Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

When does parasitism maintain sex in the absence of Red Queen Dynamics?

View ORCID ProfileBen Ashby
doi: https://doi.org/10.1101/2020.08.06.239632
Ben Ashby
1Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ben Ashby
  • For correspondence: benashbyevo@gmail.com
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

Parasites can select for sexual reproduction in host populations, preventing replacement by faster growing asexual lineages. This is usually attributed to so-called “Red Queen Dynamics” (RQD), where antagonistic coevolution causes fluctuating selection in allele frequencies, which provides sex with an advantage over asex. However, parasitism may also maintain sex in the absence of RQD when sexual populations are more genetically diverse – and hence more resistant, on average – than clonal populations, allowing sex and asex to stably coexist. While the maintenance of sex due to RQD has been studied extensively, the conditions that allow sex and asex to stably coexist have yet to be explored in detail. In particular, we lack an understanding of how host demography and parasite epidemiology affect the maintenance of sex in the absence of RQD. Here, I use an eco-evolutionary model to show that both population density and the type and strength of virulence are important for maintaining sex, which can be understood in terms of their effects on disease prevalence and severity. In addition, I show that even in the absence of heterozygote advantage, asexual heterozygosity affects coexistence with sex due to variation in niche overlap. These results reveal which host and parasite characteristics are most important for the maintenance of sex in the absence of RQD, and provide empirically testable predictions for how demography and epidemiology mediate competition between sex and asex.

Competing Interest Statement

The authors have declared no competing interest.

Footnotes

  • Discussion expanded. Clarifications added to Methods.

  • https://github.com/ecoevogroup/Ashby_parasitism_sex_2020

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted September 10, 2020.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
When does parasitism maintain sex in the absence of Red Queen Dynamics?
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
When does parasitism maintain sex in the absence of Red Queen Dynamics?
Ben Ashby
bioRxiv 2020.08.06.239632; doi: https://doi.org/10.1101/2020.08.06.239632
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
When does parasitism maintain sex in the absence of Red Queen Dynamics?
Ben Ashby
bioRxiv 2020.08.06.239632; doi: https://doi.org/10.1101/2020.08.06.239632

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4237)
  • Biochemistry (9154)
  • Bioengineering (6796)
  • Bioinformatics (24050)
  • Biophysics (12149)
  • Cancer Biology (9560)
  • Cell Biology (13811)
  • Clinical Trials (138)
  • Developmental Biology (7650)
  • Ecology (11728)
  • Epidemiology (2066)
  • Evolutionary Biology (15532)
  • Genetics (10662)
  • Genomics (14344)
  • Immunology (9500)
  • Microbiology (22873)
  • Molecular Biology (9113)
  • Neuroscience (49077)
  • Paleontology (357)
  • Pathology (1487)
  • Pharmacology and Toxicology (2575)
  • Physiology (3851)
  • Plant Biology (8347)
  • Scientific Communication and Education (1473)
  • Synthetic Biology (2299)
  • Systems Biology (6202)
  • Zoology (1302)