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Abstract 7 

In recent years the emergence of high-performance virtual reality (VR) technology has 8 

opened up new possibilities for the examination of context effects in psychological studies. 9 

The opportunity to create ecologically valid stimulation in a highly controlled lab 10 

environment is especially relevant for studies of psychiatric disorders, where it can be 11 

problematic to confront participants with certain stimuli in real life. However, before VR can 12 

be confidently applied widely it is important to establish that commonly used behavioral tasks 13 

generate reliable data within a VR surrounding. One field of research that could benefit 14 

greatly from VR-applications are studies assessing the reactivity to addiction related cues 15 

(cue-reactivity) in participants suffering from gambling disorder. Here we tested the reliability 16 

of a commonly used temporal discounting task in a novel VR set-up designed for the 17 

concurrent assessment of behavioral and psychophysiological cue-reactivity in gambling 18 

disorder. On two days, thirty-four healthy non-gambling participants explored two rich and 19 

navigable VR-environments (neutral: café vs. gambling-related: casino and sports-betting 20 

facility), while their electrodermal activity was measured using remote sensors. In addition, 21 

participants completed the temporal discounting task implemented in each VR environment. 22 

On a third day, participants performed the task in a standard lab testing context. We then used 23 

comprehensive computational modeling using both standard softmax and drift diffusion 24 

model (DDM) choice rules to assess the reliability of discounting model parameters assessed 25 

in VR. Test-retest reliability estimates were good to excellent for the discount rate log(k), 26 

whereas they were poor to moderate for additional DDM parameters. Differences in model 27 

parameters between standard lab testing and VR, reflecting reactivity to the different 28 

environments, were mostly numerically small and of inconclusive directionality. Finally, 29 

while exposure to VR generally increased tonic skin conductance, this effect was not 30 

modulated by the neutral vs. gambling-related VR-environment. Taken together this proof-of-31 

concept study in non-gambling participants demonstrates that temporal discounting measures 32 

obtained in VR are reliable, suggesting that VR is a promising tool for applications in 33 

computational psychiatry, including studies on cue-reactivity in addiction. 34 

  35 
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Introduction 36 

Recent research has exploited the development of high-performance virtual reality (VR) 37 

technology to increase the ecological validity of stimuli presented in studies of cue-38 

exposure[1–3], counterconditioning[4], equilibrium training[5], social gazing[6] and gambling 39 

behavior in healthy control participants[7]. Furthermore, it has been shown to increase 40 

immersion and arousal during gambling games[8]. However, before VR can be widely applied 41 

with confidence it is important to establish that commonly applied behavioral tasks still yield 42 

reliable data in a VR context. Research focusing on psychiatric disorders, where one goal is to 43 

create reliable diagnostic markers based behavioral tasks and model-based computational 44 

approaches, would benefit from behavioral tasks that produce reliable parameters on a single 45 

participant level in VR. 46 

A core characteristic of many psychiatric and neurological disorders is a detrimental 47 

change in decision-making processes. This is especially evident in addiction-related disorders 48 

such as substance abuse[9–11] or gambling disorder[12–14]. One approach to study such changes 49 

in decision making is computational psychiatry[15], which employs theoretically grounded 50 

mathematical models to examine cognitive performance in relation to psychiatric disorders. 51 

Such a model-based approach allows for a better quantification of the underlying latent 52 

processes[16].  53 

One process that has been implicated in a range of psychiatric disorders is the 54 

discounting of reward value over time (temporal discounting): both steep and shallow 55 

discounting is associated with different psychiatric conditions[9]. In temporal discounting 56 

tasks, participants make repeated choices between a fixed immediate reward and larger but 57 

temporally delayed rewards[17]. Based on binary choices and/or response time (RT) 58 

distributions, the degree to which participants discount the value of future rewards based on 59 

the temporal delay provides a measure of individual impulsivity. Increased temporal 60 

discounting is thought to be a trans-diagnostic marker with relevance for a range of 61 

psychiatric disorders[9], with addictions and related disorders being prominent examples[18,19]. 62 

There is preliminary evidence that temporal discounting might be more pronounced 63 

when addiction related cues are present. Participants who suffer from gambling disorder for 64 

instance tend to exhibit steeper discounting [12,20] and increased risk-taking[21] in the presence 65 

of gambling-related stimuli or environments. These findings resonate with theories of drug 66 

addiction such as incentive sensitization theory[22] which emphasize a prominent role for 67 

addiction-related cues in the maintenance of drug addiction (see below). Identifying the 68 
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mechanisms underlying such behavioral patterns and how they are modulated by addiction-69 

related cues is essential to the planning and execution of successful interventions that aim to 70 

reverse these changes in decision-making[23,24]. 71 

Accordingly, the concept of cue-reactivity plays a prominent role in research on 72 

substance use disorders[25], but has more recently also been investigated in behavioral 73 

addictions such as gambling disorder[26]. Cue-reactivity refers to conditioned responses to 74 

addiction-related cues in the environment and is thought to play a major role in the 75 

maintenance of addiction. Cue-reactivity can manifest in behavioral measures, as described 76 

above for temporal discounting and risk-taking, but also in subjective reports and/or in 77 

physiological measures[25]. Incentive-Sensitization Theory[22,27] states that neural circuits 78 

mediating the incentive motivation to obtain a reward become over-sensitized to addiction-79 

related cues, giving rise to craving. These motivational changes are thought to be mediated by 80 

dopaminergic pathways of the mesocorticolimbic system[28–30]. In line with this, craving 81 

following cue exposure correlates with a modulation of striatal value signals during temporal 82 

discounting[12], and exposure to drug-related cues increases dopamine release in striatal 83 

circuits in humans[30]. While studying these mechanisms in substance use disorders is 84 

certainly of value, it is also problematic because substances might have direct effects on the 85 

underlying neural substrates. Behavioral addictions, such as gambling disorder, however, 86 

might offer a somewhat less perturbed view on the underlying mechanisms. 87 

Studies probing cue-reactivity in participants suffering from gambling disorder have 88 

typically either used picture stimuli[12,13,21,31–38] or real-life gambling environments (i.e. 89 

gambling facilities)[20]. Both methods come with advantages and disadvantages. While 90 

presenting pictures in a controlled lab environment enables researchers to minimize the 91 

influence of noise factors and simplifies the assessment physiological variables, it lacks the 92 

ecological validity of real-life environments. Conversely, a field study in a real gambling 93 

outlet arguably has high ecological validity but lacks the control of confounding factors and 94 

makes it difficult to obtain physiological measures.  95 

By equipping participants with head-mounted VR-glasses and sufficient space to 96 

navigate within the VR-environment, a strong sense of immersion can be created, which in 97 

turn generates more realistic stimulation. In this way VR also offers a potential solution for 98 

the problem of ecologically valid addiction-related stimuli for studies in the field of cue-99 

reactivity[7,8]. For example, Bouchard et al.[2] developed a VR-design that is built to provide 100 

ecologically valid stimuli for participants suffering from gambling disorder by placing them 101 
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in a virtual casino. The design can be used in treatment in order to test reactions and learned 102 

cognitive strategies in a secure environment. The present study builds upon this idea to create 103 

a design that allows assessment of behavioral, subjective and physiological cue-reactivity in 104 

VR-environments. Participants are immersed in two rich and navigable VR environments that 105 

either represent a (neutral) café environment or a gambling-related casino environment. 106 

Within these environments, behavioral cue-reactivity can be measured via behavioral tasks 107 

implemented in VR. Given that immersion in the virtual environment takes place in a 108 

controlled lab setting, the measurement of physiological variables like electrodermal 109 

activity[39] and heart rate, as indicators of physiological cue-reactivity[25,26], is also easily 110 

accommodated. 111 

Studies using computational modeling to asses latent processes underlying learning 112 

and decision-making increasingly include not only binary decisions, but also response times 113 

(RTs) associated with these decisions, e.g. via sequential sampling models such as the drift 114 

diffusion model (DDM)[40]. This approach has several potential advantages. First, leveraging 115 

the information contained in the full RT distributions can improve the stability of parameter 116 

estimates[41,42]. Second, by conceiving decision making as a dynamic diffusion process, a 117 

more detailed picture of the underlying latent processes emerges[43–47]. Recent studies, for 118 

instance, applied these techniques to temporal discounting, where they revealed novel insights 119 

into effects of pharmacological manipulation of the dopamine system on choice dynamics[46]. 120 

