A genome compendium reveals diverse metabolic adaptations of Antarctic soil microorganisms

Maximiliano Ortiz¹ #, Pok Man Leung² # *, Guy Shelley³, Marc W. Van Goethem¹,⁴, Sean K. Bay², Karen Jordaan¹,⁵, Surendra Vikram¹, Ian D. Hogg¹,⁷,⁸, Thulani P. Makhalanyane¹, Steven L. Chown⁶, Rhys Grinter², Don A. Cowan¹ *, Chris Greening²,³ *

¹ Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0002, South Africa
² Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
³ School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
⁴ Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
⁵ Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago
⁶ Securing Antarctica’s Environmental Future, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
⁷ School of Science, University of Waikato, Hamilton 3240, New Zealand
⁸ Polar Knowledge Canada, Canadian High Arctic Research Station, Cambridge Bay, NU X0B 0C0, Canada

These authors contributed equally to this work.

* Correspondence may be addressed to:
A/Prof Chris Greening (chris.greening@monash.edu)
Prof Don A. Cowan (don.cowan@up.ac.za)
Pok Man Leung (pok.leung@monash.edu)
Abstract

A surprising diversity and abundance of microorganisms resides in the cold desert soils of Antarctica. The metabolic processes that sustain them, however, are poorly understood. In this study, we used metagenomic and biogeochemical approaches to study the microbial communities in 16 physicochemically diverse mountainous and glacial soils from remote sites in South Victoria Land, north of the Mackay Glacier. We assembled 451 metagenome-assembled genomes from 18 bacterial and archaeal phyla, constituting the largest resource of Antarctic soil microbial genomes to date. The most abundant and prevalent microorganisms are metabolically versatile aerobes that use atmospheric hydrogen and carbon monoxide to meet energy, carbon, and, through metabolic water production, hydration needs. Phylogenetic analysis and structural modelling infer that bacteria from nine phyla can scavenge atmospheric hydrogen using a previously unreported enzyme family, the group 1I [NiFe]-hydrogenases. Consistently, gas chromatography measurements confirmed most soils rapidly consume atmospheric hydrogen and carbon monoxide, and provide the first experimental evidence of methane oxidation in non-maritime Antarctica. We also recovered genomes of microorganisms capable of oxidizing other inorganic compounds, including nitrogen, sulfur, and iron compounds, as well as harvesting solar energy via photosystems and novel microbial rhodopsins. Bacterial lineages defined by symbiotic lifestyles, including Patescibacteria, Chlamydiae, and predatory Bdellovibrionota, were also surprisingly abundant. We conclude that the dominant microorganisms in Antarctic soils adopt mixotrophic strategies for energy and sometimes carbon acquisition, though they co-exist with diverse bacteria and archaea that adopt more specialist lifestyles. These unprecedented insights and associated genome compendium will inform efforts to protect biodiversity in this continent.
Introduction

Continental Antarctica is a relatively pristine but oligotrophic wilderness \(^1\). Terrestrial life on the continent is adapted to extremely low temperatures, low water bioavailability, highly limited organic carbon and nitrogen, salt accumulation and seasonal light/dark periodicity \(^2\)-\(^4\). These cumulative pressures exclude most macroscopic fauna and flora, and instead microorganisms constitute most of the continent’s biodiversity and biomass \(^5\). While historical observational surveys indicated that few microorganisms existed in terrestrial Antarctica, subsequent molecular studies have uncovered rich and abundant microbial communities, especially in the continent’s ice-free regions \(^6\)-\(^10\). Antarctic soil communities are comparable to mesophilic soils at the phylum level, with Actinobacteriota, Acidobacteriota, Chloroflexota and Proteobacteria often predominant \(^2\),\(^8\),\(^9\),\(^11\),\(^12\). These communities are highly specialised at lower taxonomic levels \(^7\),\(^8\), however, and have unique functional traits \(^11\),\(^13\). Complementary culture-based studies have also isolated a growing number of taxa from the continent, although from relatively few phyla \(^14\)-\(^17\). Most community members are assumed to be extremely slow-growing or adopt dormant states to adapt to the physicochemical conditions of the continent \(^18\). In turn, the formation of a microbial ‘seed bank’ may provide a means to maintain biodiversity \(^19\),\(^20\).

An enduring question is what metabolic strategies enable soil microorganisms to meet energy and carbon needs on this continent \(^2\). Even in dormant states, cells still require a net energy input to maintain cellular integrity, repair damaged macromolecules, and generate a basal membrane potential \(^21\),\(^22\). Conventionally it was thought that Cyanobacteria and microalgae are the major primary producers in Antarctic soils and that they produce the organic carbon to sustain organoheterotrophic bacteria \(^2\),\(^11\). However, oxygenic photoautotrophs are typically in low abundance (<1% of total bacterial community) outside lithic niches \(^11\),\(^23\) and hence are unlikely to produce sufficient organic carbon to sustain the energy and carbon needs of the dominant community members. More recently, some Antarctic soil bacteria were shown to conserve energy and acquire carbon independently of photoautotrophs \(^12\). Genome-centric metagenomic studies have revealed that bacteria from several phyla, including Actinobacteriota, consume molecular
hydrogen (H$_2$) and carbon monoxide (CO) from the atmosphere. By liberating electrons from these ubiquitous and diffusible trace gases, these bacteria sustain aerobic respiration and fix carbon even when preferred organic substrates are limiting 12,24. However, given the relatively few metagenome-assembled genomes (MAGs) recovered (21) and limited geographical scope of this previous study 12, it is unknown whether trace gas oxidation is a widespread strategy among Antarctic bacteria. Several molecular and biogeochemical studies have detected signatures of carbon fixation through the Calvin-Benson-Bassham (CBB) cycle within the continent, though it is unclear whether this originates through activities of photoautotrophs or lithoautotrophs $^{12,13,25–27}$. Molecular evidence also suggests that some Antarctic soil bacteria can also conserve energy through other means, including methanotrophy, nitrification, and rhodopsin-based light harvesting $^{12,13,16,28–30}$.

Here we build on these initial findings to develop a holistic genome-resolved understanding of the metabolic capabilities of Antarctic soil microorganisms. We profiled 16 soils with distinct physicochemical properties from the Mackay Glacier region, a cold hyper-arid ice-free region to the north of the McMurdo Dry Valleys that comprises approximately 15% (~4,800 km2) of the ice-free regions on the continent. Soil microbial communities in this region are adapted to average annual temperatures of -20°C and annual precipitation below 50 mm 31,32, as well as profound limitation for organic carbon (~0.1%) and nitrogen (~0.02%) 33. Through deep metagenomic sequencing, we generated a resource of 451 metagenome-assembled genomes, covering all major microbial lineages in the region. We confirmed that the most abundant bacteria in the region are mixotrophs that scavenge atmospheric trace gases, and substantiated these findings with biogeochemical assays confirming rapid gas consumption and phylogenetic analyses revealing a novel hydrogenase family. These findings lend strong support to the recent hypothesis that survival in desert soils depends on continual harvesting of alternative energy sources 18. Nevertheless, these metabolically versatile bacteria co-exist with microorganisms that adopt a wide range of other nutritional and ecological strategies, including apparent obligate parasites and predators. Altogether, Antarctic soils appear to harbour much more compositionally rich and functionally complex microbial life than previously assumed.
Results and Discussion

