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Abstract 8 

Model-based decision making relies on the construction of an accurate representation of the 9 

underlying state-space, and localization of one’s current state within it. One way to localize is to 10 

recognize the state with which incoming sensory observations have been previously associated. 11 

Another is to update a previous state estimate given a known transition. In practice, both strategies are 12 

subject to uncertainty and must be balanced with respect to their relative confidences; robust learning 13 

requires aligning the predictions of both models over historic observations. Here, we propose a dual-14 

systems account of the hippocampal-entorhinal system, where sensory prediction errors between these 15 

models during online exploration of state space initiate offline probabilistic inference. Offline 16 

inference computes a metric embedding on grid cells of an associative place graph encoded in the 17 

recurrent connections between place cells, achieved by message passing between cells representing 18 

non-local states. We provide testable explanations for coordinated place and grid cell ‘replay’ as 19 

efficient message passing, and for distortions, partial rescaling and direction-dependent offsets in grid 20 

patterns as the confidence weighted balancing of model priors, and distortions to grid patterns as 21 

reflecting inhomogeneous sensory inputs across states. 22 
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Author Summary 23 

• Minimising prediction errors between transition and sensory input (observation) models 24 

predicts partial rescaling and direction-dependent offsets in grid cell firing patterns. 25 

• Inhomogeneous sensory inputs predict distortions of grid firing patterns during online 26 

localisation, and local changes of grid scale during offline inference. 27 

• Principled information propagation during offline inference predicts coordinated place and 28 

grid cell ‘replay’, where sequences propagate between structurally related features. 29 

Introduction 30 

Grid cells in the medial entorhinal cortex (mEC), whose firing fields form a periodic hexagonal lattice 31 

across the environment, are thought to support path integration1–3, whereas hippocampal place cells 32 

tend to have unimodal firing fields reflecting environmental cues such as boundaries4,5. Grid cell 33 

firing patterns are stable over time, suggesting corrective environmental inputs, possibly from place 34 

cells6, but rely more on self-motion than place cell firing patterns7 suggesting that environmental 35 

inputs are not fully corrective2,8,9. Given estimates of each input’s uncertainty, Bayesian inference tells 36 

us how they should be optimally combined.  37 

Although online learning (i.e. using only currently available sensory information) can converge under 38 

low PI and sensory noise, robust learning in the presence of noise requires minimizing the error 39 

between self-motion and environmental estimates of location across all state transitions10,11. Thus, 40 

historic observations must be stored and revisited offline (i.e. independently of current sensory inputs) 41 

to allow propagation of local environmental information to non-local but structurally connected 42 

regions of the cognitive map, e.g. as when adapting to a novel shortcut or barrier. This process can 43 

also be viewed as an embedding of sensory experience within a low-dimensional manifold (in this 44 

case, 2D space), as observed of place cells during sleep12. 45 

Building on previous work11,13–15, we propose a dual-systems (online-offline) account of spatial 46 

inference in the hippocampal/entorhinal system, which we define as the process of identifying the 47 
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configuration of both one’s own location (current state) and the location of environmental landmarks 48 

in space (c.f. ‘SLAM’10). In familiar environments, online localization (identification of one’s own 49 

position) is achieved by recursively combining self-motion and sensory inputs, which are mediated by 50 

learned transition and observation models, respectively. However, prediction errors between these 51 

models trigger offline inference over non-local states, facilitating fast learning of new or changed 52 

associative environmental structure, encoded online in place-place cell synaptic associations. We 53 

identify this offline inference with coordinated hippocampal/mEC ‘replay’16–20. 54 

Our framework also provides algorithmic- and implementation-level explanations for observed 55 

features of grid cell firing in response to manipulations7,9,21–24 or inhomogeneity25–29 of environmental 56 

sensory input. Overall, these phenomena can be understood in a probabilistic framework, where 57 

minimization of prediction errors between the transition and observation models are traded against 58 

prior model beliefs. 59 

Results 60 

Probabilistic online localization with place and grid cells 61 

Grid cells exist in ‘modules’ of cells, whose firing patterns have the same spatial scale and orientation 62 

relative to the environment, but differ in their spatial offsets30. The spatial scale increases in discrete 63 

steps along the dorso-ventral axis, suggesting that, across modules, GCs support a hierarchical 64 

representation of space21,24,31–33. Here, we consider a single module of GCs, whose activity represent a 65 

probability distribution over a periodic, discretized region of space (visualised as a topographically 66 

arranged sheet of cells; Fig. 1A). 67 

The self-location distribution is maintained over time by recursively integrating sensory and self-68 

motion inputs, accounting for their uncertainties (Fig. 1A). Firstly, the posterior distribution over 69 

agent location (grid module activity) from the previous time-step 𝑮 is updated given noisy perceived 70 

movement 𝒖# via the transition model 𝑇 (see Methods): 71 

𝐺!(𝒙) = ∫ 𝑇(𝒙, 𝒙!|𝒖#, 𝜶) ⋅ 𝐺(𝒙′)𝑑𝒙′ (1) 72 
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where 𝒙 is the 2D coordinate of the agent location in metric space (corresponding to a particular grid 73 

cell) and 𝒙′ the location at the previous time-step. Biophysically, 𝑇 would be represented by a 74 

population of direction dependent ‘shifter’ cells with asymmetric recurrent weights1 with a circulant 75 

structure34 (Fig. S1C, see Methods) learned apriori (but see Refs. 35–37). The rate of translation of 76 

activity on the grid sheet in response to movement 𝒖# is controlled by the transition model gain 𝜶 =77 

[𝛼" , 0; 0, 𝛼#], which might correspond to the strength of the associations to, or the speed dependence 78 

of, shifter or conjunctive cells31,38,39 (see Supplementary Methods).  79 

The transition model estimate 𝐺′(𝒙) is then refined by observations of environmental features, which 80 

map to metric space locations via observation model 𝐻: 81 

𝐺(𝒙) =
1
𝐾
	𝐻(𝑷|𝒙) ⋅ 𝐺!(𝒙) (2) 82 

where 𝑷 is a vector of place cell firing rates, firing of place cell 𝑖 representing the likelihood of the 83 

presence of a specific sensory feature, or combination thereof. In our simulations, these have unique 84 

locations in physical space 𝝁$ and receptive field widths 𝚺%&' . Where the number of grid cells is large, 85 

the weights from place cell 𝑖 to the grid module define a distribution for that feature’s estimated 86 

location in metric space (Fig. 1A). The weighted projection of place cell activity by these weights 87 

defines the observation model 𝐻. 𝐾 provides inhibitory normalization (see Supplementary Methods).  88 

Online learning modifies the observation model to reflect the current transition model location 89 

estimate (induces synaptic changes in the place-grid cell connection weights via a BCM rule; Fig. 2A; 90 

Methods). Online learning produces stable grid patterns (due to the circulant structure of 𝑇) for a 91 

range of levels of PI and sensory noise, but convergence fails in higher noise regimes (Fig. S2B). 92 

After a short period of initial learning, stable grid patterns emerge in the integrated estimate, despite 93 

the pure PI estimate being too noisy and the sensory associations too immature to drive stable 94 

patterns, if operating independently (Fig. 1B). 95 
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Offline inference: The hippocampus as a probabilistic graph 96 

Local, online learning is not robust in novel environments, because corrections to the estimated agent 97 

location (current grid cell activity), e.g. upon encountering familiar environmental features (place cell 98 

activity) associated to a different location on the grid module, also imply corrections to the encoding 99 

of feature observations along the preceding trajectory10. That is to say; local updates to the cognitive 100 

map also imply non-local, structurally associated changes. Formally, probabilistic spatial inference in 101 

this case requires finding the most likely configuration of metric space feature locations 102 

