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Numerous studies covering some aspects of SARS-CoV-2 data
analyses are being published on a daily basis, including a reg-
ularly updated phylogeny on nextstrain.org. Here, we re-
view the difficulties of inferring reliable phylogenies by example
of a data snapshot comprising all virus sequences available on
May §, 2020 from gisaid. org. We find that it is difficult to in-
fer a reliable phylogeny on these data due to the large number of
sequences in conjunction with the low number of mutations. We
further find that rooting the inferred phylogeny with some de-
gree of confidence either via the bat and pangolin outgroups or
by applying novel computational methods on the ingroup phy-
logeny does not appear to be possible. Finally, an automatic
classification of the current sequences into sub-classes based on
statistical criteria is also not possible, as the sequences are too
closely related. We conclude that, although the application of
phylogenetic methods to disentangle the evolution and spread of
COVID-19 provides some insight, results of phylogenetic anal-
yses, in particular those conducted under the default settings
of current phylogenetic inference tools, as well as downstream
analyses on the inferred phylogenies, should be considered and
interpreted with extreme caution.
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Introduction

The Coronavirus disease 2019 (COVID-2019) caused by
a novel coronavirus [severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2)] emerged in Wuhan, China in
December 2019 (WHO situation report May 30, 2020) and
spread worldwide in 212 countries and territories causing
more than 17.6 million cases and 680,000 deaths within a
period of 7 months (WHO situation report August 2, 2020).

A full genome sequence analysis revealed that 2019-nCoV-2
belongs to the betacoronaviruses, but that it is divergent from
the SARS-CoV and MERS-CoV that caused past epidemics.
The 2019-nCoV-2 and the bat-SARS-like coronavirus form a
distinct lineage within the subgenus of the Sarbecovirus. The
whole-genome sequence of SaRS-CoV-2 shows 96.2% sim-
ilarity to that of a bat SARS-related coronavirus (RaTG13)
collected in the Yunnan province of China. The SARS-CoV-
2 is also closely related to the coronavirus from Malayan pan-
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golin in a particular genomic region coding for the spike pro-
tein, including the receptor-binding domain. This is notable,
because the remainder of the viral genome is most closely re-
lated to the bat coronavirus RaTG13 (1). The latter observa-
tion suggests a putative recombination event between viruses
infecting bats, pangolins, and humans.

Since the early characterization of SARS-CoV-2 in Hubei,
China, an enormous number of sequences have been char-
acterized. On July 31st 2020, approximately 75,000 full
genome sequences have become available. Molecular epi-
demiology has attempted to provide a detailed picture about
the distinct lineages and sub-strains circulating in differ-
ent geographic areas as well as about the dispersal pattern
and cross-border transmissions at different time periods dur-
ing the pandemic (https://nextstrain.org/ncov/
global; (2)). Moreover, whole-genome sequence analysis
has been used for within-country studies as well as for the
detailed investigation of viral dispersal within specific com-
munities.

To date, the globally circulating viruses have been classified
into 6 major clades denoted as S, L, V, G, GH, and GR
(https://www.gisaid.org/ (3)). Analyses of the vi-
ral sequences can unravel the number of mutations separat-
ing the lineages from the founding Wuhan haplotype. These
analyses provide a more detailed classification of variants
into haplotypes that can be used to trace the geographical
distribution and patterns of dispersal of distinct lineages (4).
Molecular epidemiology studies attempt to quantify the num-
ber of introductions of SARS-CoV-2 to different countries
and their putative geographic origin (5, 6). Haplotype anal-
yses based on SARS-CoV-2 can also provide information
about within-country infection clusters.

An analysis from Iceland applied molecular analyses and ver-
ified their results via a comparison with contact tracing net-
works (7). It concludes that, when contact tracing networks
are unavailable, phylogenetic analyses can be deployed to
disentangle infection clusters within countries. Full genome
analyses of SARS-CoV-2 can potentially identify emerging
novel variants that may alter the spike interaction with the
ACE2 receptor, TMPRSS2 protease, and epitope mapping.
This has been previously shown in a study by Korber et
al. (8), suggesting that viruses harboring the D614G muta-
tion were associated with increased SARS-CoV-2 viral loads,
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yet not associated with increased disease severity. These
findings were also supported by Bedford’s group (the Bed-
ford lab in Washington: https://github.com/blab/
ncov-D614G).

SARS-CoV-2 evolves at an estimated nucleotide substitution
rate ranging between 10~2 and 10~* substitutions per site
and per year (see Table 1 in (6)). Molecular clock analyses
have been used to estimate the time of the most recent com-
mon ancestor (MRCA) of the global pandemic as well as the
MRCA of local epidemics in different geographical regions
(see again Table 1 in (6)).

The inference of a phylogenetic tree on the full genomes
is pivotal to numerous molecular epidemiology tools and
studies (e.g., (9—13)). A plethora of studies (e.g., (14-22))
to disentangle the evolution of the SARS-CoV-2 pandemic
is currently being published at a high pace and under
considerable time pressure, both with respect to the tree
inference time, paper writing time as well as the review time
for these papers. In almost all cases, including the daily
updated virus phylogenies on the exceptional nextstrain
platform, phylogenetic inference on the currently available
virus genomes is conducted predominantly via standard
Maximum Likelihood (ML) based tools using default
program parameters. In addition, several publications also
deploy some of the fast, yet less accurate bootstrapping and
tree search options implemented in tools such as standard
RAXML (23) and 1Q-Tree (24). In general, some of these
analyses might have been (too?) rushed, not only at the
phylogenetic inference level, but also potentially at previous
stages of SARS-CoV-2 related data generation and data anal-
ysis steps (e.g., see http://virological.org/t/
issues-with-sars—-cov-2-sequencing-data/
473).

In our study, we do not follow this trend, but take a de-
tailed look at the general difficulties of inferring and post-
analyzing phylogenies on the highly challenging SARS-CoV-
2 dataset, as it contains thousands of taxa with few mutations,
and hence comparatively weak signal. Together, these afore-
mentioned difficulties render phylogenetic analysis and post-
analysis highly challenging, both with respect to the signal
that we can extract, but also regarding the numerical stability
of current tools.

The remainder of this paper is structured as follows. We
first provide an overview of our data preparation and analysis
pipeline. Subsequently, we discuss some noteworthy difficul-
ties that arose when processing the data. Then, we present the
results of our inference, rooting, and classification attempts.
We conclude the paper with a critical discussion of the re-
sults.

Data Preparation and Analysis Pipeline

Our data analysis pipeline is available at https:
//github.com/BenoitMorel/covidl9_cme_
analysis under GNU GPL.

Raw data pre-processing. We downloaded the raw data
from gisaid.org on May 5, 2020. It contained 16,453
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full genome (> 29,000 bp) raw sequences with high cov-
erage. High-coverage sequences are defined by GISAID as
sequences containing less than 1% Ns (undetermined char-
acters), less than 0.05% unique amino acid mutations, and
no insertions/deletions unless these have been verified by the
submitter.

