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How species organize spatially is one of ecology’s
most attractive questions. Multiple theories have
been advanced and various models developed to
account for environment, interactions among species,
and spatial drivers. However, relative importance
comparisons of explanatory phenomena generally are
neglected in these analyses. We developed a spatially
explicit community occupancy model based on Markov
random fields that accounts for spatial auto-correlation
and interspecific interactions in occupancy while also
accounting for interspecific interaction in detection.
Simulations demonstrated that the model can distinguish
different mechanisms of environmental sorting, such
as competition and spatial-autocorrelation. We applied
our model to camera trap data from a fisher(Pekania
pennanti)-marten(Martes americana) and coyote(Canis
latrans)-fox(Vulpes vulpes) system in Apostle Island
National Lakeshore (Wisconsin, USA). Model results
indicated that the observed partitioning pattern between
marten and fisher distributions could be explained
best by a flipped mainland-island source-sink pattern
rather than by competition. For the coyote-fox system,
we determined that, in addition to a mainland-island
source-sink pattern, there was a positive association
between fox and coyote that deserved further study.
Our model could be applied readily to other landscapes
not restricted to islands, therefore enhancing our
understanding to species coexistence patterns.
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Introduction

Drivers of species distributions and community structures
are among the most important questions in ecology.
Classical theories include niche theory (Hutchinson, 1957)
and Lotka-Voterra models (Lotka, 1910; Volterra, 1928).
These theories concentrated on interactions between species
and their environments (hearafter: environment sorting
where environmental filters select for species with certain
characteristics and allow them to coexist) and interaction
among species (hearafter:interspecies interactions, e.g.
competition) while generally ignoring the spatial arrangement
of habitat patches. In contrast, MacArthur and Wilson
(2001) emphasized the importance of random patch-level
colonization and extinction probabilities in forming species
richness patterns. This idea was further developed by
Hubbell’s neutral theory on community assemblage (Hubbell
(2001), see Volkov et al. (2003) for a review). Meta-population
modelling is another example of spatially explicit theory, which
emphasized the importance of dispersal (Hanski, 1983). This

paradigm emphasized importance of geographic arrangement
of habitat patches (spatial processes, e.g. spatial
auto-correlations) in determining the distributions of species.
However, recent research suggested that communities reflect
both species- and patch-level drivers. Leibold et al. (2004)
extended meta-population models to examine community
assembly, while accounting for spatial and natural history
processes concurrently. Yet, the relative importance of
natural history processes (environmental sorting and species
interactions) and spatial processes remained unclear in
most communities and unaddressed in most analyses.
Researches has examined plant communities (e.g. Lasky
et al. (2017)), marine systems (e.g. Shurin et al. (2009);
Göthe et al. (2013); Meyer (2017)), and microbial systems
separate spatial, environmental and interspecific interactions
in both experimental and natural communities (see Logue
et al. (2011) for a review). These studies suggested
that a gradient from almost fully spatial-driven to almost
fully environment/interaction-driven patterns in community
assemblage.

Due to recent advancements in camera-trap
technology, ecologists can generate vast quantities of
detection/non-detection data to infer presence-absence
(P/A) of moderate to large-sized animals. However,
imperfect detection (i.e. false absence due to imperfect
sampling) remains a challenge (Kéry and Schmidt, 2008).
Occupancy modeling (MacKenzie et al., 2003) addresses
imperfect detection by modeling a detection process explicitly
and estimating detection rates from repeated sampling.
Following a basic idea of modeling occupancy and detection
hierarchically, one can build various occupancy-like models
based on the idea that observations are samples taken from
detection distributions conditioned on unobserved latent
true patterns that follow other characteristic distributions.
To understand both environmental sorting and inter-specific
interactions, researchers proposed use of multispecies
occupancy models of two kinds. The occupancy model
developed by Rota et al. (2016) used a multinomial-logistic
regression which estimated different predictors for different
coexistence patterns, while Kéry and Royle (2008) used
a hierarchical structure to model species interactions that
can be viewed as a Bayes network (Koller and Friedman,
2009). These techniques facilitated research on assembly of
animal communities in island systems and other landscapes.
However, neither Kéry and Royle (2008) nor Koller and
Friedman (2009) can model interactions of species and
spatial processes simultaneously and explicitly in order to
understand their relative importance (Cottenie, 2005; Dray
et al., 2006). This, because too many possible patterns make
multi-logistic modeling intractable as in Rota et al. (2016) and
the spatial correlation cannot be represented using directed
graphs as in Kéry and Royle (2008).
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Probabilistic Graph Modeling (PGMs, Koller and Friedman
(2009)) provides a general framework for modeling systems
with unspecified dependence structures (e.g. competition
between species, spatial auto-correlation between sites).
Markov Random Field modeling (MRF) is a kind of PGM that
defines joint distributions of sets of random variables linked
by non-directed graphics (Vanmarcke, 2010; Cressie, 1992).
MRF has long been used to model spatial correlations in
ecology and agriculture, e.g. in spatial ecology (Hughes et al.,
2011; Hepler et al., 2018), as well as temporal analysis (Zhu
et al., 2005) and interspecific interactions (Harris, 2016). It
was also widely used for modeling networks in social systems
(West et al., 2014), genetic associations (Wei and Li, 2007),
as well as competing species (Harris, 2016). MRF models
with imperfect observations were also explored in image
reconstruction contexts (Chalmond, 1989; Ibáñez and Simó,
2003). In contrast to Bayes networks Kéry and Schmidt
(2008), MRF models allowed cycles in the interaction network,
i.e. there was no need for a root species that all other species
were conditioned on, and allowed species A to interact with
B, B to interact with C and C to interact back with A,
meanwhile, MRF was the classical model for modeling spatial
autocorrelations. Thus MRF-based occupancy-like models
could be an alternative for joint modeling of environmental,
interspecific interaction, and spatial drivers. Our objective was
to develop a model to capture spatial auto-correlation and
interspecific interactions while controlling for environmental
predictors and, consequently, understanding the drivers of
distributions of close competitor species in the Apostle Islands
National Lakeshore (APIS, Wisconsin, USA).

