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2 

Abstract 1 

Nobody wants to experience anxiety. However, anxiety may be induced by our own implicit 2 

choices that are mis-reinforced by some imbalance in reinforcement learning. Here we focused 3 

on obsessive-compulsive disorder (OCD) as a candidate for implicitly learned anxiety. 4 

Simulations in the reinforcement learning framework showed that agents implicitly learn to 5 

become anxious when the memory trace signal for past actions decays differently for positive 6 

and negative prediction errors. In empirical data, we confirmed that OCD patients showed 7 

extremely imbalanced traces, which were normalized by serotonin enhancers. We also used 8 

fMRI to identify the neural signature of OCD and healthy participants with imbalanced traces. 9 

Beyond the spectrum of clinical phenotypes, these behavioral and neural characteristics can be 10 

generalized to variations in the healthy population.11 
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3 

Introduction 1 

Humans sometimes experience anxiety. Given that no one likes to feel anxious, we tend to 2 

believe that anxiety is passively driven by external factors. However, is it possible that our own 3 

choices implicitly induce anxiety? We make mental choices when thinking or mind-wandering, 4 

as well as in response to the external world. We are always learning appropriate choices through 5 

our experiences, and some choices are learned in subliminal situations1, 2. Indeed, some evidence 6 

suggests that many of our decisions and actions in everyday life are shaped by implicit learning 7 

processes3. Hence, our anxiety might be induced by our own choices that are reinforced through 8 

implicit learning. 9 

When investigating the possibility of implicit choices leading to anxiety, we must 10 

consider its theoretical and biological implementation. Implicit learning requires repetitive 11 

experiences1, 2. Reinforcement learning theory provides a framework for learning appropriate 12 

choices through repetitive experiences4. Reinforcement learning reinforces or punishes recent 13 

choices based on the difference in the actual outcome from the prediction, called the prediction 14 

error. A positive prediction error reinforces recent choices, whereas a negative error punishes 15 

them. When examining the biological implementation of implicit learning, it is essential to 16 

consider previous work demonstrating that the activity of dopamine-projecting neurons in the 17 

midbrain resembles prediction error5. Dopaminergic neurons widely project to cortical and 18 

subcortical areas. One of the main targets of dopamine is the striatum, which is located in the 19 

basal ganglia6. In the striatum, distinct types of dopamine receptors—D1 and D2 receptors—are 20 

expressed in exclusive neuron groups, which are considered to be involved in distinct circuit 21 

patterns, namely, direct and indirect pathways6. These distinct neural systems are thought to play 22 

different roles in reinforcement learning. Artificial activations of D1- and D2-expressing neurons 23 
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4 

after a certain behavioral action reinforce and punish the action, respectively7. Direct and indirect 1 

pathway neurons respond to positive and negative outcomes, respectively8. Dopamine-dependent 2 

synaptic plasticity in corticostriatal synapses, which underlies reinforcement learning, shows 3 

opposing dopamine dependence for D1 and D2 neurons9, 10. These results imply that 4 

reinforcement and punishment of recent actions may be reflected through different neural 5 

systems: the direct and indirect pathways. 6 

In the implementation of implicit learning, we should also consider delay as well as 7 

reinforcement/punishment. In general, the outcome of a certain choice is available after a certain 8 

delay. Therefore, reinforcement and punishment should be assigned to recent choices within a 9 

certain time scale. This is called credit assignment, which is implemented as eligibility traces in 10 

reinforcement learning4. An eligibility trace can be implemented as a memory trace in each 11 

synapse10-12. In this case, the trace time scales for reinforcement and punishment should be 12 

separately controlled in direct and indirect pathways. Reinforcement learning theory requires that 13 

both trace time scales be equal. However, the requirement cannot be completely realized in 14 

distinct neural systems. 15 

Here, we propose a computational model that enables the implementation of imbalanced 16 

learning, and we aimed to determine whether the imbalance induces some defects in specific 17 

situations. We focused on obsessive-compulsive disorder (OCD) as a candidate for such an 18 

imbalanced condition for two reasons. First, abundant evidence suggests that imbalance between 19 

direct and indirect pathways is central to the pathophysiology of OCD13-15. Second, obsession in 20 

