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5UMR 1253, iBrain, Université de Tours, Inserm, Tours, France

6Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories,

A. Meyer Children’s Hospital, University of Florence, Florence, Italy.

∗ corresponding author † these authors contributed equally to the work

Abstract

The 3D analysis of the human brain architecture at cellular resolution is still a big challenge.
In this work, we propose a pipeline that solves the problem of performing neuronal mapping in
large human brain samples at micrometer resolution. First, we introduce the SWITCH/TDE
protocol: a robust methodology to clear and label human brain tissue. Then, we implement the
2.5D method based on a Convolutional Neural Network, to automatically detect and segment all
neurons. Our method proved to be highly versatile and was applied successfully on specimens
from different areas of the cortex originating from different subjects (young, adult and elderly,
both healthy and pathological). We quantitatively evaluate the density and, more importantly,
the mean volume of the thousands of neurons identified within the specimens. In conclusion,
our pipeline makes it possible to study the structural organization of the brain and expands the
histopathological studies to the third dimension.

1 Introduction1

The three-dimensional reconstruction of large volumes of human brain tissue at cellular resolution2

remains one of the biggest technical challenges of neuroscience. Nowadays, structural analyses are3

obtained using traditional processes based on 2D evaluation of thin slices, but they still suffer from4

significant drawbacks. Such limitations are inherent to the bidimensional nature of the classical slide-5

based preparation, and include: low sensitivity for sparse features, difficult assessment of dimensions,6

alteration of morphology, visual artifacts (different orientation or distribution), and sampling bias.7

Despite the substantial advantages prompted by automatic histology instrumentation and serial sec-8

tioning [1], lack of three-dimensionality affects the quality of the produced data and reliability of the9

analysis.10

Recent advances in tissue imaging — in terms of optical clearing, fluorescent staining, and mi-11

croscopy techniques — have paved the way to high-resolution 3D reconstruction of the brain [2].12
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Indeed, tissue clearing makes antigens and light penetrate deep inside the sample, enabling fluores-13

cence imaging through high-resolution optical techniques. Multiple methods have been developed to14

achieve sound clearing and homogeneous staining, but only a few of them have been applied to human15

tissue. Such samples present specific challenges in comparison to animal models: variability of post-16

mortem fixation conditions, presence of blood inside the vessels, autofluorescence signals coming from17

lipofuscin-type pigments, and, finally, needs of exogenous labeling [3]. Alteration of antigens, due to18

fixation and/or long storage, prevent good immunostaining recognition. Normally, diffusion limits the19

homogeneous penetration of the dye inside the tissue; voluminous macromolecules, like antibodies, can20

penetrate only a few dozens of microns inside the sample. Among the various techniques that favor21

diffusion and increase tissue transparency, tissue transformation techniques such as the CLARITY22

method [4] and its adaptations have had considerable success. However, they also have limitations.23

Some were developed for application only to specific samples: e.g. pediatric tissue or controlled post24

mortem fixation conditions [5,6]. Others demonstrated compatibility with few antibodies and/or can25

achieve a staining depth of only a few tens of microns and/or are characterized by very long clearing26

time [7–12]. Recently, Ku et al. [13] introduced ELAST, a technology that transforms tissues into27

elastic hydrogel allowing the homogeneous staining of 1 cm-thick sections with various antibodies;28

however, the preparation of the sample requires sophisticated custom-made equipment and long pro-29

cessing time (20 days). Organic-based techniques were adapted to clear and label human brain tissue,30

but also in this case they need specific sample preparations: fresh-frozen samples [14], fetal brains [15],31

or in-situ controlled full body perfusion fixation [16]. In conclusion, up to now, we have no flexible32

strategy for fast clearing of human brain specimens from different ages, formalin fixed for a long time,33

and compatible with different antibodies labelling.34

An additional consideration that needs to be addressed is that the advances in tissue clearing35

haven not been followed by innovation on large-scale data analysis and management. High-throughput36

computational approaches are required to scale-up the processing the significant amount of data pro-37

duced by 3D anatomical reconstructions obtained by the combination of clearing techniques with38

high-resolution optical methods. Supervised and semi-supervised methods for localization and seg-39

mentation of neuron somata have been proposed, based on advanced classical image processing meth-40

ods [17, 18], Deep Learning (DL) [19] or combinations of DL with classical processing methods, as41

described in [20], where ”semantic deconvolution” based on Convolutional Neural Networks (CNN) is42

performed in order to enhance the imaged volumes before applying a mean-shift clustering algorithm.43