{𝒃$}$():+! 	(each 𝒃$ is the 2D coordinate of feature 𝑖 in metric space, i.e. a place - grid cell association) 103 

and agent location 𝒙 (the distribution over which is indicated by the grid cell firing rates) consistent 104 

with environmental sensory observations made along a given trajectory. 105 

Theoretically, the configuration {𝒃$}$():+! can be recovered purely from the distances between pairs 106 

of environmental features10 (Fig. 1F, “square”, “ring”). Importantly, despite both feature locations 107 

being susceptible to large absolute errors (due to noisy PI), the errors will be correlated such that 108 

pairwise distance measurements will decrease in variance with observations10. This method predicts 109 

characteristic failure modes when the pairwise distance information is ambiguous or incomplete (e.g., 110 

Fig. 1F; “broken ring”). New distance observations might also cause dramatic changes to the inferred 111 

configuration (e.g. the discovery of a shortcut). If the current absolute estimates of feature node (i.e. 112 

place cell) location are stored in the place-grid cell synaptic weights, we propose that the relative 113 

distances between pairs of features are stored in the recurrent weights between place cells in 114 

hippocampal region CA3. 115 

Consider a spring network, where the edge between environmental feature nodes 𝑖 and 𝑗 represents a 116 

noisy pairwise observation with length reflecting pairwise distance and stiffness reflecting 117 

certainty13,40 (Fig. 1F, S6A). Minimizing the elastic energy in the spring mesh system corresponds to 118 

finding the maximum of the joint likelihood 𝐿(⋅), which is a function of the feature locations in metric 119 

space {𝒃$}$():+! and the internal gain parameter 𝜶, given pairwise distance measurements with 120 
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Gaussian noise (𝛿$,). This is equivalent to defining a probabilistic graphical model (see Methods) over 121 

the posterior: 122 

𝐿 E𝒃), … , 𝒃+" , 𝜶G ∝ 𝑝(𝜶|𝜶-) J 𝜓L𝒃$ − 𝒃, , 𝜶N𝛿$,O
($,,)∈2

J 𝐵$(𝒃$)
$():+"

(3) 123 

where the current PC-GC weights B (𝐵$ is the probability distribution of the location of feature i and 124 

𝐵$(𝒃$) is its value at metric/grid module location 𝒃$) act as priors on the feature node locations, the 125 

pairwise potential terms 𝜓(⋅) penalize the difference between associative pairwise distance 126 

measurements 𝛿$, made directly in environmental stimulus space, and the distance between their 127 

candidate locations in metric space 𝒃$ − 𝒃,. 𝐸 is the set of connected PCs (see Methods). Distance in 128 

metric space is also a function of the transition model gain (𝜶), which has a Gaussian prior 𝑝(𝜶|𝜶-) 129 

(a larger |𝜶| will decrease the metric space distance for all pairs; see Methods). Maximizing the 130 

likelihood (finding the state of minimum energy in the spring network)  model over all feature node 131 

pairs minimizes the total prediction error between associative and metric generative models of the 132 

world15 (Fig. S7).  133 

The associative distances can be straightforwardly learned during online exploration. Since Hebbian 134 

learning reflects coactivity, a trajectory exploring the environment uniformly results in synaptic 135 

strengths between place cells proportional to the spatial correlation between their receptive fields41. The 136 

Euclidean separation between their fields is then accessed via a simple transformation (see Methods; 137 

Fig. S1G). In this context, learning the PC-GC weights (modifying the observation model) during online 138 

localization corresponds to forming spatial priors over feature locations which anchor the structure, 139 

which would otherwise be translation or rotation invariant (since measurements are relative), learned 140 

during offline inference to constant locations on the grid-map. Taken together, our framework proposes 141 

a mapping onto anatomy of the joint agent-feature location distribution required for full probabilistic 142 

inference over environmental structure (Fig. S5; See overall algorithm in Table S1). 143 
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Partial grid pattern responses to environmental rescaling 144 

Uniform rescaling of an environment will introduce a mismatch between the estimates of location 145 

from the transition and observation models (i.e. a ‘prediction error’). To minimize these prediction 146 

errors, the offline system can either modify the transition model gain to match the current 147 

environmental input (Fig. 2A, bottom), or modify the mapping from environmental inputs to metric 148 

space in the observation model (Fig. 2A, middle; see Methods). The degree to which either is 149 

modified should reflect their relative confidences, specified by a ‘transition confidence score’ (T3 =150 

σ4567 /𝜎87, the ratio of confidence in the transition vs observation models; see Methods). Similarly, a 151 

‘prior confidence score’ P3 specifies how much the system will tolerate persistent prediction errors; if 152 

P3 is large, optimization may favour preserving prior configurations, as opposed to alignment of the 153 

current transition and observation models (see Methods). 154 

We modelled experiments in which the physical environment21,42 and perceived velocity through a 155 

visual virtual environment7 were re-scaled, such that self-motion and sensory inputs conflicted. In 156 

both experiments, the rescaling of the grid patterns was partial, i.e. less than the magnitude of the 157 

physical or virtual manipulation, and less than those of place fields.  158 

Both manipulations can be simulated by introducing a visual gain parameter 𝛼9$6:;< to the simulation 159 

of the environment (in both experiments it scales the amount of self-motion required to traverse the 160 

width of the perceived environment).  Learned associative distances (𝜹) are also scaled by this 161 

parameter, reflecting its effect on the temporal overlap of place fields (see Methods Eq. 12). We 162 

simulated grid pattern rescaling responses over a range of transition confidence scores T3. When 163 

confidence in the transition model is high (T3 → ∞), grid patterns in the real world are unchanged 164 

when plotted against physical movement (but are changed when plotted in visual VR coordinates; Fig. 165 

2B, first column). The opposite is true when confidence in the observation model is high: grid 166 

patterns are unchanged relative to the apparent environment (Fig. 2B, last column). 167 

However, for intermediate T3 values (i.e. balanced confidence in the transition and observation 168 

models), the model predicts partial rescaling of the grid pattern relative to the size of the manipulation 169 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.07.241547doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.07.241547


 

8 
 

(Fig. 2B, middle column), matching the observed grid patterns in both experiments7,21 (and a similar 170 

third experiment in on a virtual linear track43; Fig. 2C).  171 

Differential grid and place field responses to environmental reshaping 172 

How does the offline system respond to more complex environmental deformations? When one wall 173 

of a familiar rectangular environment is rotated inwards by 45°22, place fields near the wall shifted 174 

almost fully while fields further away remained largely stationary, consistent with place fields 175 

preferentially reflecting local environmental inputs5. In contrast, grid fields shifted only partially near 176 

to the manipulated wall. Using the observed place field shifts23, we simulated the response of grid 177 

cells to the same manipulation (Fig. 3; see Supplementary Methods). Shifted place fields induce a 178 

misalignment between the associative distances and the distance between their encodings in metric 179 

space. The place field shifts are local and non-uniform, and so misalignment cannot be corrected by a 180 

global change to the transition gain 𝜶. Indeed, 𝜶 is not significantly modified during the optimization 181 

process, regardless of the T3 value. Instead, alignment between the transition and observation models 182 

is maximized by modifying the observation model, i.e. updating the locations of the place fields on 183 

the grid module. 184 

If there were no confidence in the prior observation model (P3 → 0), it would be modified offline to 185 

match the transition model, leaving the grid pattern unperturbed by the environmental change (Fig. 186 