We focus on two pairs of plausibly competing species:
fisher(Pekania pennanti)-marten(Martes americana)
(fisher-marten system) and coyote(Canis latrans)-red
fox(Vulpes vulpes) (coyote-fox system). In APIS, 30% of
sites with fisher detections also had marten detections and
15% of sites that had marten detections also had fisher
detections (2014-2017), in contrast, 64% of sites that had red
fox detections also had coyote detections and while 28% of
sites that had coyote detections also had red fox detections
(Fig.1). In niche-based theories, a partition pattern like fisher
and marten could be understood as spatial niche partitioning
due to competition, while coexistence could be achieved by
partitioning other niche dimensions such as time. In these
theories, competition was a factor promoting the partition
pattern. In dispersal-related theories, species were more
likely to exist close to the source of dispersing individuals
which is usually a stable mainland population. If species were
independent, they would coexist on islands closer to mainland
with higher probability subject to dispersal capability. Since
we observe a spatially partitioned pattern for fisher-marten,
it may be explained by competition or different source-sink
dynamics (spatial processes). Importantly, we observed
that marten tended to occur on more distant islands that
might indicate a "flipped" mainland-island pattern opposite
the prediction of the mainland as source. For coyote and
fox, coexistence at islands closer to the mainland, could
be explained by dispersal from the mainland. Yet, after
accounting for such potential spatial processes, we are
interested also in determining if these two species associate
or compete (dominant competitor excludes sub-dominant).
We were unable to obtain detailed environmental predictors
in this relatively small and homogeneous area, hence, the
only "environmental" predictor considered here was distance
to mainland (negative exponential transformed) which should

be considered as part of a spatial process.
For the fisher-marten system, we pose two working
hypothesis for the observed pattern:

1) Distribution of both species on the islands reflects
similar mainland-distance dependencies (spatial
effects). While separation at the site level is due to
competition (interaction effects)

2) Distribution of both species on the islands reflects
differing mainland-distance dependencies but shows
minor competition at the site level.

For the coyote-fox system, we pose two working hypothesis
for the observed pattern:

1) Distribution of both species in the islands reflects spatial
drivers. Coexistence is facilitated by separation in time.

2) Trophic position and life-history drives distribution (foxes
avoid coyotes at the site level), while spatial effects at
the island level are minor.
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Figure 1. Detection of 4 target species on the islands, blue: detected, red: not
detected, dots represent camera locations on the APIS

Methods
Study Area. Apostle Island National Lake Shore is located on
the southwest shore of Lake Superior (USA) and lies in the
transition zone between temperate and boreal forest regions.
APIS is distinct from tropical islands (where much research
on community assembly has occurred) because of severe
winters and relatively low primary productivity. Ten species
of native carnivores were detected during 2014-2017 (Allen
et al., 2017) (Fig.1). How these species coexist and how
richness differs between islands is a fundamental question
for understanding community dynamics in temperate island
systems.

Camera trapping surveys. During 2014-2017, APIS staff
and collaborators conducted camera-trapping surveys to
determine distributions and relative abundances of mammal
carnivores in the National Lakeshore (Allen et al., 2017).
Twenty-one of 22 islands which make up the archipelago
were surveyed using a 1km2 lattice (grid) sampling frame.
Within each grid cell there was one camera trap. Scent lures
were placed at half of the camera stations at deployment
and rotated to the remaining stations during mid-deployment
camera checks. Since all islands could not be monitored at the
same time, though substantial overlap did occur, we assume
the underlying distribution of species did not change during
the 3-year survey period. We divided surveys into 60-day
blocks to create repeat observations.
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Spatial Explicit Community Occupancy Analysis using
Binary Markov Random Field Model. We used Ising model
(Ising, 1925), a kind of Markov Random Field (MRF) model
whose responses are all binary, to model the distribution
of competing species in a spatially-explicit manner. Coding
of latent true occupancy status followed the convention in
network science, i.e. +1 for presence and −1 for absence.
This symmetric coding was more conventional in physics but
less so in ecology. Models with a centering term enabled
modeling of the "large scale" response due to environmental
predictors (centered autologistic models Hughes et al. (2011))
which tried to detect auto-correlation in the residuals of
a large scale response due to environmental drivers were
used in ecology. However theoretical studies with this
model by Wolters (2017) suggested better performance of
a symmetrical coding rather than centering the model when
associations (e.g. competition, spatial autocorrelations) were
expected. Additionally, centered models predicted non-linear
relationships between strength of association and log odds
of two species coexisting or co-absenting while symmetrical
coding did not have this problem. Further, symmetrical
coding avoided the cross product between different terms
(i.e. environment and species interactions) in the negative
potential function (log probability mass function (pmf) up to a
constant difference) of this model (Koller and Friedman, 2009)
which helped us evaluate relative contributions of different
mechanisms. In addition, parameters of a symmetrical-coding
model had better conditional interpretation, e.g. regression
coefficient β was the conditional log odds of presence given
all other sites and species. This property was important in
understanding the strength of different mechanisms (Blanchet
et al. (2020), argument 2).