However, this approach enables cell counting but not volume assessment. Semi-supervised region44

growing approaches [20] use three-dimensional image processing algorithms to find the center of the45

soma and then repeatedly grow the volume to determine the estimated shapes. Computational issues46

aside, the main drawbacks of this general method are represented by the need for a precise definition47

of soma centers, the difficulty of finding all of the centers in a large volume and the complexity of48

correctly limiting the growth process to an optimal contour. Native Machine Learning techniques such49

as Convolutional Neural Networks [21] and 3D Convolutional Neural Networks [22], on the other hand,50

are able to better model visual patterns but are demanding both in terms of the required computing51

power and the extent of the human-annotated ground truth needed for training (which increases ex-52

ponentially when moving from the 2D to the 3D domain). Semi-supervised 3D CNN methods have53

been proposed [19] to alleviate the need for extensive volumetric annotation but they require very54

high computational power capabilities, suffer from limited scalability and are not able to accurately55

reconstruct soma surfaces.56

Considering the difficulties of human tissue labeling, that decrease the quality of the produced57

images, and the limits of automatic geometric assessment analysis, the possibility of quantitative58

evaluates neuronal volumes in human brain reconstruction is still absent. Here, we propose a pipeline59

that faces different challenges of brain mapping: sample preparation and big data analysis. Indeed,60

to extract quantitative information not only is it important to optimize each single step, but also to61

devise a synergic pipeline that integrates together all the different aspects. First, we describe a novel62

flexible methodology, the SWITCH/TDE protocol, to perform reliable clearing and labeling of human63
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brain tissues. Then, we set up a fast and scalable Machine Learning-based strategy, that we refer to64

as the 2.5D approach, to perform automated three-dimensional neuronal segmentation and to extract65

quantitative data.66

2 Results67

2.1 The SWITCH/TDE clearing and labeling approach68

Penetration of macromolecules and light deep inside the sample are critical processes that are necessary69

to obtain homogeneous staining of the sample and to reach high transparency, which is essential to per-70

form 3D optical reconstruction with fluorescence imaging. In order to obtain a reliable methodology to71

label and clear human brain samples from different regions, subjects, and fixation conditions, we mod-72

ified the SWITCH tissue transformation protocol [9] and we combined it with the 2, 2′-thiodiethanol73

(TDE) clearing method [5] (Figure 1a). Amongst the various techniques, we decided to use the74

SWITCH methodology since it allows to control the chemical interaction time and kinetics taking75

place inside the tissue. By modifying the solutions used during the fixation and clearing, we achieved76

a more uniform processing of tissues up to 1 mm. At first, we optimized the fixation condition during77

the SWITCH protocol lowering the concentration of glutaraldehyde (from 1 % to 0.5 %) during the78

SWITCH ON step (data not shown). Then, depending on tissue characteristics, we incubated the79

different samples in the SWITCH clearing solution at 70 ◦C from 6 hours to one day. Finally, we used80

the aqueous agent TDE to reduce the Refractive Index (RI) inhomogeneity between the tissue and81

the surrounding medium, thus minimizing the scattering of light and guaranteeing final transparency82

of the sample (Figure 1b). Differently from our previous paper [5], we used one-day serial incubations83

at Room Temperature (RT) up to a concentration of 68 % TDE in Phosphate Buffered Saline (PBS)84

to obtain homogeneous clearing of both grey and white matter. The final solution is characterized by85

a refractive index of 1.46 equal to that of the UV silica glass used for imaging. The combination of86

the two techniques allows deep tissue imaging with Two-Photon Fluorescence Microscopy (TPFM):87

small molecules as SYTOX
TM

Green can be imaged up to 1 mm in depth, while antibodies can ho-88

mogeneously label 500 µm-thick slices, respectively (Figures 1c, d). Finally, we demonstrated the89

compatibility of the SWITCH/TDE method with human brain immunostaining using a variety of90

different antibodies (Table 1), which were able to stain neuronal cells, GABAergic interneurons and91

interneurons subtypes, neuronal fibers, glial cells and microvasculature. Incubation time and temper-92

ature parameters optimizations are described in the supplementary materials (Supplementary Figure93

1). Representative images of the different staining are shown in Figure 1e.94

2.2 3D reconstruction of cerebral cortex samples95

The SWITCH/TDE protocol is able to clear different areas of the human brain cortex from subjects of96

different ages (pediatric, adult, and elderly), obtained from biopsies collected during epilepsy surgery97

interventions or autopsy stored up to 7 years in formalin. To demonstrate the versatility of the98

method, four different human brain specimens, from healthy and diseased patients, were analyzed.99

Two different portions of the left prefrontal cortex from an adult (Male, sample 1) and an elderly100

subject (Female, 99 years old, no Alzheimer’s disease but initial cognitive decline, no hypertension;101

sample 2) One dysplastic brain sample from the left temporo-occipital cortex of a 29-year-old man102

operated to treat drug resistant epilepsy due to focal cortical dysplasia Type IIa (FCDIIa), and103

one dysplastic brain sample from the left temporo-parietal cortex of an eight-year-old boy operated104

to treat drug resistant epilepsy due to hemimegalencephaly (HME), respectively samples 3 and 4.105

The samples were treated with the SWITCH/TDE clearing method and immunolabeled with the106

Neuron-specific Nuclear protein (NeuN) to detect neurons and DAPI for nuclear staining (samples107

area of ≈ (1 × 1) cm2 and depth of ≈ 500 µm). Imaging was performed with a custom-made Two-108

Photon Fluorescence Microscope designed to perform mesoscopic reconstruction with a resolution of109
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Figure 1: The SWITCH/TDE clearing approach (a) Schematic illustration of the SWITCH/TDE
clearing method. (b) 1 mm-thick slice of an adult human brain sample before and after the treatment.