Genome-resolved metagenomics reveals phylogenetically diverse bacteria co-exist across the Mackay Glacier region

We analyzed surface soils from sixteen glacial and mountainous sites sampled across the Mackay Glacier region of South Victoria Land. Physicochemical analysis confirmed that the soils varied in key properties (e.g. pH, salinity, micronutrients, texture), but in common with previously characterized soils from continental Antarctic regions\(^8,34,35\), all had exceptionally low organic carbon content (0.02 – 0.25\%) (Table S1). These soils nevertheless supported moderately abundant bacterial and archaeal communities (1.7 \(\times\) 10\(^6\) to 2.7 \(\times\) 10\(^7\) 16S rRNA gene copies per gram soil wet weight) (Figure 1a). Based on high-resolution 16S rRNA amplicon sequencing \(^36\) (Figure S1a & S1b), observed richness (832 ± 258) and Shannon index (5.27 ± 0.31) were high in most samples, implying diverse community members co-exist in these soils (Figure 1c; Figure S1d). Beta diversity analysis confirmed microbial communities diverge between sampled regions and with geographic distance (Figure 1d; Figure S1e).

To determine the community composition of the samples, we retrieved and classified shotgun metagenomic reads of the universal single-copy ribosomal protein gene rplP (Table S2). The dominant community members were from bacterial phyla known to predominate in soil ecosystems \(^37,38\). Actinobacteriota, Proteobacteria, Acidobacteriota, Chloroflexota, Gemmatimonadota, Verrucomicrobiota and Bacteroidota were particularly abundant (Figure 1b), in agreement with other Antarctic surveys \(^2,18\). Cyanobacteria were scarce in most soils except for Pegtop Mountain and Cliff Nunatak, accounting for an average of 0.50\% in the soil communities. Likewise, Archaea were minor members of this ecosystem (av. 0.88\%) and mainly comprised the ammonia-oxidizing order Nitrososphaerales (Figure 1b).

More surprisingly, bacterial phyla that predominantly adopt a predatory (Bdellovibrionota) \(^39\), intracellular parasitic (Dependentiae and Verrucomicrobiota_A / Chlamydiae) \(^40,41\) or obligately symbiotic (Patescibacteria) \(^42,43\) lifestyle were prevalent and sometimes highly abundant, for example together comprising 17\% of the community at Mount Murray. This suggests that a range of symbiotic interactions
occur in these communities. These dominant and rare phyla were also detected by 16S rRNA gene sequencing (Figure S1c; Table S3).

These inferences on the composition and metabolic capabilities of the microbial communities were supported by genome-resolved analysis. From the 99.5 gigabases of sequencing data (Table S4), we reconstructed a non-redundant set of 101 high-quality and 350 medium-quality metagenome-assembled genomes (MAGs). The recovered genomes span 18 different phyla, the relative composition of which reflects the community structure patterns observed in the rplP and 16S rRNA analysis (Figure 1b). In turn, they capture all major microbial lineages (present at >1% relative abundance across all samples) and map to an average of 26% of reads in each metagenome (Table S5). To the best of our knowledge, this represents the largest sequencing effort and most extensive genomic resource reported from terrestrial Antarctica to date.

Most abundant lineages encode enzymes supporting trace gas oxidation, including a novel family of [NiFe]-hydrogenases

We sought to understand which metabolic strategies support the numerous bacteria in these hyper-oligotrophic soils. We profiled the distribution and affiliation of 52 conserved marker genes representing different energy conservation and carbon acquisition pathways in both the metagenomic short reads (Table S6) and MAGs (Table S5). In line with expectations, almost all community members encoded genes for aerobic organotrophic respiration (CoxA, NuoF, SdhA, AtpA) (Figure 2), whereas capacity for anaerobic respiration and fermentation was low (Figure S2). In addition to formate dehydrogenase, the other most abundant markers were the catalytic subunits of [NiFe]-hydrogenases (present in average of 90% community members), form I carbon monoxide dehydrogenases (32%), and RuBisCO (27%) (Figure 2). Phylogenetic analysis revealed that most binned sequences of these enzymes were most closely related to clades that support atmospheric H₂ oxidation ⁴⁵⁻⁴⁹ (Figure 3a), atmospheric CO oxidation ¹²,⁵⁰⁻⁵³ (Figure S3), and chemosynthetic CO₂ fixation ¹²,⁵⁴⁻⁵⁶ (Figure S4). Recent pure culture studies have shown that energy liberated by atmospheric H₂ and CO oxidation supports bacterial persistence during carbon starvation and, in some cases, mixotrophic growth ⁵²,⁵⁷⁻⁶². Thus, the ability of
bacteria to harvest these trace gases may confer a major selective advantage in the
carbon-depleted soils of Antarctica. Moreover, in extension of findings made in the
Windmill Islands region \(^{12}\), over a quarter of the community may fix carbon via the
CBB cycle, providing a mean to generate biomass independently of photoautotrophy.

Genes for trace gas oxidation were present in the most abundant and widespread
community members. Uptake hydrogenases were encoded by MAGs affiliating with
nine bacterial phyla (Figure 2 & 3a), including the seven dominant soil phyla (Figure
1), whereas CO dehydrogenases were confined to Actinobacteriota and
Chloroflexota (Figure S3). Indeed, 17 of the 20 most abundant Actinobacteriota and
Chloroflexota MAGs encoded one or both enzymes (Table S5). Remarkably, the
CBB pathway (Figure S4; Table S7) frequently co-occurs with hydrogenases (64%)
and CO dehydrogenase (25%) in MAGs (Figure 2; Table S5), potentially enabling
hydrogenotrophic, carboxydrotrophic or mixotrophic growth. This association was
especially pronounced in the uncultivated classes Ellin6529 (Chloroflexota) and
UBA4738 (Actinobacteriota) (Table S6), which respectively comprise an average of
5.1% and 0.9% (maximum of 12.3% and 2.4%) of the communities across the region
(Table S2). These classes are predicted to couple atmospheric H\(_2\) and CO oxidation
to fix carbon via their respective type IC and IE RuBisCO enzymes (Figure S4;
Table S7). These traits in turn may contribute to their unexpectedly high relative
abundance in Antarctica as well as other oligotrophic soils\(^{15,63–66}\). Indeed, given their
abundance in the community and genetic potential for atmospheric chemosynthesis
\(^{12,24}\), we hypothesize that both classes are major Antarctic primary producers. We
propose replacing the placeholder names UBA4738 with Candidatus Aridivitia (arid
Actinobacteriota class; based on high-quality type MAG MGR_bin238, ‘Candidatus
Aridivita willemsiae’) and Ellin6529 with Candidatus Edaphomicrobia (edaphic
Chloroflexota class; based on high-quality type MAG MGR_130 ‘Candidatus
Edaphomicrobiurn janssenii’) (Etymological Information), as per recent taxonomic
recommendations\(^{67,68}\).