To make comparisons between environmental sorting,
spatial process and interspecific interactions drivers in
shaping species’ spatial distributions, three components
were considered simultaneously but separately in the graph
associated with the joint distribution: 1) a linear predictor
calculated from environmental covariates 2) a nearest
neighborhood spatial autocorrelation at camera-site level (site
level hereafter,Hepler et al. (2018)) within and among islands
and 3) local species associations at site level (We assume
that partial associations reflect interactions, similar to Harris
(2016)). We denote the design matrix for environmental
covariates as X and responses of certain species k (k =
1,2..,w) to environment X as βk. Further in this case
study, due to the different nature of site linkages within and
across islands, inter-island and intra-island correlations were
modeled separately. We denote the strength parameters of
these two correlations as ηex and ηin, and known adjacency
matrix Dex, Din (eqn.1). Mainland-island with linkage
matrix Dml shares the same strength of inter-island spatial
autocorrelation in this study. We denote the presence and
absence vector of species k on the landscape as Zk. We
denote the transpose of Zk as ZTk Thus, the joint distribution
of all species at all sites has form:

P (Z1, ...,Zw|θ)∝ exp[
w∑
k=1

((Xβk)TZk

+ηexk ZTk Dml

+1
2η

in
k ZTk DinZk

+1
2η

ex
k ZTk DexZk

+
∑
l>k

γlkZTk Zl)]

(1)

For detailed meaning of parameters see Table.1. We use θ as
an abbreviation of all parameters in a conditional probability.
Note that the first term accounts for an environment
response (mainland-island effect), the second accounts for
mainland-island process (as a special environment predictor,
mainland-island spatial effect), the third term accounts for
intra-island spatial auto-correlations (spatial effect), the fourth
term accounts for inter-island spatial auto-correlations (and
can be other types of auto-correlations) and the last term
accounts for all inter-specific interactions between species k
and species l while γlk is the strength of association between
the two species. In the mainland-island setting, we assumed
that there were no inter-island spatial auto correlation so Dex

has all 0 as its entries.

Accounting for Imperfect Detection and Short-term
Interactions. Following the logic of occupancy-like
modeling (MacKenzie et al., 2003), we model observed
detection/non-detection as repeated samples from a
detection process. Associations in short-term detection can
also be informative about species interaction. We further
assume that the interspecific interactions are local (i.e. no
spatial auto correlations considered in the detection process).
We used another binary MRF (Ising model) conditioned
on occupancy status of a species to model the detection
process. In total, there were two binary MRF models: 1)
latent occupancy, and 2) detection conditioned on occupancy.
Only species occupying a certain site will be included in the
detection MRF and species not occupying will have probability
of non-detection of 1. Formally, we denote ykij as species
k’s detection status at site i during period j. The likelihood
function at site i and detection repeat j is given by eqn.2.

P (y1ij ,y2ij , ...|Z1i,Z2i, ...,θ)∝

exp(
w∑
k=1

[Xdet
ij β

det
k ykijIZki=1

+
∑
l>k

γdetlk ykijylijIZki=1IZli=1])

(2)

We use θ as an abbreviation of all other parameters in
the conditional probability. I{} is the indicator function
and IZli=1 = 1 only if Zli = 1 and IZli=1 = 0 otherwise.
The indicator function will "knock out" the species from
detection interaction if it was not occupying that site. The
reasoning behind this knocking out was that we assume that
non-detection was caused by absence of a species and thus
should be understood as a do-calculus (Pearl, 1995) rather
than conditioning. Unlike the occupancy part, this conditional
likelihood function is tractable for reasonable numbers of
species (e.g. < 10) because of the relatively small size of the
underlying graph. The joint likelihood function of the whole

Yunyi Shen et al. | bioRχiv | 3

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2020.08.05.238774doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.05.238774
http://creativecommons.org/licenses/by-nd/4.0/


detection history, conditioned on occupancy was the product
of each site and period. The joint (unnormalized) likelihood
function of observed detection data then can be calculated by
multiplying eqn.1 and eqn.2. The latent Z’s can be estimated
similarly with unknown parameters.
Priors were set to be vague normal distributions due to the
relatively small number of repeats and lack of environmental
variation in our APIS case study. We put a normal prior with
variance 0.1 on intercept of detection (0.95 HDR for detection
rate: [0.22,0.78]) as part of our assumptions. Again this was
not necessary for the model per se (as seen in simulation),
but part of the case study. Sensitivity analysis on this part
was also conducted. Posterior distributions were simulated
through a Markov chain Monte Carlo (MCMC) algorithm
(Hastings, 1970). To overcome the double-intractable nature
of the posterior (Murray et al., 2012; Møller et al., 2006), we
followed the single parameter change method proposed by
(Murray et al., 2012). We calculate a p-value level that credible
interval (CI) spans 0. The full description of the algorithm
used can be found in Appendix.S2. Diagnostic evaluation of
MCMC results were done using R package coda (Plummer
et al., 2006).