Filtering We applied additional filters to identify se-
quences of high quality. We initially removed approximately
7,717 sequences using the following two-step strategy.
First, we trimmed external undetermined characters at the
beginning and at the end of the genomes (step 1). After
this trimming, we only kept sequences with less than 10
internal undetermined characters (step 2). We trimmed
external undetermined characters (step 1) prior to filtering
(step 2) because our goal was to only use sequences with
a low number of internal undetermined characters. Exter-
nal undetermined characters do not affect the alignment
quality since not all sequences start at exactly the same nu-
cleotide. The final filtered raw sequence dataset comprised
8,736 SARS-CoV-2 genomes and two outgroup se-
quences: the bat CoV (hCoV-19/bat/Yunnan/RaTG13/2013;
Accession ID EPI_ISL_402131) and pangolin CoV
(hCoV-19/pangolin/Guangdong/1/2019;  Accession ID:
EPI_ISL_410721) genomes.

Multiple Sequence Alignment. We aligned the 8,736 and
8,738 (including outgroups) trimmed sequences using the
parallel version of MAFFT (v.7.205 (25)) with 40 threads.

Trimming after alignment. After the MSA process, we fur-
ther trimmed the first and the last 1,000 alignment sites. We
applied this additional trimming as the sequencing did not
start/finish at the same position for all sequences. Thus, the
initial untrimmed MSA was characterized by a large amount
of missing data at the beginning and the end of the MSA (see
supplementary Figure 6).

Overall, we generated 4 distinct versions of the alignment:

1. A comprehensive (comprising all 8,738 sequences)
Full MSA with bat and pangolin Outgroups (FMSAO)

2. A comprehensive Full MSA of 8,736 sequences with-
out outgroups (FMSA)

3. A non-comprehensive (not comprising all sites, and, as
a consequence of additional removed sequence dupli-
cates, not containing all 8, 736 virus sequences; see be-
low) singletons-removed MSA with bat and pangolin
Outgroups (SMSAO)

4. A non-comprehensive singletons-removed MSA with-
out outgroups (SMSA)

We generated the non-comprehensive SMSAs by removing
so-called singleton sites from the corresponding full MSAs
(FMSA, FMSAO). For biallelic sites, that is, sites with only
two states, a singleton site is a column of the MSA where the
allele with the lowest frequency is only present in but a single
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sequence (e.g., AAAAARAAAT). Such sites only have a negli-
gible contribution to the tree inference process due to weak
phylogenetic signal. Furthermore, singleton sites can repre-
sent sequencing errors, as it is expected that most sequencing
errors will appear as singleton sites.

The FMSA consists of 3752 polymorphic sites, out of which
2503 are either biallelic singletons (e.g., AAAAAAACAAR)
or ‘multi-allelic singletons’ (e.g., AAAAAAACAAG), that is,
sites where more than one allele only occurs once, while
the site itself is not biallelic. Further, we also removed 97
‘pseudo-singleton’ sites (e.g., AAAAACCCAAG)), that is, sites
that are neither biallelic nor multi-allelic singletons, but do
contain a nucleotide with only a single occurrence. In our
example, G appears only once. The numbers of polymor-
phic sites, biallelic, and multi-allelic singletons are exactly
identical for the FMSAQO dataset (we double checked). Even
though multi-allelic singletons as well as pseudo-singletons
do contain some phylogenetic signal, we decided to remove
them as they may also represent sequencing errors. Further,
the pseudo-singleton sites only account for a small proportion
(about 2.5%) of the overall polymorphic sites.

Our singleton removal strategy is further justified by a recent
study that has shown that lab-specific sequencing practices
yield mutations that have been observed predominantly
or exclusively by single labs. These can in turn affect
the phylogeny reconstruction process (26). The authors
provide regularly updated masking recommendations at
https://github.com/W-L/ProblematicSites_
SARS-CoV2/blob/master/problematic_sites_
sarsCov2.vct.

Finally, we removed all duplicate sequences from all of the
above input MSAs, that is, all sequences that are exactly iden-
tical. We did this because identical sequences do not yield
any additional signal for a phylogenetic analysis. Further-
more, duplicate sequences confound the calculation of sup-
port values, branch lengths, and needlessly increase the com-
putational cost of the analyses.

After removal of duplicate sequences, the MSAs contained
the following number of taxa: FMSAO (4,871), FMSA
(4,869), SMSAO (2,904), SMSA (2,888). Note that, the dif-
ference in the number of taxa between SMSAO and SMSA is
not simply two (i.e., the two outgroups) as conducting the
alignment step with and without outgroups yields distinct
MSAs that in turn induce a distinct number of identical se-
quences after trimming and singleton removal.

Also note that, when only considering the ingroup align-
ments, the datasets comprise a low proportion of unique
alignment site patterns relative to the genome length: FM-
SAO/FMSA 4,997, SMSAO 1,781, SMSA 1,679. The num-
ber of unique patterns in FMSAO/FMSA is higher than the
number of polymorphic sites that we reported previously, as
the tool we used to analyze polymorphic sites ignores sites
containing gaps. These low overall numbers in conjunction
with the high number of taxa already indicate that the phylo-
genetic analysis is challenging.

Phylogenetic Inference. We initially determined the best
fit model for the data on an earlier sequence snapshot from
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April 29th using ModelTest-NG (27). ModelTest-NG se-
lected GTR+R4 (GTR model with 4 discrete free rate cate-
gories, also frequently referred to as ’free rates model’) as
best fit model. The free rates model (R4) exhibits some sub-
stantial intrinsic numerical difficulties (see ‘Difficulties’ Sec-
tion for a more thorough discussion). To this end, we decided
to use the numerically more stable GTR+I" model with 4 dis-
crete rates for all subsequent inferences.

With respect to the tree search strategy per se, we first exe-
cuted 100 RAXML-NG (28) tree searches on an earlier snap-
shot of the full MSA using 50 randomized stepwise addi-
tion order parsimony starting trees and 50 random starting
trees. We did this to explore the behavior of tree searches
on these data. We observed that tree searches initiated on
parsimony starting trees yielded phylogenies with better log
likelihood scores (consistently > 1000 log likelihood units).
Thus, we executed all subsequent phylogenetic tree searches
on the data snapshot of May 5 using parsimony starting trees
only.

Moreover, initial analyses of earlier snapshots of the data un-
surprisingly showed low bootstrap support values, low trans-
fer bootstrap support values (29), and a phenomenon that we
have termed ‘rugged likelihood surface’ (30).

We had already observed such a rugged likelihood surfaces
for difficult-to-analyze datasets with few sites and many taxa
that do typically not contain strong phylogenetic signal on
bacterial 16S datasets before (30). Characteristic of such
datasets is that, for instance, 100 independent tree searches
for the best-scoring Maximum Likelihood (ML) tree on the
original alignment will yield 100 distinct tree topologies with
similar likelihood scores. Moreover, as we will show here,
most of these ML tree topologies also exhibit a large pair-
wise topological distance. However, at the same time, we can
not deploy standard statistical significance tests to distinguish
and select among those topologically diverse trees. This is
because most of the resulting trees will not be statistically
significantly different from each other with respect to their
likelihood scores. Hence, given these substantial uncertain-
ties in the search for the best-scoring ML tree in conjunction
with the low number of variable sites we apply the following
procedure in an attempt to infer a representative phylogeny:

1. Conduct 100 ML tree searches using ParGenes (31)
that seamlessly orchestrates such searches using
RAXML-NG from randomized stepwise addition order
parsimony trees

2. Apply all statistical significance tests implemented in
1Q-Tree to this set of 100 ML trees

3. Assign ML trees to a ‘plausible’ ML tree set that are
not significantly worse than the best-scoring ML tree
under any statistical significance test implemented in
IQ-Tree (i.e., this assignment is conservative).

