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ABSTRACT 
Objective Keystone species are required for the integrity and stability of an ecological 

community, and therefore, are potential intervention targets for microbiome related diseases. 

Design Here we describe an algorithm for the identification of keystone species from cross-

sectional microbiome data of non-alcoholic fatty liver disease (NAFLD) based on causal 

inference theories and dynamic intervention modeling (DIM). 

Results Eight keystone species in the gut of NAFLD, represented by P. loveana, A. indistinctus 

and D. pneumosintes, were identified by our algorithm, which could efficiently restore the 

microbial composition of the NAFLD toward a normal gut microbiome with 92.3% recovery. 

These keystone species regulate intestinal amino acids metabolism and acid-base environment to 

promote the growth of the butyrate-producing Lachnospiraceae and Ruminococcaceae species. 

Conclusion Our method may benefit microbiome studies in the broad fields of medicine, 

environmental science and microbiology. 

 

SUMMARY 

What is already known about this subject? 

� Non-alcoholic fatty liver disease (NAFLD) is a complex multifactorial disease whose 
pathogenesis remains unclear. 

� Dysbiosis in the gut microbiota affects the initiation and development of NAFLD, but the 
mechanisms is yet to be established. 

� Keystone species represent excellent candidate targets for gut microbiome-based 
interventions, as they are defined as the species required for the integrity and stability of the 
ecological system. 

 

What are the new findings? 

� NAFLD showed significant dysbiosis in butyrate-producing Lachnospiraceae and 
Ruminococcaceae species. 

� Microbial interaction networks were constructed by the novel algorithm with causal 
inference. 

� Keystone species were identified form microbial interaction networks through dynamic 
intervention modeling based on generalized Lotka-Volterra model. 

� Eight keystone species of NAFLD with the highest potential for restoring the microbial 
composition were identified. 

 

How might it impact on clinical practice in the foreseeable future? 

� An algorithm for the identification of keystone species from cross-sectional microbiome data 
based on causal inference theories and dynamic intervention modeling. 
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� Eight keystone species in the gut of NAFLD, represented by P. loveana, A. indistinctus and 
D. pneumosintes, which could efficiently restore the microbial composition of the NAFLD 
toward a normal gut microbiome. 

� Our method may benefit microbiome studies in the broad fields of medicine, environmental 
science and microbiology. 

 

 

Keywords non-alcoholic fatty liver disease; gut microbiota; keystone species; causal inference 

 
INTRODUCTION 

Non-alcoholic fatty liver disease (NAFLD) is a complex multifactorial disease whose 

pathogenesis remains unclear. The advanced form of NAFLD with hepatic inflammation is non-

alcoholic steatohepatitis (NASH). Studies have shown that dysbiosis in the gut microbiota affects 

the initiation and development of NAFLD.1-3 With the whole genome sequencing data of the gut 

microbiome, we have identified 37 microbial markers that can distinguish between mild and 

severe NAFLD patients.4 In addition, we and others observed that microbe-derived metabolites, 

including endogenous ethanol,5 bile acids6 and amino acids,7 contribute to the pathogenesis of 

NAFLD. Accordingly，many microbial intervention therapies targeting the gut microbiota, such 

as prebiotics, probiotics, and fecal microbiota transplantation (FMT) are being considered to treat 

NAFLD.8 However, these microbial interventions have not achieved satisfactory effect,9, 10 which 

may be partly explained by the structural complexity of the ecosystem we have in our gut. 

Therefore, further studies of the dynamic changes in the microbiome during disease development 

and the mechanisms behind the changes are essential for the identification of microbial targets in 

the precise treatment of NAFLD and other diseases related to the gut microbiome. 

Keystone species represent excellent candidate targets for gut microbiome-based 

interventions,11 as they are defined as the species required for the integrity and stability of the 

ecological system. The alteration of the keystone species could affect much of the entire 

community through the interactions among the members of the ecosystem.12 Culture dependent 

studies on keystone species have been conducted in several diseases, such as periodontal disease13 

and Clostridium difficile infection.14 The potential imperfection with the in vitro approaches in 

these studies is that most microbes could not be isolated or cultured, therefore, these methods 

poorly recapitulate the actual micro-environments.  