3B,C, top row). At the other extreme, favouring prior beliefs over recent observations (i.e. pairwise 187 

distances encoded during the manipulation trial) would result in an unchanged observation model, and 188 

grid field shifts that exactly mirror corresponding place field shifts (Fig. 3B,C, bottom row). In this 189 

regime, there would be permanent misalignment of the transition and observation models during 190 

online localization, producing noisy grid patterns, as when simulating a related experiment where grid 191 

distortions were observed in trapezoid environments44 (Fig. S2D). Setting P3 to an intermediate value 192 

reproduces the experimentally observed partial shifting of grid fields (relative to the place fields23) 193 

when visualizing the structure encoded in the observation model (i.e. assuming low confidence in the 194 

transition model; Fig. 3B,C and D). 195 
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Direction dependent shifting of grid patterns during online localization  196 

In addition to partial changes to grid scale in response to environmental rescaling, enduring 197 

misalignments between observation and transition models can result from strong model priors, which 198 

prevent complete adaptation of the transition model gain. These cause the transition estimate to 199 

consistently precede that of the observation model, in the current direction of travel (on a 1D track, 200 

Fig. 2E) during VR visual gain decrease trials or physical expansion of the environment.  201 

In all three cases, the integrated estimate of location (Eq. 2) in the online model converges to a fixed 202 

distance ahead of the observation model estimate (in the direction of travel; Fig. 2E inset and 3D), 203 

causing the grid pattern in the real world to dynamically shift opposite the direction of travel, as 204 

observed experimentally7,9. Our model suggests that the offsets should be partial (smaller than implied 205 

by a hard-reset at the boundary) and not specifically require a recent boundary encounter (cf. Keinath 206 

et al.9). Dynamic shifting in the model will reduce with experience of the novel or manipulated 207 

environment, as model misalignment reduces, as observed experimentally45.  208 

Online and offline perceptual warping in spatial representations 209 

With increasing experience of an environment, grid firing patterns exhibit both local scale changes26 210 

and global shear-like distortions29, the latter associated with 7.5-8° offsets of one of the grid axes29,44 211 

to the walls of square environments. Both effects were present in our simulations and can be attributed 212 

distinctly to the offline map-learning and online localization components of our theoretical 213 

framework. 214 

Firstly, we show that local changes to the grid scale26, which are positively correlated with 215 

behavioural occupancy (animals spend more time in the middle of the environment), arise from the 216 

offline process of map (PC-GC connections) learning. These mapping-induced distortions can be 217 

further subdivided into two mechanisms, both of which induce local scale changes by biasing the 218 

pairwise distances recovered from the Hebbian learned recurrent connections in CA3 (Fig. 1D,4; Fig. 219 

S7).  220 
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Firstly, relative behavioural under-sampling of the place fields near the boundaries of the environment 221 

(using occupancy statistics from26; Fig. 4A, bottom) lead to weaker PC-PC connections, and 222 

consequent overestimation of their pairwise distances, producing local scale changes (Fig. S7C). 223 

Secondly, since Hebbian learned connection weights between place cells reflect the correlation in 224 

their firing, and therefore their statistical discriminability46, two place cells with broad receptive fields 225 

would develop a stronger connection than a pair with equal separation but narrower receptive fields 226 

(stronger connections correspond to shorter distances on the grid module, producing grid patterns with 227 

larger scales in the environment; Fig. 1D). Another recent study47 suggests that place fields are 228 

narrower near the edges of an environment, consistent with greater precision when driven by more 229 

proximal environmental features5 (Fig. 4A, top row). In our model, this produces weaker recurrent 230 

connections and a shrinking of the grid pattern at the edges of the environment following offline 231 

inference (Fig. 4D,E, top row).  232 

Together, our results suggest that the cognitive ‘distance’ between two sensory features should be 233 

greater both when the absolute confidence in their spatial locations is greater (reflecting an increased 234 

statistical discriminability), or when those features are under-sampled relative to other features. 235 

Although the action of both mechanisms are independent their effect is the same; both i) relative 236 

under-sampling of the transition between two adjacent states and ii) a reduced statistical 237 

discriminability between those states, both contribute to a weaker pairing of their representative place 238 

cells, resulting in greater separation between their encodings in metric space and a locally larger grid 239 

scale when ‘read-out’ in the firing pattern (a locally larger perception of distance). 240 

In contrast, global shear-like distortions29 and associated 7.5-8° offsets of one of the grid axes29,44 can 241 

be interpreted as localization induced distortions during online exploration. In Stensola et al.29, rats 242 

were introduced into the same corner of the box at the start of each trial; in Butler et al.25, shearing 243 

developed following the introduction of reward25. In both experiments, shearing developed with 244 

increasing experience25,29. We hypothesized that these distortions reflect an increasing effect of non-245 
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uniform environmental inputs to the grid module, either reflecting their natural distribution25,29 or 246 

inhomogeneous behavioural sampling of environmental locations26. 247 

In our simulations, given a learned map, biasing the strength of sensory inputs at specific locations 248 

(e.g. one/two corners) during online exploration reproduced several experimentally characterized 249 

global distortions by causing a bias in the decoding of location (i.e. salient locations contribute a 250 

larger ‘vote’; Fig. S3; see Supplementary Methods). 251 

Probabilistic inference through HPC-mEC message passing 252 

To this point we discussed, from a functional perspective, how the brain might optimize its internal 253 

representations to reflect the uncertainty of sensory information. But how might the brain perform this 254 

optimization? In the above analyses of offline inference, we numerically computed the maximally 255 

likely feature locations on the grid module. However, the system must also track the uncertainty in 256 

these estimates, which would require updating the place-grid cell weights (including those with firing 257 

fields far from the agent location). An update of the full weight distributions is generally intractable 258 

when the state space is large. 259 

Belief propagation48  is a technique for approximating this inference on graph structured data, and 260 

comprises two stages. First, a given feature node (i.e. a place cell) computes its location distribution 261 

(i.e. connections to the grid cells) 𝐵$(𝒃$) by multiplying its prior 𝐵$
(-)(𝒃$) with messages received 262 

from its connected neighbours (Fig. 5C; see Methods for details). A message 𝑚$→,(𝒃,) expresses 263 

neighbour node 𝑖’s belief of node 𝑗’s location, conditioned on its own distribution, and is dependent 264 

on the same pairwise potential terms 𝜓(⋅) in Eq. 3. The effect of a message is to favour distributions 265 

of nodes 𝑖 and 𝑗 which locate them at a radial distance equal to the associative distance 𝛿$,; causing 266 

messages to be expressed as rings centred on the belief of the broadcasting node (Fig. 5C). Resolving 267 

a feature’s unique location then depends on aggregating messages from multiple neighbours (Fig. 5C). 268 

Computations are distributed, and importantly only require information that is local to each neuron. 269 

Each node in the graph iterates between updating its belief and broadcasting messages, converging 270 

when new messages cease to change the beliefs of their recipient nodes. As expected, the reduction in 271 
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pairwise prediction error between associative distances and their corresponding distances in grid 272 

space (see Methods) over successive message iterations is accompanied by a sharpening of the 273 

distribution of each feature’s location on the grid module (see Supplementary Methods; Fig. S1H). 274 

Offline inference triggered by prediction errors 275 

How might the online and offline systems interact? If the online system is sufficient to localize within 276 

pre-learned, simple or slowly changing environments, non-local reactivations of place cells would be 277 

unnecessary. However, more complex offline inference is required under more demanding 278 

circumstances, or in novel or changing environments. We hypothesize that offline or ‘remote’ 279 

inference is triggered by prediction errors between location estimates from the transition and 280 

observation models, respectively (Fig. 1G), defined in our model as the Kullback-Leibler divergence 281 

