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ABSTRACT (200/200) 16 

The antigenic diversity of influenza A virus (IAV) circulating in swine challenges the 17 

development of effective vaccines, increasing zoonotic threat and pandemic potential. High throughput 18 

sequencing technologies are able to quantify IAV genetic diversity, but there are no accurate approaches 19 

to adequately describe antigenic phenotypes. This study evaluated an ensemble of non-linear regression 20 

models to estimate virus phenotype from genotype. Regression models were trained with a phenotypic 21 

dataset of pairwise hemagglutination inhibition (HI) assays, using genetic sequence identity and pairwise 22 

amino acid mutations as predictor features. The model identified amino acid identity, ranked the relative 23 

importance of mutations in the hemagglutinin (HA) protein, and demonstrated good prediction accuracy. 24 

Four previously untested IAV strains were selected to experimentally validate model predictions by HI 25 

assays. Error between predicted and measured distances of uncharacterized strains were 0.34, 0.70, 2.19, 26 

and 0.17 antigenic units. These empirically trained regression models can be used to estimate antigenic 27 

distances between different strains of IAV in swine using sequence data. By ranking the importance of 28 

mutations in the HA, we provide criteria for identifying antigenically advanced IAV strains that may not 29 

be controlled by existing vaccines and can inform strain updates to vaccines to better control this 30 

pathogen.  31 
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INTRODUCTION 32 

Influenza A virus (IAV) is a primary respiratory pathogen in commercial swine in the United 33 

States (1). Preventing infection and transmission of the virus has proven difficult due to rapid mutation 34 

that allows the virus to evade host immune defenses and impacts the efficacy of vaccination programs by 35 

antigenic drift (2). The best approach for effective IAV control has been the development of vaccines that 36 

reflect the antigenic diversity of circulating swine IAV strains (3). This is dependent on robust sampling 37 

and sequencing of contemporary strains, which is currently achieved primarily through passive 38 

surveillance, where clinically sick pigs are sampled, and the hemagglutinin (HA) gene is sequenced and 39 

compared to vaccine antigens based on either genetic clade or sequence identity. Vaccines that include a 40 

well-matched HA can induce the production of antibodies that may provide sterilizing immunity, help 41 

reduce clinical signs, or reduce transmission (4,5). Conversely, mismatched vaccine antigens can result in 42 

vaccine failure or potentially cause enhanced disease, emphasizing the importance of careful vaccine 43 

strain selection (6). 44 

In the United States, swine IAV is monitored by the United States Department of Agriculture 45 

(USDA) in collaboration with regional veterinary diagnostic laboratories in the National Animal Health 46 

Laboratory Network (7). These data are primarily synthesized using phylogenetic analysis (7,8), but there 47 

is no coordinated effort to characterize the phenotypic differences between circulating viruses (9). This 48 

contrasts the approach for human IAV, where vaccine antigens are selected through comprehensive 49 

genetic and antigenic characterization of seasonally circulating IAV (10). Thus, the majority of vaccine 50 

antigens in use for IAV in swine are selected based solely on the genetic clade or percent amino acid 51 

identity. This effort is fraught with risk as there are at least 16 distinct HA genetic clades of IAV in swine 52 

derived from multiple human-to-swine interspecies transmission events and subsequent evolution in the 53 

swine host (8,11). Further, there is evidence for regional patterns in HA clade persistence (8,12), and the 54 

demonstration that as few as six amino acid mutations within the HA may affect the antigenic phenotype 55 

of a virus (13,14). Consequently, there is a critical need to not only sequence and genetically characterize 56 

swine IAV, but determine what of the genetic diversity is meaningful for antigenic drift.   57 
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The antigenic properties of IAV are a manifestation of the structural interaction between IAV and 58 

host antibodies (15-18). Structural changes in the HA may alter the interaction with antibodies targeting 59 

the virus, and these changes are generally correlated with the number of accumulated amino acid 60 

mutations in the HA protein (19). Empirical data has also shown that certain amino acid mutations have a 61 

disproportionate effect on antigenic change based on the location of the amino acid in the protein 62 

structure (13,15). Though there are relatively few antigenically characterized swine IAV HA genes (9,13), 63 

this empirical data may be used to establish antigenic distances between multiple IAV in swine, and be 64 

used to gain insight on the contribution of site-specific amino acid mutations. These data can 65 

subsequently be used to assign a level of importance to specific amino acid mutations and be used to 66 

predict antigenic drift and the biological relevance of genetic diversity collected during surveillance 67 

programs.  68 

In this study, machine learning methods were used to model the antigenic properties of IAV in 69 

swine and predict the antigenic distance between different strains using HA sequences. Modelling 70 

methods, such as the ones we present, are able to overcome the prohibitive costs and logistical challenges 71 

associated with large scale phenotypic characterization. These data can be used in combination with in-72 

field surveillance platforms (20) as an approach for the early detection of antigenic variants and novel 73 

viruses. Additionally, these algorithms can be disseminated to swine practitioners in analytical pipelines 74 