Most microorganisms in the Mackay Glacier region encoded a novel hydrogenase
family (Figure 2). We generated a maximum-likelihood tree of the conserved
catalytic subunits of group 1 [NiFe] hydrogenases using amino acid sequences
retrieved from 176 MAGs. All hydrogenase sequences form two major and
tremendously diverse lineages that share less than 40% sequence identity with each
other and were supported by robust bootstrapping (Figure 3a). One branch is
associated with characterized group 1h [NiFe] hydrogenases from multiple bacterial
isolates. The other forms a novel cluster, herein the group 1l [NiFe]-
hydrogenase, which includes the previously unreported hydrogenases of McMurdo
Dry Valleys isolate *Hymenobacter roseosalivarius* and several other recently
sequenced isolates. Group 1l is the prevailing hydrogenase family within the Mackay
Glacier region, with an estimated abundance 2.3 times higher than group 1h (Table
S5), and is encoded by all nine hydrogenase-bearing phyla and the two candidate
classes. As elaborated in Supplementary Note 1, structural modelling shows that
this enzyme shares common structural features with previously characterized group
1h [NiFe]-hydrogenase, but contains large sequence insertions and a key
substitution in a residue ligating the proximal iron-sulfur cluster. Even more strikingly,
the genes encoding this hydrogenase often have an unusual arrangement (Figure
S5; Table S7), with five open reading frames predicted to encode small
transmembrane proteins separating the small and large core structural subunits. On
this basis, we predict that this enzyme is a *bona fide* high-affinity membrane-
associated hydrogenase that relays electrons derived from atmospheric H₂ through
the respiratory chain. The broad distribution and predominance of this hydrogenase
suggests it is the primary mediator of H₂ oxidation in these soils. Moreover, given the
strong positive correlation between this hydrogenase and RuBisCO based on the
MAGs and metagenomic short reads ($R^2 = 0.68, p = 0.002$) (Figure S6; Table S9), it
is likely that electrons yielded by this enzyme support carbon fixation either through
direct transfer or reverse electron flow.

Trace gas consumption occurs at sufficient rates to meet energy needs and
support hydration of Mackay Glacier region bacteria

Our metagenomic analyses suggest that the most abundant soil bacteria across the
Mackay Glacier region conserve energy and fix carbon by oxidizing atmospheric H₂
and CO. To test whether soil communities mediate these activities, we set up soil
microcosms in which ambient air headspaces were amended with 10 parts per
million (ppmv) of these gases and used high-sensitivity gas chromatography to
measure their consumption over time. In line with predictions, H₂ was oxidized by
soils from all sixteen sites and all but three soils consumed CO (Figure 4a). Of these, all soils except Pegtop Mountain consumed H₂ to below atmospheric concentrations (0.53 ppmv) 72 and ten soils consumed atmospheric CO (0.09 ppmv) 73 during the timecourse of our experiments (Figure S7). These sub-atmospheric thresholds confirm that these microbial communities can harvest energy from the atmosphere, a virtually unlimited source of diffusive and energy-rich reduced gases 74,75. The average rate of atmospheric H₂ oxidation (135 pmol hr⁻¹ g⁻¹ soil) was much faster than for atmospheric CO oxidation (0.60 pmol hr⁻¹ g⁻¹ soil) (Table S8). This finding, together with the higher abundance of putative H₂ oxidizers in the soil communities (Figure 2), suggests that atmospheric H₂ is likely to be the predominant energy source sustaining these communities. As elaborated in Supplementary Note 2, considerable variations in bulk and normalized oxidation rates were measured for both gases, which was significantly correlated with several measured physicochemical variables (Figure S6; Table S9).

Cell-specific rates were calculated by normalizing bulk rates against soil microbial abundance and the proportion of trace gas oxidizers. Cell-specific atmospheric H₂ oxidation rates were high (av. 1.1 × 10⁻⁷ nmol hr⁻¹ cell⁻¹) and approximately two orders of magnitude higher than those of CO (av. 1.3 × 10⁻⁹ nmol hr⁻¹ cell⁻¹) (Figure 4b). In line with our findings in the Windmill Islands region 12, this rate of atmospheric H₂ consumption exceeds the theoretical maintenance requirements of trace gas oxidizers at the temperature tested (10°C) and is sufficient to support some growth 76–78. It should also be noted that metabolic water is the major end-product of the aerobic respiration of atmospheric H₂ (2 H₂ + O₂ → 2 H₂O). Given the reported cytosolic orientation of high-affinity hydrogenases and terminal oxidases 62, the water produced would be retained in the cytosol, including as a solvent for macromolecules. Thus, trace gas oxidation may be a simple, but hitherto overlooked, mechanism for microorganisms to stay hydrated in the hyper-arid deserts of Antarctica. Based on cell-specific rates of atmospheric H₂ oxidation, a theoretical average of 1.1 million water molecules would be produced per cell each minute. For a cell with an expected 1 µm³ volume and 70% water content 79,80, such production rates would be sufficient to replace all cellular water over a 15-day period (Table S8). We therefore propose that the metabolic water continuously generated by trace gas oxidation can help microorganisms survive in the hyper-arid deserts of Antarctica.
gas oxidation is a quantitatively significant source of hydration in this environment with minimal precipitation.

Metabolically constrained phototrophs, lithotrophs, and organotrophs co-exist with versatile mixotrophs in Antarctic soils

While the most abundant taxa in the Mackay Glacier ecotone appear to be versatile mixotrophs, the genome compendium revealed that these ecosystems also harbor diverse bacteria and archaea with specialist strategies for energy and carbon acquisition. Multiple chemolithoautotrophs were present, including those capable of oxidizing the trace amounts of ammonium, sulfur and iron detected in the soils (Table S1). Ammonium and nitrite oxidizers comprised an average of 2.9% and 1.0% of the communities, but together comprised 23% and 15% of the community in Mount Seuss 6 and Benson Glacier samples, respectively (Figure 2; Table S6). Phylogenetic analysis confirmed that Nitrososphaerales (archaea) and Burkholderiales (bacteria) were the dominant ammonium oxidizers (Figure S8), in line with previous reports for McMurdo Dry Valley soils, whereas Nitrospirota were the main nitrite oxidizers (Figure S9). These nitrifiers also respectively encoded the signature enzymes to fix carbon through the archaeal 4-hydroxybutyrate cycle (Figure S10), proteobacterial CBB cycle (Figure S4), and nitrospiral reverse tricarboxylic acid cycle (Figure S11), suggesting that multiple chemosynthetic primary production strategies sustain biodiversity in these oligotrophic soils. The marker genes for sulfide and thiosulfate oxidation (Sqr, FCC, SoxB) were each encoded by 1 - 4% of community members in most soils (Figure 2; Table S5), including multiple Burkholderiales MAGs and several other lineages (Figure S12, S13, S14). The genes to oxidize ferrous iron via the c-type cytochrome Cyc2 were widespread in Mount Seuss 6 (4.7%) and Cliff Nunatak samples (7.3%), and present in select MAGs from five major phyla (Figure S15). Thus, atmospheric and edaphic inorganic compounds alike are major energy sources for Antarctic soil communities, although their relative importance varies across the physicochemically diverse soils from the region.