𝜖 = 𝕂𝕃(𝐺!, 𝐻). 282 

Prediction errors are large when the observation model prediction (weighted place cell input) is 283 

different and more sharply peaked than the transition model estimate (Fig. 1G; see Methods; 284 

prediction errors will not be generated in absence of incoming sensory information, as in darkness, 285 

when the observation model estimate is uncertain). 286 

To illustrate our dual-systems (online+offline) hypothesis (Fig. S7), we simulated an agent navigating 287 

around a novel circular track (the loop closure task; Fig. 5). Completion of the first lap produces 288 

positive prediction errors between the sharply peaked input from feature inputs learned at the 289 

beginning of the trial, and the agent location estimate which is uncertain given the accumulation of PI 290 

noise (Fig. 5B). 291 

Decrease in structural error (the difference between the place field separations and their encoded 292 

separations on the grid cell sheet) following online+offline inference was markedly larger than 293 

following online learning alone (Fig. 5E). The inferential power of this ‘one-shot’ learning process 294 

derives from consideration of the full covariance structure of the feature locations (captured by the 295 

CA3 connection weights between place cells), compared to the purely local learning occurring online. 296 
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The system was subsequently able to navigate with dramatically reduced error (Fig. 5Aiv), 297 

eliminating prediction errors on subsequent lap completions (Fig. 5B; Supplementary Video 1). 298 

Coordinated grid-place cell replay as structured information propagation   299 

The scheduling of updates in belief propagation is important because messages that do not change the 300 

beliefs of neighbours are redundant (Fig. 6A). We scheduled only the place cell whose belief had 301 

changed most to broadcast a new message on each cycle (Fig. 6A; see Methods). This max-update 302 

scheduling was more efficient than simple synchronous schemes, converging with fewer messages 303 

(Fig. 6C; see Ref.49).  304 

The sequences of place cells broadcasting messages during offline inference in the loop-closure 305 

simulation have significant structure (6B). They tend to initially propagate backwards along the track 306 

from the animal’s current position, resembling the characteristic reverse hippocampal replay 307 

following reward17 (Fig. 6B), but also occasionally hop to new locations where remote sequences are 308 

initiated50 (Fig. 6B,F). These subsequent sequences showed an approximately equal distribution of 309 

forward/reverse sweeps (Fig. 6D; see Methods; Supplementary Video 1). 310 

Thus, hippocampal ‘replay’ may reflect correction of local regions of the cognitive graph given new 311 

or ‘surprising’ information, as opposed to simple recapitulation of experience51. Sequences selectively 312 

affect place cells whose beliefs are structurally affected, and terminate when this is no longer the case, 313 

‘hopping’ to remote regions. This leads to smooth sequences in un-converged graphs (novel 314 

environments) and more hoppy sequences with experience, where converged regions may be skipped 315 

(Fig. 6F). These ‘hops’ marked the separation of ‘replay’ events into distinct sub-sequences (see 316 

Methods). Multiple trajectories may also be played out in parallel (e.g. two trajectories alternating 317 

under max-scheduling; Fig. 6B, middle, grey shading). 318 

A neural model of coordinated place cell – grid cell replay 319 

How might belief propagation for offline inference be implemented in spikes fired by place and grid 320 

cells during replay? We propose a schematic model with a focus on function rather than biological 321 

detail (e.g. our ‘place cells’ combine the recurrent connections of CA3 with the connections to mEC 322 
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of CA1). In the model, minimizing prediction errors between associative and metric generative 323 

models corresponds to synchronizing the propagation of activity through CA3 and mEC, respectively 324 

(Fig. 7; see Supplementary Methods; Supplementary Video 2). A ‘message’ is initiated by a place cell 325 

spike, which propagates in CA3 via the Hebbian recurrent connections that encode place field 326 

separations. In parallel, the same spike initiates activity at the corresponding location on the grid cell 327 

module, which then propagates on the grid sheet as a traveling wave, using the same circuitry as path 328 

integration in the online model and propagating at the same speed as spikes in CA3 (see Methods). 329 

Hebbian-like learning strengthens connections from place cells to grid cell which simultaneously 330 

receive input in CA3 and EC respectively (Fig. 7A), approximating the algorithmic message-passing 331 

implementation (Fig. 7B, C).  Firing of the broadcasting place cell is triggered by changes in its 332 

synaptic weights to the grid cell population, reflecting correction of the observation model in response 333 

to prediction error with the transition model (see Supplementary Methods).   334 

Discussion 335 

Building on previous work11,13,15, we argue that the mEC-HPC system performs spatial inference in 336 

two distinct regimes. Given a known ‘cognitive map’ (mapping sensory information to metric space), 337 

probabilistic integration allows optimal estimation of current location by online combination of 338 

uncertainty-weighted self-motion and environmental observations provided by transition and 339 

observation models respectively (Fig. 1). Where these estimates deviate strongly, prediction errors 340 

(Fig. 1G) trigger offline inference events (Fig. 5B), which propagate local environmental input to 341 

remote but structurally associated states, producing coordinated (often sequential) reactivations in 342 

place and grid cells (Fig. 6, 7). The effect of offline inference is to produce a 2D embedding of the 343 

sensory information provided through the place cells, which may facilitate planning or generalization. 344 

Although not modelled here, back-projections from grid to place cells, reflecting the metric 345 

embedding of their place fields, might therefore also reduce uncertainty in place cells’ firing, 346 

producing increased spatial stability in their fields, as observed to occur during sleep12. 347 

Partial rescaling of grid patterns7,21 and differential shifting of grid and place fields23 in response to 348 

manipulations of environment sensory input can be understood as joint optimization of transition and 349 
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observation models, balancing model priors with new observations. Where prediction errors persist, 350 

direction dependent grid pattern shifts may emerge as a result of probabilistic integration of these 351 

conflicting cues7,9 (whereas boundary-dependent resetting9 produces larger shifts than experimentally 352 

observed and no rescaling; Fig. 2D, E).  353 

We show that observed grid pattern distortions can be mechanistically linked to inhomogeneity in the 354 

sampling or neural representation of the environment25,26,29 (Figs. 4A, S3), which might be reflected in 355 

behaviour52. Thus variation in the confidence, sampling or discriminability of sensory states will 356 

produce local changes in grid scale, inducing non-Euclidean structure in the metric representation of 357 

space (Fig. 1D, 4B). Our model also shows that distortions appear gradually with experience29, as the 358 

learned mapping from sensory features to metric space (the observation model) becomes more 359 

confident relative to the estimate of location from path integration (the transition model). Given initial 360 

learning, online localization errors (Fig. S3) should occur immediately following subsequent 361 

manipulations to the environmental sensory input, whereas offline changes may occur over longer 362 

timescales and correlate with replay of the manipulated states (Figs. 4,6; consistent with grid, but not 363 

place fields reorganizing significantly during sleep53). However, although large prediction errors will 364 

cause more easily detectable offline inference events, offline learning may occur continuously and not 365 

necessarily reactivate distinct previously experienced spatial trajectories51. We note that strong 366 

associative connectivity may also contribute to pattern completion, making the place cell 367 

representation robust to cue removal54. 368 

Theoretical studies have demonstrated how the connectivity of the mEC metric space might emerge 369 

from a low-dimensional embedding of sensory stimuli55, predictive states35 or from unsupervised 370 

learning during navigational tasks56. A crucial difference in our model is that perceptually similar but 371 

physically separated compartments will be represented distinctly57, reflecting the vectorial translation 372 

between them in the transition model (i.e., not simply reflecting the topological state transition 373 

structure35). Another recent model showed that grid cell like responses can emerge from learning the 374 

transition model that best predicts observed sensory stimuli36. We instead assume a fixed transition 375 

structure but with a variable linear gain, consistent with continuous attractor models31 where 376 
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translation of activity on the grid cell sheet is driven by cells with velocity-dependent firing rates38,39. 377 