OCD can be an implicit choice leading to anxiety. In patients with OCD, an intrusive thought 21 

becomes lodged in their mind and drives obsessive anxiety16. To neutralize and relieve the 22 

anxiety, they tend to perform a compulsive action, despite its cost (e.g., excessively washing 23 
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their hands or repeatedly checking their keys), even though the anxiety will spontaneously 1 

diminish before long if no action is taken17. 2 

This article proposes a computational model to reproduce the abnormal repetition of 3 

obsession and compulsion in OCD symptoms, incorporating two hypotheses: (1) obsession is 4 

induced by patients’ implicit choices, and (2) eligibility trace time scales are imbalanced for 5 

reinforcement and punishment in the reinforcement learning framework. We demonstrate that the 6 

imbalance in trace time scales mis-reinforces implicit choices leading to obsession, resulting in a 7 

spiral of repetitive obsession and compulsion. We tested our hypothesis in a behavioral task for 8 

healthy participants and participants with OCD and evaluated the neural substrates of imbalanced 9 

eligibility trace time scales using resting-state functional magnetic resonance imaging (rs-fMRI). 10 

 11 

Results 12 

OCD-like behavior in a separate eligibility trace model 13 

Eligibility traces determine the credit assignment of the outcome prediction error of recent 14 

actions4. Each trace represents the recent frequency of an action in a specific state within a time 15 

scale determined by trace decay factor 𝜈 (see Online Methods). When a prediction error occurs, 16 

the choice probability of each action in each state is updated by the product of the eligibility 17 

trace and the prediction error (Figure 1a). Thus, a positive prediction error reinforces recent 18 

actions within a time scale, whereas a negative error punishes them. We assumed that the 19 

eligibility traces for reinforcement and punishment might be implemented in distinct neural 20 

systems (red and blue in Figure 1a; see Online Methods). Theoretically, the trace factors in the 21 

two systems, 𝜈±, should be balanced: + = −. However, the separate neural implementation 22 
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makes it difficult to perfectly maintain the balance. Here, we assumed that the balance was not 1 

maintained: + ≠ −. 2 

We modeled mental states involved in anxiety into stochastic transitions between two 3 

states: relief and anxiety (Figure 1b). We assumed an action to relieve anxiety as an option in the 4 

anxiety state, which could stochastically permit a transition from the anxiety state to the relief 5 

state at a certain cost. The action might become compulsive in OCD, and we labeled it 6 

"compulsion". We unified any other options in the anxiety state which could relieve the anxiety 7 

at lower probability without any cost into the option "other". Our fundamental assumption was 8 

that the transition from the relief state to the anxiety state would be caused by the individual’s 9 

own choice, which might become obsessive in OCD. We labeled this option "obsession". We 10 

also unified any other options in the relief state which maintained the relief state into "other". We 11 

assumed that every stay in the anxiety state would produce a negative outcome. 12 

No positive outcome was introduced in the anxiety-relief transition model. Hence, 13 

maintaining "other" in the relief state is clearly optimal. Normal reinforcement learning should 14 

reduce the obsession rate. However, if the learning system has some defects, such as an 15 

imbalance in trace factors, then the learning system may fail to reduce the obsession and fall into 16 

a spiral of obsession and compulsion. To show this possibility, we simulated actor-critic learning 17 

(see Online Methods), a typical method of reinforcement learning models4 in the anxiety-relief 18 

state-transition (Figure 1b), incorporating a separate eligibility trace (Figure 1a). When the 19 

imbalance in the trace factors was moderate, actor-critic learning was able to reduce the 20 

obsession rate, even when the simulation started at a high obsession rate (Figure 1c). In contrast, 21 

extreme imbalance induced an increase in the obsession rate that culminated in a spiral of 22 

repetitive obsession and compulsion (Figure 1d). Such OCD-like behavior was reduced by 23 
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preventing the compulsion during exposure to the anxiety state (green bar in Figure 1d). This is 1 

the behavioral therapy of exposure and response prevention (ERP) and is one of the first-line 2 

treatments of OCD18. 3 

We identified the condition for the trace factors  in which OCD-like behavior might 4 

emerge by numerical simulations in a representative set of other model parameters (Figure 1e; 5 

see Online Methods). In addition to actor-critic learning (leftmost in Figure 1e), we simulated 6 

SARSA (State-Action-Reward-State-Action) and Q-learning (right in Figure 1e), other typical 7 

reinforcement learning models4. The color map represents the fraction of 100 simulation runs in 8 

which obsession was reinforced at each pair of (+, −). We identified the conditions of OCD-9 

like behavior in the region + > − (Figure 1e). Namely, the trace scale for reinforcement was 10 

longer than that for punishment. We also identified the condition in which the behavioral therapy 11 

of ERP would not work and localized it to a region with more robust imbalance (Figure 1f). 12 

We obtained the theoretical conditions as functions of the other parameters (see the 13 

Supplementary Note). Each OCD patient presents a certain compulsive action for specific 14 

anxieties among many types of anxiety. Therefore, the corresponding parameters of the anxiety-15 

relief transition model (Figure 1b) should differ by the type of anxiety. Next, we derived the 16 

condition for the learning parameters in which OCD-like behavior emerges in some type of 17 

anxiety in actor-critic, SARSA, and Q-learning and obtained the common condition that + > − 18 