(11,20,21) to facilitate the rational design of vaccines that include antigens that will likely protect against 75 

the circulating IAV strains. Understanding how genetic diversity, and which amino acids within the HA 76 

gene are the most important, can allow for the simulation of the antigenic evolution of swine IAV and 77 

make predictions about the persistence and circulation of future IAV strains.  78 

MATERIAL AND METHODS 79 

The swine IAV H3 antigenic reference dataset 80 

The antigenic properties of two influenza viruses can be quantitatively compared using a 81 

hemagglutination inhibition (HI) assay. The assay is based on the ability of the hemagglutinin to 82 

agglutinate red blood cells, which express sialic acid on their cell surface (22,23). The HI antibodies 83 
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raised against a homologous IAV can block the agglutination of red blood cells, even at low 84 

concentrations. Genetically different viruses often need a higher concentration of HI antibodies to prevent 85 

agglutination compared to the homologous titer. Comparing the antigenic distance between two viruses is 86 

calculated by distance ��� � log������ 	 log������, representing a two-fold loss in HI antibody cross-87 

reactivity between the homologous and heterologous HI antibody titers (24). These data have traditionally 88 

been used to generate pairwise antigenic distances between IAV in swine that is then visualized using 89 

multidimensional scaling to form an antigenic map (9,25,26). 90 

The HI titers were collected from prior swine H3 HA virus characterization studies that used HI 91 

assays (23,27,28). The HI titers from new IAV selected as reference strains were collected to expand the 92 

dataset using methods described in prior literature, totaling 128 reference antigens tested against 47 93 

reference antisera in various combinations from combined experiments (22). Distances between available 94 

HI titers were calculated by subtracting the log2 of the heterologous titer from the log2 of the homologous 95 

titer (24). Distances corresponding to the same antigen-antiserum pair were calculated as the log2 of the 96 

geometric mean as  ���� �
�����������������

����

�
	 . 97 

Training and validation of machine learning regression models 98 

Full length HA amino acid sequences for each antigen represented in the dataset were aligned 99 

using MAFFT v7.311 (29) and then trimmed to the HA1 domain (amino acids 1-328 using the H3 HA 100 

numbering with the signal peptide removed) for subsequent analyses. Percent amino acid difference 101 

(100% - amino acid identity) was calculated between each HA pair for all combinations of sequences. 102 

Specific amino acid substitutions were not weighted to minimize model assumptions, and prior research 103 

in human IAV has suggested that these approaches may add noise to analysis (30,31). All observed site-104 

specific amino acid substitutions in the reference data were identified and treated as bi-directional. 105 

The regression model data was constructed with antigenic distance calculated from HI titer as the 106 

training value, with percent amino acid difference as a continuous predictor feature, and site-specific 107 

mutations as binary predictor features. Three different machine learning regression models were trained 108 
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using scikit-learn (32): random forest; adaBoost decision tree; and multilayer perceptron. For each 109 

regression model, hyperparameters were tuned using a random search optimization (Supplemental Table 110 

1). A fourth regression model was created by averaging the three prior machine learning model predictors 111 

and referred to as the ensemble model.  112 

Data was split into 80% training data and 20% testing data groups to calculate the Pearson 113 

correlation and root mean squared error. Additionally, 10-fold cross validation was used to assess the root 114 

mean squared error (Table 1). Given the sparsity of antigenic data available, a leave-one-out cross 115 

validation approach was employed to generate a distribution of prediction error for each model (Figure 1). 116 

Each antigen included in the training set (n = 128) was iteratively excluded from the training set and 117 

distances were predicted using each of the four regression models. The error was calculated as the 118 

absolute value of difference between the predicted distance and the empirical distance. 119 

Mapping antigenic predictions onto phylogenetic trees 120 

Maximum-likelihood phylogenetic trees were created to assess antigenic distance predictions of 121 

genetically similar sequences of the test antigen sequence compared to the reference sequence. Sequences 122 

were aligned using MAFFT v7.311 (29) and phylogenetic trees were inferred using FastTree v2.1.10 (33). 123 