The next generation sequencing techniques allowed the study of the keystone species without 

culture, such as the approach based on the co-occurrence network analysis.15 The disadvantages 

of the co-occurrence network are that correlation does not imply causation,11, 15 and that co-
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occurrence network does not support dynamic simulation.16, 17 These limitations can be addressed 

by causal inference analysis. The causal inference methods using time-series data are the ideal 

approachhes for the reconstruction of the microbial interaction networks.18, 19 However, due to the 

requirement for large sample size and frequent sampling time points, these methods are not 

practically applicable. By contrast, cross-sectional data is the most common data type in 

biomedical research. Xiao et al. pioneered the causal inference method for the study of microbial 

interactions with cross-sectional data. The method they developed, zero/sign-pattern inference of 

Jacobian matrix, requires independent steady-state data,20 which is hardly available from 

biomedical studies.  

Here, for the first time, we implemented the causal inference theories by Robins21 and Pearl,22 

for the construction of microbial interaction networks with cross-sectional microbiome dataset. 

Subsequently, the keystone species of NAFLD were identified by dynamic intervention modeling 

(DIM) with the interaction networks. Our algorithm was validated with an independent NAFLD 

cohort. 

 

MATERIALS AND METHODS 

Study cohorts 

This study was approved by the Institutional Review Board of Tongji University, the Children and 

Youth Institutional Review Board (CYIRB) of the State University of New York at Buffalo and 

the UCSD Institutional Review Board. Enrollment of the discovery cohort from New York and 

the validating cohort from California were described previously.5, 23 Briefly, for the discovery 

cohort, fecal samples of adolescents collected from 22 biopsy-proven patients with NASH, 25 

obese patients and 16 healthy controls (table S1) were pyrosequenced on a 454-FLX-Titanium 

Genome Sequencer (Roche 454 Life Sciences, Branford, Connecticut, USA). Our validating 

cohort consists of 31 healthy controls, 14 NAFLD patients without advanced fibrosis and 24 

NAFLD patients with cirrhosis (table S1) and were sequenced with Illumina MiSeq. Patients were 

not involved in the design, or conduct, or reporting, or dissemination plans of in this research. 

Operational taxonomic units (OTUs) were de novo clustered at 97% sequence identity and 

chimeras removed with Qiime2 after quality control of the 16S sequencing data.24 Taxonomy 

classification was assigned using classify-sklearn based on a Naive Bayes classifier against the 

Silva-132-99 reference sequences. OTUs that cannot be precisely annotated to any species were 

reassigned to species with the most similar sequences in the same genus (or family) by NCBI 

Blast with the default setting. And then, OTUs unassigned at class level were removed for further 
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analysis. 97 and 190 OTUs were obtained with the sample coverage  0.5 from the discovery and 

validation cohorts, respectively. 

 

Differential abundance analysis and evaluation of the sample discrimination ability of 

microbes 

The Wilcoxon rank-sum test was performed to identify microbes with differential abundance 

between study groups and the Benjamini-Hochberg was applied to control the false positive rate 

(FDR) in multiple comparisons (FDR 0.05). These differential microbes were then individually 

evaluated for their ability in sample discrimination using area under the receiver operating 

characteristic curve (AUC). 

 

Keystone species identification 

The pipeline mainly consists of two steps (figure 1): 1) a novel causal inference-based method 

was implemented to construct the microbial causal interaction networks; and 2) keystone species 

were identified with dynamic intervention modeling (DIM) based on microbial interactions.  

1) Interaction network construction by causal inference 

Causal inference needs a priori knowledge. Considering the compositional characteristics of 

microbial sequencing data, we used SparCC to calculate the co-occurrences of the microbial 

species in the gut microbiome.25 SparCC avoids the inaccuracies that usually occur with relative 

abundances in correlation analysis. Only relationships with p 0.01 (permutation test with 1000 

permutations) were included in the priori network. 

Causal inference was performed by integrating two mainstream causal inference frameworks, 

Robins’ potential outcome (counterfactual) model21 and Pearl’s graphical model.22 Our approach 

effectively controls the influence of confounders and infer causality more accurately on microbial 

cross-sectional cohort. We extended the application of causal inference to microbiome analysis 

with generalized Lotka-Volterra (gLV) model, a well-known dynamic model for microbiome 

study.26 Meanwhile, iterative optimization strategy was used to improve the reliability of priori 

network and the accuracy of the inferred causal relations. Permutation test was performed to 

determine significant causalities (p 0.01) (Supplementary Notes).  