(c) Images of SYTOX
TM

Green labeled tissue at different depths. Scale bar = 100 µm. (d) Im-
ages of NeuN immunostained tissue at different depths. Scale bar = 50 µm. Acquisition obtained with
TPFM. (e) Representative images of cleared tissues immunostained with various antibodies and DAPI
(4′, 6-Diamidino-2-Phenylindole, Dihydrochloride). Scale bar = 50 µm. Acronym list: Neuron-specific
Nuclear protein (NeuN, all neurons), Microtubule-Associated Protein 2 (MAP2; pyramidal cells),
Nonphosphorylated neurofilament protein (SMI32; pyramidal cells), Glutamic Acid Decarboxylase
(GAD67; all GABAergic interneurons), Parvalbumin (PV; GABAergic interneurons subtype), Cal-
bindin (CB; GABAergic interneurons subtype), Vasointestinal peptide (VIP; GABAergic interneurons
subtype), Somatostatin (SST; GABAergic interneuron subtype), Neuropeptide Y (NPY; GABAergic
interneuron subtype), Neurofilament (NF), Ionized calcium Binding Adaptor molecule 1 (Iba1; glial
cells), Glial Fibrillary Acidic Protein (GFAP; glial cells), Glutamine synthetase (GluS), Vimentin
(Vim; Microvasculature), Collagen IV (Coll IV; microvasculature).
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Molecule Company Cat. n. Host P/M Dilution
NeuN Merck ABN91 Chicken P 1:50
GAD67 Santa Cruz sc-28376 Mouse M 1:200
GAD65/67 St John’s Lab STJ93195 Rabbit P 1:200
PV Abcam ab11427 Rabbit P 1:200
PV Abcam ab32895 Goat P 1:200
CB Abcam ab207528 Rabbit M 1:200
VIP Abcam ab214244 Rabbit M 1:200
SST Abcam ab30788 Rat M 1:200
NPY Abcam ab6173 Sheep P 1:200
NPY Abcam ab112473 Mouse M 1:200
SMI-32 Merck NE1023 Mouse M 1:200
Neurofilament Abcam ab4680 Chicken P 1:200
GluS Merck MAB302 Mouse M 1:200
MAP2 Abcam ab5392 Chicken P 1:200
GFAP Abcam ab194324 Rabbit M 1:200
Iba1 Abcam ab195031 Rabbit M 1:200
Coll IV Abcam ab6586 Rabbit P 1:200
Vim Abcam ab8069 Mouse M 1:200
Anti-Rat IgG, AF 568 Abcam ab175475 Donkey P 1:200
Anti-Rabbit IgG, AF 568 Abcam ab175470 Donkey P 1:200
Anti-Chicken IgY, AF 568 Abcam ab175711 Goat P 1:200
Anti-Mouse IgG, AF 568 Abcam ab175700 Donkey P 1:200
Anti-Sheep IgG, AF 568 Abcam ab175712 Donkey P 1:200
Anti-Rabbit IgG, AF 488 Abcam ab150077 Goat P 1:200
Anti-Chicken IgY, AF 488 Abcam ab150169 Goat P 1:200
DAPI Thermo Fisher Scientific D1306 1:1000

SYTOX
TM

Green Thermo Fisher Scientific S7020 1:1000

Table 1: Table summarizing the dyes tested in this study. The P/M column denotes polyclonal
vs monoclonal antibodies. The same abbreviations used in Figure 1 are used. AF is a shorthand for
Alexa Fluor R©.
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Figure 2: 3D mesoscopic reconstruction. (a) Pictures showing the four analyzed human brain
specimens before and after SWITCH/TDE clearing. A representative middle plane (z ≈ 200 µm) of
the mesoscopic reconstruction obtained with TPFM is shown next to each specimen. Scale bar =
1 mm. Specimens 1 and 2: two different portions of the left prefrontal cortex from adult and elderly
subjects. Specimens 3 and 4: two surgically removed pieces from patients affected by Focal Cortical
Dysplasia Type 2a (FCDIIa) and by Hemimegalencephaly (HME), respectively. (b) Magnified insets
of specimen 1 (magenta) and 4 (cyan) showing the native resolution of the acquisition. Tissues were
stained with an anti-NeuN antibody (in red) and with DAPI (in green). Scale bar = 100 µm
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(0.88 × 0.88 × 2) µm3, see Figure 2. After the acquisition, adjacent stacks were aligned and merged110

together using a custom-made stitching software called ZetaStitcher [23].111

2.3 2.5D approach for automatic neuronal volume identification112

The volumetric 3D reconstruction obtained with the TPFM consists of tens of GB of data. In par-113

ticular, the fused volumes of the four samples acquired in this work are sized 19, 50, 57 and 52 GB.114