Trees were annotated using FigTree v1.4.3 (34) with each tree rooted to a reference strain and sorted in 124 

ascending order relative to inferred evolutionary relationship. Each tip within the tree was color-coded 125 

based on the antigenic motif designated by H3 numbering positions 145, 155, 156, 158, 159, and 189 as 126 

prior work identified these sites as significant for antigenic phenotype (15).  Branches were annotated 127 

with the ensemble-predicted antigenic distance relative to the root. Trees were pruned to 30 leaves to 128 

facilitate viewing. 129 

Determining the relative importance of genetic mutations 130 

Random forest regression models provide a natural ranking system of feature importance (35). 131 

The importance of each predictor feature was calculated by the decrease in the node variance after fitting 132 

the random forest model. The feature rankings for the random forest regression model were analyzed to 133 

assess the biological importance of observed mutations in the swine H3 antigenic reference dataset. The 134 
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significance of each amino acid position in the HA was determined by summing the mutation-based 135 

features grouped by the position they represented. The resultant significance of each amino acid was 136 

projected onto a protein model of a human H3 HA gene A/Victoria/361/2011 obtained from the Research 137 

Collaboratory for Structural Bioinformatics (4O5N) (36).  138 

Empirical validation of machine learning regression models 139 

The H3 HA amino acid sequences of uncharacterized IAV in swine submitted to NCBI GenBank 140 

from the Iowa State University Veterinary Diagnostic Lab from January 2016 to August 2018 were 141 

collected and clustered by phylogenetic clade (7,11). The HA gene sequences were trimmed to the HA1 142 

domain (positions 1-328 using H3 numbering with the signal peptide removed). The HA1 sequences were 143 

compared against all antigenically characterized sequences to calculate percent amino acid difference and 144 

compare the presence or absence of site-specific amino acid mutations. Site-specific amino acid mutations 145 

absent from the training set were not considered in additional analyses. The antigenic distance from each 146 

uncharacterized HA gene to each reference antigen was predicted using the previously described four 147 

trained regression models.  148 

A selection of four contemporary IAV were selected as test antigens to be antigenically 149 

characterized with in vitro HI assays to validate the regression models using their HA genes. We selected 150 

these HA genes from within the H3-Cluster IVA genetic clade, as: a) this is a significant genetic clade 151 

that is frequently detected in diagnostic submissions to the Iowa State University Veterinary Diagnostic 152 

Lab (11); b) this genetic clade was responsible for more than 300 zoonotic infections from 2012 to 153 

present; c) there was a significant amount of uncharacterized data within the last 2 years (n = 299 from 154 

2018 to present, representing 8% of sequenced HA genes). Since the ensemble predictions demonstrated 155 

the least error in the analyses above, antigenic distances of 106 H3-cluster IVA viruses were predicted 156 

against a panel of 44 available antisera using this model. We selected four test antigens/antisera prediction 157 

pairs within this genetic clade based on the following criteria: near amino acid sequence identity (≥ 98%) 158 

and near predicted ensemble antigenic distance measured in antigenic units (AU) (≤ 2AU); a near identity 159 
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and far antigenic distance (≥ 3AU); far identity (≤ 95%, ≥ 90%) and near antigenic distance (≤ 2AU); or 160 

far identity (≤ 95%, ≥ 90%) and far antigenic distance (≥ 3AU) (Figure 2, Table 3). 161 

The four selected antigen/antisera pairs were tested via HI assay. HI assays were conducted as 162 

previously described (23) with empirical distances calculated by taking the log2 of the heterologous titer 163 

subtracting from the log2 of the homologous titer. Empirical distances were compared against predicted 164 

values by subtraction. 165 

RESULTS 166 

Machine learning model performance 167 

Comparison of the empirical antigenic distances against the predicted values indicated that the 168 

Pearson correlation for all regression models was within a range between 77%-80% (Table 1). The root 169 

mean squared error (RMSE) was between 1.21 – 1.60 antigenic units of error depending on the model. 170 

Ten-fold cross validation of the random forest, adaBoost decision tree, and multilayer perceptron 171 

regression models had an RMSE of 1.56 ± 0.29, 1.59 ± 0.33, and 1.76 ± 0.39 respectively. The leave-one-172 

out cross validation demonstrated that for all models, 25% had ≤ 0.5 AU, 50% had ≤ 1.0 AU, and 75% 173 

had ≤ 1.7 AU distance error. The maximum observed error was 6.3 AU, with each model producing 174 

errors > 6.0 AU (Figure 1).  175 

Mapping antigenic predictions onto phylogenetic trees 176 

Four trees were built with sequences genetically similar to each test antigen (Figure 2). Trees 177 

were annotated with an amino acid motif based on positions 145, 155, 156, 158, 159, and 189 as these 178 

sites have been found to have a disproportionate effect on the observed antigenic phenotype in both 179 

human and swine H3 (14). The antigenic motif between test antigen A/swine/Nebraska/A01672826/2017 180 

and reference antiserum A/swine/Indiana/A00968373/2012 match, both being NYNNYK (Figure 2A). 181 