Likewise, we applied these techniques to examine the processes underlying reinforcement 121 

learning impairments in gambling disorder[48] and decision-making alterations following 122 

medial orbitofrontal cortex lesions[45]. Importantly, most standard lab-based testing settings 123 

use keyboards, button boxes and computer screens to record responses and display stimuli 124 

during behavioral tasks. In contrast, in the present study we used VR-controllers in a 3D 125 

virtual space. This represents a fundamentally different response mode, because in VR, 126 

participants have to physically move the controller to the location of the chosen option and 127 

then execute a button press to indicate their choice, adding additional motor complexity. In 128 

particular in the context of RT-based modeling, a crucial question is therefore whether 129 

responses obtained via VR-controllers allow for a comprehensive RT-based computational 130 

modeling, as previously done using standard approaches. Therefore, we also explored the 131 

applicability of drift diffusion modeling in the context of behavioral data obtained in VR. 132 

Besides validating our VR-design with a healthy cohort of participants, the study at 133 

hand investigated the stability of parameters derived from temporal discounting tasks, in 134 

particular the discount rate log(k). Recently, the reliability of behavioral tasks as trait 135 
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indicators of impulsivity and cognitive control has been called into question[49,50], in particular 136 

when compared to questionnaire-based measures of self-control[49]. It has been argued that the 137 

inherent property that makes behavioral tasks attractive for group-based comparisons renders 138 

them less reliable as trait markers[51]. Specifically, Hedge et al.[51] argue that tasks having a 139 

low between participant variability produce robust group effects in experimental studies and 140 

are therefore employed frequently. However, some of these tasks suffer from reduced test-141 

retest-reliability for individual participants due to their low between-participant variability. 142 

Notably, Enkavi et al.[49] reported a reliability of .65 for the discount rate k, the highest of all 143 

behavioral tasks examined in that study, and comparable to the reliability estimates of the 144 

questionnaire-based measures. This is in line with previous studies on the reliability of k, 145 

which provided estimates ranging from .7 to .77[52,53]. Importantly, as outlined above, both the 146 

actual response mode and the contextual setting of VR-based experiments differ substantially 147 

from standard lab-based testing situations employed in previous reliability studies of temporal 148 

discounting[49,52–55]. Therefore, it is an open question whether temporal discounting measures 149 

obtained in VR exhibit a reliability comparable to the standard lab-based tests that are 150 

typically used in psychology. 151 

Taken together, by examining healthy non-gambling participants on different days and 152 

under different conditions (neutral vs. gambling-related VR environment, standard lab-based 153 

testing situation), we addressed the issue of reliability of temporal discounting in virtual vs. 154 

standard lab environments. We furthermore explored the feasibility of applying the drift 155 

diffusion model in the context of RTs obtained via VR-compatible controllers. Finally, we 156 

also examined physiological reactivity during exploration of the different virtual 157 

environments. The specific virtual environments employed here are ultimately aimed to 158 

examine these processes in gambling disorder (e.g. the setup includes a gambling-related and 159 

a neutral cafe environment). However, the present study has more general implications for the 160 

application of behavioral and psychophysiological testing in virtual environments by 161 

examining the reliability of model-based analyses of decision-making in lab-based testing vs. 162 

testing in different VR environments in a group of young non-gambling controls. 163 

We hypothesized that the data produced on different days and under different conditions 164 

would yield only little evidence in favor of systematic shifts in temporal discounting behavior 165 

within a group of healthy non-gambling participants, suggesting only insubstantial effects 166 

caused by the different environments in our VR-design. Furthermore, we hypothesized that 167 

temporal discounting would show a strong reliability, adding further strength to the case that 168 
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temporal discounting is stable over time and can be applied in VR. Finally, we hypothesized 169 

that we could capture latent decision variables in a VR context with the DDM.    170 
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Methods 171 

Participants. Thirty-four healthy participants (25 female) aged between 18 and 44 172 

(mean = 26.41, std = 6.44) were invited to the lab on three different occasions. Participants 173 

were recruited via flyers at the University of Cologne and via postings in local internet 174 

forums. No participant indicated a history of traumatic brain injury, psychiatric or 175 

neurological disorders or severe motion sickness. Participants were additionally screened for 176 

gambling behavior using the questionnaire Kurzfragebogen zum Glückspielverhalten 177 

(KFG)[56]. The KFG fulfills the psychometric properties of a reliable and valid screening 178 

instrument. No participant showed a high level (>15 points on the KFG) of gambling affinity 179 

(mean = 1.56, std = 2.61, range: 0 to 13). 180 

Participants provided informed written consent prior to their participation, and the 181 

study procedure was approved by the Ethics Board of the Germany Psychological Society. 182 

The procedure was in accordance with the 1964 Helsinki declaration and its later amendments 183 

or comparable ethical standards. 184 

VR-Setup. The VR-environments were presented using a wireless HTC VIVE head-185 

mounted display (HMD). The setup provided a 110° field of view, a 90 Hz refresh rate and a 186 

resolution of 1440 x 1600 Pixel per eye. Participants had an area of about 6m2 open space to 187 

navigate the virtual environment. For the execution of the behavioral tasks and additional 188 

movement control participants held one VR-controller in their dominant hand. The VR-189 

software was run on a PC with the following specifications: CPU:  Intel Core i7-3600, 190 

Memory: 32.0 GB RAM, Windows 10, GPU: NVIDIA GeForce GTX 1080 (Ti). The VR-191 

environments themselves were designed in Unity. Auditory stimuli were presented using on-192 

ear headphones. 193 

VR-Environments. The two VR-environments both consisted of a starting area and an 194 

experimental area. The starting area was the same for both VR-environments. It consisted of a 195 

small rural shopping street and a small park. Participants heard low street noises. The area 196 

was designed for familiarization with the VR-setup and the initial exploration phase. The 197 

experimental area of the environments differed for the two environments. For the VRneutral 198 

environment it contained a small café with a buffet (Figure 1 a, b and c). Participants could 199 

hear low conversations and music. The gambling-related environment (VRgambling) contained a 200 

small casino with slot machines and a sports betting area (Figure 1 d, e and f). The audio 201 

backdrop was the sound of slot machines and sports. The floorplan of both of these 202 

experimental areas was identical but mirrored for the café (Figure 1 a and d). Both 203 
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experimental areas additionally included eight animated human avatars. These avatars 204 

performed steady and non-repetitive behaviors like gambling and ordering food for the 205 

gambling-related and neutral environments, respectively.  Both experimental areas (café and 206 

casino) had entrances located at the same position within the starting area of the VR-207 

environments, which were marked by corresponding signs.  208 

 209 

Figure 1. Experimental areas of the VR-environments a) Floorplan of the café within the VR-neutral environment b) View of 210 

the main room of the café c) View of the buffet area of the café d) Floorplan of the casino within the VR-gambling 211 

environment e) View of the main room of the casino f) View of the sports bar within the casino 212 

Experimental procedure. Participants were invited to the VR lab for three different 213 

sessions on three different days. The time between the sessions was between one day and 214 

nineteen days (mean = 3.85, std = 3.36). During the three sessions participants either explored 215 

one of two different VR environments (VR-sessions) followed by the completion of two 216 

behavioral tasks, or simply performed the same two behavioral tasks in a standard lab-testing 217 

context (Lab-session). If the session was a VR-session, electrodermal activity (EDA)[39] was 218 

measured during a non-VR baseline period and the exploration of the VR-environments. The 219 

order of the sessions was pseudorandomized. At the first session, not depending on if VR was 220 

applied or not, participants arrived at the lab and the behavioral tasks were explained in detail. 221 

If the session was a Lab-session, participants proceeded with the two behavioral tasks. If the 222 

session was the first of the VR-sessions, participants were subsequently familiarized with the 223 

VR-equipment and handling. Participants were seated and a five-minute EDA baseline was 224 

measured (baseline phase). For both VR-sessions participants were then helped to apply the 225 