(see Section 3.3 in the Supplementary Note). This result suggests that a person with + > − has a 19 

risk of OCD. 20 
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1 

Figure 1. OCD-like behavior in a separate eligibility trace model. (a) Schema of the separate 2 

eligibility trace model. (b) State transitions in the anxiety-relief model. (c) Simulation of the 3 

separate eligibility trace model in the anxiety-relief state-transition in the case of a moderate 4 

imbalance in the trace factors . The black polylines represent the temporal pattern of state 5 

transitions. The red and magenta triangles represent the occurrences of compulsions and 6 

obsessions, respectively. The lower plots show the temporal patterns of the compulsion (red 7 
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curve) and obsession (magenta curve) rates on a logarithmic scale. (d) As in (c), but in the case 1 

of extreme imbalance. In the latter half, we demonstrated behavioral therapy by preventing the 2 

compulsion in the anxiety state (green bar). (e) Conditions of OCD-like behavior in the space of 3 

the trace factors  with different types of learning algorithms: actor-critic, SARSA, and Q-4 

learning. The magenta color scale represents the percentage of the obsession rate increase among 5 

100 times simulations around optimal behavior (zero obsession rate). Solid blue lines represent 6 

the theoretically derived boundary (see the Supplementary Note). The square and triangle 7 

represent the trace factors  used in (c) and (d). (f) As in (e), but, in this condition, the 8 

behavioral therapy did not work. 9 

 10 

Participants and behavioral task 11 

To test the suggestion that 𝜈+ > 𝜈−, derived from our computational model of OCD, we applied 12 

the delayed feedback task to patients with OCD (n = 33) and healthy controls (HCs) (n = 168). 13 

Fifteen HCs were excluded for medical or experimental reasons, and the subsequent analysis was 14 

conducted in 33 OCD patients and 153 HCs (Supplementary Table 1). Considering the 15 

therapeutic effect of the serotonin reuptake inhibitor (SRI) in OCD18, SRI might normalize the 16 

imbalanced setting of + > −. Because a meta-analysis of SRI treatment suggested that higher 17 

doses of SRI are more effective in the treatment of OCD versus other psychiatric conditions, 18 

such as major depressive disorder19, we divided the OCD patients into two groups by the dose 19 

equivalence of SRIs20 (Online Methods and Supplementary Table 2): OCD patients with higher 20 

SRI doses were grouped into OCDHighSRI (n = 10), and those with lower SRI doses or no 21 

psychotropic medications were OCDLow-NoSRI (OCDLowSRI, n = 10; OCDNoSRI, n = 13). There 22 

were no significant differences in obsessive-compulsive and depressive symptoms evaluated by 23 
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the Yale-Brown Obsessive-Compulsive Scale21 and the 17-item Hamilton Depression Rating 1 

Scale (HDRS)22 between the OCDHighSRI and OCDLow-NoSRI groups (Supplementary Table 1). In 2 

addition, no patients had current major depressive disorder as a comorbidity (Online Methods). 3 

We used the delayed feedback task to evaluate the trace factors  as in our previous 4 

research23 except for the presented stimuli (abstract cues). Briefly, participants chose one of two 5 

options displayed on the screen by pressing a left or right button in each trial (Figure 2a). Each 6 

stimulus represented different outcomes (+10, +40, −10, or −40 yen) and a delay to the feedback 7 

(immediately after a button press or three trials later) (Figure 2b and c). For example, +40(0) 8 

represented a gain of 40 yen within the current trial (immediate reward) and −10(3) represented a 9 

loss of 10 yen after three trials (delayed punishment). The participants were not told about the 10 

stimulus-outcome associations shown in Figure 2b. They received money after the experiment in 11 

proportion to the total outcome obtained in the delayed feedback task. To maximize the total 12 

outcome, the participants needed to learn the appropriate stimulus choices by correctly assigning 13 

the credit of the current feedback to the recent choices that caused the current feedback. The 14 

difference in learning effects between immediate and delayed feedbacks reflected the trace 15 

factors . 16 
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 1 

Figure 2. Delayed feedback task. (a) Two abstract cues were displayed in each trial. When the 2 

participants heard an auditory cue (beep), they chose one of the stimuli within 1 s. A single trial 3 

lasted 2.5 s. The sequence of the stimuli pair was pseudorandom. (b) Outcome-delay mapping 4 

for each stimulus. The mapping was different among participants. (c) An example of a delayed 5 

feedback task. If participants chose the stimuli with a delay [+40(3)] at trial t, that outcome was 6 

not displayed immediately. If they chose the stimuli with no delay [+40(0)] at trial t+3, the sum 7 

of the delayed and immediate outcomes was displayed at trial t+3 (in this case +80 yen). 8 