The antigenic motif of test antigen A/swine/Indiana/A02214844/2017 was NYNNYK, while reference 182 

antiserum A/swine/Iowa/A01480656/2014’s motif was KYNNYK, differing at position 145 (Figure 2B). 183 

The antigenic motif between test antigen A/swine/North Carolina/A01732197/2016 and reference 184 

antiserum A/swine/Pennsylvania/A01076777/2010 match, both being NYNNYK (Figure 2C). The 185 
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antigenic motif of test antigen A/swine/Iowa/A01733626/2016 was SYKNYK, while reference antiserum 186 

A/swine/Indiana/A01202866/2011’s motif was NYHGHE, differing at positions 145, 156, 158, 159, 189 187 

(Figure 2D). 188 

Empirical validation of the predicted antigenic distance predictions 189 

The predicted ensemble distances of the selected test antigens were validated via HI assay 190 

(Supplemental Table 2). Test antigen A/swine/Nebraska/A01672826/2017 was predicted to be 0.15 AU 191 

from reference strain A/swine/Indiana/A00968373/2012, sharing 99.4% amino acid identity between the 192 

HA1 segments of the HA (Table 2). Both the reference and test antigens were from the H3-cluster IVA 193 

clade (Figure 2A), and this pairing represented the near identity and near antigenic distance prediction. 194 

The amino acid differences between the reference strain and the test antigen were at M10T and R208I 195 

(Table 2). The HI assay demonstrated the antigenic distance between the reference strain antiserum and 196 

test antigen was 0.5 AU (Table 3) with an error between the predicted distance and the empirical distance 197 

of 0.35 AU. 198 

Test antigen A/swine/Indiana/A02214844/2017 was predicted at 3.39 AU from reference strain 199 

A/swine/Iowa/A01480656/2014, sharing 98.5% amino acid identity between the HA1 segments. Both the 200 

reference strain and test antigens are from the H3-cluster IVA clade (Figure 2B), and this pairing 201 

represents near identity but far antigenic distance prediction. There were 5 amino acid differences 202 

between the reference strain and test antigen (Table 2). The HI assay found a distance of 4.0 antigenic 203 

units between the test antigen and reference antiserum and an error of 0.61 AU between empirical and 204 

predicted distances. 205 

Test antigen A/swine/North Carolina/A01732197/2016 was predicted at 0.81 AU from reference 206 

strain A/swine/Pennsylvania/A01076777/2010, sharing 94.2% amino acid identity between the HA1 207 

segments. The test antigen was selected from the H3-cluster IVA clade and the reference strain from the 208 

H3-cluster IV clade (Figure 2C), and this pairing represented a distant identity that was predicted to be 209 

antigenically similar. There were 19 amino acid differences between the reference strain and test antigen, 210 

with the A107T mutation being the only position not accounted for in the trained model (Table 2). The HI 211 
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assay demonstrated an average antigenic distance between reference antiserum and test antigen of 2.5 212 

AU, with a prediction error of 1.69 AU.  213 

A/swine/Iowa/A01733626/2016 was predicted at 6.37 AU from reference strain 214 

A/swine/Indiana/A01202866/2011, sharing 91.2% amino acid identity between the HA1 segments. The 215 

test antigen is from the H3-cluster IVA clade of virus and reference strain from the H3-cluster IVC clade 216 

(Figure 2D). This pairing represents a far identity and far predicted antigenic distance prediction. There 217 

were 29 amino acid differences between the reference strain and test strain (Table 2). The HI assay 218 

demonstrated 6.5 antigenic units between test antigen and reference antiserum, giving an error of 0.13 AU 219 

between empirical and predicted distances. 220 

Ranking of predictor features 221 

Random forest regression ranks user-selected features by a metric of importance, calculated by 222 

the decrease in the node variance and normalized across the forest for a single model run (Supplemental 223 

Table 3). The highest-ranking features were stable across runs as they had a consistent decrease in their 224 

average variance, though these metrics were susceptible to starting conditions (data provided at 225 

https://github.com/flu-crew/antigenic-prediction). The most important feature in predicting the antigenic 226 

distance between two strains was amino acid identity within the HA1, accounting for 31.4% of the 227 

importance. Transitions between K and N at position 145 accounted for 8.1% of the model importance 228 

and was ranked as the most important amino acid mutation. However, transitions between K and S and N 229 

and S at the same position 145 received lower ranking in model importance (totaling 0.2% importance 230 

cumulatively), demonstrating that the context of the positional mutation is important. Features I202V and 231 