VR-equipment and entered the VR-environments. Within the VR-environments participants 226 

first explored the starting area for 5 minutes (first exploration phase). After these five minutes 227 

participants were asked to enter the experimental area of the environment (either the café or 228 

the casino) (Figure 1). Participants were instructed to explore the interior experimental area 229 

b
c

f e

a b c

d e f
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for five minutes (second exploration phase). Each of the three phases was later binned into 230 

five one-minute intervals and labeled as B (1 to 5) for the baseline phase, F (1 to 5) for the 231 

first exploration phase and S (1 to 5) for the second exploration phase. During the exploration 232 

the experimenter closely monitored the participants and alerted them if they were about to 233 

leave the designated physical VR-space. After the second exploration phase participants were 234 

asked to proceed to a terminal within the VR-environment on which the behavioral tasks were 235 

presented. 236 

Physiological measurements. EDA was measured using a BioNomadix-PPGED 237 

wireless remote sensor together with a Biopac MP160 data acquisition system (Biopac 238 

Systems, Santa Barbara, CA, USA). A GSR100C amplifier module with a gain of 5V, low 239 

pass filter of 10 Hz and a high pass filter DC were included in the recording system. The 240 

system was connected to the acquisition computer running the AcqKnowledge software. 241 

Triggers for the events within the VR-environments were send to the acquisition PC via 242 

digital channels from the VR-PC.  Disposable Ag/AgCl electrodes were attached to the thenar 243 

and hypothenar eminences of the non-dominant palm. Isotonic paste (Biopac Gel 101) was 244 

used to ensure optimal signal transmission. The signal was measured in micro-Siemens units 245 

(mS). 246 

Behavioral Tasks. Participants performed the same two behavioral tasks with slightly 247 

varied rewards and choices in each of the three sessions: a temporal discounting task[17] and a 248 

2-step sequential decision-making task[57,58]. Results from the 2-step task will be reported 249 

separately. In the temporal discounting task participants had to repeatedly choose between an 250 

immediately available (smaller-but-sooner, SS) monetary reward of 20 Euros and larger-but-251 

later (LL) temporally delayed monetary rewards. The LL options were multiples of the SS 252 

option (range 1.025 to 3.85) combined with different temporal delays (range 1 to122 days). 253 

We constructed three sets of six delays and 16 LL options. Each set had the same mean delay 254 

and the same mean LL option. Combining each delay with every LL option within each set 255 

resulted in three sets of 96 trials. The order of presentation of the trial sets was counter 256 

balanced across participants and sessions. All temporal discounting decisions were 257 

hypothetical[59,60]. In the VR-version of the task two yellow squares were presented to the 258 

participants (Figure 2). One depicted the smaller offer of 20 Euros now, while the other 259 

depicted the delayed larger offer. For the lab-based testing session were presented in the same 260 

way except that the color scheme was white writing on a black background. Offers were 261 

randomly assigned to the left/right side of the display and presented until a decision was 262 

made.  The next trial started .5 to 1 seconds after the decision. Participants indicated their 263 
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choice either by aiming the VR-controller at the preferred option and pulling the trigger (VR-264 

sessions) or by pressing the corresponding arrow key on the keyboard (Lab-session). 265 

 266 

Figure 2. Presentation of the temporal discounting task in VR. Participants had to repeatedly decide between a small but 267 

immediate reward (SS) and larger but temporally delayed rewards (LL). Amounts and delays were presented in yellow 268 

squares. During the inter-trial intervals (.5-1 sec.) these squares contained only question marks. Participants indicated their 269 

choice by pointing the VR-controller at one of the yellow squares and pulling the trigger. 270 

 271 

Model-free discounting data analysis. The behavioral data from the temporal 272 

discounting task was analyzed using several complementary approaches. First, we used a 273 

model-free approach that involved no a priori hypotheses about the mathematical shape of the 274 

discounting function. For each delay, we estimated the LL reward magnitudes at which the 275 

subjective value of the LL reward was equal to the SS (indifference point). This was done by 276 

fitting logistic functions to the choices of the participants, separately for each delay. 277 

Subsequently, these indifference points were plotted against the corresponding delays, and the 278 

area under the resulting curve (AUC) was calculated using standard procedures[61]. AUC 279 

values were derived for each participant and testing session, and further analyzed with the 280 

intra-class correlation (ICC) and the Friedman Test, a non-parametric equivalent of the 281 

repeated measures ANOVA model.  282 

Computational modeling. Previous research on the effects of the delay of a reward on 283 

its valuation proposed a hyperbolic nature of devaluation[62,63]. Therefore, the rate of 284 

discounting for each participant was also determined employing a cognitive modeling 285 

approach using hierarchical Bayesian modeling[16]. A hierarchical model was fit to the data of 286 

all participants, separately for each session (see below). We applied a hyperbolic discounting 287 

model (equation 1): 288 

  289 
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Here, SV(LL) denotes the subjective (discounted) value of the LL. A and D represent 290 

the amount and the delay of the LL, respectively. The parameter k governs the steepness of 291 

the value decay over time, with higher values of k indicating steeper discounting of value over 292 

time. As the distribution of the discount rate k is highly skewed, we estimated the parameter 293 

in log-space (log[k]), which avoids numerical instability in estimates close to 0. 294 

The hyperbolic model was then combined with two different choice rules, a softmax 295 

action selection rule[64] and the drift diffusion model[44]. For softmax action selection, the 296 

probability of choosing the LL option on trial t is given by equation (2). 297 

P�LLt� =
exp�SVLLt

*ß�

exp�SVSSt
*ß�+ exp�SVLLt

*ß�
 (2)  298 

Here, the ß-parameter determines the stochasticity of choices with respect to a given 299 

valuation model. A ß of 0 would indicate that choices are random, whereas higher ß values 300 

indicate a higher dependency of choices on option values. The resulting best fitting parameter 301 

estimates were used to test the ICC and systematic session effects via comparison of the 302 

posterior probabilities of group parameters. 303 

Next, we incorporated response times (RTs) into the model by replacing the softmax 304 

choice rule with the drift diffusion model (DDM)[43–46]. The DDM models choices between 305 

two options as a noisy evidence accumulation that terminates as soon as the accumulated 306 

evidence exceeds one of two boundaries. In this analysis the upper boundary was set to 307 

represent LL choices, and the lower boundary SS choices. RTs for choices of the immediate 308 

reward were multiplied by -1 prior to model estimation. To prevent outliers in the RT data 309 

from negatively impacting model fit, the 2,5% slowest and fastest trials of each participant 310 

were excluded from the analysis[44,45]. In the DDM the RT on trial t is distributed according to 311 

Wiener first passage time (wfpt) (equation 3). 312 

RTt ~ wfpt (α, τ, z, �� (3) 

Here � represents the boundary separation modeling the tradeoff between speed and 313 

accuracy. � represents the non-decision time, reflecting perception and response preparation 314 

times. The starting value of the diffusion process is given by z, which therefore models a 315 

potential bias towards one of the boundaries. Finally, rate of evidence accumulation is given 316 

by the drift-rate �.  317 

We first fit a null model (DDM0), where the value difference between the two options 318 

was not included, such that DDM parameters were constant across trials[45,46]. We then used 319 
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two different temporal discounting DDMS, in which the value difference between options 320 

modulated trial-wise drift rates. This was done using either a linear (DDML) or a non-linear 321 

sigmoid (DDMS) linking function[47]. In the DDML, the drift-rate v in each trial is linearly 322 

dependent on the trial-wise  scaled value difference between the LL and the SS options 323 

(equation 4) [44]. The parameter vcoeff maps the value differences onto v and scales them to the 324 

DDM: 325 

�t = �coeff ∗ (�� (��t) – ��(��t)) (4) 326 

 327 

One drawback of a linear representation of the relationship between the drift-rate v 328 

and trial-wise value differences is that v might increase infinitely with high value differences, 329 

which can lead the model to under-predict RTs for high value differences[45]. In line with 330 

previous work [45,46] we thus included a third version of the DDM, that assumes a non-linear 331 

sigmoidal mapping from trial-wise value differences to drift rates (equations 5 and 6)[43]:  332 

�t = S (�coeff * (SV(LLt) - SV(SSt))) (5)  

S(m) = 
2 � �max

1 � exp ����
� �max 

(6)  