Our metagenomic analysis suggests that light energy supports few photoautotrophs, but numerous photoheterotrophs, in the region. Reflecting cyanobacterial
distributions across the region (Figure 1b), photosystems associated with oxygenic
photosynthesis were encoded by few community members except in the Pegtop
Mountain and Cliff Nunatak samples (Figure 2). Some photosystem II sequences
affiliated with proteobacterial anoxygenic phototrophs were also detected (Figure
S16). In contrast, energy-converting microbial rhodopsins were prevalent and
abundant across the region (Figure 2). These light-powered proton pumps are well-
characterized for their role in energy conservation in marine and freshwater
ecosystems \(^{81-85}\), though have been scarcely studied in desert environments \(^{86}\). As
outlined by our ‘continual energy harvesting hypothesis’, sunlight (in common with
atmospheric trace gases) is a relatively dependable energy source and hence
lineages that harvest it may have a selective advantage in energy-poor desert soils
\(^{18}\). In line with this theory, putative energy-converting rhodopsins were present in
several of the most dominant orders of Actinobacteriota and Chloroflexota in these
soils (Table S5). They were also present in both cyanobacterial MAGs, thereby
providing a means for photoautotrophs to conserve energy when water for oxygenic
photosynthesis is limiting (Figure S17). Phylogenetic analysis confirmed the binned
and unbinned sequences fell into diverse clades (Figure S17), including two novel
classes that were most closely related (<50% sequence identity) to the biochemically
characterized energy-converting rhodopsins of halophilic archaea (bacteriorhodopsins) \(^{87}\) and *Pantoea* species (pantorhodopsins) \(^{88}\).

Twenty metagenome-assembled genomes were also recovered for the phyla known
to adopt obligately symbiotic lifestyles, namely Patescibacteria, Chlamydiae,
Dependentiae, and Bdellovibrionota (Table S5). All four phyla appear to be obligate
organoheterotrophs that lack alternative pathways for energy conservation or carbon
acquisition (Figure 2). Based on previous reports, all characterized Bdellovibrionota
predate bacterial species \(^{39}\), whereas Chlamydiae and Dependentiae are likely to be
parasites of protist or arthropod species \(^{40,41,89}\) such as populations of springtails
(Collembola) identified within the same sampling area \(^{90}\). Signature genes
associated with the symbiotic lifestyles of each MAG were detected, for example
host-targeted peptidoglycan metalloendopeptidases and self-protection proteins that
Bdellovibrionota uses to invade cells of bacterial prey \(^{91,92}\), as well as ankyrin repeat
and WD40 repeat proteins implicated in modulation of eukaryotic hosts by
Dependentiae \(^{41,89}\) (Table S5). Also in line with an obligately symbiotic lifestyle,
several lineages have ultra-small genomes when adjusted for completeness, namely the eight Patescibacteria MAGs (av. 1.3 Mbp), three Dependenciae MAGs (av. 1.8 Mbp), and a Rickettsiaceae MAG (1.3 Mbp) (Table S5), and are predicted to be auxotrophic for multiple amino acids. Building on the discovery of unexpected symbionts in Antarctic lakes \(^{93,94}\), to our knowledge this is the first report that microbial parasitism is a major ecological strategy in terrestrial Antarctica. We also reveal oxic niches for phyla such as Patescibacteria that have, until now, primarily been studied in anoxic ecosystems \(^{42,95,96}\).

Finally, we obtained genomic and biogeochemical evidence that atmospheric methane oxidation occurs on non-maritime Antarctic soils. Based on methane monooxygenase levels in short reads, aerobic methanotrophs are members of the rare biosphere in most of the sampled Antarctic soils, but are present in very high levels in three soils, including Mount Seuss 5 (9.4%) (Figure 2; Table S5). Concordantly, two of these soils oxidized methane at high cell-specific rates to sub-atmospheric levels during microcosm incubations (Figure 4; Figure S7). Genome-resolved analysis suggested that this activity is primarily mediated by a single bacterial species within the gammaproteobacterial order UBA7966, which encodes a particulate methane monooxygenase clustering with sequences from the atmospheric methane-oxidizing clade USC\(γ\) (Figure S18). While this bacterium has a restricted distribution, based on read mapping, it is among the most abundant single taxon across the entire region (Table S5). Thus, by adopting a relatively specialist lifestyle dependent on assimilating a widely available but catalytically demanding atmospheric substrate, this bacterium fills a distinct ecological niche. Importantly, although methanotroph genomes have previously been reported in Antarctic soils \(^{12,30}\), this is the first experimental report that such bacteria are biogeochemically active.
Conclusions

Altogether, these results demonstrate a remarkable diversity of both microbial lineages and metabolic strategies in the resource-poor soils of Antarctica. The most abundant and prevalent bacterial lineages in Antarctic soils appear to be free-living mixotrophs capable of meeting carbon, energy, and even hydration needs from atmospheric trace gases, i.e. ‘living on air’\(^9^7\). Several bacteria and archaea also achieve high abundances in specific soils through more specialist strategies, spanning atmospheric methanotrophy, oxygenic photosynthesis and lithoautotrophic growth on trace edaphic substrates. This environment in turn has selected for a range of as-yet-uncultivated bacterial lineages (e.g. *Ca. Edaphomicrobia* and *Ca. Aridivitia*) and previously unreported gene families (e.g. encoding group 1\(^\text{I}\) [NiFe]-hydrogenases and potential microbial rhodopsins). Also, surprisingly, a significant minority of community members gain resources through parasitism or predation of microorganisms. Through this combination of strategies, both free-living and symbiotic microorganisms can achieve stable niches in a polyextreme environment.

Additionally, the wealth of metagenomic sequencing data and 451 draft genomes generated by this study provides a valuable resource for two major areas of endeavor. First, these datasets support fundamental research and potentially inform decisions to secure Antarctica’s environmental future, given forecasts of changing temperature and water availability\(^9^8–^1^0^0\). Thus, in line with one of the six priorities for Antarctic science\(^1^0^1\), this resource will provide insights into how life has evolved and adapted on this microbiologically-dominated continent, and in turn may respond to climate changes. Secondly, these findings also contribute to considerations of what processes may sustain life on other cold, dry planets such as Mars. Antarctica has long been considered a potential analogue for life elsewhere in the solar system\(^1^0^2\). Our work brings that picture into sharper resolution.
Materials and Methods

Soil physicochemical analysis

This study used mineral soils previously sampled from 16 glacier- or mountain-associated sites in the Mackay Glacier region, South Victoria Land, Antarctica during January 2015 as previously described. In brief, 50 g of surface soil (depth: 0 - 5 cm) at each location was collected from an approximately 1 m² area and stored in sterile 50 ml polypropylene Falcon tubes (Grenier, Bio-One) aseptically. During storage and transportation to University of Pretoria, samples were kept at -80°C. They were later shipped to Monash University’s quarantine approved facilities for further experiments. Details of soil samples can be found in Table S1. Prior to physicochemical measurements, approximately 35 g of soil of individual sample was aliquoted. Soil aliquots were treated with gamma irradiation at 50 kGy (Steritech Pty Ltd Victoria, Australia) for compliance with Department of Agriculture, Water and the Environment’s quarantine good regulations. They were subsequently shipped to the Environmental Analysis Laboratory (EAL), Southern Cross University, Australia for physicochemical analyses in accordance with ISO/IEC 17025 standard procedures. Physicochemical parameters analysed included: basic soil colour and texture; pH and electrical conductivity (1:5 water); moisture content; total carbon, nitrogen, organic carbon, and organic matter; available calcium, magnesium, potassium, ammonium, nitrate, phosphate, sulfur; exchangeable sodium, potassium, calcium, magnesium, hydrogen, and aluminium; cation exchange capacity; Bray I, Bray II, and Cowell phosphorus; and available micronutrients zinc, manganese, iron, copper, boron, and silicon. These data are summarised in Table S1.