4. Build a majority rule (MR) and an extended majority

rule (MRE) consensus tree from the plausible ML tree
set. Note that, neither the majority rule, nor the ex-
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tended majority rule consensus trees will necessarily
be strictly bifurcating.

We conducted tree inferences exclusively on the ingroup
MSAs (FMSA/SMSA and FMSAO/SMSAO with outgroups
removed after the alignment process) as the usage of out-
groups, in particular, if they are distant from the ingroup as
is the case here, can perturb a phylogenetic analysis (32, 33).
We describe later on how we place the outgroups onto the in-
group phylogenies after the and independently of the ingroup
tree inference.

While we believe that building a consensus tree from the
plausible ML tree set constitutes a reasonable approach, the
fact of having a (in most cases) multifurcating (e.g., MR- or
MRE-based) reference tree topology complicates matters for
some of the downstream phylogenetic post-analysis methods,
which often expect a strictly bifurcating phylogeny as input.
The general strategy we adopt for addressing this issue is that,
whenever possible, we attempt to compute summary statis-
tics of post-analyses over the individual bifurcating trees in
the plausible tree set. This approach is, in a sense, analogous
to summarizing a posterior tree set as obtained from Bayesian
analyses.

For improved clarity and readability we introduce the follow-
ing notation for the inferred trees:

* FMSA-C: Majority rule consensus of plausible ML in-
group tree set on FMSA

* FMSA-CE: Extended majority rule consensus of plau-
sible ML ingroup tree set on FMSA

e FMSA-P: Plausible ML tree set for FMSA

* FMSA-B: Best-scoring ML ingroup tree inferred on
FMSA

* SMSA-C: Majority rule consensus of plausible ML in-
group tree set on SMSA

* SMSA-CE: Extended majority rule consensus of plau-
sible ML ingroup tree set on SMSA

 SMSA-P: Plausible ML tree set for SMSA

* SMSA-B: Best-scoring ML ingroup tree inferred on
SMSA

The notation for inferred trees is analogous for the FMSAO
and SMSAO datasets that do also not include the outgroups
in the tree search step. We will use the MSA versions of
FMSAO and SMSAO that do include the outgroup sequences
in a separate step for assessing outgroup rooting.

Tree Thinning. At the time of writing, more SARS-CoV-2
sequences become available on a daily basis, while the avail-
able phylogenetic signal is already comparatively weak. To
this end, it can be desirable to reduce the number of se-
quences we use for phylogenetic analysis in a reasonable
way. We call this reduction ‘thinning’ of a phylogenetic tree.
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The problem of thinning or clustering sequences on taxon-
rich trees is not new in virus phylogenetics (e.g., see (34, 35)).

To thin a given tree or input MSA prior to phylogenetic
analysis one has two options. First, one can use biologi-
cally reasonable ad hoc criteria as we already apply them
here by removing singleton and duplicate sequences, or as
deployed by nextstrain that removes sequences that are be-
low a certain length threshold. In addition, nextstrain ran-
domly sub-samples sequences within predefined geospatial
groups, to yield the inference process more computationally
tractable. Second, one can deploy an inferred comprehen-
sive phylogeny to guide the thinning process. We present and
make available one MSA-based and one phylogeny-based
thinning method in the following.

The first method which we term ‘maximum entropy’ selects
a given number of representative sequences from the align-
ment that maximize sequence diversity (as measured by their
entropy). The second method which we term ‘support selec-
tion’ relies on bipartition support values to identify a subset
of sequences with more stable phylogenetic signal.

The ‘maximum entropy’ method aims to represent the origi-
nal MSA in n sequences that capture as much of its diversity
as possible. The method takes as input an MSA and a target
number n of sequences to select from that MSA. First, we
select a ‘seed’ sequence by finding the sequence in the MSA
that is most different from a consensus sequence computed
for the entire MSA; here, we measure the sequence differ-
ence as the number of non-identical sites (i.e., the Hamming
distance). We use this seed to initiate the algorithm with a se-
quence that is as different as possible from all others. Then,
the remaining n — 1 sequences are iteratively added to the re-
sult sequence set. In each step, we select one sequence from
the yet unselected sequences of the MSA and include it in the
result sequence set. We select the new sequence such that it
maximizes the average per-site entropy of the current result
sequence set. Hence, in each step, we greedily maximize the
diversity of the current result set, as measured by its entropy;
see (36) for details on the computation. The algorithm ter-
minates once the result set contains n sequences (the initial
seed, and n — 1 sequences chosen via entropy maximization),
and then outputs the result set.

The ‘support selection’ method takes as input an unrooted
multifurcating consensus tree 7' (here either the SMSA-
C/SMSA-CE or FMSA-C/FMSA-CE trees) with a support
value associated to each internal branch/bipartition of the
tree. We define the accumulated support value (ASV) of
a tree as the sum of the support values over its internal
branches. Our support selection method constructs a bifur-
cating tree 77 by pruning subtrees from 7" such that the ASV
of T/ is maximized. If, for the sake of simplicity, we initially
assume that 7" is rooted, we can traverse 7' in post-order: at
each inner node, our algorithm selects the two children (sub-
trees) with the highest ASV, and calculates the ASV of the
current node as the sum of the two selected children ASVs
and the support value of the current bipartition. If the current
node has more than two children (i.e., it is multifurcating),
we prune the children that we did not select. If 7" is un-
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rooted, we iterate over all possible inner nodes r of 7', and
consider each r as possible root of 7. Note that each inner
node r only constitutes a ‘virtual’ root that is required to ini-
tiate the recursion, but that the bifurcating tree Tg remains
unrooted. In particular, all internal nodes of 7%, have three
outgoing branches. This includes the specific virtual root r
used for the recursion. Thus, when computing the ASV at
the current virtual root r, we select three children subtrees
instead of two. We then return the bifurcating tree 7. ; for
i =1...r with the highest ASV. ’

A disadvantage of the ‘support selection’ method is that we
can not control the number of taxa that we will prune. Con-
sider, for instance, the scenario of a multifurcation with 10
children subtrees of equal size (where the size of a subtree is
the number of terminal nodes in the subtree). In this case, the
‘support selection” method will prune 8 of these subtrees.

A key question that arises is how we assess the quality of
a tree thinning method and how we compare these meth-
ods against each other. In our study we consider topologi-
cal stability as quality criterion. More specifically, we assess
if the reduced taxon set yields a higher topological stabil-
ity in terms of pairwise relative Robinson-Foulds (RF) dis-
tances (37) among the trees in the plausible tree set and a
lower number of trees in the plausible tree set than a random
thinning/sub-sampling of the taxa to the same number. We
also assess if the thinned trees exhibit higher topological sta-
bility than the full trees on the comprehensive alignments that
include all taxa.