 333 

Here, the linear mapping function from the DDML is additionally passed through a sigmoid 334 

function S with the asymptote vmax, causing the relationship between v and the scaled trail-335 

wise value difference m to asymptote at vmax. 336 

 We have previously reported detailed parameter recovery analyses for the DDMS in 337 

the context of value-based decision-making tasks such as temporal discounting[45], which 338 

revealed that both subject-level and group-level parameters recovered well. 339 

 340 

Hierarchical Bayesian Models. All models were fit to the data of all participants in a 341 

hierarchical Bayesian estimation scheme, separately for each session, resulting in independent 342 

estimates for each participant per session. Participant-level parameters were assumed to be 343 

drawn from group-level Gaussian distributions, the means and precisions of which were again 344 

estimated from the data. Posterior distributions were estimated via Markov Chain Monte 345 

Carlo in the R programming language[65] using the JAGS software package[66]. For the 346 

DDM’s the Wiener module for JAGS was used[67]. For the group-level means, uniform priors 347 

over numerically plausible parameter ranges were chosen (Table 1). Priors for the precision of 348 

the group-level distribution were Gamma distributed (0.001, 0.001). The convergence of 349 
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chains was determined by the R-hat statistic[68]. Values between 1 and 1.01 were considered 350 

acceptable. Comparisons of relative model fit were performed using the Deviance Information 351 

Criterion (DIC), where lower values reflect a superior model fit[69].  352 

Table 1. Ranges for the uniform priors 353 

of group-level parameter means. 354 

Ranges were chosen to cover 355 

numerically plausible values. 356 

Parameters included in multiple 357 

models are only listed once. 358 

Parameter Prior for group mean 

log(k) Uniform(-20, 3) 

softmax ß Uniform(0, 10) 

v Uniform(-100, 100) 

τ Uniform(.1, 6) 

α Uniform(.01, 5) 

z Uniform(.1, .9) 

vcoeff Uniform(-100, 100) 

vmax Uniform(0, 100) 

 359 

Systematic session effects on model parameters. Potential systematic session effects on 360 

group level posterior distributions of parameters of interest were analyzed by overlaying the 361 

posterior distributions of each group level parameter for the different sessions. Here we report 362 

the mean of the posteriors of the estimated group level parameters and the difference 363 

distributions between them, the 95% highest density intervals (HDI) for both of these as well 364 

as directional Bayes Factors (dBF) which quantify the degree of evidence for reductions vs. 365 

increases in a parameter. Because the priors for the group effects are symmetric, this dBF can 366 

simply be defined as the ratio of the posterior mass of the difference distributions above zero 367 

to the posterior mass below zero[70]. Here directional Bayes Factors above 3 are interpreted as 368 

moderate evidence in favor of a positive effect, while Bayes Factors above 12 are interpreted 369 

as strong evidence for a positive effect[71]. Specifically, a dBF of 3 would imply that a positive 370 

directional effect is three times more likely than a negative directional effect. Bayes Factors 371 

below 0.33 are likewise interpreted as moderate evidence in favor of the alternative model 372 

with reverse directionality. A dBF above 100 is considered extreme evidence[71]. The cutoffs 373 

used here are liberal in this context, because they are usually used if the test is against a H0 374 

implying an effect of 0. In addition, we report the effect size (Cohen’s d) based on the mean 375 
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posterior distributions of the session means, the pooled standard deviations across sessions 376 

and the correlation between sessions.  377 

ICC analysis. The test-retest reliability of the best fitting parameter values between the 378 

three sessions was analyzed using the intra-class correlation coefficient (ICC). The ICC-379 

analysis was done in the R programming language[65] and was based on a mean-rating of three 380 

raters, absolute agreement and a two-way mixed model. ICC values below .5 are an indication 381 

of poor test-retest reliability, whereas values in the range between .5 and .75 indicate a 382 

moderate test-retest reliability[72]. Higher values between .75 and .9 indicate a good reliability, 383 

while values above .9 suggest an excellent test-retest reliability. 384 

Analysis of physiological data. A frequently used index of sympathetic activity is 385 

electrodermal activity, i.e. changes in skin conductance (SC)[73]. Here the physiological 386 

reactivity to the VR-environments is measured as the slowly-varying skin conductance level 387 

(SCL)[39]. Thus, the SCL was extracted from the EDA signal using continuous decomposition 388 

analysis (CDA) via the Ledalab toolbox[74] for Matlab (MathWorks). For the deconvolution, 389 

default settings were used. The resulting signal was then transformed into percentage change 390 

from the mean signal of the five minutes baseline phase at the beginning of the experiment. 391 

Subsequently, five one-minute bins were constructed for each phase of the VR-session 392 

(baseline phase, the first exploration phase and the second exploration phase). An alternative 393 

way of classifying tonic sympathetic arousal can be the number of spontaneous phasic 394 

responses (SCR) in the EDA signal[74]. Again, the signal was divided in one-minute bins and 395 

the number of spontaneous SCRs during each bin was calculated from the phasic component 396 

of the deconvoluted EDA signal using the Ledalab toolbox. The resulting values were 397 

similarly transformed into percentage change from the mean number of SCRs during the five 398 

baseline bins. To test whether entering the VR-environments had a general effect on 399 

sympathetic arousal, we compared the values for the last time point of the base line phase 400 

(B5) with the first time point of the first exploration phase (F1) for both sessions using a non-401 

parametric Wilcoxon Signed-Rank Test. To test whether there was a differential effect of 402 

entering the different experimental areas of the VR-environments on sympathetic arousal, for 403 

both measures the differences between the last time point of the first exploration phase (F5) 404 

and the first time point of the second exploration phase (S1) were compared across VR-405 

sessions using a non-parametric Wilcoxon Signed-Tanks Test[75]. Effect sizes are given as 406 

r[76], computed as the statistic Z divided by the square-root of N. Effect sizes between 0 and .3 407 

are considered small and effect sizes between .3 and .5 are considered medium and r values > 408 

.5 are considered large effects. 409 
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Data and code availability. Raw behavioral and physiological data as well as JAGS 410 

model code is available on the Open Science Framework (https://osf.io/xkp7c/files/).  411 

Results 412 

Temporal discounting AUC. The analysis of the AUC values revealed no significant 413 

session effect across participants (Friedman Test: Chi-Squared = 1.235 df =2 p =.539). 414 

Furthermore, the ICC value was .93 (95% confidence interval (CI): .89 - .96) (p<.001) 415 

indicating an excellent test-retest reliability of temporal discounting AUC values over the 416 

three sessions (Table 2). Pairwise correlations between all sessions can be found in the 417 

supplementary materials (Supplementary Figure S1). 418 

Softmax choice rule. For the hyperbolic model with softmax choice rule, the group 419 

level posteriors showed little evidence for systematic effects of the different sessions on 420 

log(k) (all BFs < 3 or >.33) (Figure 3a and c and Table 2). In contrast, the softmax   421 

parameter was higher (reflecting higher consistency) in the VRneutral session compared to the 422 

other sessions (vs. Lab: dBF = .01 and vs. VRgambiling: dBF = .048) (Figure 3b and d, Table 2). 423 

This indicates that a higher   in the VRneutral session was approximately 100 (Lab) or 20 424 

(VRgambling) times more likely than a lower  . There was little evidence for a systematic effect 425 

between the Lab and VRgambling sessions (dBF = .446). 426 

Table 2. 95% HDIs for the two parameters of the hyperbolic discounting model. HDIs are described by the min. value first 427 

and the max value second. Directional Bayes Factors (dBF) are calculated as BF = i/(1-i), with i being the probability mass of 428 

the difference distributions above zero. Effect sizes are given as Cohen’s d. 429 

 Log(k)     ß     

Session Mean HDI  dBF d Mean HDI  dBF d 

Lab -4.083 -4.643 -3.530 - - .417 .355 .489 - - 

VRneutral -4.348 -4.912 -3.797 - - .577 .461 .714 - - 

VRgambling -4.274 -4.882 -3.687 - - .448 .363 .547 - - 

Lab-
VRneutral 

.266 -.520 1.054 2.712 .38 -.16 -.31 -.024 .01 .9 

Lab-
VRgambling 

.191 -.620 1.01 2.162 .3 -.03 -.148 .081 .446 .18 

VRgambling-
VRgeutral 

.074 -.746 .885 1.264 .1 -.129 -.29 .023 .048 .56 

 430 
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 431 

Figure 3. Posterior distributions of the parameters of the hyperbolic discounting model. Colored bars represent the 432 

corresponding 95% HDIs. a) Posterior distribution of the log(k) parameter (reflecting the degree of temporal discounting) for 433 

all three sessions. b) Posterior distribution of the � or inverse temperature parameter (reflecting decision noise). c) Pairwise 434 

difference distributions between the posteriors of the log(k) parameters of all three sessions. d) Pairwise difference 435 

distributions between the posteriors of the  � parameters of all three sessions. 436 