Shotgun metagenome sequencing, assembly and binning

Community DNA for metagenomic sequencing was extracted from 0.5 g of soil using the FastDNA SPIN Kit for soil (MP Biomedicals) according to the manufacturer’s instructions. An extraction blank control was included. Metagenomic shotgun libraries were prepared using the Nextera XT DNA Sample Preparation Kit (Illumina Inc., San Diego, CA, USA) and subject to paired-end sequencing (2 × 150 bp) on an Illumina NextSeq500 platform at the Australian Centre for Ecogenomics (ACE), University of Queensland. Sequencing yielded 356,941,066 read pairs across the sixteen soil metagenomes and 556 read pairs for the negative control (Table S4).
indicating a minimal level of contamination from DNA extraction and sequencing processes. Raw metagenomic sequences were subjected to quality filtering using the BBDuk function of the BBTools v38.80 (https://sourceforge.net/projects/bbmap/); contaminating adapters (k-mer size of 23 and hamming distance of 1), PhiX sequences (k-mer size of 31 and hamming distance of 1), and bases from 3’ ends with a Phred score below 20 were trimmed. After removing resultant reads with lengths shorter than 50 bp, 93% high-quality read pairs were retained for downstream analysis. Metagenomic reads from each sample were assembled individually with metaSPAdes v3.14.0 and collectively with MEGAHIT v1.2.9 (min k: 27, max k: 127, k step: 10). To generate corresponding coverage profiles for assembled contigs, short reads were mapped back using Bowtie2 v2.3.5 with default parameters. Subsequently, genome binning was performed using CONCOCT v1.1.0, MaxBin2 v2.2.7, and MetaBAT2 v2.15 on contigs with length over 2000 bp. Resulting bins from the same assembly were then dereplicated using DAS_Tool v1.1.2. RefineM v0.0.25 was used to remove spurious contigs with incongruent genomic and taxonomic properties. Applying a threshold average nucleotide identity of 99%, bins from different assemblies were consolidated to a non-redundant set of metagenome-assembled genomes (MAGs) using dRep v2.5.4. Completeness and contamination of MAGs were assessed using CheckM v1.1.2. In total, 101 high quality (completeness > 90% and contamination < 5%) and 350 medium quality (completeness > 50% and contamination < 10%) MAGs from 18 phyla were recovered. Their corresponding taxonomy was assigned by GTDB-TK v1.3.0 with reference to GTDB R05-RS95. Open reading frames (ORFs) in MAGs were predicted using Prodigal v2.6.3.

Community analysis

Soil microbial community structures were determined by using both metagenomic and 16S rRNA gene amplicon sequencing. Community profiles in sequenced metagenomes were generated by mapping quality-filtered reads to the universal single copy ribosomal marker genes and clustering at 97% identity using SingleM v.0.12.1 (https://github.com/wwood/singlem). To align with the latest GTDB taxonomy at the time of submission (R05-RS95; release 2020/07), we generated a SingleM package for the single-copy ribosomal protein-encoding gene rplP. In brief, all rplP sequences from Archaea and Bacteria genomes in GTDB R05-RS95
were downloaded. GraftM v0.12.2 was used to generate a phylogenetic package for the sequences which was then used to make a community classification package by SingleM v.0.12.1. For 16S rRNA gene amplicon sequencing, the DNeasy PowerSoil kit (Qiagen) was used to extract DNA from 0.4 g of soil sample as per manufacturer’s instructions. The quality and concentration of DNA extracted were determined using a Nanodrop spectrophotometer (ND-1000) and a Qubit Fluorometer. Quantitative PCR (qPCR) using a 96-well plate in a pre-heated LightCycler 480 Instrument II (Roche, Basel, Switzerland) was used to quantify the copy number of the 16S rRNA genes in the samples as previously described. For each sample, the V4 hypervariable region for 16S rRNA gene was amplified using the universal Earth Microbiome Project primer pairs F515 (Parada) and R806 (Apprill). Amplicons were sent to paired-end sequencing (2 × 300 bp) on an Illumina MiSeq platform at the Australian Centre for Ecogenomics (ACE), University of Queensland. BBDuk function of the BBTools v38.80 was used to trim adapter sequences and filter PhiX contaminants as described above. The sequences were further processed on the QIIME2 platform (release 2019/07) to resolve amplicon sequence variants (ASVs) through the following steps: (i) stripping amplicons primers using cutadapt plugin; (ii) merging paired-end reads using q2-vsearch plugin; (iii) quality filtering using a sliding window of four bases with an average Phred score 20; and (iv) de-noising and truncating sequences at 250 base pairs using deblur. A total of 657,975 reads remained in the dataset (min: 13248, max: 102382) (Table S3). For taxonomic assignment, ASVs were independently annotated with trained naïve Bayes classifiers of 16S rRNA reference databases Silva release 138 and Greengenes 13.8 (Table S3). Multiple sequence alignment of the sequences and subsequent phylogenetic tree building were performed using MAFFT and FastTree, respectively, implemented in QIIME2. We then used R packages phyloseq, picante, vegan, betapart and ggplot2 for downstream statistical analysis and visualizations. Alpha diversity including observed richness, Chao1, Shannon index, and Faith’s phylogenetic diversity were computed using estimate_richness function in phyloseq and pd function in picante. For beta diversity analysis, all samples were rarefied at the lowest sample sequencing depth, i.e. 13248 sequences per sample and rarefaction plots before and after rarefaction were shown in Figure S1a-b. Bray-Curtis dissimilarity was calculated and visualized using a non-metric
multidimensional scaling ordination (NMDS) plot. To examine community turnover in relations to increasing geographic separation, a distance decay relationship of beta diversity (Bray-Curtis dissimilarity) against pairwise geographic distance was computed using the decay.model function fitted with a negative exponential law function in betapart. A p value was calculated using the same function with 999 permutations (Table S3).