2) Keystone species identification 

By definition,12, 27 keystone species is one of the core driving factors to maintain or to damage the 

integrity and stability of the microbial communities. Therefore, the keystone species of the 

microbiome represent effective intervention targets. Here, we applied DIM to evaluate the impact 

of targeting each candidate keystone species on the entire gut microbiome based on the microbial 
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interactions, so as to determine the keystone species that has the highest impact in the gut 

microbiome. 

The topological importance of a species was a key indicator to evaluate its impact on other 

species in the entire ecosystem, and thus the important basis in our keystone species identification. 

To assess the strength of the microbial interactions obtained by causal inference, Hyperlink-

Induced Topic Search (HITS), a network node importance evaluation algorithm28 was used to 

quantify the influence of every species in the community.15 The significances of HITS scores 

were assessed by permutation test with 1000 permutations. Species with significantly higher 

HITS scores (p 0.01) were defined as hub species. 

As reported previously,26 gLV equation was applied to construct the dynamic model of 

microbial interactions and abundance changes in dynamic intervention modeling (DIM).  DIM 

was conducted to evaluate the abilities of targeting each candidate keystone species on restoring a 

normal microbial structure from a diseased microbiome. The performance of the intervention by 

each candidate species, the intervention scores, were adjusted by integrating the HITS scores of 

the species in the normal microbiome to reward the interventions that preferentially restored the 

species with greater topological significance in the normal microbial network. Finally, the 

Iterative Feature Elimination (IFE) algorithm was used to determine the optimal combinations of 

the keystone species with the maximum cumulative intervention score (Supplementary Notes). 

 

Microbial functional enrichment analysis 

With information of the gene annotations and the integrated modules from KEGG database, 

functional enrichment analysis was performed to assess the biological functions of microbial 

species. The KEGG Orthologs (KOs) information of microbes were predicted via PICRUST2.29 

The enrichment analysis of KEGG modules was conducted with one-sided Fisher's exact test, and 

adjusted with Benjamini-Hochberg method. Modules with FDR 0.01 were considered 

significantly enriched modules.  

 

Statistical analysis 

All statistical analyses were conducted in Python (3.6.0). Statistical significance was determined 

by the two-sided Wilcoxon rank-sum test, Permutation test or one-sided Fisher's exact test. 

 

RESULTS  

Abundance changes of the gut microbial species in obesity and NASH 
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Compared with normal controls, differential analysis identified 39 differential species in the gut 

of NASH patients (figure 2, table S2). These differential species mainly belonged to class 

Clostridiales, including Family XI, Lachnospiraceae, Ruminococcaceae, Peptostreptococcaceae, 

and Family III families. In NASH, the differential species of Family XI were up-regulated, while 

those of Lachnospiraceae and Ruminococcaceae were down-regulated (figure 2 and table S2). 

Similar changes were also observed in obesity. Interestingly, the gut microbiota exhibited a 

gradual change in the abundances of the differential species during the disease development from 

normal to obese and then to NASH (figure S1). In addition, these differential species possessed 

strong discrimination abilities for normal and NASH samples (figure S1), for example, P. loveana, 

A. indistinctus(OTU57) and D. pneumosintes achieved an AUC of 0.794, 0.766, 0.832, 

respectively. 

 

Distinct patterns of the microbial interactions in the gut of normal, obese and NASH 

subjects 

Microbial interaction networks in the gut of the normal, obese and NASH subjects were 

constructed using a novel causal inference algorithm described in the Method section (figure 3A, 

B, C), and the hub species of each study group were then identified based on the network 

topological properties (figure 3D, E, F). 

The gut microbiome of normal, obese and NASH groups exhibited distinct patterns of 

microbial interactions (figure 3). In normal subjects, the microbial interaction network exhibited a 

heterogeneous pattern with less connections among the microbial species, characteristics of a 

typical scale-free network (figure 3A). The hub species that belong to Lachnospiraceae (Positive / 

Negative = 58/47), Ruminococcaceae (P / N = 20/10) and Bacteroidaceae (P / N = 52/33) mainly 

imposed positive impact, while those belong to Family XI (P / N = 0/38) exerted mainly negative 

impact on other microbes in the normal gut microbiome (figure 3G). 