Outgroup Rooting with EPA-NG. To place the pangolin
and bat outgroups onto our inferred ingroup phylogenies
(more specifically, the respective plausible tree sets: FMSA-
P, SMSA-P), we use our evolutionary placement algorithm
EPA-NG (38) as it allows to place an arbitrary number of
candidate outgroup sequences onto a given phylogeny after
the ingroup inference. For each branch of the ingroup EPA-
NG computes an outgroup placement probability via a like-
lihood weight ratio (LWR). The LWR indicates how proba-
ble it is that the outgroup is located somewhere along a spe-
cific branch. In other words, the methods implemented in
EPA-NG allow to assess outgroup placement uncertainty and
can help to answer the question if the pangolin and/or bat se-
quences constitute appropriate outgroups for the SARS-CoV-
2 phylogeny.

As input, EPA-NG requires the ingroup tree, a MSA com-
prising the ingroup sequences (in this context called refer-
ence tree and reference MSA, respectively), and the outgroup
sequences aligned against this reference MSA. For the align-
ments that included the outgroups (FMSAO, SMSAO) this
is straightforward, as the outgroups are already aligned to
the reference. To also assess the impact the specific MSA
method has on the outgroup placements, we also deployed
HMMER (39) to align the outgroups to the corresponding
ingroup alignments (FMSA, SMSA) yielding two additional
reference MSAs which we denote by FMSAO-HMMER and
SMSAO-HMMER.

Furthermore, EPA-NG requires a strictly bifurcating input
tree. This poses a challenge for trees containing multifur-

Morel etal. | Difficult SARS-CoV-2 phylogenies

cations (FMSA-C, SMSA-C), as there exist alternative ap-
proaches to making such trees strictly bifurcating. To ob-
tain a better understanding of the behavior of outgroup place-
ments with EPA-NG in such cases, we performed placements
on all trees in the respective plausible tree sets (FMSA-P,
SMSA-P) that form the basis for the respective consensus
trees. We evaluate the appropriateness of the bat and pan-
golin outgroups for each tree in the respective plausible tree
sets individually by identifying the LWR of the best place-
ment, as well as the entropy of the LWR distribution for a
given outgroup.

We calculate the entropy as

H = —lerpxlog2lwrp
P

where [wr, denotes the LWR of an individual placement of
an outgroup sequence on a branch p, for all placements cal-
culated by EPA-NG.

We then summarize these values for the entire plausible tree
set using the mean and standard deviation.

We present these statistics separately for each of the
four reference MSA versions (FMSAO, SMSAO, FMSAO-
HMMER, SMSAO-HMMER) in the respective results sec-
tion on rooting the virus phylogeny.

Rooting with RootDigger. To further assess the uncertainty
of the root location via a mathematically distinct approach,
we also performed analyses with our RootDigger tool (40).
RootDigger computes the likelihood of placing a root on ev-
ery branch of an existing, strictly bifurcating tree topology
using a non-reversible model of nucleotide substitution. This
also allows to quantify root placement uncertainty, again, by
calculating LWRs for each possible root placement in terms
of root placement probabilities. As RootDigger represents
an alternative to outgroup rooting (albeit outgroup rooting
and RootDigger rootings agree on 50% of empirical datasets
tested (40)), we only executed RootDigger on the FMSA-P
and SMSA-P tree sets. As the input trees are large in terms of
number of taxa, we also parallelized RootDigger using MPI
(Message Passing Interface) to maximize throughput.

We applied RootDigger to evaluate the root placement uncer-
tainty for 5% of the trees with the highest likelihood scores in
the respective FMSA-P and SMSA-P tree sets. We only exe-
cute RootDigger on 5% of the best trees in the plausible tree
sets due to excessive runtime requirements. As for EPA-NG,
we subsequently calculate analogous summary statistics for
the root placement probability distributions over the respec-
tive selected plausible trees.

Species Delimitation with mPTP. The mPTP (41) tool im-
plements a method for molecular species delimitation on
given, rooted and strictly bifurcating phylogenies of barcod-
ing or other marker genes via so-called multi-rate Poisson
Tree Processes.

As such, it exclusively relies on the tree topology and the
associated branch lengths to infer a maximum likelihood
based delimitation. It can also sample candidate delimitations
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via a MCMC procedure. In a recent study we have shown
that mPTP can be successfully deployed to hepatitis type B
and type C' virus phylogenies for classifying sub-types (42).
To this end, we applied mPTP to all trees in FMSA-P and
SMSA-P.

In general, mPTP requires a rooted strictly bifurcating input
tree. If the tree is not rooted, mPTP will by default place a
root in the middle of the longest branch of the tree. If one
does not trust this rooting approach, one can also execute
mPTP on all distinct possible rootings of a given unrooted
tree. This is not an option provided by mPTP but needs to be
explicitly scripted. To assess the impact of root selection on
the species delimitation, we executed mPTP maximum like-
lihood delimitations with all possible roots on all trees in the
respective plausible tree sets (i.e., thousands of mPTP runs
per plausible tree topology) via an appropriate script. We
also executed delimitation runs with mPTP by rooting on the
longest branch (i.e., one mPTP run per plausible tree) using
the maximum likelihood and MCMC procedures.

Difficulties

Based on our experience with the development of likelihood-
based phylogenetic inference tools, we expected the phyloge-
netic analyses to be numerically challenging because of the
large number of highly similar sequences. In fact, the dataset
has a structure that is more similar to a typical population ge-
netics dataset than a phylogenetic dataset because it exhibits,
for instance, a high proportion of invariable sites. To this end,
the key difficulty we expected were numerical instabilities as-
sociated with the short branch lengths.

We obtained the following results on numerical (in)stability
with an earlier snapshot of the dataset.

Impact of the minimum branch length parameter set-
ting. We initially tested the impact of the minimum allowed
branch length parameter setting on RAXML-NG and IQ-Tree
log likelihood scores. For this, we used the best-known com-
prehensive tree (i.e., FMSA-B), the I model of rate hetero-
geneity, and set blmax (i.e., the maximum branch length)
as well as 1h. (i.e., the likelihood difference between suc-
cessive numerical optimization steps used for stopping the
optimization) to their default values (see Table 1).