Functional analysis

To estimate the metabolic capability of the soil communities, metagenomes and derived genomes were searched against custom protein databases of representative metabolic marker genes using DIAMOND v.0.9.31 (query cover > 80%) 133. Searches were carried out using all quality-filtered unassembled reads with lengths over 140 bp and the ORFs of the 451 MAGs. These genes are involved in sulfur cycling (AsrA, FCC, Sqr, DsrA, Sor, SoxB), nitrogen cycling (AmoA, HzsA, NifH, NarG, NapA, NirS, NirK, NrfA, NosZ, NxrA, NorB), iron cycling (Cyc2, MtrB, OmcB), reductive dehalogenation (RdhA), phototrophy (PsaA, PsbA, energy-converting microbial rhodopsin), methane cycling (McrA, MmoA, PmoA), hydrogen cycling (catalytic subunit of [NiFe]-hydrogenases, catalytic domain of [FeFe]-hydrogenases, and Fe-hydrogenases), isoprene oxidation (IsoA), carbon monoxide oxidation (CoxL, CooS), succinate oxidation (SdhA), fumarate reduction (FrdA), and carbon fixation (Rbcl, AcsB, AclB, Mcr, HbsT, HbsC) 48,52,134. Results were filtered based on an identity threshold of 50%, except for group 4 [NiFe]-hydrogenases, [FeFe]-hydrogenases, CoxL, AmoA, and NxrA (all 60%), PsaA (80%), PsbA and IsoA (70%), and HbsT (75%). Subgroup classification of reads was based on the closest match to the sequences in databases. To search for the presence of an additional set of genes involved in oxidative phosphorylation (AtpA), NADH oxidation (NuoF), aerobic respiration (CoxA, CcoN, CyoA, CydA), formate oxidation (FdhA), arsenic cycling (ARO, ArsC), and selenium cycling (YgfK), corresponding in-house databases were generated for this study. All archaeal and bacterial non-redundant proteins were retrieved from NCBI Refseq protein database release 99 135, which were then screened by hidden Markov models (HMM) 136, with search cutoff scores as described previously 137. Resulting hits were manually inspected to remove false positives and genes with lengths that deviated more than 20% from the average were discarded. The search of these genes in unassembled reads and ORFs of
MAGs was carried out using the DIAMOND blastp algorithm with a minimum percentage identity of 60% (NuoF), 70% (AtpA, ARO, YgfK) or 50% (all other databases). Read counts for each gene were normalized to reads per kilobase per million (RPKM) by dividing the actual read count by the total number of reads (in millions) and then dividing by the gene length (in kilobases). In order to estimate the gene abundance in the microbial community, high-quality unassembled reads were also screened for the 14 universal single copy ribosomal marker genes used in SingleM v.0.12.1 and PhyloSift by DIAMOND (query cover > 80%, bitscore > 40) and normalized as above. Subsequently, the average gene copy number of a gene in the community was calculated by dividing the read count for the gene (in RPKM) by the mean of the read counts of the 14 universal single copy ribosomal marker genes (in RPKM).

Phylogenetic analysis

Maximum-likelihood phylogenetic trees were constructed to verify the presence and visualise the evolutionary history of key metabolic genes in the metagenome-assembled genomes and assembled unbinned reads. Trees were constructed using the amino acid sequences for subunits of ten enzymes involved in energy acquisition: group 1 [NiFe]-hydrogenase (HhyL, HylL); form I carbon monoxide dehydrogenase (CoXL), particulate methane monoxygenase (PmoA), ammonia monooxygenase (AmoA), nitrite oxidoreductase (NxrA), sulfide-quinone oxidoreductase (Sqr), flavocytochrome c sulfide dehydrogenase (FCC), thiosulfohydrolase (SoxB), iron-oxidizing c-type cytochrome (Cyc2), photosystem II (PsbA), and energy-converting rhodopsins. Trees were also constructed of the amino acid sequences for subunits of three enzymes involved in carbon fixation: ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO; RbcL), thaumarchaeotal 4-hydroxybutyrate synthase (HbsT), and ATP-citrate lyase (AclB).

In all cases, protein sequences retrieved from the MAGs or assembled metagenome sequences by homology-based searches were aligned against a subset of reference sequences from the custom protein databases using ClustalW in MEGA X. Evolutionary relationships were visualized by constructing maximum-likelihood phylogenetic trees; specifically, initial trees for the heuristic search were obtained automatically by applying Neighbour-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology
with superior log likelihood value. All residues were used and trees were bootstrapped with 50 replicates. To characterise the genetic context of [NiFe] hydrogenases and ribulose-1,5-bisphosphate carboxylase / oxygenase (RuBisCO) from the MAGs, up to 10 genes upstream and downstream of the catalytic subunits were retrieved. These flanking genes were annotated against Pfam protein family database v33.1 using PfamScan v1.6 and NCBI Refseq protein database release 99 using DIAMOND blastp algorithm (default parameters). Alignments with the highest score were retained and are summarised in Table S7. The R package gggenes (https://github.com/wilkox/gggenes) was used to construct gene arrangement diagrams.

Hydrogenase sequence analysis and homology modelling

The amino acid sequence for the large (HylL; GBID = SMB94678) and small subunits (HylS GBID = SMB94698) of the group 1l [NiFe]-hydrogenase from *H. roseosalivarius* were inputted into the Phyre2 webserver using default parameters. The highest confidence output model for both subunits was derived from the structure of the group 1h [NiFe]-hydrogenase (HhyLS) from *Cupriavidus necator* H16 (PDB ID = 5AA5). The structure of the group 1l [NiFe]-hydrogenase tetramer was assembled using Pymol, based on the tetrameric structure of the *C. necator* group 1h [NiFe]-hydrogenase for further analysis. To identify transmembrane helix presence, position and topology in the HylTM proteins associated with group 1l [NiFe]-hydrogenases, the amino acid sequences from *H. roseosalivarius* were inputted into the TMHHM 2.0 webserver.

Gas chromatography assays

Soil microcosms were used to determine the capacity of soil microbial communities to oxidize H₂, CO, and CH₄ by gas chromatography. For each of the 16 Mackay Glacier region samples in technical duplicate, 2 g of soil was placed in a 120 ml serum vial and incubated at 10°C. The ambient air headspace was amended with H₂, CO, and CH₄ (via a mixed gas cylinder containing 0.1 % v/v H₂, CO, and CH₄ each in N₂, BOC Australia) to give starting mixing ratios of approximately 10 parts per million (ppmv) for each gas. At each time interval, 2 ml of headspace gas was sampled using a gas-tight syringe and stored in sealed a 3 ml glass extainer that had been flushed with ultra-high purity N₂ (99.999% pure, BOC Australia) prior to
measurement. A VICI gas chromatographic machine with a pulsed discharge helium ionization detector (model TGA-6791-W-4U-2, Valco Instruments Company Inc.) and an autosampler was used to measure gas concentrations as previously described. The machine was calibrated against ultra-pure H₂, CO and CH₄ standards down to the limit of quantification (H₂: 20 ppbv; CO: 9 ppbv; CH₄: 500 ppbv). Calibration mixed gas (10.20 ppmv of H₂, 10.10 ppmv of CH₄, 9.95 ppmv of CO in N₂, Air Liquide Australia) and pressurized air (Air Liquide Australia) with known trace gas concentrations were used as internal reference standards. Four pooled heat-killed soils (2 g of pooled soil; treated at 121°C, 15 p.s.i. for 60 mins) were prepared as negative controls. For kinetic analysis, measurement time points with individual gas concentration over 0.4 ppmv were used. First order reaction rate constants were calculated by fitting an exponential model as determined by the lowest overall Akaike information criterion value when compared to a linear model. Actual reaction rate constants of the sample were obtained by correcting against means of negative controls and only resultant values higher than the magnitude of measurement errors of negative controls were retained. Bulk atmospheric gas oxidation rate for each sample was calculated with respect to mean atmospheric mixing ratio of corresponding trace gases (H₂: 0.53 ppmv; CO: 0.09 ppmv; CH₄: 1.9 ppmv). Soil cell abundance was estimated using 16S rRNA gene copy number from qPCR corrected with a reported average number of 16S rRNA gene copy per genome (i.e. 4.2). Cell specific gas oxidation rates were then inferred by dividing estimated soil cell abundance and the proportion of corresponding gas oxidizers from metagenomic data. To identify factors potentially influencing gas oxidation rates, a two-tailed all-vs-all Spearman correlation matrix was generated that encompassed gas oxidation rates, gas oxidation gene abundances, and soil physicochemical variables for each of the 16 samples.
References

16. Tahon, G. & Willems, A. Isolation and characterization of aerobic anoxicogenic

31. Doran, P. T. *et al.* Antarctic climate cooling and terrestrial ecosystem...

47. Greening, C. *et al.* Persistence of the dominant soil phylum Acidobacteria by

61. Schmitz, R. A. *et al.* The thermoacidophilic methanotroph *Methylacidiphilum fumariliicum* SolV oxidizes subatmospheric H₂ with a high-affinity, membrane-

76. Tijhuis, L., Van Loosdrecht, M. C. & Heijnen, J. J. A thermodynamically based correlation for maintenance gibbs energy requirements in aerobic and

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

125. McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for

Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc.