R222W (representing bi-directional mutations) ranked at 5.4% and 5.2% importance respectively. The 232 

remainder of the features in the models accounted for less than 3% of the model on an individual basis 233 

(Figure 3, Supplemental Table 3), with the next ten bidirectional mutations in order of importance as 234 

H75Q, R137Y, D101Y, E62K, I25L, P289S, D133N, E189K, K92T, and H159Y (Figure 3). Projecting 235 

the cumulative importance of each amino acid position on an H3 crystal structure indicated that position 236 

145, the most important position in the model, is located in the groove of the active site (Figure 4). Other 237 
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sites of higher importance were more likely to be observed on the solvent facing side of the trimer. Amino 238 

acid position 202 was an exception as it was ranked as of high importance but was located on the inside of 239 

the trimer. 240 

Of the 728 features included in the model, amino acid identity and the sum of the top ten amino 241 

acid mutation features of the model accounted for 58.3% of the importance. Identity and the top 253 242 

amino acid mutation features accounted for 95% of the calculated importance, whereas the top 397 243 

features accounted for 99% of the calculated importance.  244 

DISCUSSION 245 

In this study, a model was developed to computationally estimate antigenic distances between 246 

different IAV in swine based on amino acid sequence using non-linear machine learning methods. The 247 

method leverages data that was generated from previous antigenically characterized IAV strains in swine 248 

to train regression models. After in silico validation, the models were used to predict the antigenic 249 

distance between paired IAV strains based on their amino acid identity and the mutations present between 250 

each strain. Finally, the antigenic distance predictions were experimentally confirmed by comparing the 251 

distance between homologous and heterologous hemagglutination inhibition (HI) titers. Predicting 252 

antigenic distances between two genetically related but antigenically different IAV reduces the number of 253 

HI assays that are required to perform the analysis and select candidate strains for a vaccine when 254 

sufficient antigenic distance between two IAV suggests a loss in antibody cross-reactivity.  255 

We experimentally validated our model using four test antigens, with the empirical data 256 

demonstrating predictions generally had an error less than 1 AU. The error between the test antigen and 257 

reference antiserum representing a near identity with a near predicted antigenic distance was 0.35 AU 258 

(Table 3). The distance between the same test antigen and reference antiserum HI titers was calculated at 259 

0 and 1 AU (Supplemental Table 2), giving an average distance of 0.5. It should be noted that the HI 260 

assay is a discrete measure whereas the prediction is continuous, thus an error less than 1 AU is not 261 

biologically meaningful. Additionally, because of the discrete nature of the HI assay, the 0.5 AU error is 262 

negligible as the true antigenic distance is somewhere between 0 and 1 AU. The near identity with a far 263 
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predicted antigenic distance had a wider range between the two sera’s HI titers 3 and 5, but the predicted 264 

distance 3.39 was within this range, and had an error of 0.61 AU from the average of 4 AU. The far 265 

identity with a near predicted antigenic distance had HI titers of 2 and 3, with a predicted distance of 0.81, 266 

giving an error of 1.69 AU from the average of 2.5 AU. Although the error was higher than the other 267 

predictions, the ensemble prediction was able to discern that these two strains were more antigenically 268 

similar than would be predicted based on sequence similarity alone. For the far identity and far predicted 269 

antigenic distance test antigen and reference antiserum pair, the predicted distance was 6.37 and the 270 

empirical distance was 6.5. Given the raw antigenic distances calculated from the pair of titers were 6 and 271 

7 for the two serum samples, the real distance is likely somewhere between the two values. Consequently, 272 

our approach that was developed using a small IAV in swine empirical dataset made predictions that in 273 

the majority of cases are useful in biological applications 274 

Machine learning methods can assign importance to the position and context of amino acid 275 

mutations, allowing biological interpretation. Assessing the importance of the random forest model 276 

revealed that both the position and context of the amino acid mutation contributed to observed antigenic 277 

phenotype. While sequence difference had the highest importance in the random forest model, further 278 

assessment of the model revealed unequal weight between amino acid positions representing different 279 

mutations. An example of this dynamic was H3 HA position 145 where a mutation between K and N 280 

bidirectionally was ranked as the most important amino acid mutation feature. Other observed mutations 281 

at position 145 between K and S and N and S were ranked as less important, matching the biological 282 

nuances that have been observed with empirical testing and other computational predictions (15,43). 283 

