marten and 2) frequency
of detection for coyote and fox, this represented how often
we see the species; 3) mean overall sites that had at least
one detection for fisher and marten or 4) for coyote and
fox, this represented the naive occupancy; 5) correlations
between naive occupancy in each system (FM or CF), in

which naive occupancy was 1 if species was ever seen at
that site and -1 otherwise; 6) number of sites had confirmed
coexist for two species. In total 2,000 posterior predictive
detection histories with the same time frame as the original
APIS data were sampled and posterior predictive p-values
for each statistic were calculated. Small p-values indicated
variations the model failed to capture.

Results
Simulations.
Summary statistics of posterior medians of key parameters
(Interaction in occupancy, interaction in detection, reaction to
environment and strength of spatial auto-correlation). Fig.3
showed that we generally could recover correct inference
using regression models but were conservative on spatial
auto-correlation due to relative small number of grids, as also
shown in Hughes et al. (2011).

FM System.
In total 3× 106 samples were drawn after 5× 104 burning in
and thinned by 300. Diagnostics showed sufficient mixing of
the chain (Fig.S2). Log Bayes factors (log posterior odds of
two models) for mainland-island models and stepping stone
models were estimated to be 9.82, hence data decisively
supports mainland-island rather than the stepping stone
model following the recommended cutoff of Kass and Raftery
(1995)). Further analysis will be based on the Mainland-Island
model.

Table.2 shows the posterior estimations of model
parameters of interest for the mainland – island model of
the FM system. We detected a significant positive distance
dependency in fisher (ηex = 2.479,CI = [0.976,4.744]) and a
negative distance dependency in marten’s occupancy (ηex =
−0.789,CI = [−1.907,−0.0558]).
Table 2. Posterior estimation of model
parameters in Fisher-Marten mainland-island system
ηex represented the distance dependency, ηex > 0 meant decay through
distance, ηin represented the intra-island spatial auto-correlation, γoc

represented the association between species in occupancy and γdet

represented the association between species in detection, P (θ > 0|data)
was the posterior probability that certain parameter was greater than 0

Parameter Median 95% CI P (θ > 0|data)
Fisher ηex 2.48 [0.976,4.74] 1.00
Marten ηex -0.789 [-1.91,-0.0558] 0.016
Fisher ηin 0.0378 [-0.232,0.328] 0.60
Marten ηin 0.260 [0.0551,0.444] 0.99
γoc 0.0870 [-0.215,0.393] 0.71
γdet -0.0122 [-0.326, 0.322] 0.47

However, we did not detect significant association
between these species in either occupancy or detection
(CI = [−0.215,0.393], [−0.326,0.322]). Marten
showed a intra-island spatial auto-correlation 0.260
CI = [0.0551,0.444]). These findings support hypothesis 2
for the partitioning pattern of fisher and marten on APIS.

Posterior distributions of negative potential functions in
the FM system for different terms Fig.4 showed again
that association has no significant contribution to the
distribution pattern of the FM system. The FM system
seemed to be dispersal/environment driven for fisher, while
dispersal/environment had similar level of contribution with
intra-island spatial auto-correlation for marten.
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Figure 3. Difference between posterior medians and true parameter values of 100 simulated data sets First column: Competition, species had same
environment dependency and negative interspecific interaction, Second column: No interaction, species had different environment dependency and no interaction,
Third column: Sorting, species had same environment dependency and positive interspecific interaction. Rows corresponding to parameters estimated in the model.
First row: Interaction in occupancy, Second row: Interaction in detection, Third row: Reaction on environment, Fourth row: Spatial autocorrelation. X axis was the size
of lattice or APIS (155 grids). Shading of boxes indicates each of the two “species” simulated

Figure 4. Posterior distribution of
different terms in negative potential function
Value represent the contribution of certain term in the negative potential
function (log likelihood plus constant), note that we combined mainland-island
and intercept which represent the overall environment.

Posterior predictive checking showed no conflict between
data and our model, all 6 p-values were greater than 0.05
Fig.5.