With all these parameters fixed, we then maximized the ML
score (by optimizing branch lengths and the remaining model
parameters) of the fixed tree under different minimum branch
length settings. We show the results of this experiment in
Table 1. We observe that the minimum allowed branch
length setting has a substantial impact on the resulting log-
likelihood score. For instance, the default setting for 1Q-
Tree (b1lmin = le—6) yields a log-likelihood score that is
35 log likelihood units worse than for blmin = le—7. These
small differences in log likelihood scores can have detrimen-
tal impact, for instance, when assessing the significance of
obtained topologies via the Shimodaira-Hasegawa (43) like-
lihood ratio test. Initial experiments under GTR+FO+R4
yielded an analogous, yet even more distorted ordering of log
likelihood scores (data not shown).
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Based on the results presented in Table 1 we therefore con-
ducted all log likelihood score calculations with IQ-Tree for
determining the plausible tree set via the statistical signifi-
cance tests as well as all tree searches with RAXML-NG us-
ing a minimum branch length setting of 1le—9.

blmin LLH RAXML-NG LLH IQ-Tree
le—1 —65048.221 —65048.222
le—2 —65048.221 —65048.222
le—3 —65037.286 —65048.222
le—4 —64641.947 —65048.222
le—5 —64271.858 —64748.599
le—6 *—64271.716  *—64310.564
le—7 —64271.706 —64275.513
le—8 —64271.706 —64272.022
le—9 —64271.705 —64271.673
le—10 —64271.671 —64271.642

Table 1. Log likelihood scores of the best-scoring ML tree topology (FMSA-B) after
model parameter (GTR, ML base frequencies and I' rate heterogeneity) and branch
length optimization with the following (default) settings: blmax: 100, fast branch
length optimization, 1h.: 0.1, and varying the indicated brmin (* default) value.

Unreliable Scores under the Free Rates Model. Runs of
ModelTest-NG (27) that we conducted on earlier snapshots
of the dataset suggested that the best fit model is GTR with
an ML estimate of the base frequencies and a free rates model
of rate heterogeneity.

It is common knowledge among developers of ML inference
programs that the numerical optimization of the free rates
model is difficult and that the optimization can become stuck
in local optima.

To this end, we performed model parameter and branch
length re-optimization on the 100 fixed ML trees inferred
with RAXML-NG on an earlier snapshot of the data using
RAXML-NG and IQ-Tree. Besides the branch lengths, the
model parameters were also re-optimized independently and
from scratch for each ML tree (as opposed to conducting
this once for the entire tree set). We conducted ML re-
optimization under the GTR model with a ML estimate of
the base frequencies and the four free rates that accommodate
rate heterogeneity (GTR+FO+R4). To ensure that 1Q-Tree
optimizes all model parameters independently from scratch
for each tree, it has to be invoked separately for each tree. In
contrast to this, we can pass the entire tree set to RAXML-NG
for evaluation. To assess log likelihood score discrepancies,
we calculated the Spearman rank correlation on the result-
ing log likelihood scores obtained from RAXML-NG and 1Q-
Tree for the 100 ML trees. We show the log likelihood score
correlation in Figure 1.

The obtained correlation of merely 0.81 between the 1Q-Tree
and RAXML-NG scores for exactly identical tree topologies
under exactly the same model of evolution indicates that the
free rates model should not be used for the SARS-CoV-2
dataset. In addition, the numerical stability of the model
should be reviewed in general on a broader benchmark of
empirical datasets.

To ensure that this behavior is model-specific and not
dataset-specific we also conducted an analogous test un-
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Fig. 1. Spearman rank correlation of RAXML-NG and |IQ-Tree log likelihood scores
under the free rates model on a set of 100 fixed tree topologies.
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Fig. 2. Spearman rank correlation of RAXML-NG and 1Q-Tree log likelihood scores
under the I model of rate heterogeneity on the same set of fixed tree topologies as
in Figure 1

der the I' model of rate heterogeneity with 4 discrete rates
(GTR+FO+G). The corresponding log likelihood scores cal-
culated by RAXML-NG and IQ-Tree are shown in Figure 2.
With a correlation of 1.0 and based on an exactly identi-
cal likelihood-based ordering of trees scored by RAXML-NG
and IQ-Tree, we conclude that the I" model of rate hetero-
geneity should be used for the SARS-CoV-2 dataset.

Results

Tree Inference. To discuss the results of the tree inferences
we initially need to define the resolution ratio of the consen-
sus trees we inferred from the plausible tree sets. Let T' be
a multifurcating tree, B(T") the number of internal bifurcat-
ing nodes, and L(7T') the number of leaves. We define the
resolution ratio of T as

This ratio measures to which degree a tree is resolved. For
instance, 7(T") is equal to 0.0 for a star topology and equal to
1.0 for a fully bifurcating (fully resolved) tree.

Overall, we computed 6 metrics on the distinct trees and tree
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Metric FMSA | FMSAO | SMSA | SMSAO
Taxa 4,869 4,871 2,888 2,904
ML trees RF 0.783 0.783 0.775 0.783
Search RF 0.112 0.112 0.128 0.119
Plausible trees 76 75 74 76
MR res. r(T) 0.129 0.131 0.155 0.147
MRE res. #(T') | 0.706 0.701 0.699 0.680

Table 2. Metrics for assessing the quality of the tree inference conducted on the
four distinct MSA versions (FMSA, FMSAO, SMSA, SMSAQ). ML trees RF is the
average relative RF distance between all 100 inferred ML trees. Search RF is the
average relative RF distance between the parsimony starting trees and the final
ML trees of the respective tree searches on these starting trees. Plausible trees
represents the number of trees (out of 100) in the plausible trees set. MR and MRE
resolutions are the resolution ratios (see definition in the text) of the MR and MRE
trees computed on the plausible tree sets.

sets inferred on the four different MSA versions. We sum-
marize these metrics in Table 2. For each metric, we ob-
tained approximately identical values for all four MSA ver-
sions. Thus, removing singletons does not appear to improve
the stability of the inferred trees, albeit the reduced taxon set
can facilitate visualization and interpretation.

Moreover, for all MSA versions, we inferred 100 distinct
topologies from the 100 ML searches (i.e., the signal was so
weak that we did not recover a single tree topology twice).
Furthermore, the ML tree topologies per MSA are highly dif-
ferent among each other with an average pair-wise relative
RF distance of approximately 78%.

In contrast, the relative RF distance between the respective
parsimony starting trees and the corresponding final ML trees
of individual searches is comparatively low (ranging between
0.11 to 0.13). This indicates that every ML tree search
quickly reaches a local maximum and that all MSA versions
induce a high number of local maxima. In general, approx-
imately 75 out of 100 inferred ML trees per MSA end up in
the respective plausible tree sets. This shows that it is diffi-
cult, if not impossible, to distinguish among the topologically
highly diverse ML trees from 100 searches via statistical sig-
nificance tests. Hence, it does not appear reasonable to rep-
resent the results in the form of a single ML tree, as 75% of
the inferred trees are indistinguishable.

We further found that the majority rule consensus trees
(FMSA-C and SMSA-C) we computed from the plausible
tree sets are poorly resolved and only contain but a few bi-
furcating internal nodes. The extended majority rule trees
(FMSA-CE and SMSA-CE), which attempt to construct bi-
furcating tree topologies via a greedy heuristic strategy (note
that constructing the optimal MRE consensus with maximum
support is NP-hard) still contain a high number of multifur-
cating nodes. Nonetheless, they do show an improved degree
of resolution (r(T")) by a factor of 4 to 5 compared to the MR
trees which simplifies their visual interpretation.