Indeed, a recent study showed that velocity dependence in mEC firing is tied to environmental 378 

manipulations39. 379 

We propose that offline structural inference events correspond to coordinated HPC/mEC replay16–19,58–380 

60, which can be viewed as synchronizing predictions from associative (CA3) and metric (mEC) 381 

generative models (Fig. S7). In this way, structural changes to an environment can be propagated to 382 

non-local regions of the metric embedding, in contrast to models in which these states need to be 383 

physically revisited13, consistent with the observation that replays do not necessarily repeat 384 

experienced trajectories51. Prediction errors between the two models may trigger replay events and 385 

corresponding sharp-wave ripples61,62. To our knowledge, this is the first functional model of 386 

coordinated place cell-grid cell replay18 (although cf. Ref. 63), and provides an alternative to reward-387 

based theories64,65 (we note that rewards may themselves represent salient sensory features, 388 

independent of their reward value). 389 

Our model makes a number of experimentally testable predictions. Firstly, systematic manipulation of 390 

the discriminability of sensory cues distributed within an environment should produce predictable 391 

distortions to the grid pattern, observed with increasing experience of an environment. Secondly, 392 

replay should be more frequent after structural changes such as shortcuts, blockages or gain 393 

manipulations as in the experimental setup of Fig. 5. Thirdly, replay events triggered by specific 394 

unexpected sensory observations should become less frequent (Fig. 5B) and smooth (Fig. 6E, F) with 395 

continued experience, if the observations remain stable. Fourthly, multiple local replay events may 396 

occur in inter-leaved fashion (Fig. 6C, middle, grey shading). Fifthly, we predict the existence of 397 

travelling waves in grid cells (as a function of their spatial phase; see also66,67,  Fig. 7). Lastly, initial 398 

messages propagating from the animal’s current location may not cause subsequent messages in 399 

remote regions of the graph which are already sufficiently converged (messages will not cause 400 

changes in the beliefs of their recipients), although activity in mEC will continue to propagate. Thus 401 

grid cell replay could thus be detectable in the absence of simultaneous place cell replay19 (but place 402 

cell replay requires the grid cell transition model  and so depends on mEC68). 403 
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Our proposed structure learning framework can account for diverse phenomena observed in the HPC-404 

mEC system, and makes several novel, experimentally testable predictions. 405 

Methods 406 

Online recursive Bayesian estimation 407 

The transition matrix T defines the probability of transitioning from agent location 𝒙′ to location 𝒙, 408 

and is a function of the perceived current velocity 𝒖# and transition model gain 𝜶 = [𝛼" , 0; 0, 𝛼#]. 409 

Since our metric space is periodic, 𝑇 accounts for cyclic transitions 𝒄>?, with Gaussian noise 410 

proportional to the perceived velocity 𝒖#~𝒖 + 𝑁(0, diag(𝒖)𝚺@A): 411 

𝑇(𝒙, 𝒙′|𝒖#, 𝜶) = j 𝑓(𝒙 − 𝒙′|𝒖# + 𝒄>?,diag(𝒖#)𝜶B)𝚺@A)
C

>?(BC

(7) 412 

where 𝑓(𝒙|𝝁, 𝚺) is a multivariate Gaussian PDF, 𝒄>? = 2𝜶B)(𝑚𝒗) + 𝑛𝒗7) and 𝒗) =413 

[cos(𝜙) , sin(𝜙)] and 𝒗7 = [cos E𝜙 + D
E
G , sin E𝜙 + D

E
G] define the unit vectors of a hexagonal lattice69 414 

with grid pattern orientation 𝜙 and diag(⋅) produces a diagonal matrix from a vector input. Since 415 

most of the mass is associated with shorter transitions, in practice we approximate the full distribution 416 

with a finite number of periodic summations (i.e. ignore the tails; 5 cycles in our simulations; Fig. 417 

S1B).  418 

The observation model defines the likelihood of the current environmental sensory inputs (i.e. the 419 

population vector of place cell firing 𝑷, where 𝑝$(𝒙t) = 𝑓(𝒙t|𝝁$ , 𝚺%&' ) is the firing rate distribution of 420 

place cell 𝑖 over physical space 𝒙t) given the predicted metric location 𝒙, via a thresholded weighted 421 

sum: 𝐻(𝑷|𝒙) = [∑ 𝐵$(𝒙)𝑃$$ ]F. Here, 𝐵$(𝒙) is the location distribution of landmark 𝑖 in metric space, 422 

which would be encoded biophysically in the learned [𝑁% × 𝑁G] matrix 𝑩 of synaptic weights from 423 

place to grid cells (i.e. the 𝑔HI row and 𝑖HI column of 𝑩 is the distribution 𝐵$(⋅) evaluated at the 424 

location of the 𝑔HI grid cell). The normalization constant 𝐾 = ∫ 𝐺(𝒙)𝑑𝒙	in Eq. 2 simply sums over 425 

the current grid cell activity and might biophysically be implemented by inhibitory interneurons. 426 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.07.241547doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.07.241547


 

18 
 

Online learning of structural priors 427 

In the online model, the place-grid cell weight matrix B is learned using the BCM rule: 428 

𝑩 ← 𝑩+ 𝜏%G𝑷J⊗ [𝑮!⊙ (𝑮! − 𝜽)] (8𝑎)
𝜽 ← 𝜽 + 𝜏K[(𝑮⊙ 𝑮) − 𝜽]																	 (8𝑏) 429 

where 𝜏%G = 1𝑒 − 4	is the learning rate and 𝑮! and 𝑯 are column vectors whose elements are the 430 

transition and observation models estimated at the locations of a finite set of grid cell locations. ⊙ is 431 

the element-wise (Hadamard) product between two vectors and ⊗ is their outer product. The sliding 432 

threshold 𝜽 ∈ 𝑅)×+# provides adaptive synaptic normalization, where 𝜏K ≈ 10𝜏%G . Learning takes 433 

place between the apriori distribution 𝑮! and the current sensory observation 𝑯 (i.e. before the 434 

observation correction to 𝑮!). 435 

The offline probabilistic graphical model 436 

The pairwise potentials 𝜓L𝒃$ − 𝒃, , 𝜶|𝛿$,O = ∑ exp	(−𝑤$,L𝛿$, − 𝑑>?(𝒃$ − 𝒃, , 𝜶)O
7)C

>,?(BC  penalize 437 

differences in the pairwise distances encoded by association 𝛿$,, and those that would be computed by 438 

comparing their absolute encodings in metric space 𝑑>?(⋅); i.e. they encourage a metric embedding 439 

that reflects the associative distance. The metric distance function 	𝑑>?7 (𝒙, 𝜶) = (𝒙 + 𝒄>?)M	𝜶(𝒙 +440 

𝒄>?)	 defines the pairwise distance between the encoding of locations 𝑖 and 𝑗 in mEC in metric space, 441 

and is dependent on the gain factor 𝜶 of the transition model. Pairwise measurements are assumed to 442 

have confidence 𝑤$, (inverse variance) that increases with decreasing inferred distance (i.e. 𝑤$, =443 

1/(𝜎%& + 𝜎%N𝛿$,)). The transition model gain is assumed to have a Gaussian prior 𝑝(𝜶) =444 

exp	(−𝑤8(𝜶 − 𝜶𝟎)M(𝜶 − 𝜶𝟎)), the 𝑤8 term representing the confidence in the prior gain value 𝜶-. 445 

The periodic offset term 𝒄>? is the same as defined for the transition model. 446 