The ICC value for the log(k) parameter indicated an excellent test-retest reliability of 437 

.91 (CI: .86 - .96) (p<.001) (Table 3). For the   -parameter of the softmax choice rule the ICC 438 

value was .34 (CI:  .17 - .53) (p<.001) indicating a poor test-retest reliability (Table 3). The 439 

pairwise correlations of estimated parameter values between all sessions can be found in the 440 

Supplement (Supplementary Figure S2 and S3). Pairwise correlations between all sessions for 441 

both parameters can be found in the supplementary materials (Supplementary Figure S2 and 442 

S3). 443 

Table 3. Summary of the results of the ICC analysis for the AUC values as well as the two parameters of the hyperbolic 444 

discounting model with a softmax choice rule. Lower and upper bound describe the 95% confidence interval. 445 

Parameter ICC p Lower bound Upper Bound 

      AUC .93 <.001 .89 .96 

       log(k) .91 <.001 .86 .95 

       ! .34 <.001 .17 .53 

 446 

 447 
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Table 4. Summary of the DICs of all DDM models in all sessions. Ranks are based on the lowest DIC in all sessions. 448 

 449 

Drift diffusion model choice rule. Model comparison revealed that the DDMS had the 450 

lowest DIC in all conditions (Table 4) replicating previous work [45,46,48]. Consequently, 451 

further analyses of session effects and reliability focused on this model. For the log(k) 452 

parameter, the 95% HDIs showed a high overlap between all sessions indicating no 453 

systematic session effects, however the BFs showed moderate evidence for a reduced log(k) 454 

in the VRneutral-session (Figure 4 a and d, Table 5). A lower value in the VRneutral-session was 455 

about seven (Lab-session dBF = 6.756) or four times (VRgambling dBF = 3.86) more likely than 456 

a lower value. Similarly, the posterior distributions of �max, �coeff and � were highly 457 

overlapping, whereas some of the dBFs gave moderate evidence for systematic directional 458 

effects within these parameters (Figure 4 b, c, e and f, Figure 5 b and e, Table 5). �coeff, 459 

mapping trial-wise value difference onto the drift rate, was lowest in the Lab-session and 460 

highest in VRneutral (Lab-VRneutral dBF = .074, Lab-VRgambling = .2, VRgambling-VRneutral = .228). 461 

Thus, an increase in vcoeff in VRneutral compared to the Lab-session was approximately thirteen 462 

times more likely than a decrease. Likewise, it was approximately five times more likely that 463 

there was an increase in the VRneutral compared to the VRgambling-session. For �max, the upper 464 

boundary for the value difference’s influence on the drift rate, the dBFs indicated that a 465 

positive shift from VRgambling to VRneutral was five times more likely than a negative shift (dBF 466 

= .203) but there was only very little indication of a systematic difference between both of 467 

them and the Lab-session. Finally, a reduction of the boundary separation parameter � was 468 

five times more likely than an increase when comparing the VRneutral to the Lab-session (dBF 469 

= .255). There was little evidence for any other systematic differences. The bias parameter z 470 

displayed high overlap in HDIs and little evidence for any systematic effects between sessions 471 

(all dBFs >.33 or <3) (Figure 5 c and f, Table 5). For the non-decision time parameter � there 472 

was extreme evidence for an increase in the VR-sessions compared to the Lab-session (both 473 

dBFs >100), reflecting prolonged motor and/or perceptual components of the RT that was 474 

more than 100 times more likely than a shortening of these components (Figure 5 a and d, 475 

Table 5).  476 

Model Lab VRneutral VRgambling Rank 

DDM0 9275.7 9569.8 9225.7 3 

DDML 7558.9 7921.4 7663.0 2 

DDMS 6992.3 7327.2 7033.1 1 
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 477 

Table 5. Directional Bayes Factors (dBF) and effect sizes (Cohen’s d) for all between session comparisons for all parameters 478 

of the DDMS. Means and HDIs of the posteriors and difference distributions are summarized in the supplementary materials 479 

(Supplementary Table S1). BFs are calculated as BF = i/(1-i), with i being the probability mass of the difference distributions 480 

above zero. 481 

Contrast log(k)  "coeff  "max  �  �  z  

 dBF d dBF d dBF d dBF d dBF d dBF d 

       Lab-
VRneutral 

6.756 .37 .074 .37 .377 .2 >100 1.2 .255 .224 .530 .2 

      Lab-
VRgambling 

1.679 .19 .200 .59 1.573 .09 >100 1.5 .358 .160 1.118 .04 

           

VRgambling-
VRneutral 

3.860 .29 .228 .27 .203 .34 3.413 .17 .629 .070 .458 .2 

 482 

The ICC value for the log(k) parameter was .7 (CI: .56 - .8) indicating a moderate test-483 

retest-reliability (Table 5). For the other DDMS parameters, ICC values were substantially 484 

lower (Table 6). Pairwise correlations between all sessions for all parameters can be found in 485 

the supplementary materials (Supplementary Figure S4-S9).  486 

Split-half reliability control analyses for DDM parameters. In light of the lower ICC 487 

values for the DDMS parameters beyond log(k), we ran additional analyses. Specifically, we 488 

hypothesized that these lower ICC values might be attributable to fluctuations of state factors, 489 

e.g. mood, fatigue or motivation, between the different sessions. Therefore, we explored 490 

within-session reliability of these parameters, separately for each session. Trials where split 491 

into odd and even trials and modelled separately using the DDMS, as described above. In 492 

general, within-session split-half reliability was substantially greater than test-retest 493 

reliability, and mostly in a good to excellent range (range: -.1 for �coeff in VRgambling to .94 for 494 

� in VRneutral). The lower test-retest reliabilities of some of the DDMS parameters are therefore 495 

unlikely to be due to the specifics of the parameter estimation procedure. Rather, these 496 

findings are compatible with the view that the parameters underlying the evidence 497 

accumulation process might be more sensitive to state-dependent changes in mood, fatigue or 498 

motivation.  Full results for the split-half reliability analyses can be found in the 499 

supplementary materials (Supplementary Tables S3-S5).  500 

 501 

 502 
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 503 

 504 

Figure 4. Posterior distributions of the parameters of the DDMS model. Colored bars represent the corresponding 95% HDIs. 505 

a) Posterior distributions of the log(k) parameter for all three sessions. b) Posterior distributions of the vcoeff parameter 506 

(mapping the drift rate onto the trial wise value difference). c) Posterior distributions of the vmax parameter (setting an 507 

asymptote for the relation between the trial wise value difference and the drift rate). d) Pairwise difference distributions 508 

between the posterior distributions of the log(k) parameters of the three sessions. e) Pairwise difference distributions between 509 

the posterior distributions of the vcoeff parameters of the three sessions. f) Pairwise difference distributions between the 510 

posterior distributions of the vmax parameters of the three sessions. 511 
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 512 

Figure 5. Posterior distributions of the remaining parameters of the DDMS model. Colored bars represent the corresponding 513 

95% HDIs. a) Posterior distributions of the � parameter (non-decision time) for all three sessions. b) Posterior distributions of 514 

the � parameter (separation between decision boundaries). c) Posterior distributions of the z parameter (bias towards one 515 

decision option). d) Pairwise difference distributions between the posterior distributions of the � parameters of the three 516 

sessions. e) Pairwise difference distributions between the posterior distributions of the � parameters of the three sessions. f) 517 

Pairwise difference distributions between the posterior distributions of the z parameters of the three sessions. 518 