144. Krogh, A., Larsson, B., Von Heijne, G. & Sonnhammer, E. L. L. Predicting
transmembrane protein topology with a hidden Markov model: Application to

146. Stocker, T. F. et al. Climate change 2013 the physical science basis: Working
Group I contribution to the fifth assessment report of the intergovernmental
panel on climate change. Climate Change 2013 the Physical Science Basis:
Working Group I Contribution to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change vol. 9781107057 (2013).

147. Větrovský, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial
genomes and its consequences for bacterial community analyses. PLoS One
8, e57923 (2013).

and Chloroflexi are abundant among very slow-growing and mini-colony-
Footnotes

Etymological information:

Candidatus Edaphomicrobium (E.da.pho.mi.cro'bi.um. Gr. neut. n. *edaphos*, soil; N.L. neut. n. *microbium*, a microbe; N. L. neut. n. *Edaphomicrobium*, a soil microbium)

Candidatus Edaphomicrobium janssenii (jans.sen'i.i. N.L. gen. n. *janssenii*, of Janssen, named after Peter H. Janssen, for his pioneering isolation-based studies that first described this lineage

Candidatus Edaphomicrobiaceae (former candidate Chloroflexota family CSP1-4) (E.da.pho.mi.cro.bi.a.ce'ae. N.L. neut. n. *Edaphomicrobium* a (Candidatus) bacterial genus; suff. *-aceae* ending to denote a family; N.L. fem. pl. n. *Edaphomicrobiaceae*, family of the genus *Edaphomicrobium*)

Candidatus Edaphomicrobiales (former candidate Chloroflexota order CSP1-4) (E.da.pho.mi.cro.bi.a'les. N.L. neut. n. *Edaphomicrobium* a (Candidatus) bacterial genus; suff. *-ales* ending to denote an order; N.L. fem. pl. n. *Edaphomicrobiales*, order of the family *Edaphomicrobiaceae*)

Candidatus Edaphomicrobia (former candidate Chloroflexota class Ellin6529) (E.da.pho.mi.cro'bi.a. N.L. neut. n. *Edaphomicrobium* a (Candidatus) bacterial genus; *-ia* ending to denote a class; N.L. neut. pl. n. *Edaphomicrobia*, class of the order *Edaphomicrobiales*)

Candidatus Aridivita willemsiae (wil.lems'i.ae. N.L. gen. n. *willemsiae*, of Willems, named after Anne Willems, for her contributions to Antarctic microbiology using isolation-based approaches)

Candidatus Aridivitaceae (A.ri.di.vi.ta.ce'ae. N.L. neut. n. *Aridivita* a (Candidatus) bacterial genus; suff. *-aceae* ending to denote a family; N.L. fem. pl. n. *Aridivitaceae*, family of the genus *Aridivita*)

Candidatus Aridivitales (A.ri.di.vi.ta'les. N.L. neut. n. *Aridivita* a (Candidatus) bacterial genus; *-ales* ending to denote an order; N.L. fem. pl. n. *Aridivitales*, order of the family *Aridivitaceae*)
Candidatus Aridivitia (former candidate Actinobacteriota class UBA4738)
(A.r.i.di.vi’ti.a. N.L. neut. n. Aridivita a (Candidatus) bacterial genus; -ia ending to
denote a class; N.L. neut. pl. n. Aridivitia, class of the order Aridivitales)

Data availability statement:
All amplicon sequencing data, raw metagenomes, and metagenome-assembled
genomes were deposited to the NCBI Sequence Read Archive under BioProject
accession PRJNA630822.

Acknowledgements:
This study was supported by an ARC DECRA Fellowship (DE170100310; awarded
to C.G.), an Australian Antarctic Division grant (4592; awarded to C.G. and S.L.C.), a
South African National Antarctic Program grant (110730: awarded to D.A.C), an
NHMRC EL2 Fellowship (APP1178715; salary for C.G.), an Australian Government
Research Training Stipend Scholarship and a Monash International Tuition
Scholarship (awarded to P.M.L. and S.K.B.), and a National Research Foundation
SANAP postdoctoral grant (awarded to M.O.). Logistic and financial support for the
field work was provided by Antarctica New Zealand and the New Zealand Antarctic
Research Institute, respectively (awarded to I.D.H.). We acknowledge the PhD
student research discount offered by the Environmental Analysis Laboratory (EAL), a
Southern Cross University NATA (National Association of Testing Authorities)
ISO17025 accredited commercial and research support facility. We thank Thanavit
Jirapanjawat for technical support, Maria Chuvochina for etymological advice, and
Andrew Lovering, Philipp Nauer, Eleonora Chiri, Ricardo Cavicchioli, and Belinda
Ferrari for helpful discussions.

Author contributions:
D.A.C., C.G., M.O., S.L.C., and I.D.H. conceived this study. C.G. and D.A.C.
supervised this study. C.G., P.M.L., D.A.C., and M.O. designed experiments. P.M.L.
and G.S. performed experiments. P.M.L., C.G., R.G., G.S., M.O., and D.A.C.
analyzed data. P.M.L., C.G., R.G., D.A.C., M.O., and S.L.C. wrote the manuscript
with input from all authors. Different authors were specifically responsible for the
original sampling campaign (D.A.C., I.D.H.), metagenomic sequencing and assembly
(P.M.L., C.G.), community analysis (P.M.L., G.S., C.G.), metabolic annotation

The authors declare no conflict of interest.
Figures

Figure 1. Abundance, composition, and diversity of the microbial communities from the Mackay Glacier region. (a) Boxplot showing the estimated abundance of bacterial and archaeal taxa, based on 16S rRNA copy number determined by quantitative PCR. (b) Stacked bar chart showing phylum-level community composition based on metagenomic reads of the single-copy marker gene *rplP* and metagenome-assembled genomes. Bacterial and archaeal taxonomy is based on Genome taxonomy database (GTDB) release 05-RS95. Phyla with less than 1% abundance in the sample were grouped to “Other phyla”. (c) Boxplot showing alpha diversity (Observed richness, Chao1, Shannon, Faith’s phylogenetic diversity) of microbial communities based on 16S rRNA gene amplicon sequence variants. (d) Beta diversity of rarefied 16S rRNA gene amplicon sequencing data based on Bray-Curtis dissimilarity and visualised by a non-metric multidimensional scaling ordination (NMDS) plot.