Selection Between Stepping-Stone and Mainland-Island
Model. We compared two general models for spatial
auto-correlation between islands in this study.
1) A stepping-stone model assumed that sites at the edge
of an island can be a neighbor to sites on another island
in a MRF sense. We assign this linkage using Delaunay
triangulation (Okabe et al. (2009), Fig.S1). Strength of
correlation was assumed to decay exponentially through the
normalized distance (Shurin et al., 2009). Sites on the
closest islands have linkage to the mainland and the log odds
of having species occupying such site decay exponentially
through the normalized distance to mainland (Shurin et al.,
2009).
2) A mainland-island model assumed that sites on different
islands were conditionally independent given their distance
to mainland, the log odds of having species occupying a
site decayed exponentially through the normalized distance
to mainland (Shurin et al., 2009).
Bayes Factor (BF), a Bayesian generalization of a Likelihood
ratio test, can be used for model selection (Gelman et al.,
2013). We assume two models are equally plausible and thus
Bayes factor can be understand as the ratio between posterior
probabilities of the two models. We can calculate the posterior
predictive distribution of data following Raftery et al. (2006).
One obstacle to using BF in this model is the intractable
likelihood function preventing us from directly calculating
the predictive probability of each model by calculating the
likelihood function during the posterior sampling. However
we could follow Descombes et al. (1999) in calculating
the likelihood function by sampling augmentation variables
(Appendix. S2). Since the ratio is also estimated, robustness
diagnostics following Descombes et al. (1999) could be
conducted.

Evaluating Contribution of different Drivers. Different
processes can drive degree of spatial partitioning among
species, e.g. environmental sorting can promotes coexistence
when species need similar resources (Grinnell, 1917;
Saporetti-Junior et al., 2012) while competition promotes
partitioning (Tilman, 1985; Gastauer and Meira-Neto, 2014).
A different question, compared with the strength and direction

of each process was: which driver makes the observed
pattern likely? For instance, is it possible that while species
A and B compete, we observe that they still coexist because
of environmental sorting? In this case, we may argue
that environmental sorting had a larger contribution to the
observed (coexistence) pattern.
We propose to use negative potential functions (a.k.a.
Hamiltonian functions in our specific setting from Cipra (1987)
eqn.1.1, Osogami (2017); Pfeuty (1970)) as statistics to
evaluate the contributions of each driver on the observed
pattern as drivers are modeled explicitly in the proposed
model. In our setting the Hamiltonian function is the log of the
right hand side of eqn.1. These types of statistics were used
to quantify "fitness landscapes" of amino acid interactions
in protein systems (Levy et al., 2017; Shekhar et al., 2013;
Ferguson et al., 2013; Morcos et al., 2014) with many other
applications in quantifying stability of interactions (Ezaki et al.,
2017; Becker and Karplus, 1997; Cipra, 1987).
Statistically, a negative potential function can be viewed as a
fitness score defined by log probability mass function (pmf)
up to a constant difference. Patterns with higher scores had
higher probabilities of occurrence (Levy et al., 2017). In the
model specification, we used several distinct terms to account
for different ecological processes and we can use the score
of each of the terms to evaluate the relative contribution of
each process to the observed pattern. For instance, γlkZTk Zl
is the score for interspecific interaction between species l
and k where γlk is the strength of the interaction and Zk is
the vector of the occupancy of species k. The score is an
"accumulated" strength through occupancy. Note the score
assesses the probability mass of the observed pattern, i.e.
a high positive contribution to the negative potential function
means the corresponding term made the probability mass on
the observed pattern high. The question to be answered
here is whether a certain process (e.g. spatial) had large
contribution to the observed pattern as we argued above.
The strength of a process is different from its contribution
to the observed pattern, a different aspect of the hypothesis.
Posterior distributions for different terms of negative potential
functions were calculated using posterior samples of latent
occupancy status and model parameters. All implementations
were in R (R Core Team, 2019) and C++ (Eddelbuettel
and Sanderson, 2014; Eddelbuettel and François, 2011).
Implementations can be found on the author’s github here.

Simulations. Simulations were conducted using the same
spatial arrangement of APIS’ camera trapping grids, as well
as regular grids sized 10× 10, 15× 15, 20× 20 and 25×
25. On APIS’ camera grids, we tested three mechanisms:
1) Competition, 2) Non-interaction and 3) Sorting. In
competition simulations, two species had the same reaction
to environment (or distance to mainland for APIS) and a
negative association. In no-interaction simulations, two
species had opposing reactions to environment or distance
to mainland (represent niche difference/flipped source-sink)
and no association. In sorting simulation, two species had the
same but relative weak reaction to environment or mainland
distance and a positive association. There were spatial
auto-correlations on all mechanisms. On regular grids, we
tested two species on a random draw landscape with one
environmental predictor (note that we did not randomize this
environment) while on APIS, we used distance to mainland as
the predictor since there was a lack of environmental variation.
For detailed simulation settings see Table.S1 and Table. S2.
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Island A

spp.2

spp.1

Occupancy Detections

Figure 2. Dependence structure on single island, with two species. Squares indicate observed detections while circles indicate latent occupancy, green shows 1
or detection/occupancy, connections between nodes indicates conditional dependence. Upper parts showed species 1 while lower was for species 2, note that only if
two species coexist can there be an edge between the detection

In simulations, all parameters had vague priors.