Compared to normals, the microbial interactions in the gut of obesity and NASH exhibited 

immense alterations with relatively homogeneous patterns and more connections among the 

members of the microbial community (figure 3B, C).  Although the species of Lachnospiraceae, 

Family XI and Bacteroidaceae still remained the hub species in the networks, more hub species 

including species of the families Prevotellaceae, Veillonellaceae, Peptoniphilus, 

Porphyromonadaceae etc. were identified as hub species in obesity and NASH. The obesity and 

NASH specific hub species included Prevotella buccalis, Alistipes indistinctus, Porphyromonas 

sp. 2007b, and Dialister pneumosintes (figure 3D, E, F). 
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DIM identified keystone species that drive the changes of the diseased gut microbiome 

toward a normal microbiome 

Alteration in the abundance of a keystone species is expected to induce changes in other species 

and profoundly impact the intestinal homeostasis. Therefore, in this study, DIM was performed to 

simulate the dynamic alterations of the gut microbiome upon microbial intervention, and Iterative 

Feature Elimination (IFE) was conducted to identify those species that collectively exert the 

highest impact on the entire microbiome. 

Consistent with their topologically central positions in the microbial interaction networks, the 

hub species were highly influential in the gut microbiome according to our DIM analyses (figure 

S2A and 4A). Targeting hub species in obese patients, such as P. buccalis (Intervention score, 

IS=0.397), Ruminococcus torques (IS=0.288), Blautia hansenii (IS=0.284), Anaerostipes caccae 

(IS=0.281), and D. pneumosintes (IS=0.279), were able to cause significant changes in the 

structures of the gut microbiome, toward restoring a normal gut microbiome (table S2). Similarly, 

with NASH gut microbiome, targeting hub species such as P. sp. 2007b (IS=0.376), D. 

pneumosintes (IS=0.294), Peptoniphilus lacrimalis (IS=0.289), Agathobacter ruminis (IS=0.254), 

and Ezakiella peruensis (IS=0.247) were able to cause significant changes in the gut toward 

restoring a normal gut microbiome (table S2). Targeting single species other than the hub species 

produced negligible impact on the composition of the gut microbiomes (figure S2C). 

Intervention targeting multiple species simultaneously would produce a better outcome than 

targeting a single species.11 Therefore, we took a novel approach of integrating the DIM and IFE 

algorithms to identify the keystone species combinations that have the highest potential for 

microbial interventions. We identified 11 and 8 keystone species from the obese and the NASH 

microbiomes, respectively. Cumulative intervention scores (CIS) of the identified keystone 

species combinations were 0.903 and 0.923, respectively (figure S2A, 4A and table S2), 

suggesting that the microbiome in the gut of the patients can be maximally restored toward a 

normal microbiome by targeting these keystone species (figure S2B and 4B). Targeting 8 

keystone species in the NASH caused changes in the species of Lachnospiraceae and 

Ruminococcaceae, that are the hub species in normal microbiome, to increase toward the 

abundances found in normal microbiome (figure 4B). Meanwhile, hub species in NASH 

microbiome also responded to the intervention, and most of the differential species in NASH 

responded to the keystone intervention with abundances changed toward normal microbiome. 

Among 8 NASH keystone species, the first three keystone species, P. loveana, A. indistinctus, 

and D. pneumosintes, exhibited strong intervention capacity (CIS=0.664), and the other five 

keystone species played minor roles (figure 4A). Similarly, the first three keystone species of 
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obesity exhibited strong intervention capacity (CIS=0.587, figure S2A). The first three keystone 

species were hub species (p<0.05) in normal or diseased microbial network, and they caused 

major changes when they are targeted for microbial intervention in NASH patients (figure 4C and 

table S3). P. loveana was elevated in NASH, therefore, we removed P. loveana as a microbial 

intervention. Removing P. loveana mainly increased the abundance of the Lachnospiraceae 

species, most of which were the hub species in normal microbiome. A. indistinctus was decreased 

in NASH. Adding A. indistinctus mainly elevated species of Bacteroidaceae and reduced Family 

XI. D. pneumosintes was elevated in NASH. Removing D. pneumosintes increased the 

abundances of Lachnospiraceae and Ruminococcaceae species. Intervention with these three 

species simultaneously could restore the abundances of many gut microbes, especially the species 

of Lachnospiraceae and Ruminococcaceae (both being abundant families in normal 

microbiomes), thereby promoting the reconstruction of a normal intestinal microbiome (figure 

4C). 