Overall, we find that the ML tree topologies in the plausible
tree sets are topologically divergent which substantiates our
claims that the dataset is hard to analyze as it exhibits a weak
phylogenetic signal and a rugged likelihood surface. Our ex-
periments also show that results of phylogenetic analyses of
these data can and should not be represented via a single ML
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tree. Our findings contradict a recent study (44) that finds that
there is sufficient phylogenetic signal in the data. This study
relies on the so-called likelihood mapping technique that only
evaluates quartets (subsets of four sequences) to quantify the
signal. Therefore, the aforementioned numerical issues asso-
ciated with a full tree search on a comprehensive MSA did
not become apparent. Finally, we observe that the specific
MSA version used does not have any notable effect on the
resulting tree set.

In the following, we briefly discuss the virological conclu-
sions that we can draw by example of the FMSAO-CE tree.
The FMSAO-CE consensus tree (see Figure 3) suggests that
the clades that occur frequently in the respective plausible
tree set (> 75%) consist predominantly of SARS-CoV-2 se-
quences sampled from the same geographic area or neigh-
bouring countries. Specifically, we find large monophyletic
clusters from a single country or geographic area such as the
USA, India, Hong Kong, Shanghai, Korea, Iceland, Wales,
Scotland, England, Australia, Belgium, Luxembourg, the
Netherlands, France, etc. We detected the largest clusters for
the USA and England. Moreover, we observe clusters in-
cluding sequences from neighbouring geographic areas, for
example, Wales — England — Scotland, Luxembourg — Bel-
gium, Belgium — Netherlands, Scotland — Iceland. We ob-
serve two additional characteristic patterns: (i) clusters where
the majority of sequences are from a single country and (ii)
clades including viral sequences sampled from diverse loca-
tions. The type (i) clusters include Sweden — Wales — Eng-
land, Australia — USA, England — Australia, England — Rus-
sia — Australia — Hungary — the Netherlands — USA. The more
diverse type (ii) clusters are smaller in size and comprise viral
sequences sampled at diverse locations.

The observed patterns suggest that clustering and thus spread
occurs mainly according to geographic location. This find-
ing is compatible with the diseases spread through respiratory
particles, but also across different countries and remote loca-
tions following the patterns of human mobility. The results
of nextstrain analyses, where major clades were detected for
the USA and other regions, but also a considerable number
of cross border transmissions was reported, support our find-
ings. Notably, our and other analyses are limited by the avail-
able data sampling. The lack of large monophyletic clusters
for several geographic areas is probably due to the limited
availability of data from the respective countries.

Tree Thinning. For the sake of simplicity, we executed both
thinning methods only on FMSA and SMSA. We executed
the support selection thinning method on the respective MRE
consensus trees (FMSA-CE, SMSA-CE) instead of the MR
consensus tree as it yielded a thinned tree comprising an or-
der of magnitude less taxa. As the MR consensus comprised
too many multifurcations it yielded too small thinned align-
ments (comprising less than 50 taxa) that were not apt for bi-
ological interpretation. As maximum entropy thinning does
not require a tree as an input (see description of the method)
we executed it directly on the FMSA and SMSA alignments.
Finally, we also executed a naive thinning by randomly re-
moving a given number of sequences from the initial SMSA
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Fig. 3. Extended majority rule consensus tree (FMSAQO-CE) of the plausible tree
set of the FMSAO alignment. We coloured the tree by the country of origin of each
sequence.

L

and FMSA alignments, to assess if our two thinning ap-
proaches perform better than random thinning.

For improved clarity, we introduced the following notations
for the different thinned alignments we computed:

» F-SST: alignment obtained from the FMSA alignment
using support selection thinning.

* F-MET: alignment obtained from the FMSA alignment
using maximum entropy thinning.

* F-RAND: alignment obtained from the FMSA align-
ment using random thinning.

* FMSA-SS-P: plausible tree set of F-SST.

* S-SST: alignment obtained from the SMSA alignment
using support selection thinning.

* S-MET: alignment obtained from the SMSA alignment
using maximum entropy thinning.

* S-RAND: alignment obtained from the SMSA align-
ment using random thinning.

* SMSA-SS-P: plausible tree set of S-SST.

We calculated the same quality metrics as used for the tree
inferences on the comprehensive non-thinned MSAs for the
thinned MSAs in Table 3. We find that the stability of tree
inferences is slightly improved by support selection thinning
and maximum entropy thinning. The average relative RF dis-
tance between all 100 inferred ML trees decreases on all four
alignment versions from approximately 0.78 down to 0.67
using support selection thinning and down to 0.63 via maxi-
mum entropy thinning. The resolution (r(7")) of the consensi
improves for support selection thinning as well as maximum
entropy thinning. The better MRE resolution of support se-
lection thinning versus maximum entropy thinning is due to

Morel etal. | Difficult SARS-CoV-2 phylogenies
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Metric F-SST | F-MET | F-RAND || S-SST | S-MET | S-RAND
Taxa 912 912 912 434 434 434
ML trees RF 0.67 0.66 0.77 0.68 0.63 0.79
Search RF 0.19 0.20 0.15 0.21 0.21 0.18
Plausible trees 39 45 73 31 47 59
MR resolution 0.166 0.218 0.144 0.164 0.245 0.141
MRE resolution | 0.918 0.842 0.72 0.912 0.85 0.72

Table 3. Metrics for the thinned alignment versions. Taxa is the number of taxa in the alignment. ML trees RF is the average relative RF distance between all 100 inferred
ML trees. Search RF is the average relative RF distance between the parsimony starting trees and the final ML trees of the respective tree searches on these starting trees.
Plausible trees represents the number of trees (out of 100) in the plausible tree sets. MR and MRE resolutions are the resolution ratios (see definition in the text) of the MR

and MRE trees computed on the plausible tree sets.

Alignment Max LWR LWR Entropy

Mean SD | Mean SD
FMSAO 0.033 | 0.001 | 5.332 | 0.010
FMSAO-HMMER | 0.034 | 0.000 | 5.325 | 0.010
SMSAO 0.647 | 0.010 | 2.074 | 0.046
SMSAO-HMMER | 0.001 | 0.000 | 5.634 | 0.000

Table 4. EPA-NG root placement probability and entropy statistics for the pangolin
outgroup sequence over all trees in the respective plausible tree sets for distinct
MSA versions. Highlighted in bold is the highest confidence signal, which is the
only among all tested datasets to reach above 0.04 mean LWR.

the design of the support selection algorithm that uses the
MRE on the comprehensive tree as an input. In other words,
the method works as intended. Further, we can reduce the
size of the plausible tree set by approximately 40 — 50% with
both approaches. Nonetheless, the substantial reduction in
the number of taxa by these thinning approaches does not al-
leviate the problem of weak signal and multiple ML optima.
Finally, we find that support selection thinning and maxi-
mum entropy thinning perform consistently better than ran-
dom thinning.

Rooting. In Tables 4 and 5 we present the results for the out-
group rooting analyses using EPA-NG for the pangolin and
bat outgroup sequences, respectively.

