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Abstract: 10 

The analysis and interpretation of datasets generated through sequencing large numbers of 11 

individual genomes is becoming commonplace in population and evolutionary genetic studies. Here 12 

we introduce geaR, a modular R package for evolutionary analysis of genome-wide genotype data. 13 

The package leverages the Genomic Data Structure (GDS) format, which enables memory and time 14 

efficient querying of genotype datasets compared to standard VCF genotype files. geaR utilizes 15 

GRange object classes to partition an analysis based on features from GFF annotation files, select 16 

codons based on position or degeneracy, and construct both positional and coordinate genomic 17 

windows. Tests of genetic diversity (eg. dXY, π, FST) and admixture (f4, 𝑓�̂�) along with tree building and 18 

sequence output, can be carried out on partitions using a single function regardless of sample ploidy 19 

or number of observed alleles. The package and associated documentation are available on GitHub 20 

at https://github.com/CMWbio/geaR. 21 

Keywords: Evolution, Population Genomics, R Package, Admixture 22 

Introduction: 23 

Improvements in genome sequencing technologies has led to increased production of data at lower 24 

relative cost per base (Schwarze et al. 2020). Genome-wide sequencing datasets with hundreds of 25 

samples can be produced for population genomic analysis, allowing researchers to investigate 26 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.08.06.240754doi: bioRxiv preprint 

https://github.com/CMWbio/geaR
https://doi.org/10.1101/2020.08.06.240754
http://creativecommons.org/licenses/by/4.0/


2 
 

population and evolutionary history at an unprecedented scale. However, due to file size and data 27 

complexity downstream problems during data storage and analysis can arise. The most common 28 

format for handling genome-wide SNP data is the Variant Call Format (VCF), which has historically 29 

had a large memory overhead when being read into an R environment. To resolve this, the Genomic 30 

Data Structure (GDS) format has allowed all genotype and metadata to be compressed into a 31 

queriable, on-disk file that substantially reduce memory requirements and decrease analysis time 32 

(Zheng et al. 2017).  The GDS format provides an efficient format for filtering SNP data in order to 33 

perform Principal Component Analysis, estimate genetic relatedness and tests for genetic 34 

association (Zheng et al. 2012). 35 

GDS files use GRange objects from the GenomicRanges package (Lawrence et al. 2013) to define loci 36 

to query from file and import into R. In their most basic form, GRange class objects define genomic 37 

loci based on reference position. Although widely used throughout Bioconductor, GRange objects, to 38 

our knowledge, have not been utilized in the same manner to define loci for evolutionary analyses.   39 

Few R packages attempt to carry out genome-wide investigation of genotype data. Most packages 40 

focus on the analysis of single or multi-locus data, with the notable exception of PopGenome (Pfeifer 41 

et al. 2014). However, one limitation of PopGenome is customizability of how the target genome is 42 

partitioned, and which sites are selected for analysis. Most tools, including PopGenome, allow 43 

datasets to be partitioned into sliding or tiled windows based on reference or SNP position. 44 

PopGenome also provides methods to split data into GFF attributes, however selection of bespoke 45 

partitions not possible. This makes calculating population metrics on specific codon positions (eg. 46 

four-fold or zero-fold degenerate sites) or analysing many non-contiguous loci difficult and time 47 

consuming.  48 

To overcome these issues, here we present the R package geaR, which leverages the GDS format, to 49 

efficiently construct GRanges containing genome-wide or local loci of interest and to carry out 50 

common tasks for evolutionary analysis on genome-wide genotype data using a single function. 51 
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Furthermore, we provide methods to partition the genome based on annotation, codon position or 52 

degeneracy through utilizing data in GFF files, or using reference genome coordinates or genotype 53 

position. 54 

Features: 55 

Input data 56 

Genotype input files are required to be in GDS format, enabling high compressibility compared to 57 

gzipped VCFs (>5X smaller on disk), efficient querying and the capability to work on large datasets 58 

with a reduced memory footprint (Zheng et al. 2017). Conversion of sample genotypes in the VCF 59 

format to a Genomic Data Structure (GDS) format can be performed using the SeqArray package 60 

(Zheng et al. 2017) before analysis with geaR. Genotypes called at any level of ploidy can be utilized 61 

in geaR, which includes whole genome sequence data generated from pools of two or more 62 

individuals.  63 

Partitioning the genome using GRanges 64 

The geaR package utilizes GRange objects to define partitions for the analysis, for example, 65 

segmenting a genome into 10-kb windows. This allows users to define their own GRanges for the 66 

analysis or build them with provided functions. Currently, users are able to generate both coordinate 67 