Associative encoding in the hippocampus 447 

The associative distances are recovered from the [𝑁% × 𝑁P] synaptic weights in CA3 𝑨. Under a 448 

random-walk behavioural trajectory, the simple modified Hebbian learning rule: 449 

𝑨 ← 𝑨 + 𝜏%%[𝑷𝑷J − 𝑨⊙𝑨] (9) 450 
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where ⊙ is the element-wise (Hadamard) product and 𝜏%% the learning rate. The synaptic weights can 451 

be shown to converge to 𝐴$, = �〈𝑃$(𝑡)𝑃,(𝑡)〉H, the square-root of the correlation between the firing 452 

rates of two PCs70. Where place fields have uniform receptive field widths (𝜎%&) and peak firing rates, 453 

the Euclidean distance between place fields i and j can be inferred via the simple transformation46:  454 

𝛿$,7 = − logL𝐴$,O =
L𝜇$ − 𝜇,O

7

2𝜎%&7
(10) 455 

The recovered distance is therefore scaled by the receptive fields’ variance (the Bhattacharyya 456 

distance46), and so relates to ‘discriminability’ (Fig. 1D). CA3 synapses effectively average over 457 

multiple pairwise measurements. By assuming that noise in the pairwise distance measurements scale 458 

linearly with distance, both the mean and variance of the Gaussian describing this distribution is 459 

efficiently encoded in a single PC-PC synapse.  460 

Simplified analysis of the probabilistic graphical model likelihood 461 

To characterize model predictions in the environmental rescaling71 and gain change7 experiments, we 462 

studied a reduced version of the full graphical model (Eq. 3; see Supplementary Methods for full 463 

derivation). In 1D, given a linear observation model 𝑥 = 𝐻(𝑥!) = 𝐾) + 𝐾𝑥′ and a large number of 464 

evenly spaced place fields, Eq. 3 simplifies to (see Supplementary Methods): 465 

−log 𝐿 =ℓ	 ∝� L1/𝛼9$6:;< − 𝐾/𝛼O
7 + P3(𝐾 − 𝐾-)7 + P3 ⋅ T3(1/𝛼 − 1/𝛼-)7 (11) 466 

which can be solved analytically. A similar reduction was applied to the 2D case when considering 467 

differential shifts in grid and place fields23. 468 

Belief propagation for offline inference 469 

Belief propagation48 is an iterative, two-stage local message-passing scheme in which, at each 470 

iteration 𝑛, a feature node (i.e. a place cell) first updates its own belief (connections to the grid cells) 471 

𝐵$
(?) by integrating messages from connected nodes 𝑗 ∈ Γ$ with its own prior belief 𝐵$

(-) (Fig. 5C): 472 

𝐵$
(?)(𝒃$) ∝ 𝐵$

(-)(𝒃$)J𝑚,→$
(?)

,∈Q$

(𝒃$) (12𝑎) 473 
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The message from node 𝑗 to node i ( 𝑚,→$) communicates its belief over the distribution of the 474 

locations of place cell i in grid cell space, conditioned on its own location distribution: 475 

𝑚,→$
(?F))(𝒃$) ∝ �𝜓L𝒃, − 𝒃$ , 𝜶|𝛿,$ 	O ⋅ �

𝐵,
(?)L𝒃,O

𝑚$→,
(?) L𝒃,O

� 𝑑𝒃, (12𝑏) 476 

where the pairwise potentials 𝜓(⋅) are the same as those described in the full likelihood function (Eq. 477 

3). The graph converges when new messages cease to change the beliefs of their recipient nodes.  478 

Scheduled message passing on the place cell graph 479 

‘Synchronous’ belief propagation computes belief updates for each step before broadcasting all new 480 

messages in the next step. In simulations, we demonstrated that scheduling message broadcasts based 481 

on internal ‘message tension’ (divergence between previous and updated belief given new messages) 482 

produced faster and more accurate convergence (Fig. 6B; see also Elidan et al.49). Message tension 483 

between the node’s previous 𝑩$
(?B)) and updated 𝑩$

(?) beliefs is defined as: 484 

𝒯$? = 𝕁𝕊(𝐵$
(?) ∥ 𝐵$

(?B))) =
1
2 �
𝕂𝕃(𝐵$

(?) ∥ 𝑚) + 𝕂𝕃(𝐵$
(?B)) ∥ 𝑚)  (13) 485 

where 𝕁𝕊 is the Jensen-Shannon (symmetric K-L) divergence, where: 486 

𝑚 =
1
2
E𝐵$

(?) + 𝐵$
(?B))G

𝕂𝕃(𝑝 ∥ 𝑞) = −∫ 𝑝(𝑥) ⋅ log ¢
𝑞(𝑥)
𝑝(𝑥)£

𝑑𝑥
(14) 487 

When the message tension is below a pre-defined threshold 𝒯>$?, a node has converged and ceases to 488 

broadcast new messages. This mechanism is similar to the prediction error between transition and 489 

observation models used to trigger offline inference, with the exception that it uses the symmetric 490 

divergence measure 𝕁𝕊 rather than 𝕂𝕃. 491 

Traveling waves in neural media 492 

In simulations, the traveling waves in mEC are simulated explicitly by calculating the true messages 493 

conditioned on the sending nodes’ current beliefs at each time-step (Eq. 5B). In the ‘neural model’ 494 
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(Fig. 7), messages were approximated as waves propagating radially from an initial stimulation on the 495 

mEC sheet using a modified mechanical wave model, as used to describe oscillations in water: 496 

𝑑𝒗7

𝑑𝑡 = 𝑐7∇!7 ⋅ [𝒗]F (15) 497 

where 𝑐 is the speed of wave propagation, [⋅]F is a threshold linear activation function, and the 498 

modified spatial Laplacian operator ∇′ is a symmetric 2D Gaussian filter with variance equal to the PI 499 

noise (see Supplementary Methods for extended discussion). 500 
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Figure 1. Online+offline localization and mapping. A) Illustration of recursive Bayesian 658 

integration. A probability distribution over current location (𝐺(𝒙)), represented by grid cell 659 

firing, is updated according to self-motion via the transition model (T(𝐱, 𝐱′|𝐮#, 𝛂)) then refined 660 

by environmental inputs via the observation model (𝐻(𝑷H|𝒙H)). C) Estimates based on the 661 

integration of noisy self-motion and environmental inputs may be stable, as shown in 662 

simulated grid cell firing rate maps (right), despite instability when using only self-motion 663 

(left) or environmental inputs after brief initial exploration (middle; numbers show gridness 664 

score). C) Simulated grid cells exhibit spatially offset grid-like firing patterns, due to toroidal 665 

connectivity, despite the absence of attractor dynamics. Right shows histogram of spatial 666 

phases. D) Inferred pairwise distances D are a function of the ‘overlap’ between place fields. 667 

E) Pairwise distances can be used to infer the structure of the world (the mapping of place 668 

fields onto the grid map). F) Given noisy initial priors ("Initial"), structural encodings are 669 

modified to reflect pairwise associative measurements. Inferred structure is sensitive to the 670 

topology of the environment (cf. “Ring” and "Broken Ring"). G) Illustration of the prediction 671 

error mechanism used to arbitrate between the online and offline systems (blue bars show 672 

prediction error ε, ε0 is the minimum prediction error needed to trigger offline inference). 673 
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Figure 2. Minimizing prediction errors in the offline system: grid rescaling and direction-677 

dependent offsets under manipulations of environmental size or VR gain. A) During online 678 

spatial localization, the observation model estimates location in metric space (activity on the 679 

grid sheet) via inputs from place cells driven by environmental features (red curve), the 680 

transition model updates the previous estimate (dashed blue curve) according to self-motion 681 