Table 6. Summary of the results of the ICC analysis of the DDMS parameters. 519 

Parameter ICC p Lower bound Upper Bound 

       log(k) .7 <.001 .56 .8 

       vcoeff .11 .14 -.053 .3 

       vmax .33 <.001 .16 .52 

            � .19 .033 .019 .38 

           � .42 <.001 .24 .59 

          z .4 <.001 .22 .58 

 520 

 521 

 522 

 523 
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Electrodermal activity (EDA). The data of 8 of the 34 participants had to be excluded 524 

from the EDA analysis, due to technical problems or missing data during one of the testing 525 

sessions. Physiological reactivity in the remaining 26 (18 female) participants was analyzed 526 

by converting the SCL signal as well as the nSCRs into percent change from the mean level 527 

during the base line phase. Both signals were then binned into five one-minute intervals for 528 

each of the three phases (baseline, first exploration and second exploration phase). All 529 

comparisons were tested with the Wilcoxon Signed Rank Test. Entering the VR-environments 530 

(comparing bin B5 to bin F1 for both environments individually) resulted in a significant 531 

increase in the SCL values for both VR-environments (VRneutral: Z = -3.67, p < .001, r = .72; 532 

VRgambling: Z = -3.543, p = .002, r = .695) (Figure 6 c and d). The effect was large in both 533 

sessions (r > .5). However, for the number of spontaneous SCRs (nSCRs), this effect was only 534 

significant in the neutral VR-environment (neutral: Z = -2.623, p = .009, r = .515; gambling: 535 

Z = -.013, p = .99, r =.002). There was no significant difference between the two sessions, but 536 

the effect was of medium size (Z = -1.7652, p = .078, r =.346) (Figure 6 a and b). To test 537 

whether entering the specific experimental areas of the two VR-environments (virtual café vs. 538 

virtual casino) had differential effects on physiological responses, the increase in sympathetic 539 

arousal from the end of the first exploration phase to the start of the second exploration phase 540 

was examined (comparing bin F5 to bin S1, see Figure 6 b and d). The SCL (neutral: Z = -541 

0.7238, p = -.469, r = .142; gambling: Z = -.089, p = .929, r = .017) as well as the nSCRs 542 

(neutral: Z = -1.943, p = .052, r = .381; gambling: Z = .982, p = .326, r = .193) assessed for 543 

each session individually showed no significant effect. The effect size was medium (r = .381) 544 

for the nSCRs of the VRneutral-session and small for all other comparisons (r < .3). 545 

Furthermore, the Wilcoxon Signed-Ranks test indicated no significant differences between 546 

the two experimental areas on both sympathetic arousal measures (SCL: Z = -.572, p = .381, r 547 

= .11; nSCRs.: Z = -1.7652, p = .078, r = .346) (Figure 6 b and d). For the nSCRs however, 548 

the effect was of a medium size (r = .346). 549 
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 550 

Figure 6. Results of the EDA measurements divided into 15 time points over the course of the baseline phase, measured 551 

before participants entered the VR-environments, and the first and second exploration phases. Each of the three phases is 552 

divided into five one-minute bins (B1-5: pre-VR baseline, F1-5: first exploration phase in VR, S1-5: second exploration 553 

phase VR).  a: Median percent change from baseline mean for no. of spontaneous SCRs over all participants. b: Boxplot of 554 

percentage change from baseline mean for no. spontaneous SCRs over all participants. c: Median percent change from 555 

baseline mean of SCL over all participants. d: Boxplots of percentage change from base line mean of SCL over all 556 

participants. 557 

  558 
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Discussion 559 

Here we carried out an extensive investigation into the reliability of temporal discounting 560 

measures obtained in different virtual reality environments as well as standard lab-based 561 

testing. This design allowed us the joint assessment of physiological arousal and decision-562 

making, an approach with potential applications to cue-reactivity studies in substance use 563 

disorders or behavioral addictions such as gambling disorder. Participants performed a 564 

temporal discounting task within two different VR-environments (a café environment and a 565 

casino/sports betting environment: VRneutral vs. VRgambling) as well as in a standard computer-566 

based lab testing session. Exposure to VR generally increased sympathetic arousal as assessed 567 

via electrodermal activity (EDA), but these effects were not differentially modulated by the 568 

different VR environments. Results revealed good to excellent test-retest reliability of model-569 

based (log(k)) and model-free (AUC) measures of temporal discounting across all testing 570 

environments.   However, the DDMS parameters modelling latent decision processes showed 571 

substantially lower test-retest reliabilities between the three sessions. The split-half reliability 572 

within each session was mostly good to excellent indicating that the lower test-retest 573 

reliability was likely caused by the participants current state and not by factors within the 574 

modelling process itself.  575 

To test how well temporal discounting, as a measure of choice impulsivity, performs 576 

in virtual environments we implemented a VR-design that is built for possible future 577 

application in a cue-reactivity context. Healthy controls displayed little evidence for 578 

systematic differences in choice preferences between the Lab-session and the VR-sessions. 579 

This was observed for model-free measures (AUC), as well as the log(k) parameter of the 580 

hyperbolic discounting model with the softmax choice rule and the drift diffusion model with 581 

non-linear drift rate scaling (DDMS). Model comparison revealed that the DDMS accounted 582 

for the data best, confirming previous findings[43,45,46,48]. Although generally, discount rates 583 

assessed in the three sessions were of similar magnitude, in the DDMS there was moderate 584 

evidence for reduced discounting (i.e., smaller values of log(k)) in the VRneutral session. The 585 

reasons for this could be manifold. One possibility is that environmental novelty plays a role, 586 

such that perceived novelty of the VRneutral session might have been lower than for the 587 

VRgambling and Lab-sessions. Exposure to novelty can stimulated dopamine release[77], which 588 

is known to impact temporal discounting[78]. Nonetheless, effect sizes were medium (.37 and 589 

.29) and the dBFs revealed only moderate evidence. Numerically, the mean log(k)’s of the 590 

softmax model showed the same tendency, but here effects were less pronounced. One 591 

possibility is that the inclusion of additional latent variables in the DDMS might have 592 
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increased sensitivity to detect this effect. There was also evidence for a session effect on the 593 

scaling parameter (�coeff). Here, the impact of trial-wise value differences on the drift rate was 594 

attenuated in the Lab-session, with dBFs revealing strong (VRneutral) or moderate evidence 595 

(VRgambling) for a reduction in vcoeff in the Lab-session. Again, effect sizes were medium. 596 

Nevertheless, the data suggest increased sensitivity to value differences in VR. This effect 597 

might be due to the option presentation in the Lab-session compared to the VR-sessions. The 598 

presentation of options within VR might have been somewhat more salient, which might have 599 

increased attention allocated to the value differences within the VR-sessions. However, this 600 

remains speculative until further research reproduces and further assesses these specific 601 

effects on the DDM parameters. Boundary separation (�), drift rate asymptote (vmax) and 602 

starting point (z) showed little evidence for systematic differences between sessions. The only 603 

DDMS parameter showing extreme evidence for a systematic difference between the lab- and 604 

VR-sessions was the non-decision time (�). This effect is unsurprising, as it describes RT 605 

components attributable to perception and/or motor execution. Given that indicating a 606 

response with a controller in three-dimensional space takes longer than a simple button press, 607 

this leads to substantial increases in � during VR testing. Finally, the good test-retest 608 

reliability of log(k) from the DDMS furthermore indicates that RTs obtained in VR can 609 

meaningfully be modeled using the DDM. The potential utility of this modeling approach in 610 

the context of gambling disorder is illustrated by a recent study that reported reduced 611 

boundary separation (�) in participants suffering from gambling disorder compared to healthy 612 

controls in a reinforcement learning task[48]. Given that there are mixed results when it comes 613 

to the effect of addiction related cues on RTs[79–81], the effects of these cues on the latent 614 

decision variables included in the DDM could provide additional insights. Taken together, 615 

these results show that VR immersion in general does not influence participants inter-616 

temporal preferences in a systematic fashion and might open up a road to more ecologically 617 

valid lab experiments, e.g., focusing on behavioral cue-reactivity in addiction. This is in line 618 

with other results showing the superiority of VR compared to classical laboratory 619 

experiments[6]. 620 

The present data add to the discussion concerning the reliability of behavioral 621 

tasks[9,50–53,55] in particular in the context of computational psychiatry[15,82]. To examine test-622 

retest reliability, the three sessions were performed on different days and with a mean interval 623 

of 3.85 days between sessions. The test-retest reliability for the AUC and the log(k) parameter 624 

of the hyperbolic discounting model with softmax choice rule were both excellent. For the 625 

log(k) of the DDMS the ICC was good, but slightly lower than for AUC and softmax. 626 
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Nevertheless, the discount rate log(k) was overall stable regardless of the analytical approach. 627 