In order to automatically obtain volumetric information from the 3D reconstruction of the samples115

imaged with the TPFM, we implemented a novel 2.5D approach based on a Convolutional Neural116

Network (CNN) for pixel-based classification followed by an analytical reconstruction of 3D polygo-117

nal meshes (Figure 3a). The network uses information jointly from the red and green channels (i.e.118

neurons vs nuclei and tissue autofluorescence) to assign to each pixel a probability of belonging to119

either the neuron or the background class (Figure 3b and Supplementary video 1). We adopted a pure120

2-class fully convolutional CNN that transforms the multichannel source image into a new grayscale121

one, the so-called probability heatmap. 2D images are processed independently by the neural net-122

work, but the resulting heatmaps are reassembled back into a 3D stack, what we refer to as a 2.5D123

approach. Instance semantic segmentation, based on an iso-surface finding algorithm, is then per-124

formed, with a statistical acceptance threshold of 0.5, to the heatmap volume in order to extract the125

three-dimensional surfaces of each uniquely identified polyhedron.126

The use of a relatively light model (in terms of number of free parameters) allowed us to obtain127

good segmentation results with advantages on both computational costs and annotation requirements:128

fast inference times allowed us to obtain results in almost-real-time (with respect to the acquisition129

time at the microscope) while the number of trainable parameters made it possible to train the model130

in a supervised fashion using a manageable amount of manually annotated data necessary for the131

ground truth.132

The statistical assessment of the 2.5D performance was determined by analyzing four representative133

stacks of (100 × 100 × 100) µm3, one for each specimen. Each stack was independently manually134

annotated by an operator and automatically segmented by the 2.5D approach, resulting in a total135

number of 220 segmented neurons. Figure 3c shows the comparison between the manual annotations136

and the automatic reconstruction for one of these sub-volumes. For each specimen we first applied a137

false positive reduction strategy to remove each polyhedron, representing one neuron, with a volume138

of less than 100 µm3, then we calculated the network accuracy on several metrics. The reported139

values have been computed on a macro statistics basis, i.e. firstly the average of all data of one single140

specimen is computed and then the average and standard deviation on the four specimens is derived.141

The volumetric true and false positive fractions designate the extent to which the sub-volume of each142

neuron detected by the 2.5D segmentation pipeline overlaps with the GT volume or the background143

and are, respectively equal to (69 ± 6) % and (26 ± 14) %. The total number of neurons found by the144

2.5D segmentation is (75 ± 20) % of the true number in the GT. (9 ± 10) % of them can be considered145

false on macro-average (i.e. they are not present in the GT) while (5 ± 3) % of true neurons are146

missed (i.e. annotated in the GT but not segmented). Finally, (23 ± 10) % of the identified objects are147

groups of 2 or more GT neurons merged together into a single object. Indeed, in some circumstances,148

a single polyhedron found by the network covered more than one real neuron in the ground truth149

(Supplementary Fig. 3). For each sample, in the supplementary information we report a complete150

description of all the results.151

2.4 Neuronal distribution analysis152

The four datasets acquired with the TPFM were processed with the 2.5D automatic segmentation153

method, obtaining meshes for every single neuron in the whole volume (Supplementary video 2).154

Figure 4 shows a 3D rendering of the meshes for each specimen obtained using the 2.5D approach.155

The rendering highlights the anatomical architecture of the six cortical layers.156
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Figure 3: The 2.5D approach. (a) Neuronal segmentation workflow of the 2.5D approach. (b) A
representative image undergoing the CNN analysis. From the native image to cells contour segmen-
tation. Scale bar = 100 µm (c) 3D representation of the neurons of a stack manually annotated by
the operator (in blue), automatically identified by the 2.5D approach (in red), and the superposition
of the two.
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Figure 4: 3D rendering of the segmented neurons. Panels a, f, g, h show the 3D rendering for
specimens 1, 2, 3 and 4 respectively. The magnified view of the highlighted squares in panel a from
top to bottom are shown in panels b, c, d, e, highlighting the neuronal size and density in the different
cortical layers.
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Figure 5: Neuronal distribution analysis. Representative maps of the mean volume (a), neuronal
density distribution (b), and overlay of the two maps (c) of the middle plane of each specimen. The
maps were computed by performing a 3D binning of 100 µm3. Panel (d) shows the neuronal density
and mean volume profiles across the cortex as obtained from the maps shown in panels (a) and (b)
along 10 different lines that are drawn orthogonal to the cortical layers; the thick line shows the mean
value whereas the filled area shows one standard deviation.
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Layer N. Neurons Tissue volume Density Mean Volume Filling
(mm3) (103 mm−3) (µm3) fraction