 9 
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12 

Behavioral results 1 

Based on our simulation of OCD-like behavior with trace factors + > − (Figure 1e), patients 2 

with OCD would show impaired learning in the stimuli with delayed feedback. Therefore, the 3 

optimal choice rates between the representative four pairs of stimuli with the same delay and 4 

different magnitudes [pairs with no delays: +40(0) vs. +10(0) and −10(0) vs. −40(0); pairs with 5 

delays: +40(3) vs. +10(3) and −10(3) vs. −40(3)] were compared among groups. Consistent with 6 

our trace factor hypothesis, the OCDLow-NoSRI group showed impaired learning of stimuli with 7 

delays and performed at chance levels (Figure 3). Notably, OCDHighSRI patients exhibited intact 8 

learning similar to HCs in all pairs of interests. 9 

A mixed-design two-way repeated-measures ANOVA with a within-participant factor of 10 

sessions (1–6 sessions) and a between-participant factor of groups (OCDLow-NoSRI patients, 11 

OCDHighSRI patients, and HCs) was conducted to clarify the between-group differences. There 12 

were significant interactions in the learning of stimulus pairs with delays. In the 10(3) vs. 40(3) 13 

pair, the interaction between session and group (F(7.05, 645.34) = 2.32, p = 0.024, p
2 = 0.025) 14 

and the simple main effects of group were significant in sessions 4 (F(2, 183) = 3.97, p = 0.021, 15 

p
2 = 0.042) and 5 (F(2, 183) = 6.27, p = 0.0023, p

2 = 0.064). Bonferroni-Holm–corrected post-16 

hoc comparisons confirmed OCDLow-NoSRI patients < HCs (t(183) = 2.81, padjusted = 0.016) in 17 

session 4 and OCDLow-NoSRI patients < HCs (t(183) = 3.54, padjusted = 0.0015) in session 5 (Figure 18 

3). 19 

Regarding the −10(3) vs. −40(3) pair, the interaction between session and group (F(7.42, 20 

678.8) = 2.09, p = 0.039, p
2 = 0.022) and the simple main effects of group were significant in 21 

sessions 5 (F(2, 183) = 7.59, p = 0.0007, p
2 = 0.077) and 6 (F(2, 183) = 5.83, p = 0.0035, p

2 = 22 

0.060). Post-hoc comparisons confirmed significantly impaired learning in the OCDLow-NoSRI 23 
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group OCDLow-NoSRI patients < HCs (t(183) = 3.87, padjusted = 0.0005) and OCDLow-NoSRI patients < 1 

OCDHighSRI patients(t(183) = 2.38, padjusted = 0.036) in session 5 and OCDLow-NoSRI patients < HCs 2 

(t(183) = 3.41, padjusted = 0.0024) in session 6 (Figure 3). 3 

4 

Figure 3. Optimal choice rates of the delayed feedback task. Each panel represents the result for 5 

each pair of stimuli [from left to right: pairs with no delays, +40(0) vs. +10(0) and −10(0) vs. 6 

−40(0); pairs with delays, +40(3) vs. +10(3) and −10(3) vs. −40(3)]. The line and colored area 7 

represented the mean and standard error of the optimal choice rates of groups (red cross, OCDLow-8 

NoSRI patients; magenta square, OCDHighSRI patients; blue circle, HCs). The horizontal dashed line 9 

at 0.5 is the chance level. *, **, and ***padjusted < 0.05, 0.01, and 0.001 with Bonferroni-Holm–10 

corrected post-hoc comparisons of the simple main effects of group (OCDLow-NoSRI patients < 11 

HCs); †padjusted < 0.05, Bonferroni-Holm–corrected post-hoc comparisons of the simple main 12 

effects of group (OCDLow-NoSRI patients < OCDHighSRI patients); ‡padjusted < 0.05, Bonferroni-Holm–13 

corrected post-hoc comparisons of the main effect of group (OCDLow-NoSRI patients < HCs). 14 

 15 

Computational model-based behavioral analysis and results 16 
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We fitted the behavioral data with the actor-critic learning model using the learning rate (α), 1 

exploration-exploitation degree (), and separation of the eligibility trace for reinforcement and 2 

punishment () (see Online Methods). Because we were specifically interested in the individual 3 

variance represented by reinforcement learning parameters, we fitted parameters in each 4 

participants’ data independently using maximum a posteriori estimation rather than pooled data 5 

as a group24. 6 

To clarify the +/− distribution of each group, we projected each participants’ estimated 7 

parameter to +/− space and visualized it using kernel density estimation (Figure 4a). Consistent 8 

with our computational model simulation of OCD, OCDLow-NoSRI participants were distributed to 9 

the + > − imbalanced area, whereas the distribution was balanced in HCs and OCDHighSRI 10 

participants (Figure 4a). To compare the +/− distribution among groups, we confirmed the 11 

multivariate homogeneity of group dispersions (F(2, 183) = 1.06, p = 0.35) and applied 12 

permutational multivariate analysis of variance (PERMANOVA). The +/− distribution was 13 

significantly different (PERMANOVA: F(1, 184) = 6.41, p = 0.0039), with Bonferroni-Holm–14 

corrected post-hoc pairwise comparisons revealing a significant difference between OCDLow-15 