CF System.
Log Bayes factors (log posterior odds of two models) for
mainland-island and stepping stone models were estimated to
be 42.2, hence data decisively supported the mainland-island
rather than the stepping stone model following the
recommended cutoff of Kass and Raftery (1995)). Further
analysis will be based on the Mainland-Island model. Table.1
shows posterior estimation of model parameters. We
detected a significant positive distance dependency in fox
but not coyote (Coyote:ηex = 0.552,CI = [−0.378,1.69]
Fox: ηex = 2.41,CI = [0.428,6.30]). Meanwhile,
posterior association in occupancy was estimated positive
(γoc = 0.234,CI = [−0.041,0.53], p(γoc > 0|data) = 0.95).
These findings suggest that on top of dispersal/environment
drivers, we have some evidence of a positive association
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Figure 5. Posterior predictive check for the FM system
There were no conflicts between data (red line) and predictive distributions of
our model according to the 6 statistics used

Figure 6. Posterior distribution of
different terms in negative potential function
Value represent the contribution of certain term in the negative potential
function (log likelihood), note that we combined mainland-island and intercept
which represent the overall environment.

between two species at grid level that need further evaluation.

Table 3. Posterior estimation of model
parameters in Coyote-Fox mainland-island system
ηex represented the distance dependency, ηex > 0 meant decay through
distance, ηin represented the intra-island spatial auto-correlation, γoc

represented the association between species in occupancy and γdet

represented the association between species in detection, P (θ > 0|data)
was the posterior probability that certain parameter was greater than 0

Parameter Median 95% CI P (θ > 0|data)
Coyote ηex 0.552 [-0.378 1.69] 0.88
Fox ηex 2.41 [0.428 6.30] 0.99
Coyote ηin 0.196 [-0.0186 0.426] 0.96
Fox ηin -0.0696 [-0.345 0.207] 0.30
γoc 0.234 [-0.0411 0.528] 0.95
γdet 0.427 [0.211 0.646] 1.00

Posterior distribution of negative potential function in CF
system of different terms was shown in Fig.6. Similar to the
FM system, dispersal/environment was also driving the CF
system. In contrast, spatial auto-correlation and interspecific
interaction seemed to be important also. Note that we
detected a significant positive association in 60 days scale
in detection may due to some behavioral interaction between
them.

Posterior predictive checking showed no conflict between
data and our model, all 6 p-values were greater than 0.05
Fig.7.

Figure 7. Posterior predictive checking for CF system
There were no conflict between data (red line) and predictive distribution
of our model according to the 6 statistics used

Discussion

We developed and tested a MRF-based, multispecies,
spatially explicit, occupancy model which allowed evaluation
of the relative contributions of spatial and life history drivers.
This model enables ecologists who conduct research on
community structure to consider spatial and life history drivers
jointly and explicitly. Though the model assumed patterns
constant though time (single season), it is straightforward
to extended it into a multiseason model. Compared with
Bayesian network-based multispecies frameworks proposed
by Kéry and Royle (2008), our method did not ask for a
species to be the root of the network and allows cycles in
the network. Moreover, analysts can condition occupancy
on another species to accommodate a single dominant
competitor. Compared with Rota et al. (2016), our method
had a better interpretation especially when a species network
was large since in our method, interaction between species
were modeled explicitly by auto-regression terms. Neither
Kéry and Royle (2008) nor Rota et al. (2016) were spatially
explicit. Partly because the graph represented the spatial
correlation, it had no natural direction and could be represent
by a directed graph like Kéry and Royle (2008) did for species
while the number of possible patterns was too large to assign
unique linear predictors for each pattern as in Rota et al.
(2016). Markov random field modeling was used in quantifying
interspecific interactions by Harris (2016) and can help identify
interactions between species when controlling for environment
and other confounding interactions (e.g. apparent competition
where A, B both interact with C while no interaction between
A and B)(Blanchet et al. (2020)).

Our results on two pairs of plausibly competing species as
components of the meso-carnivore community also showed
that community structure reflected drivers associated with
two broad theoretical paradigms. First we detected positive
intra-island spatial-autocorrelation for 2 species out of 4.
This spatial autocorrelation term will make sites no longer
exchangable even when distance to mainland was controlled.
Spatial autocorrelation also had different strengths for the
four species considered which means species also were
not exchangeable even when considering spatial processes.
Coyotes and foxes had different strengths of dependence on
mainland distance, likely due to different dispersal ability, i.e.
coyotes(which are larger) likely can disperse farther than foxes
and, thus have weaker distance dependency.