Specimen 1
1 15320 2.880 5.319 2603 1.38 %
2 6454 0.486 13.280 2916 3.87 %
3 19859 1.758 11.296 4441 5.02 %
4 25031 1.814 13.799 3549 4.90 %
5 13972 1.300 10.748 4358 4.68 %
6 6756 0.769 8.785 2263 1.99 %
tot. 87392 9.007 9.703 3569 21.8 %

Specimen 2
1 69020 11.533 5.985 2550 1.5 %
2 84013 11.724 7.166 2567 1.8 %
3 102169 12.789 7.989 2922 2.3 %
4 57665 2.413 23.898 2730 6.5 %
5 42225 2.199 19.202 3324 6.4 %
6 20289 1.054 19.250 1989 3.8 %
tot. 375381 41.712 8.999 2740 22.4 %

Specimen 3
1 13815 1.646 8.393 2105 1.8 %
2 22348 1.432 15.606 3412 5.3 %
3 42890 3.464 12.382 4627 5.7 %
4 29834 1.804 16.538 3524 5.8 %
5 33230 2.387 13.921 4584 6.4 %
6 30694 5.656 5.427 3410 1.9 %
tot. 172811 16.389 10.544 3853 26.9 %

Specimen 4 tot. 177286 12.694 13.966 3008 4.2 %

Table 2: Number, mean volume and density of the neurons in the six layers and in the
total volume of the cortex.

To quantify the structural organization in the analyzed tissues, we calculated the mean volume157

distribution and neuronal density distribution. The corresponding maps were obtained, for each158

specimen, with a binning volume of (100 × 100 × 100) µm3 (Figure 5a, b, c). We calculated the159

densities and the percentage of neuronal volume with respect to the total volume of the grey matter160

of the sample. To do that, a mask for the grey matter of each samples was manually drawn. To161

quantify the neuronal distribution along the six cortical layers, masks of each layer volume were162

manually drawn for each sample. The HME biopsy (sample 4) showed a disruption of the structural163

organization of the cortex, making layer classification impossible (Supplementary Figure 2). We then164

measured the volume and density profiles along with cortex depth, which highlight different peaks165

(Figure 5d). Indeed, volume profiles show peaks in layers 3 and 5, while the neuronal density has a166

peak in layers 2 and 4. The results of counting are shown in table 2.167

3 Discussion168

In this work, we propose a pipeline that addresses some of the most critical challenges of human169

brain mapping (i.e., sample preparation and big data analysis), enabling a 3D characterization of the170

cytoarchitecture of the tissue at high resolution. In particular, we develop an approach that allows171

neuronal segmentation, permitting to evaluate both cell density and mean volumes in mesoscopic172

reconstruction.173

In comparison to animal brains, human neural tissues presents high variability of post-mortem174
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fixation conditions and antigens alterations that prevent proper immunostaining recognition. In this175

work, we combined the SWITCH tissue transformation method with the TDE clearing. The SWITCH176

technique allows removing lipids from the sample, while maintaining structural integrity, leading to an177

increase of tissue permeability and a reduction of the tissue refractive index (RI). The TDE clearing178

method allows homogenizing the RI of the sample with that of the mounting medium to reach the final179

transparency. The optimized protocol can perform tissue clearing on prolonged formalin-fixed brain180

samples and homogeneously stain the tissue with small molecules (up to 1 mm in depth) as well as181

antibodies (up to 500 µm). The compatibility of the protocol with different antibodies is demonstrated182

by staining neuronal and non-neuronal cells as well as blood vessels with different antibodies. To183

illustrate the versatility of the method, we used the SWITCH/TDE approach to prepare volumetric184

samples (mm3-sized volume) from different areas of the cerebral cortex from adult control subjects and185

pediatric patients with malformations of cortical development. The entire volumes, labeled with anti-186

NeuN antibody and DAPI, were acquired using a custom-made Two-Photon Fluorescence Microscope187

(TPFM) capable of performing mesoscopic reconstruction. The optical sectioning and the high-188

resolution optical investigation made possible by TPFM, in combination with the tissue clearing189

technique, allowed imaging the 3D organization of whole neurons without introducing any visual190

artifacts.191

Volumetric imaging of samples generates a large amount of data (from tens of GB to tens of TB)192

that need to be processed in an automated fashion to extract reliable and quantitative information.193