NoSRI participants and HCs (padjusted = 0.014) (Figure 4a). Parameters α and  were not 16 

significantly different among groups (Kruskal-Wallis test, p > 0.05). 17 

We conducted clustering analysis using hierarchical density-based spatial clustering of 18 

applications with noise (HDBSCAN)25 to evaluate the diversity in HCs. HDBSCAN revealed 19 

two clusters in HCs: a balanced  cluster (Figure 4a, blue circle; n = 83) and an imbalanced  20 

cluster (Figure 4a, white circle; n = 59); the remaining 11 HCs were not clustered. Obsessive-21 

compulsive trends and a propensity to adhere to fine-grained details were compared between 22 

clusters using five subscales of the Padua Inventory (PI; “Checking”, “Dirt”, “Doubt”, 23 
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“Impulse”, “Precision”)26 and the Attention to Detail subscale of the Autism Quotient (AQ)27, 1 

respectively. The imbalanced HC cluster showed significantly higher scores in the PI Checking 2 

score (Brunner-Munzel test, statistic = −2.11, p = 0.019) and the AQ Attention to Detail score 3 

(Brunner-Munzel test, statistic = −2.79, p = 0.0030) than the balanced HC cluster (Figure 4b). 4 

Significant differences were still found after false discovery rate correction for multiple 5 

comparisons among scales (PI Checking, padjusted = 0.046; AQ Attention to Detail, padjusted = 6 

0.015). In OCD participants taking SRIs (n = 20), the equivalent dose of SRIs was significantly 7 

correlated with the imbalanced settings of  (+–−) [Spearman’s rank correlation (20); r = 8 

−0.61, p = 0.0045; Figure 4c]. That is, higher doses of SRIs normalized the imbalanced settings 9 

of  in participants with OCD. 10 
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1 

Figure 4. Estimated parameters and their relationships with the clinical characteristics. (a) 2 

Distribution of participants in each group projected in the +/− space using the kernel density 3 

estimation (blue, HCs; magenta, OCDHighSRI patients; red, OCDLow-NoSRI patients). The horizontal 4 

axis represents + and the vertical axis represents −. The diagonal line represents the balanced 5 

line in the +/− space. Blue and white circles in the leftmost figure represent the balanced and 6 

imbalanced clusters in HCs, respectively. Other participants were depicted using +. (b) PI 7 

Checking and AQ Attention to Detail scores in the balanced and imbalanced clusters in HCs. The 8 

half-violin plot, box plot, and strip plot represent the probability density, interquartile range and 9 

median, and raw data, respectively. Blue and white circles represent the balanced and 10 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.08.07.241588doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.07.241588
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

imbalanced clusters. * and ** represent significant differences (Brunner-Munzel test, * statistic = 1 

−2.11, p = 0.019; ** statistic = −2.79, p = 0.0030). (c) Significant correlation between the SRI 2 

dose and +–− [Spearman’s rank correlation (20); r = −0.61, p = 0.0045]. The line and colored 3 

areas are the regression line and the 95% confidence interval (+: each OCD patient taking SRIs). 4 

The dashed line represents the balanced settings of . 5 

 6 

Neural signatures of OCD and the imbalanced + > − HC cluster 7 

The above behavioral results revealed the presence of imbalanced clusters in both the OCD 8 

patients and the HCs. We next explored such imbalanced conditions of + > − in neural circuits. 9 

Recently, various behavioral and demographic characteristics and psychiatric conditions have 10 

been thought to be represented in a brain network, even in the resting state14, 15, 28-30. Here, we 11 

explored the neural signature of nonmedicated patients with OCD hypothetically related to + > 12 

− and extended it into an imbalanced (+ > −) HC cluster using rs-fMRI. First, we constructed a 13 

whole-brain functional connectivity (FC) matrix using Cole-Anticevic Brain-wide Network 14 

Partition (CAB-NP)31 and compared 49 OCDNoSRI patients and 53 HCs (dataset A; Online 15 

Methods and Supplementary Table 4) using network-based statistics (NBS)32 (initial threshold, t 16 

= 3.87; 10,000 random permutations; see Online Methods). We detected a significant network 17 

component related to OCD (OCD network) with significantly increased connectivity in 18 