Figure 2. Metabolic potential of the microbial communities to use inorganic compounds, organic compounds, and light for energy and carbon acquisition. Homology-based searches were used to identify signature genes encoding enzymes associated with (from top to bottom): oxidative phosphorylation, trace gas oxidation, sulfur compound oxidation, nitrification, other oxidative processes, photosynthesis, and carbon fixation. The left heatmap shows the percentage of total community members predicted to encode each signature metabolic gene. To infer abundance, read counts were normalized to gene length and the abundance of single-copy marker genes. The right heatmap shows the presence of these genes across the 451 metagenome-assembled genomes spanning 18 phyla. Abundance was normalized by predicted MAG completeness.

Figure 3. Identification of the novel group 1l family of [NiFe] hydrogenases widespread in the Antarctic soil bacterial communities. (a) Maximum-likelihood phylogenetic tree showing the sequence divergence of group 1 [NiFe] hydrogenases identified in MAGs from this study. Amino acid sequences retrieved from the reconstructed genomes were aligned against reference sequences (bootstrapped...
with 50 replicates). Branches of group 1 [NiFe] hydrogenases are shaded according
to the subgroup classification and tips are colored based on phylum-level affiliation of
the sequence. All sequences from MAGs of the Mackay Glacier region clustered with
either the well-characterized group 1h [NiFe]-hydrogenases or the previously
unreported group 1l [NiFe]-hydrogenases. (b) Representative genetic organization of
group 1l [NiFe] hydrogenase gene cluster derived from the Antarctic bacterium
Hymenobacter roseosalivarius. This shows the predicted open reading frames for
the large (HylL) and small (HylS) hydrogenase subunits, the five interposing short
predicted transmembrane proteins (HylTM1-5), a predicted electron-relaying Rieske-
type protein (HylE), and a maturation endopeptidase (HupD). Conserved open
reading frames with no predicted function are shown but not labelled. (c) Three-
dimensional model of the group 1l [NiFe] hydrogenase. This shows a structural
homology model of a heterotetramer of HylL and HylS subunits as a ribbon
representation and a cartoon of a speculative complex between the hydrogenase
and genetically associated HylTM proteins. (d) The location of conserved residues
coordinating the [NiFe]-centre of the HylL subunit and [FeS] clusters of the HylS
subunit of the group 1l [NiFe] hydrogenase. (e) Putative location of [FeS] clusters
and [NiFe] centre (spheres) in one half of the group 1l [NiFe] hydrogenase tetramer,
with conserved coordinating residues (sticks) color coded as in panel C.

**Figure 4. Rates of atmospheric trace gas oxidation by soils sampled from the
Mackay Glacier region.** Boxplots show rates of oxidation of atmospheric H₂, CO,
and CH₄ for each soil in duplicate soil microcosms at 10°C, based on gas
chromatography measurements. Only rates for samples with detectable gas
oxidation are shown. (a) Atmospheric gas oxidation rate for each microcosm
normalized to wet weight of soil. (b) Cell-specific reaction rates for each microcosm.
These rates were calculated by dividing the estimated soil cell abundance and
proportion of gas oxidizers based on quantitative qPCR and metagenome short read
analysis (HhyL and HylL abundance for H₂, CoxL abundance for CO, PmoA and
MmoX abundance for CH₄).
<table>
<thead>
<tr>
<th>Metabolism</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidative phosphorylation</td>
<td>AtpA</td>
</tr>
<tr>
<td>Aerobic respiration</td>
<td>CooN</td>
</tr>
<tr>
<td>Aerobic respiration</td>
<td>CoxA</td>
</tr>
<tr>
<td>Aerobic respiration</td>
<td>CydA</td>
</tr>
<tr>
<td>Aerobic respiration</td>
<td>CyoA</td>
</tr>
<tr>
<td>NADH oxidation</td>
<td>NuoF</td>
</tr>
<tr>
<td>Succinate oxidation</td>
<td>SdIA</td>
</tr>
<tr>
<td>Anaerobic carbon monoxide oxidation</td>
<td>CcoS</td>
</tr>
<tr>
<td>Aerobic carbon monoxide oxidation</td>
<td>CoxL</td>
</tr>
<tr>
<td>Hydrogen oxidation</td>
<td>(NiFe)1h</td>
</tr>
<tr>
<td>Hydrogen oxidation</td>
<td>(NiFe)1l</td>
</tr>
<tr>
<td>Methane oxidation</td>
<td>MmoA</td>
</tr>
<tr>
<td>Methane oxidation</td>
<td>PmoA</td>
</tr>
<tr>
<td>Isoprene oxidation</td>
<td>IcoA</td>
</tr>
<tr>
<td>Sulfide oxidation</td>
<td>Sqr</td>
</tr>
<tr>
<td>Sulfide oxidation</td>
<td>SoxB</td>
</tr>
<tr>
<td>Thiosulfate oxidation</td>
<td>SoxB</td>
</tr>
<tr>
<td>Ammonia oxidation</td>
<td>AmoA</td>
</tr>
<tr>
<td>Nitrite oxidation</td>
<td>NxrA</td>
</tr>
<tr>
<td>Arsenite oxidation</td>
<td>ARO</td>
</tr>
<tr>
<td>Iron oxidation</td>
<td>Cyc2</td>
</tr>
<tr>
<td>Formate oxidation</td>
<td>FdhA</td>
</tr>
<tr>
<td>Photosystem I−dependent phototrophy</td>
<td>PsaA</td>
</tr>
<tr>
<td>Photosystem II−dependent phototrophy</td>
<td>PsbA</td>
</tr>
<tr>
<td>Rhodopsin−dependent phototrophy</td>
<td>RHO</td>
</tr>
<tr>
<td>Reductive tricarboxylic acid cycle</td>
<td>AdiB</td>
</tr>
<tr>
<td>Wood−Ljungdahl pathway</td>
<td>AcsB</td>
</tr>
<tr>
<td>Crenarchaeotal 4+hydroxybutyrate cycle</td>
<td>HbsC</td>
</tr>
<tr>
<td>Thaumarchaeotal 4+hydroxybutyrate cycle</td>
<td>HbsT</td>
</tr>
<tr>
<td>3−hydroxypropionate cycle</td>
<td>Mcr</td>
</tr>
<tr>
<td>Calvin−Benson−Bassham cycle</td>
<td>RbcL</td>
</tr>
</tbody>
</table>

Estimated abundance in community (%)
Hydrogen
Carbon monoxide
Methane

Gas oxidation rate (nmol hr\(^{-1}\) g\(_{\text{wet wt}}\)\(^{-1}\))

- 10\(^{-5}\)
- 10\(^{-4}\)
- 10\(^{-3}\)
- 10\(^{-2}\)
- 10\(^{-1}\)
- 10\(^0\)
- 10\(^{1}\)
- 10\(^{2}\)
- 10\(^{3}\)

Sample
- Mount Seuss 4
- Mount Seuss 5
- Mount Seuss 6
- Mount Seuss 7
- Mackay Glacier 1
- Mackay Glacier 2
- Mount Gran 1
- Mount Gran 2
- Towle Glacier 1
- Towle Glacier 2
- Cliff Nunatak
- Benson Glacier
- Spaulding Pond
- Flatiron
- Pegtop Mountain