The software tools we developed in this study made it possible to analyze such big data. As a first194

step, we stitched together the 3D tiles acquired using the TPFM microscope. Adjacent tiles were195

aligned and merged by evaluating the cross-correlation of the overlapping areas. Once stitched, we196

performed an automatic cell segmentation analysis based on a 2.5D Machine Learning approach to197

achieve a realistic assessment of the neuronal volume. A native 3D implementation of convolutional198

neural networks, while desirable, is demanding in terms of the required processing power and the199

extent of the ground truth needed for training. We address the challenges of volumetric segmentation200

by reformulating the problem as a 2D pixel-based classification task followed by a 3D reconstruction201

step. The neural network processes each frame independently from the data contained within the202

previous or the following frame, producing a bidimensional probability map where the value of each203

pixel is the probability of that very pixel to belong to the foreground class (neuron). By stacking204

these 2D probability maps, we applied isosurface search algorithms to obtain the 3D representation205

of the segmented object. While solving a pure 3D problem would imply exploring a cubic space of206

parameters, our 2.5D reconstruction deals with a quadratic space. Since the number of examples207

grows exponentially with the space dimensionality, it follows that this 2.5D approach requires much208

fewer manually annotated examples.209

We exploited the 2.5D automatic segmentation method to quantitatively analyze four different210

specimens (two different samples of prefrontal cortex from an adult and elderly subject, one dysplastic211

brain sample from the left temporo-occipital cortex of a patient with FCDIIa, and one dysplastic brain212

sample from the left temporo-parietal cortex of a patient with HME) cleared with the SWITCH/TDE213

technique and acquired with the TPFM. The 2.5D approach permitted to define the anatomical214

organization of the neurons in 3D. Indeed, the characterization of density distribution and mean215

volume allowed us to assess the morphological differences between the arrangement of the layers in216

the analyzed samples. However, given the small number of samples we analyzed and the general217

purpose of this study, we did not assess the possible differences between control and dysplastic brain218

tissues.219

In conclusion, we optimized a pipeline that combines the SWITCH/TDE method, a new proto-220

col to clear human brain tissue, with a 2.5D segmentation approach, a technique that makes use of221

convolutional neural networks to automatically extract information on neuronal volumes and density.222

The volumetric assessment gives the possibility to extract morphological information that helps dis-223

criminating cell types using general staining as NeuN, reducing the labels necessary for the analysis224

(a critical point in human tissue preparation). Moreover, in the future, the assessment of volume225
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variability could be used in pathological studies to assess, more reliably, the morphological alteration226

of neurons, increasing the statistical accuracy and the sensitivity of the evaluation. Our work has the227

purpose of providing a synergic approach enabling a reliable human brain mapping, while address-228

ing the different aspects of quantitative 3D reconstruction analysis. Despite the innovation proposed229

here, there are still several points that need to be considered to obtain a faster, high-throughput, and230

informative automated characterization of tissue architecture. A further implementation of the CNN231

could reduce the errors associated with automatic neuronal counting. At the same time, a combi-232

nation with a faster optical technique, such as light-sheet microscopy, could facilitate scaling up the233

analysis. Nevertheless, we believe that our pipeline could be used in the future, not only to provide234

the anatomical description of samples but also to reduce interpretation biases and to obtain a more235

precise diagnostic neuropathological assessment.236

4 Methods237

4.1 Human brain specimen collection238

The study was approved by the Pediatric Ethic Committees of the Tuscany Region (under the project239

RF-2013-02355240 funded by the Italian Ministry of Health and the Tuscany Region). Healthy tissue240

samples were obtained from the body donation program (Association des dons du corps) of Université241

de Tours and from the Body Donation Program “Donation to Science” of the University of Padova.242

Prior to death, participants gave their written consent for using their entire body – including the brain243

– for any educational or research purpose in which anatomy laboratory is involved. The authorization244

documents (under the form of handwritten testaments) are kept in the files of the Body Donation245

Program. Pediatric human brain samples were removed during surgical procedures for the treatment of246

drug-resistant epilepsy in children with malformations of cortical development. Samples were obtained247

after informed consent, according to the guidelines of the Pediatric Research Ethics Committee of the248

Tuscany Region. Upon collection, samples were placed in neutral buffered formalin (pH 7.2–7.4)249

(Diapath, Martinengo, Italy) and stored at room temperature until the transformation and clearing250

process.251

4.2 The SWITCH/TDE clearing and labelling protocol252

Blocks of fixed samples were washed with a Phosphate Buffered Saline (PBS) solution at 4 ◦C with253

gentle shaking for one month to remove formalin from the tissue. Blocks were embedded in a low254

melting agarose (4 % in 0.01 M PBS) and cut into (450 ± 50) µm coronal sections with a vibratome255

(Vibratome 1000 Plus, Intracel LTD, UK). After the cutting, the agarose surrounding each slice was256

removed. The permeabilization and staining protocols were modified from that of Murray et al.257

2015 [9], as described below. Samples were first incubated in the ice-cold SWITCH-OFF solution (4 %258

GA in PBS 1 X and KHP 0.1 M, titrated with HCl to pH = 3) for 1 day at 4 ◦C with gentle shaking,259

then incubated for 1 day in the SWITCH-ON solution (0.5 % GA in PBS 1 X, pH = 7.6) for 1 day at260