Posterior Predictive Checks. To check for systematic
discrepancies between data and model predictions, we
performed posterior predictive checks (Gelman et al., 1996;
Lynch and Western, 2004; Gelman et al., 2013) using 6
statistics for the APIS case-study. They were: 1) the
frequency of detection for fisher and marten and 2) frequency
of detection for coyote and fox, this represented how often
we see the species; 3) mean overall sites that had at least
one detection for fisher and marten or 4) for coyote and fox,
this represented the naive occupancy; 5) correlations between
naive occupancy in each system (fisher-marten or coyote-fox),
in which naive occupancy was 1 if species was ever seen at
that site and -1 otherwise; 6) number of sites with detection of
both species from either of our species-systems.
In total 2,000 posterior predictive detection histories with the
same time frame as the original APIS data were sampled
and posterior predictive p-values for each statistic were
calculated. Small p-values indicated variations the model
failed to capture.

Results
Simulations. Differences between posterior median
estimates and true parameter values in 100 simulated
datasets were evaluated (Fig.3). In all cases 0 was contained
in the middle 50% quantile, suggesting that we generally could
recover parameter values using regression models. However,
we were conservative regarding spatial auto-correlations
(posterior medians were less than true parameter values in
some cases) due to relatively a small number of grids, as
also shown in Hughes et al. (2011). In light of this, to better
estimate spatial auto-correlation we need either a larger grid
or a greater number of repeats.

Fisher-Marten System. A total of 3 × 106 samples were
drawn after 5× 104 burn in and thinned by 300. Diagnostics
of MCMC showed sufficient mixing of the chains (Fig.S2),
suggesting that the MCMC algorithm can approximate the
posterior distribution of parameters. Log10 Bayes factors
for mainland-island models and stepping stone models were
estimated to be 4.26, (i.e. the posterior probability of
mainland-island model was 104 higher than the posterior
probability of stepping stone model) hence data decisively
supports mainland-island rather than the stepping stone
model following the recommended cutoff of 2 (Kass and
Raftery, 1995). This result suggested that the spatial pattern
of the system can be explained better by a mainland-island
model rather than a stepping stone model. Further analysis
will be based on the Mainland-Island model.

Table.2 shows the posterior estimates of model parameters
of interest for the mainland–island model of the fisher-marten
system. We detected a significant positive distance
dependency (positive means higher chance to occupy a
closer island here because distance is negative exponentially
transformed) in fisher (ηex = 2.479,CI = [0.976,4.744]) and
a negative distance dependency in marten occupancy (ηex =
−0.789,CI = [−1.907,−0.0558]).
However, we did not detect significant association
between these species in either occupancy or detection
(CI = [−0.215,0.393], [−0.326,0.322]). Marten
showed an intra-island spatial auto-correlation 0.260
CI = [0.0551,0.444]). This result supported the second
hypothesis that fisher and marten had a "flipped"
mainland-island pattern whereby fisher had a higher chance
of occupying closer islands while martens had a higher
probability of occupying more remote islands independently
of possible competition.

As discussed in our methods, the strength of a certain
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Figure 3. Differences between posterior medians and true parameter values of 100 simulated data sets. First column: Competition, species had same
environment dependency and negative interspecific interaction, Second column: No interaction, species had different environment dependency and no interaction,
Third column: Sorting, species had same environment dependency and positive interspecific interaction. Rows correspond to parameters estimated in the model.
First row: Interaction in occupancy, Second row: Interaction in detection, Third row: Reaction to environment, Fourth row: Spatial autocorrelation. X axis was the size
of lattice or APIS (155 grids). Shading of boxes indicates each of the two “species” simulated

Table 2. Posterior estimation of model
parameters in Fisher-Marten mainland-island system.
ηex represented the distance dependency, ηex > 0 meant decay through
distance, ηin represented the intra-island spatial auto-correlation, γoc

represented the association between species in occupancy and γdet

represented the association between species in detection, P (θ > 0|data)
was the posterior probability that certain parameter was greater than 0

Parameter Median 95% CI p

Fisher ηex 2.48 [0.976,4.74] 0.00
Marten ηex -0.789 [-1.91,-0.0558] 0.032
Fisher ηin 0.0378 [-0.232,0.328] 0.80
Marten ηin 0.260 [0.0551,0.444] 0.02
γoc 0.0870 [-0.215,0.393] 0.58
γdet -0.0122 [-0.326, 0.322] 0.94

process is a different question compared to the contribution
of the process. However, Posterior distributions of negative
potential functions in the fisher-marten system for different
terms (Fig.4) reinforced the our finding that association
had no significant contribution to the observed distribution
pattern of the fisher-marten system. The fisher-marten
system seemed to be dispersal/environment driven for fisher,
while both dispersal/environment and intra-island spatial
auto-correlation had similar levels of contribution for marten.
Hence, competition is weak and had a minor contribution
to the observed marten pattern which indicated a flipped
mainland-island hypothesis where mainland functions as a
sink rather than a source.