 

Potential mechanisms for the keystone species to impact the NASH microbiome 

P. loveana, A. indistinctus and D. pneumosintes were identified as the top keystone species in the 

NASH microbiome, and exhibited the highest capabilities for the intervention of the NASH 

microbiome. In order to understand the mechanisms behind the massive alterations in the 

microbiome induced by targeting these keystone species, we obtained their genome information 

with PICRUST2,29 and performed the functional (KEGG Module) enrichment analysis (figure 5A 

and table S4). 

As shown in figure 5A, the genome of P. loveana is severely deficient in amino acid 

production genes while rich in cofactors and vitamins production genes. Amino acids, such as 

glutamate, glycine, alanine, tyrosine, aspartate, valine, etc., are required substrates for the 

production of cofactors and vitamins,30, 31 and may be used for the production of other molecules 

including short-chain fatty acids (SCFA).32 Therefore, the increased abundance of P. loveana 

would lead to enhanced amino acid consumptions in NASH. A similar gene enrichment pattern 

was observed for the keystone D. pneumosintes, indicating that D. pneumosintes may contribute 

to elevated amino acid consumption in NASH.  

Keystone species A. indistinctus participated in the production of a variety of amino acid 

including serine, threonine, valine, isoleucine, leucine, arginine, proline, glutamate and histidine 

(figure 5A). The down-regulation of A. indistinctus (FDR=0.020, table S2) suggested reduced 

microbial synthesis of amino acids. 
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Importantly, D. pneumosintes encodes the entire eight genes for F-type ATPase complex 

(figure 5A, B), implicating that D. pneumosintes can utilize H+ in the intestinal lumen to 

synthesize ATP. In our intervention simulation, targeting D. pneumosintes caused the changes in 

the abundances of Lachnospiraceae and Ruminococcaceae species (figure 4C and table S3). 

Consistently, correlation analyses showed that the abundance of D. pneumosintes was negatively 

correlated with those of Lachnospiraceae and Ruminococcaceae (p<0.01, figure 5C). Previous 

studies have shown that the Lachnospiraceae and Ruminococcaceae species are very sensitive to 

environmental pH, which seriously affects their abilities of butyric acid production.33, 34 

Therefore, the increased abundance of D. pneumosintes in NASH (FDR=0.004, table S2) might 

change the intestinal pH, and consequently decrease the abundance and butyric acid production of 

Lachnospiraceae and Ruminococcaceae. 

 

Validation of the method for keystone species identification with an independent NAFLD 

cohort 

We observed a similar pattern of microbial change in the validation NAFLD cohort (table S5). 

Briefly, Lachnospiraceae and Ruminococcaceae species exhibited significantly reduced 

abundance in the gut of NAFLD patients (p<0.01). In addition, A. indistinctus, a keystone species 

in the NASH microbiome in the discovery cohort, was also significantly down-regulated (p=0.01 

in normal vs. NASH-cirrhosis and p=0.017 in normal vs. NAFLD without fibrosis, figure S3A 

and table S5). These differential species also exhibited strong sample discrimination abilities with 

the highest AUC=0.894 (Erysipelotrichaceae(OTU96) in Normal vs. NASH-cirrhosis， figure 

S3B). 

Again, the Lachnospiraceae and Ruminococcaceae species were the hub species of the normal 

gut microbiota, playing key roles in maintaining the homeostasis of the normal microbial 

communities (table S5).  

The keystone species identified from the validation cohort were partly overlapping with those 

identified from the discovery cohort. The common keystone species from both cohorts included 

B. producta，B. barnesiae and A. caccae (table S5). Consistently, targeting these keystone 

species for microbial intervention was able to restore the abundances of Lachnospiraceae and 

Ruminococcaceae (figure S4).  

 

DISCUSSION 
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Here we report a new algorithm for the keystone species identification in the gut microbiome, 

based on current causal inference theories and the DIM with gLV model. We identified the 

NASH keystone species combination, represented by P. loveana, A. indistinctus, and D. 

pneumosintes, that showed the highest potential for the microbial intervention of NASH. 