Literature reports suggested that the conservation of biochemical properties of the amino acid mutation 284 

may also have some effect on the observed antigenic change (15,19). Unequal weighting of mutations in 285 

the model suggests antigenic distance may help improve vaccine antigen selection when compared to HA 286 

sequence comparison alone, as this approach captures not only sequence homology but how amino acid 287 

can influence antigen-antibody interactions.  288 
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Our method identified sites that had a major impact of the antigenic phenotype of swine IAV. The 289 

majority of these sites were located on the solvent exposed surface of the HA protein and in antibody 290 

epitopes that have been identified in human IAV (Figure 4) (50,51). Interestingly, the profile of positional 291 

feature importance displayed some differences to prior literature describing human H3N2 IAV. While 292 

there was considerable overlap between the positions in our model with the highest cumulative 293 

importance (Supplemental Table 3) compared to the positions in the JRFR algorithm (positions 62, 121, 294 

131, 133, 135, 137, 142, 144, 145, 155, 156, 158, 159, 172, 173, 189, 193, 196, 276 ), the relative 295 

importance of these predictor features varied. Specifically, position 189 was the most important site in 296 

human H3 with ferret antisera, whereas our model identified position 145 as the most important position 297 

in swine H3 with swine sera (31). These differences of importance may be reflective of host specific 298 

interactions. Additionally, the distribution of importance was more evenly spread across the JRFR model 299 

whereas in the model presented here a small number of sites had disproportionate importance. Direct 300 

sequence comparison and sequence homology remain the standard approach to determining swine IAV 301 

vaccine control strategies; our data supports this approach but suggests that consideration of the location 302 

and context of mutation is more important than crude measures of sequence homology. 303 

This work adds to a growing body of literature that aims to quantitatively predict antigenic 304 

phenotypes of IAV from the sequence without requiring HI titers for each IAV strain (19,31,42-44). 305 

Similar methodologies have been implemented for use with other viruses such as Dengue virus, where 306 

neutralizing titer distances have been predicted based on amino acid differences (45). To the best of our 307 

knowledge, prior approaches to calculate antigenic distances between IAV were trained and tested on 308 

human IAV strains where the HA genes are characterized by phylogenetic trees with a single thick trunk 309 

with short interspersed branches with far less cocirculating genetic diversity (46-48). Antigenic data for 310 

the human IAV strains used in prior approaches was generated using ferret antisera with the caveat that 311 

human and ferret immune systems potentially interact differently with the viral antigenic phenotype (49). 312 

Compared to IAV circulating in humans, HA gene phylogenetic trees from endemic IAV circulating in 313 

swine demonstrate multiple genetic clades within the same subtype that are derived from multiple human-314 
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to-swine spillover events across the last 100 years (7,39). The large genetic diversity of strains coevolving 315 

within the swine population has resulted in a similarly large breadth of antigenic diversity and evolution. 316 

Consequently, a broad range of HI assays including many genetically different IAV are needed to capture 317 

assess antigenic diversity of IAV circulating within swine. The scale of these studies has been difficult in 318 

the swine IAV research community, and there is a sparsity of antigenic characterization of IAV in swine 319 

frequently with large gaps of time between characterizations. This has the unfortunate consequence of 320 

potentially misrepresenting the antigenic diversity of swine IAV and can make it difficult to improve our 321 

understanding of evolution of IAV in swine (19,42,45). 322 

The process and methodology we present has potential to help select vaccine IAV candidates 323 

when antigenic distance suggests a loss of cross-protection with current vaccine strains. Our process 324 

included a robust analysis of prediction error and was able to identify the limits of the models. Using 10-325 

fold cross validation, our ensemble model had a higher RMSE when compared to a different machine 326 

learning approach developed for human IAV by Yao et al. (2017) (31). This approach used a Joint 327 

Random Forest Regression (JRFR) algorithm that also included substitution matrices for predicting 328 

antigenic distances and had a RMSE < 1.0 (31). A linear mixed-effects model employed by Harvey et al. 329 