Posterior predictive checking showed all 6 p-values were
greater than 0.05 indicating no systematic discrepancies
between data and model predictions which suggested fitness
of the fitted model (Fig.5).
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Figure 4. Posterior distribution of different terms in
negative potential function for the Fisher-Marten system.
Values represent the contribution of certain term in the negative potential
function, note that we combined mainland-island and intercept which
represented the overall environment.

Fisher frequency of detection

F
re

qu
en

cy

0.00 0.04 0.08

0
20

0
40

0
60

0

p=0.398

Fisher naive occupancy

F
re

qu
en

cy

0.05 0.15 0.25

0
10

0
30

0 p=0.448

Corr of naive occupancy

F
re

qu
en

cy

−0.2 0.0 0.2 0.4

0
10

0
20

0
30

0 p=0.302

Marten frequency of detection

F
re

qu
en

cy

0.00 0.10 0.20

0
20

0
40

0
60

0 p=0.419

Marten naive occupancy

F
re

qu
en

cy

0.1 0.3 0.5

0
20

0
40

0
60

0

p=0.496

Number of confirmed coexistence

F
re

qu
en

cy

0 5 10 15 20

0
20

0
40

0
60

0

p=0.272

Figure 5. Posterior predictive checking for the
Fisher-Marten system and assessing model fitness.
All p-values are large suggested that there were no conflict between
data (red line) and predictions of our model according to the 6 statistics used
thus a good fitness of the model.

Coyote-Fox System. Log10 Bayes factors (log posterior odds
of two models) for mainland-island and stepping stone models
were estimated to be 18.3 (i.e. the posterior probability of
mainland-island model was 1018 higher than the posterior
probability of stepping stone model), hence data decisively
supported the mainland-island rather than the stepping stone
model following the recommended cutoff of 2 (Kass and
Raftery, 1995). This result suggested that the spatial pattern
of the system can be explained better by a mainland-island
model rather than a stepping stone model. Further analysis
was based on the Mainland-Island model.
Posterior estimates of model parameters (Table.3) indicated
a significant positive distance dependency in fox but
not coyote (Coyote:ηex = 0.552,CI = [−0.378,1.69] Fox:
ηex = 2.41,CI = [0.428,6.30]) (Table.3). Meanwhile,
posterior association in occupancy was estimated as
positive but only weakly significant (γoc = 0.234,CI =
[−0.041,0.53]. The posterior probability of this parameter
being positive was p(γoc > 0|data) = 0.95), suggesting
that despite dispersal/environment drivers, there may be
evidence of a positive association between two species
at grid level that needs further evaluation. These finding
supported the hypothesis that coyote-fox system might not
be fully explained by spatial factors and require further
evaluation of their positive interactions. Notably, we
detected a significant positive association in detections
(γdet = 0.427,CI = [0.211,0.646]) which might suggested a
behavioral association.
Similar to the fisher-marten system, dispersal/environment
also had the largest contribution to the observed pattern in

Table 3. Posterior estimates of model
parameters in Coyote-Fox mainland-island system.
ηex represented the distance dependency, ηex > 0 meant decay through
distance, ηin represented the intra-island spatial auto-correlation, γoc

represented the association between species in occupancy and γdet

represented the association between species in detection, P (θ > 0|data)
was the posterior probability that certain parameter was greater than 0

Parameter Median 95% CI p

Coyote ηex 0.552 [-0.378 1.69] 0.24
Fox ηex 2.41 [0.428 6.30] 0.02
Coyote ηin 0.196 [-0.0186 0.426] 0.08
Fox ηin -0.0696 [-0.345 0.207] 0.60
γoc 0.234 [-0.0411 0.528] 0.1
γdet 0.427 [0.211 0.646] 0.00
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Figure 6. Posterior distribution of different terms in
negative potential function for the Coyote-Fox system.
Values represent the contribution of certain terms in the negative potential
function, note that we combined mainland-island and intercept which
represented the overall environment.

the coyote-fox system (Fig.6). However, in contrast with
fisher-marten, both spatial auto-correlation and interspecific
interaction seemed to have some importance (Fig.6) as also
suggested by the hypothesis that there exist associations
additive to spatial drivers.
Posterior predictive checking showed all 6 p-values were
greater than 0.05 thus no systematic discrepancies between
data and model predictions which suggested fitness of the
fitted model (Fig.7).
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Figure 7. Posterior predictive checking for
the Coyote-Fox system assessing model fitness
All p-values are large suggested that there were no conflict between
data (red line) and predictions of our model according to the 6 statistics used
thus a good fitness of the model.