The most outstanding characteristic of the gut microbiome in both adolescent (discovery 

cohort) and adult (validation cohort) NAFLD seemed to be decreased abundances in 

Lachnospiraceae and Ruminococcaceae, two dominant families in Clostridiales. As the major 

butyrate-producing bacteria in the intestine,35 Lachnospiraceae and Ruminococcaceae, may play 

important roles in suppressing intestinal inflammation via the stimulatory effect of butyrate on T 

regulatory cells in the mucosa,36 and consequently suppress the pathogenesis of NASH.37, 38 The 

structural and functional importance of these two bacterial families make them desirable targets in 

the microbial intervention of NAFLD. 

With NASH microbiome, the keystone species, especially P. loveana，A. indistinctus and D. 

pneumosintes, could rapidly alter the abundance of Lachnospiraceae and Ruminococcaceae 

species and restore the microbial composition toward a normal gut microbiome. These species are 

able to impact the other community members with fermentation products. P. loveana was 

elevated in NASH, and therefore was removed from the NASH microbiome for intervention. 

Reduced abundance of P. loveana leads to decreased consumption of amino acids, therefore, 

leaving more resources for the growth of other bacteria including Lachnospiraceae and 

Ruminococcaceae. A. indistinctus was decreased in NASH, and therefore was added to the NASH 

microbiome for intervention. A. indistinctus is equipped with many genes related to amino acid 

synthesis. In addition to support protein synthesis of the microbial communities, these amino 

acids produced in the gut may serve as microbial fermentation substrates for SCFA production,39 

such as butyrate synthesis from threonine, lysine, and glutamate.40 As such, the increased 

presence of A. indistinctus may promote not only the growth of other members of the microbial 

community with its amino acid production, but also the intestinal balanced immunity with SCFA 

production.37, 38 D. pneumosintes was elevated in NASH, and therefore was removed from the 

NASH microbiome for intervention. D. pneumosintes encodes all eight genes of the F-type 

ATPase complex that can use protons in the intestinal environment for ATP synthesis. Thus 

reducing D. pneumosintes may help maintain a low intestinal pH that promotes the growth of the 

butyrate-producing Lachnospiraceae and Ruminococcaceae species.33, 34  

Compared to the keystone species with the top CIS scores, the abundances of Lachnospiraceae 

and Ruminococcaceae species were more profoundly altered in the NASH microbiome, yet they 
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did not achieve the highest IS in DIM and their performance in IFE were not impressive either. 

Our results indicate that the keystone species may not be the most abundant species in the 

microbial community, and that targeting species mostly altered in disease may not be an effective 

microbial intervention strategy.  In contrast, P. loveana，A. indistinctus and D. pneumosintes, the 

keystone species that out-performed other keystone species in IFE, were not the top altered 

species in disease, but they exhibited the highest potential in restoring a normal gut microbiome. 

Their ability for microbial intervention of NASH may be attributed to their metabolic products 

that have profound influence on other members of the microbial community, and these broad 

influences allowed them the special roles in maintaining the integrity and stability of the normal 

microbiome.  

In summary, we proposed a novel algorithm for microbial keystone identification from cross-

sectional microbiome data based on causal inference analysis and DIM. The identified keystone 

species in the gut of NAFLD, represented by P. loveana, A. indistinctus and D. pneumosintes, 

could efficiently modulate the microbial composition of the NAFLD, especially Lachnospiraceae 

and Ruminococcaceae，  toward a normal gut microbiome. Validated with an independent 

NAFLD cohort, our method suggested a novel potential microbial treatment for NAFLD. Our 

method for microbial keystone species identification may benefit microbiome studies in the broad 

fields of medicine, environmental science and microbiology.  
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Figures 
 

 

Figure 1 The strategy for gut microbial interaction network construction and keystone species 

identification. Based on the abundance data (A), co-occurrence network (B) was constructed as a 

priori knowledge by co-occurrence analysis; With the abundance data (A) and the microbial co-

occurrence network (B), causal inference was then conducted to construct the microbial 

interaction network (C); Hub species (D) were identified from the microbial interaction network 