Note that we detected an opposite direction of mainland
distance dependency on occupancy of fisher and marten.
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The FM system provides a possible example where the
mainland serves as sink rather than source for a species
in a meta population point of view. This spatial pattern
was recently verified independently using genetic techniques
(Smith et al., in review) A more general meta-community
framework should be used in considering island or island-like
systems. If two species follow similar dispersal patterns but
need to partition spatially we should expect closer islands
to be more likely occupied by one of the species than the
further islands and partitioning should happen on islands with
similar close distances to mainland (i.e. perpendicular to the
mainland-island dispersion direction). However, we observed
similar level of co-absence on island regardless of their
distance to mainland, i.e. martens were not occupying close
island regardless whether there was fisher or not. Meanwhile
the partitioning of fisher and marten happened in parallel
(distance dependency) rather than independently of distance
(ie competition) to the mainland-island dispersal direction
which was different from what we would expect based on
hypothesis 1 (i.e. distance dependency with competition).
We did not observed fisher and marten occupying sites
closer to mainland or partitioning at site level. The FM
system appeared to better conform to hypothesis 2 because
fishers dispersal direction appeared to be from mainland
to islands while martens dispersal appeared to be from
islands to mainland. However these results were solely
from distribution data and additional evidence from genetics,
movement measurements, or behavior etc. would be needed
to further support this argument.

For the CF system, we observed that spatial
auto-correlation had a strong influence on coyote distribution.
This may due to relative small size of the islands compare
to coyote home ranges. Typical coyote home ranges were
in 10km2 scale (Mills and Knowlton (1991); Hibler (1977))
which is around the full size of islands in APIS. Home range
size reported for red fox was smaller and in 1 ∼ 10km2

scale( Ables (1969); Dekker et al. (2001); Trewhella et al.
(1988)) and was smaller in size than individual islands in
APIS. Together with mainland distance dependency, spatial
correlation patterns of coyote and fox were consistent with
our knowledge of their movement ability, i.e. coyotes have
stronger dispersal ability and larger home ranges and thus
weaker distance dependency and stronger intra-island spatial
autocorrelation compared with foxes. Patterns of coyotes
and foxes demonstrate that species are not interchangeable
(Island Biogeography Theory) and that distance dependency
is modified by life history characteristics.

The FM system also had a spatial auto-correlation effect.
Furnas et al. (2017) reported a meta-analysis on home
range sizes in California, USA. Their results showed that
female fishers had approximately 6 km2 at 20 km to the
coast to approximately 13 km2 at 120 km while males had
home range sizes that varied from 12 km2 at 20 km to
approximately 27 km2 at 120 km to coast. We did not
detect strong intra-island spatial auto correlation in fisher,
which may indicate a relatively small home range for these
animals on islands compared to other studies, which was
consistent with our prior knowledge that fisher’s home range
declines when close to coasts (Powell (1982); Yaeger (2005)).
Studies of marten home ranges in Canada indicate their home
ranges can vary from 10∼ 100km2 scale (Smith and Schaefer
(2002)), we also detected spatial auto-correlation for marten.
Further home range and movement study may be needed to
confirm our findings based on distributions on these islands.

Studies in Canada on interaction between coyote and foxes
showed that they typically partition through habitat use. But
this pattern depends heavily on prey abundance (Theberge
and Wedeles (1989)). Evidence also showed coyote may
aggressively kill red foxes (Gese et al. (1996)). The positive
correlation between foxes and coyotes may suggest that foxes
trade off predation risk for prey availablity in a prey-limited
system. Prey biomass should be measured to further explain
the positive correlation pattern. Further study should be
conducted to further evaluate these spatial distribution based
findings.