Discussion
We developed and tested a MRF-based, multispecies,
spatially explicit, occupancy model which allowed evaluation
of the relative contributions of spatial and life history drivers.
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This model enables ecologists who conduct research on
community structure to consider spatial and life history drivers
jointly and explicitly. Though the model assumed patterns
constant though time (single season), it is straightforward
to extended it into a multiseason analysis. Compared with
Bayesian network-based multispecies frameworks proposed
by Kéry and Royle (2008), our method did not ask for a
species to be the root of the network and allowed cycles in
the network. Moreover, analysts can condition occupancy
on another species to accommodate a single dominant
competitor. Compared with Rota et al. (2016), our method had
a better interpretation especially when a species network was
large since in our method, interaction between species were
modeled explicitly by auto-regression terms. Neither Kéry and
Royle (2008) nor Rota et al. (2016) were spatially explicit.
Partly because the graph represented the spatial correlation,
it had no natural direction and could not be represented by
a directed graph like Kéry and Royle (2008) did for species.
Also when the number of potential outcomes was too large
one cannot assign unique linear predictors for each pattern
as in Rota et al. (2016). Markov random field modeling was
used in quantifying interspecific interactions in Harris (2016)
and can help identify interactions between species when
controlling for environment and other confounding interactions
(e.g. apparent competition where A, B both interact with C
while no interaction occurs between A and B) (Blanchet et al.,
2020).
Our results on two pairs of plausibly competing species as
components of the meso-carnivore community also showed
that community structure reflected drivers associated with
two broad theoretical paradigms. First, we detected positive
intra-island spatial-autocorrelation for 2 species out of 4.
This spatial autocorrelation term makes sites no longer
exchangable even when distance to mainland was controlled.
Spatial autocorrelation also had different strengths for the
four species considered, which means species were not
exchangeable even when considering spatial processes.
Coyotes and foxes had different strengths of dependence on
mainland distance, likely due to different dispersal ability, i.e.
coyotes (which are larger) likely can disperse farther than
foxes and, thus have weaker distance dependency.
We detected an unexpected opposite direction of mainland
distance dependency on occupancy of marten. The
fisher-marten system provides a possible example where the
mainland serves as sink rather than source for a species
from a metapopulation point of view. This spatial pattern
was recently verified independently for martens using genetic
techniques (e.g. Smith et al. (2020), in review). A more
general meta-community framework should be used when
considering island or island-like systems. If two species follow
similar dispersal patterns but need to partition spatially we
should expect closer islands to be more likely occupied by
one of the species than the further islands and partitioning
should happen on islands with similar, nearby distances to
mainland (i.e. perpendicular to the mainland-island dispersion
direction). However, we observed similar levels of co-absence
on islands regardless of their distances to mainland, i.e.
martens were not occupying nearby islands regardless of
fisher presence. Meanwhile, the partitioning of fisher and
marten happened in parallel (distance dependency) rather
than independently of distance (i.e., competition) to the
mainland-island dispersal direction which was different from
what we would expect based on hypothesis 1 (i.e., distance
dependency with competition). We did not observed fisher

and marten occupying sites closer to mainland or partitioning
at site level. The fisher-marten system appeared to better
conform to hypothesis 2, because fisher dispersal direction
appeared to be from the mainland to the islands, while marten
dispersal appeared to be from the islands to the mainland.
However, these results were solely from distribution data and
additional evidence from genetics (e.g., Smith et al. (2020), in
review), movement measurements, or behavior etc. would be
needed to further support this argument.

For the coyote-fox system, we observed that spatial
auto-correlation had a strong influence on coyote distribution.
This may be due to the relatively small size of the islands
compared to coyote home ranges. Typical coyote home
ranges were ∼ 10km2 (Mills and Knowlton, 1991; Hibler,
1977) which is approximately the size of the largest islands in
APIS. Home range size reported for red fox was smaller and in
1∼ 10km2 scale (Ables, 1969; Dekker et al., 2001; Trewhella
et al., 1988) and was smaller in size than some individual
islands in APIS. Together with mainland distance-dependency,
spatial correlation patterns of coyote and fox were consistent
with our knowledge of their movement ability, i.e., coyotes
have stronger dispersal ability and larger home ranges, thus,
weaker distance-dependency and stronger intra-island spatial
autocorrelation compared with foxes. Patterns of coyotes
and foxes demonstrate that species are not interchangeable
(Island Biogeography Theory) and that distance-dependency
is modified by life history characteristics.

The fisher-marten system also had a spatial auto-correlation
effect. Furnas et al. (2017) reported a meta-analysis on home
range sizes in California, USA. Their results showed that
home ranges of female fishers varied and were approximately
6km2 within 20km of the coast while approximately 13 km2

at 120km from the coast. Male fishers had home range
sizes that varied from 12km2 at 20km to approximately
27km2 at 120km to the coast. We did not detect strong
intra-island spatial auto correlation in fishers, which may
indicate a relatively small home range for these animals on
islands compared to other studies, which was consistent with
prior knowledge that fisher home ranges decline when close
to coasts (Powell, 1982; Yaeger, 2005). Studies of marten
home ranges in Canada indicated their home ranges can
vary from 10∼ 100km2 (Smith and Schaefer, 2002), we also
detected spatial auto-correlation for martens. Further home
range and movement studies may be needed to confirm our
findings based on distributions on these islands. Studies in
Canada on interaction between coyotes and foxes showed
that they typically partition through habitat use. But this
pattern depended heavily on prey abundance (Theberge
and Wedeles, 1989). Evidence also showed coyotes may
aggressively kill red foxes (Gese et al., 1996). The positive
correlation between foxes and coyotes may suggest that foxes
trade off predation risk for prey availablity in a prey-limited
system. Given the relatively small scale of this island
system, environment was rather homogeneous and the only
environmental variation we were able to obtain was distance
to mainland which is, itself, spatial. The model has the
ability to incorporate additional environmental variation but
measurements are difficult to obtain. To better understand
the system with the proposed model detailed environmental
variables like prey biomass should be measured to further
explain the positive correlation pattern. Further study should
be conducted to further evaluate these spatial distributions.
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Conclusion