(green curve), producing a combined estimate (blue curve). Manipulations of the 682 

environment cause the predictions from both models to diverge. One way to minimize these 683 

prediction errors is to modify the observation model by changing the connection weights 684 

from place to grid cells (i.e. the mapping between environmental observations to estimated 685 

location in grid space). An alternative is to modify the transition model to reflect the 686 

observation model estimate (e.g. varying the ‘gain’ mapping self-motion to grid space). The 687 

degree to which both are modified is controlled by the relative strength of their respective 688 

prior confidences (T3). B) Joint optimization of the observation and transition models predict 689 

partial rescaling of grid patterns in response to increase in the VR gain (i.e. the rate of visual 690 

movement in response to physical movement on the ball; below) or compression of a real 691 

environment (above). When the system is confident in its self-motion (T3 → ∞, green), the 692 

observation model is modified to match the transition model (no change in grid scale plotted 693 

in the real or visual VR environment). When the system is confident in its environmental 694 

inputs (T3 → 0, red), the transition model adapts and grid scale follows the environmental 695 

change. Balanced model confidence produces intermediate rescaling (blue). C) Change in 696 

observed grid scale (grid pattern plotted against self-motion) depends on the transition 697 

confidence values T3. X-axis shows VR gain change or environmental compression, where 698 

αR'STUV = 1 is a control trial. Y-axis shows observed change in grid scale (see Methods). Data 699 

points show corresponding values from Barry et al. (2007), Chen et al. (2019) and Campbell 700 

et al., (2019), which suggest an approximately equal weighting of transition and observation 701 

model priors for both gain decreases and increase trials (T3 ≈ 1). D) Firing rate map of a grid 702 

cell on the linear track in control (solid line) and VR gain decrease trials (𝛼9$6:;< = 0.7), 703 
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plotted in the visual VR environment. In the gain decrease condition, the grid fields are stably 704 

shifted to fire earlier when running left (dashed line) or right (dotted line), i.e. towards the 705 

location indicated by the transition model from that indicated by vision. E) The direction-706 

dependent shift in estimated location in the grid module in a VR gain decrease trial 707 

(𝛼9$6:;< = ⅔)	stabilises at a fixed distance. Sequence of eight updates of estimated location 708 

on the grid module G(x) when running to the right in a VR visual gain decrease trial, colours 709 

as in A. The transition model (green) predicts a location ahead of that from the observation 710 

model on the grid sheet (red; driven by visual input) because of the visual gain decrease. 711 

Combining these estimates produces an intermediate distribution (blue). At each new 712 

update, the prediction from the transition model builds on the shift of the previous combined 713 

estimate (not the previous transition model estimate) so that the distance between the 714 

observation model estimate and the combined estimate stabilizes at a fixed value, producing 715 

a fixed direction-dependent offset of the grid patterns in environmental coordinates (see the 716 

differences in the location estimates between models, Inset). 717 
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Figure 3. Effects of local deformation of a rectangular environment on grid patterns following 720 

offline inference (Krupic et al., 2018). Dots indicate place/grid field locations, arrows indicate 721 

shifts before/after offline structural optimization and coloured hexagons indicate magnitude 722 

of shift vector. Grid patterns show estimate generated by the observation model (weighted 723 

place cell activity). A) Place field shifts were measured from Krupic et al. (2018) and 724 

interpolated and smoothed. B-C) Place field shifts cause immediate prediction errors (PE) 725 

between the new pairwise place field distances and the distances between their 726 

corresponding grid locations. If the observation / transition model priors are weak (P3 → 0), 727 

PEs are eliminated during offline inference by updating the observation model (top row; 728 

unlike in Fig. 4B, modifying the global gain did not remove the effect of local distortions). 729 

Complete adaptation in the observation model leads to an unperturbed grid pattern, i.e. grid 730 

fields will not shift. Alternatively, strong model priors (P3 → ∞)	prevent adaptation to new 731 

environmental inputs, leading to distorted grid patterns when driven purely by the 732 

observation model, whose field shifts match those of the place cells (bottom row). When the 733 

model priors are balanced against the new pairwise observations, the observation model is 734 

partially adjusted, producing partial grid field shifts (which are smaller than those of the place 735 

fields; middle row). Partial (middle) or no (bottom) adjustment to new observations preserve 736 

mismatches between the transition and observation models, which would result in direction-737 

dependent offsets (see Figure 4E) and irregular firing patterns (see Figure S2D). NB the 738 

confidence in the prior model may depend on location, e.g. if there is strong anchoring to the 739 

wall prior connections from place cells with fields near the wall may be stronger than those 740 

with fields further away. D) Comparison of experimentally observed place and grid field shifts 741 

with simulation corresponding to the middle row of B-C. 742 
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Figure 4. Distortions to grid patterns caused by inhomogeneous environmental input during 745 

offline inference. A) Simulated variation in place field shape due to proximity to boundaries 746 

(above), or inhomogeneous sampling of locations (Hagglund et al,. 2019; below) results in 747 

distortions to the inferred pairwise distances in CA3 (B). These distortions lead to distortions 748 

to grid scale due to adjustment of the observation model during offline inference (C-D).  749 
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Figure 5. Illustration of the dual-systems model: prediction errors and replay in the loop-752 

closure task (see also Supplementary Video 1). A) Place cell – grid cell (PC-GC) connection 753 

weights (above) as agent runs around a circular track for the first time (below, GC activity 754 

and the input from PCs to GCs, both shown on topographically organised sheet of cells, 755 

inset). i) Confidence in the initial location is high, such that coactive GC and PC fields form 756 

strong associations (the GC firing distribution is peaked and the inputs from place cells with 757 

fields at the beginning of the track are strong). ii) The agent navigates around the track, 758 

accumulating self-motion error, leading to diffuse GC firing. iii) Prediction errors (PE) on lap 759 

completion (when the initially learned precise PC input arrives) triggers an offline inference 760 

event (see main text and Supp. Video 1 for details). iv) On subsequent laps of the track, PC-761 

GC weights are sharply tuned following offline inference, allowing effective localization. B) 762 

PE is reduced on completion of subsequent laps due to alignment of the transition and 763 

observation models (i.e. environmental inputs and self-motion updating of GC activity 764 

coincide). C) Illustration of belief propagation. Place cell A receives messages from PCs B 765 

and C. Messages take the form of rings, describing a preferred distance about the current 766 

locations of B and C with variance reflecting the confidence in the message (the variance of 767 

pairwise distance estimates with Gaussian noise). The intersection of the messages 768 

uniquely determines the location of A over time. NB A will also be broadcasting messages 769 

back to B and C. D) True structure (blue), structure encoded by noisy path integration (left, 770 

red; i.e. the location of the peaks of the weights from each place cell to the grid cell sheet) 771 

and structure inferred after loop-closure (right, green). E) Offline inference allows one-shot 772 

learning when compared to the online system alone. 773 
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Figure 6. Principled message scheduling during offline inference generates sequences of 776 

place cell activity. A) Place cells (i.e. graph nodes representing conjunctions of 777 

environmental features) are connected via their pairwise potentials (𝜓WX, 𝜓X&), which 778 

penalize the mismatch between associative and metric pairwise distances (𝛿$, and 𝑑$, 779 

respectively). (𝑡 = 0) Environmental sensory input (𝑚Y→W(𝑏W)	causes an update to the belief 780 

of place cell A (i.e. updating its synaptic weights to the grid sheet) by making it fire in a new 781 

location 𝑏W = 1. (𝑡 = 1) Place cell A sends a message to B expressing its belief over the 782 

location of B, given its own (new) location and the associative distance 𝛿WX, causing B to 783 

update its belief. (𝑡 = 2) Messages from B to A and C only cause C to update its belief, so 784 

only C broadcasts at the next time-step. B) Examples of PC reactivation sequences in loop-785 

closure task for different values of path integration noise 𝜎%N7  (and therefore pairwise 786 

measurement confidence, since 𝑤$, = 1/(𝜎%&7 + 𝜎%N7 𝛿$,); where 𝜎%&7 = 1𝑒 − 4). Multiple local 787 

sequences can occur in interleaved fashion (Middle, grey shading) and become longer and 788 

smoother when pairwise measurements are less confident (Right; also E, F). C) The ‘Max-789 