The ICC of .7 observed for the DDMS was comparable to earlier studies on temporal 628 

discounting reliability[52,53]. Kirby and colleagues[52] for instance demonstrated a reliability of 629 

.77 for a five-week interval and .71 for one year. This shows that at least over shorter periods 630 

from days to weeks, temporal discounting performed in VR has a reliability comparable to 631 

standard lab-based testing. Enkavi and colleagues[49] stress that in particular difference scores 632 

between conditions (e.g. Stroop, Go-NoGo etc.), show unsatisfactory reliability due to the low 633 

between participants variation created by commonly used behavioral tasks. Assessment of 634 

difference scores was not applicable in the present study. Nevertheless, there was no positive 635 

evidence for systematic effects on log(k) (with the exception of the potential novelty effects 636 

discussed above), and the test-retest reliability between all conditions was at least good across 637 

analysis schemes, indicating short-term stability of temporal discounting measured in VR. It 638 

is worth noting, however, that temporal discounting shares some similarities with 639 

questionnaire-based measures. As in questionnaires, in temporal discounting tasks 640 

participants are explicitly instructed to indicate their preferences. This might be one reason 641 

why the reliability of temporal discounting is often substantially higher than that of other 642 

behavioral tasks[49,52,53,55]. Other parameters of the DDMS showed lower levels of test-retest 643 

reliability. Especially the �coeff parameters were less reliable, at least when estimated jointly 644 

with vmax. In the DDML, which does not suffer from potential trade-offs between these 645 

different drift rate components, the ICC of �coeff was good (Supplementary Table S2). 646 

Similarly, here log(k) also showed an excellent ICC.  647 

The substantially lower test-retest reliability exhibited by the parameters of the DDMS 648 

that represent latent decisions processes, compared to log(k) or AUC warrants further 649 

discussion. Prior publications from our lab [24,41] have extensively reported parameter recovery 650 

of the DDMs model and revealed a good recovery performance. The low test-retest reliability 651 

is therefore unlikely to be due to poor identifiability of model parameters. One possible 652 

reason for this discrepancy between log(k)/AUC and the other parameters is that the tendency 653 

to discount value over time might be a stable trait-like factor, while the latent decision 654 

processes reflected in the other DDMS parameters might be more substantially influenced by 655 

state effects. While this could explain the low test-retest reliability, it would predict that these 656 

parameters should nonetheless be stable within sessions. We addressed this issue in a further 657 

analysis of within-session split-half reliability (see Supplementary Tables S3-5).  The results 658 

showed a good-to-excellent within-session stability for most parameters, with the drift rate 659 

coefficient �coeff being a notable exception. This is compatible with the idea that latent 660 
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decision processes reflected in the DDMS parameters might be affected by factors that differ 661 

across testing days, but are largely stable within sessions, such as mood, fatigue or 662 

motivation.  663 

VR has previously been used to study cue-reactivity in participants suffering from 664 

gambling disorder[2,3,83], but also in participants experiencing nicotine[84] and alcohol[1] use 665 

disorders. Our experimental set-up extends these previous approaches in several ways. First, 666 

we included both a neutral and a gambling-related environment. This allows us to disentangle 667 

general VR effects from specific contextual effects. Second, our reliability checks for 668 

temporal discounting show that model-based constructs with clinical relevance for 669 

addiction[18,23] can be reliably assessed when behavioral testing is implemented directly in the 670 

VR environment. Together, these advances might yield additional insights into the 671 

mechanisms underlying cue-reactivity in addiction, and contextual effects in psychiatric 672 

disorders more generally.  673 

Understanding how addictions manifest on a computational and physiological level is 674 

important to further the understanding the mechanisms underlying maladaptive decision-675 

making. Although alterations in neural reward circuits, in particular in ventral striatum and 676 

ventromedial prefrontal cortex, are frequently observed in gambling disorder, there is 677 

considerable heterogeneity in the directionality of these effects[85]. Gambling-related visual 678 

cues interfere with striatal valuation signals in participants suffering from gambling disorder, 679 

and might thereby increase temporal discounting[12]. In the present work, assessment of 680 

physiological reactivity to VR was limited to electrodermal activity (EDA). EDA is an index 681 

of autonomic sympathetic arousal, which is in turn related to the emotional response to 682 

addiction related cues[39,86–88]. The skin conductance level (SCL) is increased in participants 683 

with substance use disorders in response to drug related cues[86]. Additionally, it has been 684 

shown that addiction related cues in VR can elicit SCR responses in teen[87] and adult[88] 685 

participants suffering from a nicotine addiction. In our study, we mainly used this 686 

physiological marker to assess how healthy participants react to VR exposure. For the number 687 

of spontaneous responses in the EDA signal (nSCRs), the increase upon exposure to VR (B5 688 

vs F1) was only significant in the VRneutral environment. The effect size for the difference 689 

between both environments was medium. Given that the two starting areas of the VR-690 

environments were identical, this difference might have been caused by random fluctuations.  691 

However, an increase in the number of spontaneous SCRs during VR immersion has been 692 

reported previously[5] and thus warrants further investigation. The SCL, on the other hand, 693 

increased substantially upon exposure to VR, as indicated by a significant increase between 694 
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the last minute of baseline recording (B5) and the first minute of the first exploration phase 695 

(F1). The effect sizes indicated a large effect. SCL then remained elevated throughout both 696 

exploration phases (F1 to S5) but did not increase further when the virtual café/casino area 697 

was entered. These results suggest that exposure to VR increases sympathetic arousal as 698 

measured with SCL in healthy control participants independent of the presented VR 699 

environment. 700 

 There are several limitations that need to be acknowledged. First, there was 701 

considerable variability in test-retest intervals across participants. While most of the sessions 702 

were conducted within a week, in some participants this interval was up to three weeks, 703 

reducing the precision of conclusions regarding temporal stability of discounting in VR. Other 704 

studies, however, have used intervals ranging from five to fifty-seven weeks[52] or three 705 

months[53], and have reported comparable reliabilities. Moreover, there is evidence for a 706 

heritability of temporal discounting of around 30 and 50 percent at the ages of 12 and 14 707 

years respectively[89]. This increases the confidence in the results obtained here. Nevertheless, 708 

a more systematic assessment of how long these trait indicators remain stable in VR would be 709 

desirable and could be addressed by future research. Second, the sample size was lower 710 

compared to larger studies conducted online[49], and the majority of participants was female. 711 

Both factors limit the generalizability of our results. However, large-scale online studies have 712 

shortcomings of their own, including test batteries that take multiple hours and/or multiple 713 

sessions to complete[49,50], potentially increasing participants’ fatigue, and which might have 714 

detrimental effects on data quality. We also note that the present sample size was sufficiently 715 

large to reveal stable parameter estimates, showing that in our design participants performed 716 

the task adequately. Thirdly, the immersion in VR might have been reduced by the available 717 

physical lab space. To ensure safety, the experimenter had to at times instruct participants to 718 

stay within the designated VR-zone. This distraction might have reduced the effects caused by 719 

the VR-environments, because participants were not able to fully ignore the actual physical 720 

surroundings. Additionally, it might have influenced the EDA measurements in an 721 

unpredictable way. Future research would benefit from the implementation of markers within 722 

the VR-environments in order to ensure safety without breaking immersion. Moreover, 723 

participants had to spend about thirty minutes in the full VR-setup. The behavioral tasks were 724 

presented after the exploration phase, such that participants might have been fatigued or 725 

experienced discomfort during task completion. Finally, the study at hand did not include 726 

participants that gamble frequently or are suffering from gambling disorder and is therefore 727 

not a cue-reactivity study itself, but rather a methodological validation for future studies using 728 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2021. ; https://doi.org/10.1101/2020.08.07.237826doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.07.237826
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29

this and similar designs. Due to the fact that participants here were supposed to be fairly 729 

unfamiliar with gambling environments this study could not determine how ecologically valid 730 

the gambling environment actually is. This needs to be addressed in future research. In 731 

relation to that, cue-reactivity in gambling disorder is determined by many individual 732 

factors[37]. The VR-design presented here is designed for slot machine and sports betting 733 

players, and thus not applicable for other forms of gambling.  734 

 Overall, our results demonstrate the methodological feasibility of a VR-based 735 

approach to behavioral and physiological testing in VR with potential applications to cue-736 

reactivity in addiction. Healthy non-gambling control participants showed little systematic 737 

behavioral and physiological effects of the two VR environments. Moreover, our data show 738 

that temporal discounting is reliable behavioral marker, even if tested in very different 739 

experimental settings (e.g. standard lab testing vs. VR). It remains to be seen if such 740 

gambling-related environments produce cue-reactivity in participants suffering from gambling 741 

disorder. However, results from similar applications have been encouraging[2,3]. These results 742 

show the promise of VR applications jointly assessing of behavioral and physiological cue-743 

reactivity in addiction science. 744 

  745 
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Figure and Table Legends 991 