We implemented a MRF based multi-specific occupancy
model that can account for both spatial auto-correlations
and inter-specific interactions simultaneously. We used
this technique in a case-study on two pairs of presumably
competing species in the Apostle Island National Lakeshore
(Wisconsin, USA). We detected a partitioning pattern of
fisher and marten occupancy, which can be explained by a
flipped source-sink pattern in the islands. However, additional
evidence from movement data or genetics might be needed
to further confirm this observation. We detected a positive
association among coyote and fox, which, is different from
studies on mainland systems and deserves further study.
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Supplementary Materials

Supplementary Note S1: Stepping Stone Graph

Figure S1. Graph used in Stepping stone model

Supplementary Note S2: MH Algorithm and
Bayes factor
Before Moller’s work in 2006, Bayesian inference on
MRF models was precluded because the intractable
normalizing constant is a function of parameters of
interest. Moller proposed an auxiliary variable based on the
Metropolis–Hastings ratio (Møller et al., 2006). A further
development due to Murray et al. (2012) is called the single
parameter change method. In our case, we follow Murray et al.
(2012) by sampling an auxiliary variable X to follow the MRF
distribution whose parameters are proposed θ′. Together with
imperfect detection, the Metropolis–Hastings ratio is given by
eqn.S1.

MH(θ′|θ) = π(θ′)p(y|Z)qθ′ (Z)qθ(X)
π(θ)p(y|Z)qθ(Z)qθ′ (X)

(S1)

The sample can be drawn using the Coupling From the Past
algorithm (CFTP Propp and Wilson (1996)) or long enough
Gibbs chain for approximation. We tested the difference
between using a perfect sample taken by CFTP algorithm and
a Gibbs sample in the single parameter exchange algorithm.
Results showed if iteration for Gibbs is large enough (e.g. >
150) the posterior distribution sampled by these two methods
were essentially the same (see example of Fig.S3). CFTP
and Gibbs were implemented in R and C++ modified from
the R package IsingSampler (Epskamp, 2015) with help
of RcppArmadillo (Eddelbuettel and Sanderson, 2014) and
sparse matrix C++ class provided by R package Matrix
(Bates and Maechler, 2019) and Armadillo optimized for
the sparse graph as we have (open sourced as R package
SparseIsingSampler available on GitHub).
Posterior sample of Z will also be taken using a Gibbs
algorithm, with fully conditional odds of being +1 as

P (Zki = +1|Z−ki,y)
P (Zki =−1|Z−ki,y) = p(y1i.,y2i....ywi.|Zki = 1,z.i)

p(y1i.,y2i....ywi.|Zki =−1,z.i)

×
exp(Xiβk+

∑
j∈n(i) γ

oc
ij Zj)

exp(−Xiβk−
∑
j∈n(i) γ

oc
ij Zj)

(S2)
To calculate the Bayes factor, we need to calculate the
likelihood of each sample then using the harmonic rule
(Raftery et al., 2006). To calculate the likelihood, we take a
sample Y from a pre-specified parameter setting φ, the ratio
of normalizing constant C(θ) and C(φ) can be calculated as

the expectation: Eqθ−φ(Y). We can calculate log likelihood
added by −log(C(φ)) which is intractable. However, by
choosing the same φ for two competing models, we can
calculate BF of two models by canceling out the intractable
constant induced by φ.

Supplementary Note S3: Simulation

Table S1. Simulation setting for regular lattice

Parameter Competition No interaction Sorting

β1 0.5 0.5 0.3
β2 0.5 -0.5 0.3
ηin 0.25 0.25 0.25
γoc -0.3 0 0.3
γdet -0.2 0 0.2

Table S2. Simulation setting for APIS

Parameter Competition No interaction Sorting

ηex1 1 1 0.3
ηex2 1 -1 0.3
ηin 0.2 0.2 0.2
γoc -0.3 0 0.25
γdet -0.2 0 0.2

Supplementary Note S4: MCMC Diagnostic
We showed the trace plot and auto-correlation function of
the interspecific interaction strength in occupancy γoc as an
example diagnostic
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Figure S2. MCMC for γoc in FM and CF

Figure S3. One example of same task using CFTP and MH, KS test had p-value
of 0.9383

12 | bioRχiv Yunyi Shen et al. |

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 31, 2021. ; https://doi.org/10.1101/2020.08.05.238774doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.05.238774
http://creativecommons.org/licenses/by-nd/4.0/


Supplementary Note S5: Release of Prior on
Detection Rate
Again it is not necessary to set this prior in a more general
setting. But in the APIS case study, if we release this prior
on the intercept of detection rate, the posterior had multiple
modes for fisher and marten model, due to the fact that fisher’s
low naive detection can be due to both low occupancy or low
detection, these results won’t influence our conclusion about
fisher and marten system but rather influence the numerical
result of spatial auto correlation strength. This will cause a
very large and unrealistic mainland-island strength in fisher
S4.
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Figure S4. Multiple modes in fisher’s mainland-island strength if release the
prior
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