Conclusion

We implemented a MRF based multi-specific occupancy
that can account for both spatial auto-correlations and
inter-specific interactions simultaneously. We used this
technique in a case study on two pairs of presumably
competing species in the Apostle Island National Larkeshores.
The analysis showed the observed partitioning pattern of
fisher and marten can be explained by a flipped source-sink
pattern on the island. However more evidence from movement
and genetics might be needed to further confirm this
observation from distribution study. Meanwhile we detected
a positive association among coyote and fox different from
studies on mainland systems which deserves further study.
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Figure S1. Graph used in Stepping stone model

Stepping Stone Graph

MH Algorithm and Bayes factor
Before Moller’s work in 2006, Bayesian inference on MRF models was precluded because the intractable normalizing constant

is a function of parameters of interest. Moller proposed an auxiliary variable based on the Metropolis–Hastings ratio (Møller
et al. (2006)). A further development due to Murray et al. (2012) is called the single parameter change method. In our case, we
follow Murray et al. (2012) by sampling an auxiliary variable X to follow the MRF distribution whose parameters are proposed θ′.
Together with imperfect detection, the Metropolis–Hastings ratio is given by eqn.S1.

MH(θ′|θ) = π(θ′)p(y|Z)qθ′ (Z)qθ(X)
π(θ)p(y|Z)qθ(Z)qθ′ (X)

(S1)

The sample can be drawn using the Coupling From the Past algorithm (CFTP Propp and Wilson (1996)) or long enough Gibbs
chain for approximation. We tested the difference between using perfect sample taken by CFTP algorithm and Gibbs sample in the
single parameter exchange algorithm. Results showed if iteration for Gibbs is large enough (e.g. >150) the posterior distribution
sampled by these two method were essentially the same (see example of Fig.S4). CFTP and Gibbs were implemented in R and
C++ modified from R package IsingSampler Epskamp (2015) with help of RcppArmadillo Eddelbuettel and Sanderson (2014)
and sparse matrix C++ class provided by R package Matrix Bates and Maechler (2019) and Armadillo to optimized for the
sparse graph as we have (open sourcesed as R package SparseIsingSampler available on GitHub).

Posterior sample of Z will also be taken using a Gibbs algorithm, with fully conditional odds of being +1 as

P (Zki = +1|Z−ki,y)
P (Zki =−1|Z−ki,y) =

p(y1i.,y2i....ywi.|Zki = 1,z.i)exp(Xiβk +
∑
j∈n(i) γ

oc
ij Zj)

p(y1i.,y2i....ywi.|Zki =−1,z.i)exp(−Xiβk−
∑
j∈n(i) γ

oc
ij Zj)

(S2)

To calculate the Bayes factor, we need to calculate the likelihood of each sample then using the harmonic rule (Raftery et al.
(2006)). To calculate the likelihood, we take a sample Y from a pre-specified parameter setting φ, the ratio of normalizing constant
C(θ) and C(φ) can be calculated as the expectation: Eqθ−φ(Y). We can calculate log likelihood added by −log(C(φ)) which
is intractable. However, by choosing the same φ for two competing models, we can calculate BF of two models by canceling out
the intractable constant induced by φ.

Simulation

MCMC Diagnostic
We showed the trace plot and auto-correlation function of the interspecific interaction strength in occupancy γoc as an example

of diagnostic

Release of Prior on Detection Rate
Again it is not necessary to set this prior in a more general setting. But on APIS case study, if we release this prior on intercept

of detection rate, the posterior had multiple modes for fisher and marten model, due to the fact that fisher’s low naive detection
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Table S1. Simulation setting for regular lattice

Parameter Competition No interaction Sorting

β1 0.5 0.5 0.3
β2 0.5 -0.5 0.3
ηin 0.25 0.25 0.25
γoc -0.3 0 0.3
γdet -0.2 0 0.2

Table S2. Simulation setting for APIS

Parameter Competition No interaction Sorting

ηex1 1 1 0.3
ηex2 1 -1 0.3
ηin 0.2 0.2 0.2
γoc -0.3 0 0.25
γdet -0.2 0 0.2

Figure S2. MCMC for γoc in FM

Figure S3. MCMC for γoc in CF
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Figure S4. One example of same task using CFTP and MH
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Figure S5. Multiple modes in fisher’s mainland-island strength if release the prior

can due to both low occupancy or low detection, these result won’t influence our result about fisher and marten system but rather
influence the numerical result of spatial auto correlation strength. This will cause a very large and unrealistic mainland-island
strength in fisher S5.
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