Entropy’ schedule (i.e., only the place cell with max entropy change fires in the next-step) 790 

converges faster than when all PCs broadcast messages at each time-step. D) Forward and 791 

reverse sequences occurred approximately equally often. 792 
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Figure 7. Schematic neural mechanism for probabilistic message passing (see also 795 

Supplementary Video 2). A) Illustration in 1D. The broadcasting place cell PB sends a spike 796 

to receiving place cell PZ via recurrent connections in CA3, and also initiates a travelling 797 

wave at the corresponding location on the grid cell module via their connections there. (Left) 798 

No new learning occurs when the spike and travelling wave arrive at PZ and its 799 

corresponding grid location (GC7) at the same time, as PR-GC7 connection will already be 800 

strong. (Middle) If the CA3 spike arrives at PZ ahead of the travelling wave reaching GC7, the 801 

synaptic associations of PZ are adjusted towards the currently active GC5 (updating the 802 

belief, by increasing PR-GC5 and decreasing PR-GC7, see dW, below). (Right) Same as 803 

middle, except that GC wave reaches GC7 before the CA3 spike reaches PR. B) Propagating 804 

messages as travelling waves in mEC. A neural simulation of travelling waves with a 805 

modified Laplacian diffusion kernel (Wave) closely approximates the probabilistic 806 

propagation of activity (True), reflecting the accumulation of self-motion noise in the 807 

broadening of the wave front. C) Comparison of the algorithmic and neural belief 808 

propagation performance. 809 
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Figure S1 Implementational details of the online system. A The mapping from real to grid 813 

cell space can be considered as the subtraction of a mapping vector [𝑖 ⋅ 𝒗) + 𝑗 ⋅ 𝒗7], where 814 

each grid field can be described as a point on a 2D lattice with basis vectors 𝒗) and 𝒗7. Each 815 

grid field has associated with it a Voronoi domain, defined as the region within which any 816 

point is closest to the corresponding grid field. When mapping from grid-to-real space, the 817 

vector of the closest grid field is subtracted. B The wrapped Normal distribution is a 818 

summation of the likelihoods of the current position estimate being at any one of an infinite 819 

number of periodic tilings (here, five wrappings are shown). C The grid cells are connected 820 

periodically to produce a ‘twisted-torus’ topology. D Illustration of the shifter cell mechanism. 821 

Each ‘readout’ grid cell is connected to four ‘shifter’ grid cells and a single self-connecting 822 

cell. E Illustration of the difference between wrapped and non-wrapped Gaussian 823 

distributions. F Correspondence between the neural shifter cell mechanism and the 824 

algorithmic transition function. G Pairwise distances between place fields can be inferred 825 

from the strengths of Hebbian connections.  H Mean entropy in the beliefs of each place cell 826 

over their encoded location in grid space (encoded in place-grid cell connection weight 827 

distributions decreases with iterations during offline inference. 828 
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Figure S2 A Convergence of grid patterns and place-grid cell weights over three periods 833 

(columns). The place-grid cell weights (bottom row, colour denotes normalized connection 834 

strength) converge fastest near to the boundaries (as seen in development; Muessig et al., 835 

2015) and corners of an environment, since trajectories through are more directionally 836 

constrained. Top row shows corresponding grid patterns (colour denotes normalized firing 837 

rate). B Convergence of stable grid patterns over sensory noise (𝜎%&) and path integration 838 

noise (𝜎%N). Colour denotes grid score (Sargolini et al., 2006). P indicates number of place 839 

cells used in simulations. C-D Environmental deformations caused by prior structural beliefs. 840 

C Place fields generated by the boundary vector cell model (Hartley et al., 2000). An 841 

animal’s perception of a trapezoidal environment (right) may be influenced by place-BVC 842 

associations learned in a previous rectangular environment (left). In the trapezoid, simulated 843 

place fields shift with the wall (D), causing similar distortion of the grid pattern.  844 
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Figure S3. Grid distortions due to inhomogeneous environmental inputs in the online model. 846 

A) When environmental inputs are concentrated in one corner of the environment (top-847 

middle panel), the resultant grid cell firing rate maps undergo a shearing distortion which 848 

produces an orientation offset (Amin; bottom-left panels). This offset  increases with 849 

experience, as grid cell firing becomes increasingly dependent on the maturing sensory 850 

inputs (bottom-middle panel), matching experiments in which rats always entered the box at 851 

the same corner (top-left panels; Stensola et al., 2015) The size of the experimental and 852 

simulated offsets are similar (right panels). B) Simulated distortions based on an exponential 853 

decay in place cell input from one corner as a function of the decay parameter (R). C) 854 

Concentrated place field input along one wall and both corners (bottom left panel) causes 855 

another distortion pattern (bottom right panel) also observed experimentally (top adapted 856 

from Stensola et al., 2015). 857 
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Figure S4 Mathematical analysis of shearing of the grid pattern due to inhomogeneous 860 

environmental inputs. A The orientation resulting from the shearing operation can be 861 

calculated by analysing the angles of the sheared hexagonal lattice describing the centroids 862 

of the grid fields. B, C The analysis predicts that the orientation offset should be dependent 863 

on both the strength of the place fields’ density / firing rate imbalance 𝑅 (see Supplementary 864 

Methods 1.7 and Fig. 2) (B) and their tuning widths (C). 865 
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Figure S5 Anatomy of a SLAM system. The joint location-map probability distribution (A) is 868 

represented in the firing rates and synaptic weights within the HPB-mEC system (B). 869 
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 872 

Figure S6 A Spring network analogy of the associative structure of an environment. Edge 873 

‘stiffness’ is inversely proportional to the variance in the Gaussian observation. B ‘Wrapping’ 874 

physical space to encoded location on the grid sheet. Each colour indicates the tiling of the 875 

based grid sheet’s domain in real space. C Pairwise distances near the edges of the 876 

environment are overestimated due to under-sampling when the agent preferentially 877 

explores the middle of an environment. Colours denote the distance of the pair of PCs 𝑖 and 878 

𝑗 from the walls of the 1x1m2  environment	𝑑[;<< = ∑ )
7
(min(𝑥P, 1 − 𝑥P) + min	 	(𝑦P, 1 −P($,,879 

𝑦P)). D Resulting local scale is proportional to the occupancy. C When the grid scale is 880 

smaller than the size of structure being encoded, we can think of ‘wrapping’ the structure 881 

onto the grid sheet. Here, colours denoted different tilings of the base metric tile (the Voronoi 882 

region of a given grid cell). 883 
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Figure S7 An alternative view of the online and offline models. Place cells 𝑃 are driven by 888 

real-world stimulus 𝑆. During online exploration, the associative generative model is learned, 889 

but does not generate predictions. During offline inference, the metric generative model is 890 

corrected towards the predictions being generated by the online model, which becomes a 891 

surrogate for sensory stimuli as would be generated by the real world model. 892 
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Table S1 Algorithm detailing the overall dual-systems hypothesis of online and offline 909 

localization and learning in the HPC/mEC. 910 

 911 
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