(based on reference coordinate) and positional (based on genotype number) windows using 68 

makeWindows() or makeSnpWindows() functions. Sequence features, such as protein coding 69 

regions, can be extracted from a GFF with getFeatures().  70 

Many evolutionary analyses seek to calculate population metrics over different codon positions. To 71 

make this as simple as possible, geaR provides methods to index a reference genome according to 72 

codon position with buildCodonDB(), which can either be stored in memory as a GRangesList object 73 

or an SQLite database (DB) on disk to limit static memory usage. Users may then filter codons based 74 

on degeneracy (0-fold or 2-fold) and position using the function filterCodonDB(). A codon DB can also 75 
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be passed to the function validate4fold() to select 4-fold degenerate sites across the genome that 76 

are empirically supported in the GDS file. This is done by querying the GDS to i) remove codons with 77 

missing data, ii) select 4-fold degenerate codons, iii) remove all those where codon positions one or 78 

two have variation and iv) select third positions.   79 

GRange objects generated using geaR can then be combined using mergeLoci() to further customize 80 

partitions. For example, genome-wide tiled windows can be combined with four-fold degenerate 81 

sites to output either genomic windows that contain only 4-fold sites or all sites excluding 4-fold 82 

degenerate sites. 83 

Figure 1: Structure of the of the gear S4 object: i) Genomic loci (GRanges) to carry out analyses 84 

across, ii) Population metadata encoding sample names to the population/species they belong to, iii) 85 

A cog containing general arguments for all analysis, iv) a cog specifying that the Genetic Diversity 86 

module should be carried out and v) a cog specifying that the Admixture cog should be carried out 87 

on the dataset. 88 

 89 

Setting up an analysis: cogs and gears  90 

geaR operates through two S4 classes, the ‘cog’ and ‘gear’ (Figure 1). Cogs, built using makeCog(), 91 

specify multiple analyses to carry out (see Table 1) setting parameters specific to each analysis. A 92 

single gear object can then be constructed, using makeGear(), which contains all of the specified 93 

cogs for analysis, along with the genomic loci and population metadata (Figure 2A). The 94 
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analyzeGear() function then performs all analyses on the same set of genomic loci and samples, 95 

greatly reducing run time compared to sequential execution. 96 

 97 

Figure 2: A) Basic analysis workflow in geaR to carry out analysis on windowed genomic loci. 98 

Functions specific to geaR are within the orange boundary and external functions in purple. After 99 

converting the VCF to GDS format using SeqArray, contig metadata (contig length) is used to 100 

construct windows across the genome. A dataframe containing population metadata defining 101 

population to sample grouping is then constructed. This is used, along with windows for the analysis 102 

and cogs, to construct the gear class object. The analysis is then carried out on the gear object and 103 

outputs depend on which cogs were specified. B) Workflow used to generate partition schemes for 104 

examples in Figure 3. First 10kb windows were generated from contig metadata. This was followed 105 

by generation of a codon database that indexes codon position in a reference genome. The codon 106 

database was then passed to the function filterCodonDB to output separate loci-sets for four codon 107 

partition schemes: 1st+2nd; 3rd; 0-fold and 2-fold. validateFourFold() was also used to select 4-fold 108 

degenerate sites that are supported by genotypes in the GDS file. Each of these codon loci-sets can 109 

then be passed to the function mergeLoci(), along with the 10kb windows, to combine loci into 10kb 110 

windows that contain only the selected codon types. 111 

 112 

 113 
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Analysis types 114 

Four different cogs can be generated to carry out an analysis: i) genetic diversity, ii) admixture, iii) 115 

outputLoci and iv) outputTrees. Genetic diversity allows the calculation of a range of population 116 

metrics (Table 1), most of which rely on genetic distance which is calculated based on the hamming 117 

distance between haplotypes at all sites within the locus. The admixture cog utilizes outgroup 118 

polarized allele frequency at all biallelic sites within the locus to calculate f4  (Patterson et al. 2012) 119 

and 𝑓�̂� (Martin et al. 2015) statistics. The package also enables users to output data in fasta format 120 

for each individual (or sample pool) using outputLoci or as distance trees using outputTrees. 121 

Haplotypes are used in diversity calculations and are output to file according to the phase within the 122 

supplied GDS file, not calculated by geaR.  123 

Outputs of both genetic diversity and admixture cogs can be summarized using summarizeStats() 124 

which calculates a mean and median values for each statistic across all loci using a block jack-knife 125 

approach.  126 

Table 1: Analysis types and functionality available to apply at each locus. 127 

Cog type Functionality  

Genetic diversity Nucleotide diversity (π), genetic distance (dXY), 
maximum distance (dmax), minimum distance 
(dmin), ancestral distance (da), γST, relative node 
distance (RND), minimum relative node 
distance (RNDmin), and Gmin 