Figure 1. Experimental areas of the VR-environments. a) Floorplan of the café within the VR-neutral environment. b) View 992 

of the main room of the café. c) View of the buffet area of the café. d) Floorplan of the casino within the VR-gambling 993 

environment. e) View of the main room of the casino. f) View of the sports bar within the casino. 994 

 995 

Figure 2. Presentation of the temporal discounting task in VR. Participants had to repeatedly decide between a small but 996 

immediate reward (SS) and larger but temporally delayed rewards (LL). Amounts and delays were presented in yellow 997 

squares. During the inter-trial intervals (.5-1 sec.) these squares contained only question marks. Participants indicated their 998 

choice by pointing the VR-controller at one of the yellow squares and pulling the trigger. 999 
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Figure 3. Posterior distributions of the parameters of the hyperbolic discounting model. Colored bars represent the 1001 

corresponding 95% HDIs. a) Posterior distribution of the log(k) parameter (reflecting the degree of temporal discounting) for 1002 

all three sessions. b) Posterior distribution of the � or inverse temperature parameter (reflecting decision noise). c) Pairwise 1003 

difference distributions between the posteriors of the log(k) parameters of all three sessions. d) Pairwise difference 1004 

distributions between the posteriors of the  � parameters of all three sessions. 1005 

 1006 

Figure 4. Posterior distributions of the parameters of the DDMS model. Colored bars represent the corresponding 95% HDIs. 1007 

a) Posterior distributions of the log(k) parameter for all three sessions. b) Posterior distributions of the vcoeff parameter 1008 

(mapping the drift rate onto the trial wise value difference). c) Posterior distributions of the vmax parameter (setting an 1009 

asymptote for the relation between the trial wise value difference and the drift rate). d) Pairwise difference distributions 1010 

between the posterior distributions of the log(k) parameters of the three sessions. e) Pairwise difference distributions between 1011 

the posterior distributions of the vcoeff parameters of the three sessions. f) Pairwise difference distributions between the 1012 

posterior distributions of the vmax parameters of the three sessions. 1013 

 1014 

Figure 5. Posterior distributions of the remaining parameters of the DDMS model. Colored bars represent the corresponding 1015 

95% HDIs. a) Posterior distributions of the � parameter (non-decision time) for all three sessions. b) Posterior distributions of 1016 

the � parameter (separation between decision boundaries). c) Posterior distributions of the z parameter (bias towards one 1017 

decision option). d) Pairwise difference distributions between the posterior distributions of the � parameters of the three 1018 

sessions. e) Pairwise difference distributions between the posterior distributions of the � parameters of the three sessions. f) 1019 

Pairwise difference distributions between the posterior distributions of the z parameters of the three sessions. 1020 

 1021 

Figure 6. Results of the EDA measurements divided into 15 time points over the course of the baseline phase, measured 1022 

before participants entered the VR-environments, and the first and second exploration phases. Each of the three phases is 1023 

divided into five one-minute bins (B1-5: pre-VR baseline, F1-5: first exploration phase in VR, S1-5: second exploration 1024 

phase VR).  a: Median percent change from baseline mean for no. of spontaneous SCRs over all participants. b: Boxplot of 1025 

percentage change from baseline mean for no. spontaneous SCRs over all participants. c: Median percent change from 1026 

baseline mean of SCL over all participants. d: Boxplots of percentage change from base line mean of SCL over all 1027 

participants. 1028 

 1029 

Table 1. Ranges for the uniform priors of group-level parameter means. Ranges were chosen to cover numerically plausible 1030 

values. Parameters included in multiple models are only listed once. 1031 

 1032 

Table 2. 95% HDIs for the two parameters of the hyperbolic discounting model. HDIs are described by the min. value first 1033 

and the max value second. Directional Bayes Factors (dBF) are calculated as BF = i/(1-i), with i being the probability mass of 1034 

the difference distributions above zero. Effect sizes are given as Cohen’s d. 1035 

 1036 

Table 3. Summary of the results of the ICC analysis for the AUC values as well as the two parameters of the hyperbolic 1037 

discounting model with a softmax choice rule. Lower and upper bound describe the 95% confidence interval. 1038 

 1039 

Table 4. Summary of the DICs of all DDM models in all sessions. Ranks are based on the lowest DIC in all sessions. 1040 

 1041 

Table 5. Directional Bayes Factors (dBF) and effect sizes (Cohen’s d) for all between session comparisons for all parameters 1042 

of the DDMS. Means and HDIs of the posteriors and difference distributions are summarized in the supplementary materials 1043 

(Supplementary Table S1). BFs are calculated as BF = i/(1-i), with i being the probability mass of the difference distributions 1044 

above zero. 1045 

 1046 

Table 6. Summary of the results of the ICC analysis of the DDMS parameters.  1047 
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Supplementary Materials 1048 

 1049 

Supplementary Figure S1. Scatterplots of the individual participants AUC values. a) lab vs VRneutral b) lab vs VRgambling c) 1050 

VRgambling vs VRneutral. 1051 

 1052 

Supplementary Figure S2. Scatterplots of the mean of the individual participants parameter posterior distributions for the 1053 

parameters of the hyperbolic discounting model with the softmax choice rule (see equation 1 and 2). a) log(k) b) softmax ß. 1054 

 1055 

 1056 

Supplementary Figure S3. Scatterplots of the mean of the individual participants parameter posterior distributions for the 1057 

parameters of the DDMS temporal discounting model. a) log(k) b) vcoeff c) vmax d) tau e) � f) z. 1058 
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Supplementary Table S2. Summary of the results of the ICC analysis of the DDML parameters. 1059 

Parameter ICC p Lower bound Upper Bound 

       log(k) .92 <.001 .88 .95 

       vcoeff .65 <.001 .5 .77 

            � .15 .067 -.014 .35 

           � .36 <.001 .19 .55 

          z .60 <.001 .45 .74 

 1060 

Supplementary Table S3. Summary of the results of the split-half ICC analysis of the DDMS parameters within the lab-1061 

session. 1062 

Parameter ICC p Lower bound Upper Bound 

       log(k) .97 <.001 .96 .97 

       vcoeff .25 .069 -.029 .5 

       vmax .76 <.001 .61 .86 

            � .92 <.001 .86 .95 

           � .94 <.001 .9 .97 

          z .48 .002 .23 .67 

 1063 

Supplementary Table S4. Summary of the results of the split-half ICC analysis of the DDMS parameters within the 1064 

VRneutral-session. 1065 

Parameter ICC p Lower bound Upper Bound 

       log(k) .73 <.001 .57 .84 

       vcoeff .005 .49 -.092 .29 

       vmax .65 <.001 .46 .79 

            � .94 <.001 .9 .97 

           � .9 <.001 .82 .94 

          z .25 .075 -.036 .49 

 1066 

 1067 

 1068 

 1069 

 1070 
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 1071 

Supplementary Table S5. Summary of the results of the split-half ICC analysis of the DDMS parameters for the parameters 1072 

within the VRgambling-session. 1073 

Parameter ICC p Lower bound Upper Bound 

       log(k) .96 <.001 .56 .8 

       vcoeff -.1 .73 -.053 .3 

       vmax .58 <.001 .16 .52 

            � .94 <.001 .019 .38 

           � .92 <.001 .24 .59 

          z .36 .016 .22 .58 

 1074 
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