4 ◦C with gentle shaking. After two washing steps in the PBST solution (PBS with 1 % Triton X-100,261

pH = 7.6) for 4 hours at room temperature (RT), the samples were inactivated with a solution of 4 %262

w/v acetamide and 4 % w/v glycine with a pH = 9 (overnight incubation at 37 ◦C). Two washing steps263

in PBST solution for 4 hours at room temperature (RT) were performed before the incubation in the264

Clearing Solution (200 mM SDS, 20 mM Na2SO3, 20 mM H3BO3, pH = 9) at 70 ◦C for lipids removal.265

Incubation time in clearing solution was adapted depending on tissue characteristics: samples from266

pediatric patients were kept overnight (6–8 hours), while samples from adult and elderly subject up267

to one day, until complete transparency was achieved. Two washing steps in the PBST solution for268

8 hours at room temperature (RT) were performed to prepare the sample for the labeling process.269

Primary antibodies were incubated in the PBST solution for one day at 4 ◦C. After two washing steps270

in the PBST solution for 8 hours at RT, secondary antibodies were incubated in PBST for one day271
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at RT. Table 1 reports the list of antibodies and dilutions used. After two washing steps of 8 hours272

with PBST at RT, samples were fixed with a 4 % solution of paraformaldehyde (PFA) for 10 min273

at 4 ◦C to avoid antibody detachment. Samples were then washed three times with PBS for 10 min274

at RT to remove the excess of PFA. Optical clearing consists in incubation in solutions of increasing275

concentrations of 20 %, 40 % and 68 % (vol/vol) of 2, 2′-thiodiethanol in 0.01 M PBS (TDE/PBS), each276

for 1 day at room temperature (RT) with gentle shaking. For nuclear staining, DAPI or SYTOX
TM

277

Green were diluted in the last incubation of the sample in the 68 % (vol/vol) TDE/PBS solution. For278

1 mm thick samples, the incubation was performed for two days. Finally, samples were mounted in279

a custom made chamber with UV silica cover slip (UQG Optics, CFS-5215) that flattens the sample280

while keeping it completely covered by the TDE/PBS solution allowing a perfect RI matching which281

is essential for imaging. Sample pictures before and after the clearing process were acquired using a282

digital camera (Sony DSC-WX500), samples were kept soaked either in PBS or TDE.283

4.3 Two-Photon Fluorescence Microscopy284

A custom-made Two-Photon Fluorescence Microscope (TPFM) was built in order to enable mesoscopic285

reconstruction of cleared samples. A mode-locked Ti:Sapphire laser (Chameleon, 120 fs pulse width,286

80 MHz repetition rate, Coherent, CA) operating at 800 nm was coupled into a custom-made scanning287

system based on a pair of galvanometric mirrors (LSKGG4/M, Thorlabs, USA). The laser was focused288

onto the specimen by a refractive index tunable 25× objective lens (LD LCI Plan-Apochromat 25×/0.8289

Imm Corr DIC M27, Zeiss, Germany). The system was equipped with a closed-loop XY stage (U-290

780 PILine R© XY Stage System, 135 × 85 mm travel range, Physik Instrumente, Germany) for radial291

displacement of the sample and with a closed-loop piezoelectric stage (ND72Z2LAQ PIFOC objec-292

tive scanning system, 2 mm travel range, Physik Instrumente, Germany) for the displacement of the293

objective along the z-axis. The fluorescence signal was collected by two independent GaAsP photomul-294

tiplier modules (H7422, Hamamatsu Photonics, NJ). Emission filters of (440 ± 40) nm, (530 ± 55) nm295

and (618 ± 25) nm were used to detect the signal, respectively, for DAPI, Sytox Green/Alexa 488,296

and Alexa Fluor 568. The instrument was controlled by a custom software, written in LabView297

(National Instruments, TX) able to acquire a whole sample by performing z-stack imaging (depth =298

(500 ± 100) µm) of adjacent regions with an overlap of 40 µm and a voxel size of (0.88 × 0.88 × 2) µm3.299

The acquisition was performed with a dwell time of 500 µs and the resulting 512 × 512 px images were300

saved as TIFF files.301

4.4 Volumetric image stitching302

To obtain a single file view of the sample imaged with the TPFM, the acquired stacks were fused303

together using the ZetaStitcher tool [23]. This software can take advantage of the overlap between304

neighboring stacks to correct the mechanical error of the imaging platform. Indeed, mesoscopic305

reconstruction with TPFM can take several days, and temperature changes and mounting medium306

evaporation can lead to some micron-scale distortion. The software is based on two steps: an alignment307

process followed by image fusion. As a first step, a 2D cross-correlation map is evaluated at several308

depths for every pair of adjacent 3D stacks, moving each stack relative to its neighbor. The final309

position of all stacks is determined by applying a global optimization algorithm to the displacements310

of the individual pairs. Finally, the stacks are fused into a 3D reconstruction of the whole sample311

stored in a single TIFF file. The raw datasets of the four samples under investigation in this paper312

are made available on the Ebrains platform provided by the Human Brain Project. The specific links313

to the downloadable material can be found at this link [?].314

4.5 The Convolutional Neural Network (CNN)315

We used a 2D Convolutional Neural Network for pixel-based classification expanding on the design316

employed in a previous work [24]. In this network architecture, 32 × 32 × 2 sized patches (i.e. con-317
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Figure 6: The CNN architecture. Block scheme of the architecture of the CNN with 3 convolutional
layers and 3 Fully Connected layers.