OCDNoSRI patients compared with HCs (padjusted = 0.022, Figure 5a). The OCD network 19 

comprises nodes in the dorsolateral frontal cortex (DLPFC), parietal cortex, retrosplenial cortex, 20 

and the hippocampal formation and parahippocampal region. These brain regions mainly belong 21 

to the default mode network (DMN) or frontoparietal network (FPN) (Supplementary Figure 1). 22 

To confirm the robustness of the OCD network, we compared the mean FC of the OCD network 23 
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between 10 OCDNoSRI patients and 18 HCs in the entirely independent dataset (dataset B; Online 1 

Methods and Supplementary Table 5). Similarly, the mean FC within the OCD network was 2 

significantly higher in OCDNoSRI patients than in HCs (Figure 5b, Brunner-Munzel test, statistic 3 

= −3.11, p = 0.0027). Finally, we explored whether the imbalanced (+ > −) HC cluster showed 4 

OCD-like characteristics also regarding a functional network. We compared all FCs of the OCD 5 

network between 10 HCs in the imbalanced and balanced clusters (dataset C: independent from 6 

dataset A and B; Online Methods and Supplementary Table 6) detected in our delayed feedback 7 

task. We found that the FC between the DLPFC and presubiculum was significantly increased in 8 

the imbalanced (+ > −) HC cluster, similar to OCD (Figure 5c, Brunner-Munzel test, statistic = 9 

−2.94, p = 0.0051). The FC still showed a significant trend after false discovery rate correction 10 

for multiple comparisons among the FCs of the OCD network (padjusted = 0.066). 11 
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1 

Figure 5. The OCD network and its extension to the imbalanced (+ > −) HC cluster. There was 2 

no overlap of participants among the results in (a), (b), and (c). L and R represent left and right, 3 

respectively. (a) Significantly increased functional network component in OCDNoSRI participants 4 

compared with HCs (padjusted = 0.022). (b) Significantly increased mean FC within the OCD 5 

network of OCDNoSRI participants compared with HCs in the completely independent dataset (* 6 

Brunner-Munzel test, statistic = −3.11, p = 0.0027). (c) The imbalanced HC cluster showed 7 
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OCD-like increased FC between the DLPFC and presubiculum (* Brunner-Munzel test, statistic 1 

= −2.94, p = 0.0051). In (b) and (c), the half-violin plot, box plot, and strip plot represent the 2 

probability density, interquartile range and median, and raw data, respectively. 3 

 4 

Discussion 5 

In this study, we showed that implicit choices in our mind can induce anxiety, which is related to 6 

imbalance in eligibility trace time scales for reinforcement and punishment. Specifically, we 7 

constructed a computational model of OCD using a separate eligibility trace model (Figure 1a–d) 8 

and found extremely imbalanced trace factors + > − in OCD (Figure 4a) and its neural substrate 9 

(Figure 5a) in our empirical data. In addition, behavioral therapy (ERP) and psychotropic 10 

medication (SRIs), which are the first-line treatments for OCD, were reflected in our 11 

computational model (Figure 1d) and behavioral results (Figure 4c), respectively. 12 

While the theoretical framework of the eligibility trace has long been conceptualized in 13 

the field of reinforcement learning4, its empirical evidence has been reported relatively 14 

recently10, 33-35. The latest theories regarding synaptic plasticity have proposed that the co-15 

activation of pre- and postsynaptic neurons sets a flag at the synapse (eligibility trace) that leads 16 

to a weight change only if additional factors (i.e., reinforcement or punishment) are present while 17 

the flag is set12. These additional factors could be implemented by the phasic activity of some 18 

neuromodulators, such as dopamine, which is supposed to represent the prediction error5. 19 

Although the detailed mechanisms concerning how the trace time scales for reinforcement and 20 

punishment are modulated remain unclear, our theoretical consideration of the anxiety-relief 21 

transition model showed that the imbalanced trace factors + > − could lead to the condition of 22 

repetitive choices of anxiety and its relief in the model, similar to obsession and compulsion in 23 
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OCD (Figure 1a–d). Our experimental data from OCD patients and HCs strongly support the 1 

predictions from our computational model, namely, the apparent impairment in the learning with 2 

delayed feedback (Figure 3) and the extremely imbalanced trace factors + > − in OCD (Figure 3 

4a). It is noteworthy that the imbalanced trace factors + > − are quite convincing because the 4 

conventional pathophysiological model of OCD suggests excess tone in the direct pathway over 5 

the indirect pathway13-15
, which are supposed to be related to + and −, respectively. 6 