Admixture f4 and 𝑓�̂� 
Output loci fasta format output to file  
Output trees newick format distance trees and metadata 

output to file  
 128 

 129 

 130 

Parallelization 131 
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All functions allow operations to be run in parallel by leveraging methods in the furrr 132 

(https://github.com/DavisVaughan/furrr) and parallel R packages.   133 

Carrying out an analysis using gear: 134 

geaR has successfully been used to calculate genome wide diversity metrics between populations 135 

containing 532 moth genomes (You et al. 2020) and to identify introgressed regions between two 136 

Bactrocera fly species (Ward et al. 2020).  Below we outline two example analyses using geaR. Code 137 

for each of examples and other common workflows can be found on the wiki 138 

(https://github.com/CMWbio/geaR/wiki). 139 

In our first example we use a subset of the data from Ward and Baxter (2018) containing three 140 

populations of diamondback moth collected from Australian Capital Territory, Australia; South 141 

Australia, Australia and Hawaii, USA. Second. Following the general workflow shown in Figure 2A, we 142 

converted the called genotypes to the GDS format using SeqArray, constructed partitions, built cogs, 143 

combined those cogs into a gear and then carried out the analysis.  We constructed our partitions 144 

for the analysis by generating a GRange object containing only scaffold_4. The analysis will use this 145 

GRange object to construct six different partition schemes based on 10kb tiled windows (workflow 146 

shown in Figure 2B): i) all sites, ii) only 1st+2nd codon positions, iii) windows only 3rd codon positions, 147 

iv) only 0-fold degenerate sites, v) only 2-fold degenerate sites and vi) only 4-fold degenerate sites. 148 

Partition i) was then used to calculate pairwise genetic distance (dXY) between each population 149 

across the scaffold (Figure 3A) and partitions ii-vi) were used to calculate within population 150 

nucleotide diversity across the whole genome (Figure 3B).  151 
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 152 

 153 

Figure 3: Example workflows to carry out with geaR: Panels A and B use P. xylostella data from Ward 154 

and Baxter (2018), panels C and D use Bactrocera from Ward et al (2020). A) Absolute genetic 155 

distance (dXY) was calculated between pairwise comparisons of three populations for 10kb tiled 156 

windows across scaffold_4 of the diamondback moth reference genome. C) The five loci-sets 157 

constructed using the workflow in Figure 2B were used to calculate nucleotide diversity (π) at 158 

1st+2nd, 3rd, 0-fold, 2-fold and 4-fold codon sites across scaffold_4 of the diamondback moth 159 

reference genome C) Admixture metrics f4 and 𝑓�̂� calculated on 100kb windows across scaffold 160 

NW_011876398.1 of the B. dorsalis reference genome. D) Distance trees for each 100kb window 161 

across NW_011876398.1 output using the outputTrees cog showing a mixture of discordant and 162 

concordant topologies. Plots A), B) and C were generated using ggplot2 (Wickham 2009) and D) 163 

using densitree (Bouckaert 2010). 164 

For a second example we will identify one of the introgressed regions from Ward et al. (2020). This 165 

will use data from a single scaffold (NW_011876398.1) of the B. dorsalis reference genome 166 

(GCF_000789215.1) for two samples of B. tryoni, B. dorsalis, B. oleae and a B. dorsalis/B.tryoni 167 

hybrid line. Using the same methodology as the first example, we constructed a 100kb tiled window 168 

partition scheme. However, for this analysis we used the admixture cog to calculate f4 and 𝑓�̂� 169 

admixture metrics showing clear evidence for introgression at the 3’ end of the scaffold (Figure 3C). 170 
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We also used the outputTrees cog to output distance trees for each of these windows to illustrate 171 

both the congruent and incongruent topologies resulting from partial admixture on 172 

NW_011876398.1 (Figure 3D).   173 

 174 

Conclusion 175 

Genome-wide datasets with many individuals are becoming the norm in population genetic studies, 176 

increasing the need for tools to efficiently carry out analyses on genotype data. The functional 177 

programming capabilities of the R programming language provide an intuitive environment for users 178 

to carry out calculation and visualization of population and evolutionary genomics metrics. The 179 

methods provided in geaR allow users easily and effectively partition the genome for generic and 180 

bespoke analysis of genome-wide genotype data regardless of sample ploidy and number of 181 

observed alleles.   182 

 183 
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