sidering red and green channels) are extracted from the stitched volume, and fed to the CNN model318

after a preprocessing step consisting of a single 5 × 5 gaussian kernel filtering stage with σ = 3. This319

operation replicates the intrinsic blurring introduced on each patch by the resampling function inte-320

grated by the data augmentation procedure exploited in the training phase of the CNN. The neural321

network architecture consists of three convolutional layers, the first two of which are followed by 2x2322

max-pooling downsampling, and three fully connected layers, the last of which (yellow) makes use of323

a two-class softmax activation function. A block diagram of the overall network structure is shown324

in Figure 6. Trainable parameters (205 024 in total) and optimizer hyper-parameters are described in325

the supplementary information.326

The so-defined CNN model classifies the central pixel of each input patch by exploiting the visual327

pattern of the local neighbourhood (i.e. the coloured 32 × 32 texture) to which the pixel belongs. The328

model can be used for efficient inference on input data larger than the 32 × 32 patches by exploiting329

formal equivalence, named fully convolutional, between fully connected layers and 1 × 1 convolutions330

[25]. This allows us to efficiently produce heatmaps (i.e. probability maps) of entire stack frames.331

The ground truth was annotated by two distinct operators on LAIRA R© web-based collaborative332

application [26]. By following an Active Learning paradigm [27] the network was incrementally trained333

against a number of positive and negative samples originating from the four specimens to improve334

inter-specimen statistical representatives: the final training dataset is composed of 112 images of335

512 × 512 px, corresponding to (450 × 450) µm2, for a total of 7312 manually annotated neurons (1180336

from the first annotation without Active Learning). Additional independent 14 images (1505 neurons)337

were used to validate the CNN and further 14 images (1208 neurons) to test it. Model regularization338

is provided in the form of dropout layers, each with a dropout factor of 0.5.339

The manually annotated ground truth used to train the neural network is also made available for340

download on the Ebrains platform in Ximage format [28] (see Supplementary Information).341

4.6 The 2.5D approach: from 2D heatmaps to 3D polygon meshes342

The CNN model converts entire 2-channel acquisition frames into probability heatmaps, these two-343

dimensional maps are reassembled back into a 3D stack to obtain an estimate of the three-dimensional344

probability distribution of neuronal soma presence. The heatmap stack undergoes a post-processing345

step of false positive reduction represented by the application of a 5 × 5 median filter and a gray-scale346

morphological opening with a 3 × 3 structuring element. We consider the isosurfaces of this field347

corresponding to a 0.5 statistical threshold to be representative of the physical boundaries of neuron348

soma; to calculate them we use a custom variant of the Marching Cubes algorithm [29] followed349

by additional topological fixes on the identified objects to ensure that every soma is represented350
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by a 2-manifold watertight mesh. This approach allows us to retrieve a three-dimensional vectorial351

reconstruction of the segmented objects in the entire z-stack, although limited by a grouping effect352

that sometimes emerges after the instance segmentation step: neurons that are too close to each other353

are sometimes identified as a single unit (Supplementary Fig. 3). All the 2.5D computations have354

been performed on a standard linux-based workstation by the Aliquis R© software ecosystem [30] with355

Google TensorFlow as CNN backend [31].356

4.7 Data analysis357

The physical boundaries of the neuronal soma were stored in the form of a triangular meshes in358

Alembic [32] binary file format, which is suitable for rendering and for further analysis. These files359

were then processed with Python scripts making use of the trimesh package [33]. The volumes and360

centroids of all the detected objects were extracted using trimesh.361

For neuron counting, volume thresholds were applied to remove segmentation artifacts: volumes362

lower than 400 µm3 and higher than 12 000 µm3 were discarded. To map neuronal density and volume363

distribution in the analyzed samples, we plotted 3D histograms with a binning of (100 × 100 × 100) µm3
364

as shown in Figure 5 a, b, c. The centroid value was used to pinpoint the position of the identified365

neurons within the whole sample volume and in particular to assign each neuron to its corresponding366

cortical layer according to manually drawn masks. To plot the distributions shown in panel d, 10367

different lines were drawn on the binned maps perpendicularly to the cortical layers on which the368

profiles were extracted. Stacks, 3D stitched volume renderings and videos were obtained using both369

Fiji [34] and Blender [35].370
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