(2016) (42) for human IAV, also had better performance than our model but this used different datasets 330 

and had a different application. The strength of our approach is that our predictions that in the majority of 331 

cases would be useful in biological applications. Leave-one-out cross validation demonstrated 54% of the 332 

predictions made with the ensemble model were at or below 1 AU of error, and 86% were below 2AU of 333 

error where <2AU distance is frequently used to indicate biological equivalence. Further, our ensemble of 334 

non-linear regression methods were chosen due to their robustness against collinearity. Several prior 335 

machine learning methods implement linear regression, despite the relationship between amino acid 336 

mutation being non-linear and not strictly additive (19,44). Linear models can mitigate issues of 337 

collinearity by implementing approaches such as ridge regression in antigen-bridges (43), or lasso 338 

regression used by nextstrain (19,45), but these approaches may result in models that are more difficult to 339 

interpret biologically. Our random forest approach was able to identify the top 10 features accounting for 340 
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58.3% of the antigenic phenotype (253 features were needed to account for 95% importance), generating 341 

explicit predictions on when mutation of the HA gene may result in antigenic drift and reduced vaccine 342 

efficacy. 343 

 This study implemented a non-linear machine learning approach to predict antigenic distances 344 

between IAV in swine based on HA1 sequence, and experimentally validated the model predictions. Our 345 

validation with HI assays using test antigen and reference strains demonstrated that this computational 346 

approach can be used to determine antigenic differences between IAV without requiring extensive HI 347 

testing in laboratories. It is currently impractical to antigenically characterize all strains of IAV isolated 348 

from swine, and our work shows that the antigenic phenotype can be reasonably predicted from genetic 349 

sequence. The performance of our approach was sufficient even though it was parametrized with a limited 350 

empirical dataset; it seems feasible that prediction can be improved as more empirical data is made 351 

available. Due to multiple introductions of IAV into swine from human and avian sources, the genetic 352 

diversity of IAV in swine exceeds what is observed for human IAV strains (11,39,40). The genetic 353 

diversity of IAV in swine is also confounded by transportation patterns that move regional IAV strains 354 

with swine to new geographic locations where additional antigenic drift and reassortment with endemic 355 

strains may occur (41). Consequently, this method can aid in IAV in swine vaccine design efforts, which 356 

currently do not have an integrated and comprehensive system such as the World Health Organization’s 357 

(WHO) global influenza surveillance program for IAV in humans (37). Providing accurate methods such 358 

as ours that predict antigenic distances of IAV in swine increase the ability of swine producers and 359 

veterinarians to make informed decisions regarding vaccine antigens with broad application across IAV in 360 

swine to help maintain swine herd health. 361 
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TABLES AND FIGURES 540 

Table 1. Performance indicators for the random forest, adaBoost decision tree, multilayer perceptron, and 541 

ensemble regression models with tuned hyperparameters. Pearson correlation and root mean squared error 542 

were determined using an 80/20% split between training and test antigen data. A 10-fold cross validation 543 

based on the root mean squared error was applied. 544 

Performance Indicator 
Random 
Forest 

AdaBoost 
Decision Tree 

Multilayer 
Perceptron 

Ensemble 

Pearson Correlation 0.78 0.77 0.78 0.80 
RMSE 1.60 1.28 1.32 1.21 
10-Fold CV (RMSE) 1.56 (±0.29) 1.59 (±0.33) 1.76 (±0.39) 1.58 (±0.27) 
  545 

  546 
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Table 2. Amino acid mutations detected between test antigen and reference strains used for the model 547 

validation. 548 

Test Antigen Reference Strain Amino Acid Changes 

A/swine/Nebraska/A01672826/2017 A/swine/Indiana/A00968373/2012 M10T, R208I 

A/swine/Indiana/A02214844/2017 A/swine/Iowa/A01480656/2014 
G49S, E83K, V112I, K145N, 

S289P 

A/swine/North Carolina/A01732197/2016 A/swine/Pennsylvania/A01076777/2010 

T10M, E83K, V106S, A107T*, 

V112I, T117N, N124S, K142S, 

A163E, M168V, N173K, I196V, 

T203I, P273H, G275D, N276E, 

K278N, R299K, V304A 

A/swine/Iowa/A01733626/2016 A/swine/Indiana/A01202866/2011 

I29L, G50R, E83K, S107T, 

T117N, S124N, A131D, D133G, 

R137N, S138T, R140K, G144V, 

N145S, H156K, G158N, H159Y, 

A163E, L164Q, T167A, N173K, 

E189K, S193N, V196A, I203V, 

R220V, R269K, S273H, N276E, 

R299K 

* Changes not accounted for by regression models  
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Table 3. Predicted and measured antigenic distances between test antigens and reference strain antisera using the model to calculate the predicted 551 

distance and hemagglutination inhibition (HI) titers to calculate the empirical distance in antigenic units. Error is calculated by taking the absolute 552 

value of the predicted distance subtracted from the empirical distance. 553 

Test Antigen Reference Antiserum 

T
es

t A
nt

ig
en

 M
ot

if
 

A
m

in
o 

A
ci

d 
Id

en
tit

y 

Pr
ed

ic
te

d 
D

is
ta

nc
e 

(A
U

) 

H
I 

D
is

ta
nc

e 
(A

U
) 