We present the mean placement probability (likelihood
weight) and its standard deviation for the most likely
placements of all trees contained in the respective plausi-
ble tree sets obtained for the comprehensive MSAs. Re-
member that FMSAO and SMSAO stand for alignments
conducted with MAFFT including the outgroups, whereas
FMSAO-HMMER and SMSAO-HMMER represent the in-
group MSAs (excluding the outgroups) to which we subse-
quently aligned the outgroup sequences via hmmalign in
a separate step. We did this to assess the potential impact
of the alignment procedure onto the placement result. Note
that, a mean placement probability value of 0.033 represents
a placement probability of the outgroup onto the most likely
branch of the reference phylogeny amounting to 3.3%. To
further characterize the LWR distribution over the branches
of the tree, we computed the mean and standard deviation of
the entropy, calculated across each LWR distribution of the
outgroup on a given tree (see Subsection: ‘Outgroup Rooting
with EPA-NG’).

As Tables 4 and 5 show, support for an outgroup rooting us-
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Alignment Max LWR LWR Entropy

Mean SD | Mean SD
FMSAO 0.037 | 0.001 | 5.437 | 0.009
FMSAO-HMMER | 0.037 | 0.001 | 5.438 | 0.008
SMSAO 0.025 | 0.001 | 5.378 | 0.006
SMSAO-HMMER | 0.004 | 0.000 | 5.546 | 0.013

Table 5. EPA-NG root placement probability and entropy statistics for the bat out-
group sequence over all trees in the respective plausible tree sets for distinct MSA
versions.

ing either the bat or the pangolin sequence was generally low
(< 0.04). The only exception is a possible well-supported
pangolin-based rooting of the plausible trees in the SMSAO
dataset. This is surprising, as, with the exception of a small
fragment in the spike protein, the pangolin is more divergent
from the ingroup than the bat. For this specific alignment,
EPA-NG yielded a well-supported placement of the pangolin
outgroup for all plausible trees, yet always residing on the ter-
minal branch leading to sequence EPI_ISL_411956 (GI-
SAID accession). While this sequence is among the early
sequences of the pandemic, a placement of the root on the
branch leading to it, does not appear to be epidemiologically
plausible. After pruning EPT_ISL_411956 from SMSAO-
B and SMSAO and subsequently re-calculating the pangolin
placement, the placement confidence was lower (0.176). In
addition, the new placement location with 0.176 support is
located at a large distance to the initial highly supported lo-
cation of EPI_TISL_411956. The path length, in terms of
inner nodes along the tree, between the initial and the new
placement location amounts to 105 inner nodes.

As we suspected that the confident placement of the pan-
golin constitutes an artifact of the alignment process, we
repeated the MSA procedure under distinct settings. Ini-
tially, we removed the bat outgroup from the initial set of
unaligned sequences. This yielded an increased LWR (Mean
0.87, STD 0.002) for placing pangolin on the branch leading
to EPI_ISL_411956). Second, we added two additional
bat outgroup sequences (MG772933 and MG772934) to the
unaligned sequence set. While this lowered the LWR of the
pangolin placement (Mean 0.206, STD 0.01, again located on
the branch leading to EPI_ISL_411956), the signal was
still considerably stronger than for all other outgroups and
MSA versions. A visual inspection of the SMSAO alignment
to identify the reasons for the strong pangolin placement sig-
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Alignment | Max LWR LWR Entropy

Mean SD | Mean SD
FMSA 0.240 | 0.006 | 8.053 | 0.059
FMSA-SS | 0.041 | 0.001 | 7.872 | 0.036
SMSA 0.613 | 0.038 | 4.279 | 0.474
SMSA-SS | 0.101 | 0.002 | 7.327 | 0.023

Table 6. Results of RootDigger analysis for different MSA versions. Because of
excessive runtimes, for every dataset, we only analyzed the 5% of trees with the
highest likelihood with RootDigger in exhaustive mode. To further summarize the
results, we also compute the entropy of the LWR distributions for each resulting tree
and report the average for each dataset. The results are averages over the included
plausible trees.

nal was inconclusive. The same holds true for an inspection
of the per-site log likelihood values for pangolin placements
into distinct branches (including the highly supported one) of
the corresponding best ML tree (SMSAO-B).

Overall, despite our efforts, we were not able to disentangle
the reasons behind this strong, yet epidemiologically implau-
sible placement of the pangolin. The additional experiments
we conducted using alternative outgroups indicate that this is
potentially due to an alignment artifact in just one out of the
four alignment versions we scrutinized. Hence, not only the
tree inference itself, but also the alignment strategy used can
impact the results of phylogenetic post-analyses of SARS-
CoV-2.

We present our results for the root placement certainty as cal-
culated with the RootDigger tool on the ingroup phylogeny in
Table 6. We executed RootDigger searches on the 4 plausible
tree sets inferred on the FMSA, SMSA, FMSA-SS, SMSA-
SS (thinned FMSA and SMSA alignments with support se-
lection thinning, see previous section). As mentioned above,
we performed RootDigger analyses only on the top 5% of
the trees in the respective plausible tree sets due to exces-
sive runtimes. This resulted in performing rooting analy-
sis on 8 trees from FMSA-P, 4 trees from FMSAN-SS-P, 8
trees from SMSA-P, and 4 trees for SMSA-SS-P. We used
the same method to calculate the LWR entropy of RootDig-
ger root placements as for the EPA-NG results above.

While the root inferences on the thinned MSAs do not yield
strong signal for any particular root placement, this is not the
case for the original alignments. In particular, we obtain a
strong average (over the 8 trees with the highest likelihood
score) root placement signal for a specific root on the SMSA
alignment which we discuss in further detail below.

To this end, we visually inspected the 8 rooted trees for
SMSA as inferred with RootDigger. For 2 out of 8 trees (tree
1 and 2, trees are labelled 0 — 7) we observed an epidemiolog-
ically plausible root placement, since among the sequences
which cluster close to the inferred root, there are several from
Wuhan and other Asian areas sampled during the early phase
of the pandemic. We show the respective rooted maximum
likelihood tree number 2 colored by geographic regions in
Figure 4. Nonetheless, we obtained such a virologically plau-
sible root placement with RootDigger only for 25% of the
rooted trees and only for one out of 4 alignment versions.
Hence, the plausibility of the root placement heavily depends
on the selected MSA version as well as selected tree from the
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Fig. 4. Rooted SMSA Maximum Likelihood tree number 2. We colour the tree
by geographic regions and root it via RootDigger using a non-reversible model of
nucleotide substitution. The tree inference randomly resolved multifurcations by
introducing branches of length zero. For visualization purposes, we collapsed these
branches, hence yielding a multifurcating tree again.

plausible tree set and the results can not be generalized.

The same holds for the outgroup placements with EPA-NG.
Here, while we do again observe a relatively strong signal
only on one out of 4 aligment versions, the outgroup place-
ment location does not appear to be virologically plausible.
Thus, we conclude that the root of the SARS-CoV-2 phy-
logeny can not be reliably determined via the methods we
have applied here. An independent study on root placement
using distinct computational methods comes to analogous
conclusions (22).

mPTP. The mPTP runs on all plausible tree sets using the
longest branch rooting option and either the ML delimita-
tion or the MCMC delimitation procedures yielded a species
count of 1. This means that mPTP in default mode can not
distinguish if there is 1 species or if there are n species, where
n is the number of taxa in the given phylogeny.