There have been several computational models of OCD, all of which primarily focused 7 

on compulsive behaviors36-38. Compulsive actions are thought to be reinforced by the rewarding 8 

effect of relief from anxiety17. Excessive anxiety will induce excessive reinforcement of 9 

compulsion leading to habit formation38. This excessively habitual compulsion is considered a 10 

cause of OCD38, 39. However, obsessive thoughts that drive anxiety also increase with the 11 

severity of OCD symptom17. Although the essence of OCD symptoms is the abnormal repetition 12 

of obsession and compulsion17, there is so far no unified model to explain the growth of both 13 

obsession and compulsion. Our unified model can represent the vicious circle of obsession and 14 

compulsion, which are the phenomenological characteristics of OCD17 (Figure 1a–d). Moreover, 15 

our model extends our understanding of the therapeutic effects of first-line treatments of OCD. 16 

While ERP seems to promote the appropriate choices to prevent obsession, even under 17 

imbalanced trace factors (Figure 1d), SRIs resolve the imbalance itself (Figure 4a and c). In 18 

practice guidelines for the treatment of OCD18, the combination therapy of ERP and SRI is 19 

recommended if patients do not respond to ERP monotherapy. We identified such a condition 20 

where ERP would fail in our computational model (Figure 1f). SRI add-on therapy in this ERP-21 

refractory condition can be viewed as assisting in the normalization of trace factors. Regarding 22 

the relationships between the neuromodulator serotonin and the time scales of the eligibility 23 
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trace, serotonin seems to modulate the synaptic plasticity in many brain regions directly or 1 

indirectly through its regulatory effects on other neuromodulatory systems12, 33, 40, 41. In our 2 

previous study, we also found similar modulatory effects of the trace factor time scales, that is, 3 

depletion of the serotonin precursor tryptophan increased the + > − imbalance compared with 4 

the control condition23. There is still abundant scope for further research aimed at elucidating 5 

how serotonin modulates the time scale of trace factors. 6 

Using rs-fMRI, we found that patients with OCD exhibited significantly increased 7 

connectivity of the OCD network component, which consists of the DLPFC, parietal cortex, 8 

retrosplenial cortex, hippocampal formation, and parahippocampal region in two independent 9 

datasets (Figure 5a and b). Specifically, the OCD network is mainly composed of FCs within the 10 

DMN (7 of 13 FCs) and FCs between the DMN and FPN (4 of 13 FCs) (Supplementary Figure 11 

1). These results are quite consistent with a recent meta-analysis of rs-fMRI findings in OCD, in 12 

which the authors reported FC alterations within and between the DMN and FPN42. Moreover, 13 

the DLPFC, parietal cortex, and hippocampus have been implicated in encoding the eligibility 14 

traces related to reward-based decision-making for different time scales12, 43-45. These brain 15 

regions might help to deal with the multiple eligibility trace time scales required for 16 

reinforcement learning as a functional network, together with the retrosplenial cortex, which has 17 

dense anatomical connections with all of the other detected brain regions46. 18 

Beyond the range of clinical phenotypes seen in patients with OCD, a broader continuum 19 

of the obsessive-compulsive trait is also observed in behavioral and neural characteristics. 20 

Specifically, the imbalanced (+ > −) HC cluster showed a significantly greater propensity for 21 

Checking and Attention to Detail (Figure 4b) and increased FC between the DLPFC and 22 

presubiculum, which belongs to the OCD network (Figure 5c). These results not only increase 23 
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the reliability of our clinical findings, but also support the generalizability of our findings to a 1 

broader population on the obsessive-compulsive continuum. Further study with greater focus on 2 

OCD patients and their unaffected healthy first-degree relatives should be performed to evaluate 3 

the potential of our findings as an endophenotype of OCD47. 4 

In this study, we provided evidence that one’s own implicit choices can induce anxiety in 5 

OCD. However, anxiety can itself manifest in many different forms. In some situations, anxiety 6 

may motivate people to take action or strive to meet a goal. In other situations, people may 7 

experience anxiety as a symptom of an anxiety disorder such as social anxiety disorder and 8 

generalized anxiety disorder. We previously demonstrated the commonality of different types of 9 

anxiety, including obsessive-compulsive anxiety, using fMRI29. Because we cannot cover all 10 

forms of anxiety in this research, further study with greater focus on the relationships between 11 

implicit choices and various representations of anxiety from computational aspects should be 12 

performed. 13 

 14 

Conclusion 15 

Anxiety can feel like a calamity that befalls us. However, our research shows that our own 16 

implicit choices can trigger anxiety. Psychiatric symptoms are often thought of as alterations in 17 

the mind that are not directly quantifiable, but they can be directly assessed through the creation 18 

of appropriate computational models. Although it is currently difficult to identify treatment-19 

resistant patients from their clinical symptoms, our computational model suggests that patients 20 

with extremely imbalanced trace scale parameters may not respond to behavioral therapy alone. 21 