E
rr

or
 (

A
U

) 

A/swine/Nebraska/A01672826/2017 A/swine/Indiana/A00968373/2012 
NYNNYK 99.4% 

(near) 
0.15 

(near) 
0.5 0.35 

A/swine/Indiana/A02214844/2017 A/swine/Iowa/A01480656/2014 
NYNNYK 98.5% 

(near) 
3.39 
(far) 

4.0 0.61 

A/swine/North Carolina/A01732197/2016 A/swine/Pennsylvania/A01076777/2010 
NYNNYK 94.2% 

(far) 
0.81 

(near) 
2.5 1.69 

A/swine/Iowa/A01733626/2016 A/swine/Indiana/A01202866/2011 
SYKNYK 91.2% 

(far) 
6.37 
(far) 

6.5 0.13 
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 556 

Figure 1. Distribution of error calculated for the predicted antigenic distance compared to actual antigenic 557 

distance as predicted by machine learning models and hemagglutination inhibition assays, respectively. 558 

Three regression models were used to predict distances from empirically determined antigens using 559 

hemagglutination inhibition titers in a leave-one-out approach: random forest regression (rf), adaBoost 560 

decision tree regression (ada), and multilayer perceptron (mlp) regression. All three predictions were 561 

combined into an ensemble (ens) to prevent overfitting and to minimize errant predictions by averaging 562 

across predictions from all models. Approximately 25% of the data has 0.5 antigenic units (AU) of error 563 

or less, 50% of the data has 1 AU of error or less, 75% of the data being less than 2 AU of error. 564 

Maximum error for outliers exceeded 6 AU.  565 

 566 
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Figure 2. Phylogenetic trees of test antigens rooted to their reference strain. A) Phylogenetic tree of test 568 

antigen A/swine/Nebraska/A01672826/2017 and reference strain A/swine/Indiana/A00968373/2012, 569 

representing a near predicted antigenic distance prediction (0.16 AU) for two strains of near amino acid 570 

identity (99.4%). B) Phylogenetic tree of test antigen A/swine/Indiana/A02214844/2017 and reference 571 

strain A/swine/Iowa/A01480656/2014, representing a far predicted antigenic distance prediction (3.3) for 572 

two strains of near amino acid identity (98.5%). C) Phylogenetic tree of test antigen A/swine/North 573 

Carolina/A01732197/2016 and reference strain A/swine/Pennsylvania/A01076777/2010, representing a 574 

near predicted antigenic distance prediction (0.31) for two strains of far amino acid identity (94.2%). D) 575 

Phylogenetic tree of test antigen A/swine/Iowa/A01733626/2016 and reference strain 576 

A/swine/Indiana/A01202866/2011, representing a far predicted antigenic distance prediction (6.33) for 577 

two strains of far amino acid identity (91.2%). Branches of the phylogenetic tree were annotated with the 578 

predicted antigenic distance from the ensemble regression model (both test antigen and reference strain 579 

are highlighted). Each tree is pruned to 30 sequences. Influenza strains are colored by the antigenic motif 580 

formed by amino acid positions 145, 155, 156, 158, 159, and 189: these positions, located near the ligand 581 

binding site of the hemagglutinin protein, have been noted to affect the antigenic interactions of the 582 

protein.  583 
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 585 

Figure 3. Rank of amino acid location importance by the cumulative summation of importance per site 586 

mutation as determined by random forest regression. Amino acid position using H3 numbering is reported 587 

on the x-axis. The importance for each site-specific mutation is summed per site and displayed on the y-588 

axis using a color scale. The size of the circle is relative to the number of mutations observed in the 589 

training set per site. Identity was the highest-ranking feature, with an importance of 0.312, but is not 590 

displayed on the graph. The top ten amino acid transition features in order of importance are K145N, 591 

R222W, I202V, H75Q, I25L, R137Y, D101Y, E62K, P289S, and D133N. The top ten amino acid sites in 592 

order of cumulative importance are 145, 222, 202, 75, 189, 137, 25, 133, 144, and 156. 593 

 594 
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 596 

Figure 4. Projection of feature importance on a monomer of the A/Victoria/361/2011 hemagglutinin (HA) 597 

protein (RCSB 4O5N). The significance of each amino acid position in the HA was determined by 598 

summing the substitution-based features grouped by the position they represented. Significant positions 599 

were projected onto a hemagglutinin protein model of the human H3. The importance for each site-600 

specific mutation is summed per site and projected onto the hemagglutinin protein model of the human 601 

H3. Higher color intensity represents a larger calculated importance. Positions with no data were colored 602 

gray. 603 
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