The mPTP runs that explored all possible rootings on all plau-
sible tree sets under the ML delimitation option exhibit a
large variance in results.

We show a representative histogram for the SMSA-P set of
plausible trees in Figure 5 for the median number of delim-
ited species over all possible rootings per plausible tree. The
results on the remaining datasets were analogous (data not
shown). The maximum number of delimited species for all
rootings per tree in SMSA-P ranged between 198 and 781
with a flat distribution (i.e., two identical maximum species
counts appeared 9 times, and three identical ones only once).
The minimum number of delimited species was 1 for all trees
in SMSA-P.

We hence conclude that mPTP can not be used to delimit dis-
tinct sub-classes of the virus as the default mode (rooting at
the longest branch) consistently yielded inconclusive delim-
itations. Further, as shown by our experiments that evaluate
all possible rootings, the number of delimited species exhibits
a large variance as a function of the root position and is hence
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Fig. 5. Median number of delimited species over all possible rootings per plausible
tree in SMSA-P.

also inconclusive. Given that, the trees can, in general, not be
reliably rooted, we conclude that we can not delimit/classify
the viral sequences using mPTP. Other authors have also put
into question our ability to identify distinct virus types using
alternative computational methods (45).

Discussion

We studied the intrinsic difficulties of inferring and post-
processing phylogenetic trees on the May 5 snapshot of the
available whole genome data for SARS-CoV-2. To quantify
the impact of distinct filtering and alignment strategies, we
use four different alignment versions throughout our analy-
ses.

We find that the tree search task per se is difficult due to
the rugged likelihood surface that exhibits a multitude of lo-
cal optima. We can not distinguish among the majority of
these local optima via standard statistical significance tests
and observe large pair-wise topological differences that ex-
ceed 70%. We therefore suggest that instead of using and
displaying a single tree one should compute summary statis-
tics on a ’plausible tree set’ that comprises the indistinguish-
able local maxima of the tree search space that were found
by the respective search algorithm.

While using a ML approach to infer trees, our post-analysis
strategy rather follows a Bayesian paradigm. Thus, the ques-
tion arises if one could use Bayesian inference via MCMC
methods directly. Because of the size of the datasets, their
lack of signal, and the large number of taxa we expect
MCMC analyses to require excessive runtimes to reach and
explore some of the peaks we identified with the more tar-
geted ML searches. In addition, our experience, based on
user interactions, is that MCMC analyses are more difficult
to properly set up and interpret than ML analyses, especially
on such a challenging dataset that requires a profound under-
standing of the underlying methods.

To this end, the current common practice of inferring SARS-
CoV-2 phylogenies under the default search parameters of
standard ML inference tools corresponds to randomly pick-
ing (without potentially being aware of it) a tree from the
plausible tree set. Due to the large topological variations, the
respective conclusions that we draw can constitute a product
of pure chance.
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Beyond this, we also identified substantial numerical issues
pertaining to the optimization of branch lengths and the rates
in the free rates model of rate heterogeneity. Branch length
optimization is problematic because the sequences are highly
similar and, as a consequence, the branch lengths are short.
Thus, assessing the effect of the minimum branch length set-
ting in ML inference tools on the results constitutes a neces-
sary prerequisite for conducting thorough phylogenetic anal-
yses of these data. The issues associated with the parameter
optimization in the free rates model are likely to not only
occur on difficult datasets, but we believe that they become
more prevalent on such.

We also address the problem of reducing the size of the plau-
sible tree sets in the hope that a reduction in size will induce a
decrease of average pair-wise RF distances and an increase of
consensus tree resolution, thereby simplifying the interpre-
tation and post-analyses. In addition, we can also interpret
a reduction of the plausible tree set size as an indicator of
stronger signal. To this end, we introduce and test two novel
tree thinning algorithms that strive to maximize the entropy
and support of the thinned alignments and respective trees.
While these algorithms do reduce the size of the plausible
tree sets and perform better than random thinning, the plau-
sible tree sets still remain comparatively large (comprising
approximately 40 out of 100 ML trees) and diverse (average
pair-wise topological RF distance among the plausible trees
slightly below 70%).

Overall, we believe that using an extended majority rule con-
sensus tree inferred on the plausible tree sets represents a
reasonable approach to carefully interpreting the results by
taking into account the ruggedness of the tree search space.
For certain epidemiological assessments, it will suffice if the
branching order near the tips of the phylogeny is well re-
solved.

With respect to post-analyses, we find that rooting the trees
either via outgroup placement or by using non-reversible
models of evolution does not yield a clear root position. Ob-
taining an epidemiologically reasonable root with some sta-
tistical support appears to be a matter of chance: it depends
on the specific tree topology used for conducting the rooting
analysis, which we selected from the plausible tree set in-
ferred from one specific alignment. With respect to outgroup
placement, the single strong, yet epidemiologically implau-
sible signal was also observed on one specific alignment ver-
sion only. We can not draw general, nor confident conclu-
sions about the position of the root using the two mathemati-
cally highly distinct approaches that we have deployed here.
This confirms analogous independent findings (22).

Finally, we find that distinct viral sub-classes can not be iden-
tified by executing our mPTP tool for molecular species de-
limitation on all trees in the respective plausible tree sets of
all four alignment versions.

Conclusions

Phylogenetic analysis of SARS-CoV-2 data is challenging
due to numerical difficulties and the rugged likelihood sur-
face. Therefore, we strongly advocate against naively using
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the default parameters of common ML programs to just infer
‘a tree’ and using this single tree for epidemiological inter-
pretation or any type of post-analysis.

We are also skeptical about the utility of computing boot-
strap support values, as the datasets as such only contain a
low number of distinct site patterns while containing thou-
sands of taxa. One should preferably invest computational
effort to more exhaustively sample the rugged likelihood sur-
face which already constitutes a source of large topological
variability.

As the phylogenetic signal is weak, we suggest using a plau-
sible tree set comprising all ML trees from independent tree
searches that we can not distinguish from each other via the
standard phylogenetic significance tests, but that does ade-
quately represent the rugged tree search space.

In analogy to summarizing results from Bayesian tree infer-
ences, we suggest to use this plausible tree set for comput-
ing summary statistics on the trees such as the MR or MRE
consensi. Also, we should conduct and summarize all poten-
tial post-analyses on such plausible tree sets to better capture
topological uncertainty and circumvent potential misinterpre-
tations that can be caused by randomly picking a tree from the
plausible tree set.

To this end, we believe that we need to develop novel meth-
ods that can automatically summarize such plausible tree
sets. In addition, there is a need for theoretical work on crite-
ria to identify datasets that exhibit rugged likelihood surfaces,
as the term is admittedly colloquial and vague at present. Ide-
ally, phylogenetic inference programs should be able to iden-
tify such difficult datasets and either warn the users about it or
by default conduct multiple ML searches and automatically
return a plausible tree set.
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Fig. 6. A screenshot from the Aliview alignment viewer showing the beginning of

the alignment.
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