(C) by HITS; Finally, based on microbial interactions (C) and topological importance (D), 

intervention effects of microbes were evaluated, and keystone species (E) with the maximum 

intervention effect on the entire ecosystem were identified. 
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Figure 2 The abundance heatmap of species with significantly differential changes (FDR<0.05) 

between Normal and NASH. (Full names of the species: Anaerococcus octavius, Ezakiella 

peruensis, Ezakiella(OTU94), Finegoldia magna, Peptoniphilus ivorii, Peptoniphilus olsenii, 

Peptoniphilus lacrimalis, Anaerostipes caccae, Blautia hydrogenotrophica, Blautia 

producta(OTU81), Blautia producta(OTU32), Blautia hansenii, Coprococcus comes, 

Fusicatenibacter saccharivorans, Lachnospiraceae(OTU55), Eubacterium oxidoreducens, 

Eubacterium rectale(OTU52), Faecalibacterium prausnitzii(OTU80), Faecalibacterium 

prausnitzii(OTU68), Faecalibacterium prausnitzii(OTU79), Ruminiclostridium(OTU96), 

Ruminococcaceae(OTU23), Ruminococcus lactaris(OTU43), Subdoligranulum 

variabile(OTU93), Romboutsia lituseburensis, S5-A14a(OTU76), Bacteroides caecicola(OTU51), 

Bacteroides propionicifaciens(OTU73), Bacteroides caecicola(OTU72), Prevotella buccalis, 

Alistipes indistinctus(OTU57), Porphyromonas loveana, Porphyromonas sp. 2007b, Leuconostoc 

fallax, Weissella ghanensis, Dialister pneumosintes, Bifidobacterium magnum, Escherichia-

Shigella(OTU88), Campylobacter pinnipediorum) 
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Figure 3 Microbial interaction networks and hub species in the gut of normal, obese and NASH 

subjects. Microbial interaction networks of normal (A), obese (B) and NASH (C) study groups 

and the corresponding sub-networks of hub species of normal (D), obese (E) and NASH (F) 

groups were shown. Colors of nodes indicated the taxonomy of the species and colors of edges 

indicated positive (red) or negative (blue) interaction between every two species. (G) The 

distribution of interactions for every family in microbial interaction networks of normal, obese 

and NASH. 
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Figure 4 Dynamic intervention modeling of NASH microbiome. (A) Intervention scores (IS) of 

the gut microbes. The IS of each microbe was shown in the bar plot and the hub species were 

marked with stars. The red curve indicated the cumulative intervention scores (CIS) of the 

microbes sequentially selected by DIM. The first 8 keystone species, achieving a CIS greater than 

0.9, were indicated by the dashed line. (B) Effect of microbial intervention on NASH microbiome 

according to DIM with the top 8 keystone species from (A). The topological importance (HITS 
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scores) of species in normal microbiome were ranked in the bar plot. The species of 

Lachnospiraceae (Blue) and Ruminococcaceae (Light blue) were marked on the Family axis, with 

black borders indicating that the abundance recovered to normal levels after intervention. 

DiffAbun: abundance change from normal to NASH (Red: increase; Blue: decrease), with FDR 

indicated above (Red: FDR<0.01; Light red: FDR<0.05). : negative representation of instant 

microbial abundance changes upon the intervention (Red: > 0; Blue: < 0). 8 keystone species for 

intervention were marked by triangles in . (C)The intervention effects of the first three keystone 

species (P. loveana, A. indistinctus and D. pneumosinte).  
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Figure 5 Functional enrichment analysis on keystone species. (A) The species P. loveana，A. 

indistinctus and D. pneumosintes were subjected to KEGG module enrichment analysis based on 

their gene (KO) annotations using PICRUST2. Modules were classified according to the KEGG 

pathways and marked with different colors. The heatmap plotted the significance of enrichment (-

log FDR). (B) D. pneumosintes encodes the entire eight genes for F-type ATPase complex. This 

protein complex can utilize the membrane proton gradient for ATP production. (C) The 

abundance change of D. pneumosintes was significantly correlated to the abundance changes of 

Family Lachnospiraceae and Ruminococcaceae, fitting with a reciprocal function in both cases. 

The box plots at the axis are the abundance distribution of Lachnospiraceae, Ruminococcaceae 

and D. pneumosintes in the gut of normal. obese and NASH subjectes. 
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