These results suggest that our findings could one day be applied to the appropriate selection of 22 

OCD treatment. In addition, psychiatric symptoms have been regarded in recent years as a 23 
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symptom dimension common to various mental diseases, rather than being specific to a disease. 1 

In this study, we focused on patients with OCD and healthy participants, but our approach could 2 

be applied to the assessment of the anxiety dimension in various populations48. Future research is 3 

needed to address these hypotheses in prospective longitudinal cohorts or in larger cohorts with 4 

various psychiatric symptoms. 5 

 6 

Online Methods 7 

Separate eligibility trace model 8 

Eligibility traces determine the weight assignment of outcome prediction errors for recent actions 9 

(Figure 1a). If the eligibility traces for positive and negative prediction errors are implemented in 10 

distinct neural systems, the respective eligibility traces 𝜂𝑎𝑠
+ (𝑡) and 𝜂𝑎𝑠

− (𝑡) at time step t for action 11 

a (a = 0, 1, …) in state s (s = 0, 1, …) obey the following equation4, 12 

𝜂𝑎𝑠
± (𝑡 + 1) = 𝜈± 𝜂𝑎𝑠

± (𝑡) + 𝑋𝑎𝑠(𝑡),  13 

where 𝑋𝑎𝑠(𝑡) = 1 when action a is chosen in state s at time step t and 𝑋𝑎𝑠(𝑡) = 0 otherwise. The 14 

factors  (0 <  < 1) determine the decaying time scales of the eligibility traces. The policy 15 

parameters 𝑞𝑎𝑠(𝑡) (a = 0, 1, …) determine choice probability in state s as a soft-max function, 16 

𝑃(𝑎|𝑠) = 𝑒𝛽𝑞𝑎𝑠(𝑡) ∑ 𝑒𝛽𝑞�́�𝑠(𝑡)

�́�

⁄ ,  17 

where  represents the degree of the exploration-exploitation balance. Each policy parameter is 18 

updated as below, 19 

𝑞𝑎𝑠(𝑡 + 1) = 𝑞𝑎𝑠(𝑡) + 𝛼[𝜂𝑎𝑠
+ (𝑡) max{0, 𝜀(𝑡)} + 𝜂𝑎𝑠

− (𝑡) min{0, 𝜀(𝑡)} ], 20 

where 𝜀(𝑡) denotes the outcome prediction error and max{0, 𝜀(𝑡)} and min{0, 𝜀(𝑡)} represent 21 

positive and negative components of the prediction error, respectively (Figure 1a). Theoretically, 22 

the trace factors  should be balanced as + = −. However, the separate neural implementation 23 
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makes it difficult to perfectly maintain the balance. Here, we assumed that the balance could be 1 

broken: + ≠ −. 2 

The outcome prediction error 𝜀(𝑡) is determined as a function of the current outcome 3 

𝑟(𝑡) and the policy parameters {𝑞𝑎𝑠}. The form depends on learning algorithms. In actor-critic 4 

learning, the outcome prediction is based on the state value 𝑣𝑠 = ∑ 𝑞𝑎𝑠𝑎 , and the prediction error 5 

𝜀(𝑡) = 𝑟(𝑡) + 𝛾𝑣𝑠(𝑡+1) − 𝑣𝑠(𝑡), where 𝑟(𝑡) denotes the current outcome and 𝑠(𝑡) and 𝑠(𝑡 + 1) 6 

denote the current and next states. The parameter 𝛾 denotes the discount factor that determines 7 

the weight of future prediction. In SARSA and Q-learning, the outcome prediction is based on 8 

the action value estimated as each policy parameter 𝑞𝑎𝑠, and the prediction error 𝜀(𝑡) = 𝑟(𝑡) +9 

𝛾𝑉𝑠(𝑡+1) − 𝑞𝑎(𝑡)𝑠(𝑡). The difference is in the term of the next state value: 𝑉𝑠(𝑡+1) = 𝑞𝑎(𝑡+1)𝑠(𝑡+1) 10 

in SARSA and 𝑉𝑠(𝑡+1) = max
𝑎

𝑞𝑎𝑠(𝑡+1) in Q-learning. 11 

 12 

Anxiety-relief transition model 13 

We modeled the mental states involved in anxiety into stochastic transitions between two states: 14 

relief (s=0) and anxiety (s=1) (Figure 1b). We assumed two options in each state: "compulsion" 15 

(a=1) and "other" (a=0) in the anxiety state, and "obsession" (a=1) and "other" (a=0) in the relief 16 

state. We defined a matrix b to determine the state-transition probabilities, 17 

𝑃(𝑠(𝑡 + 1) = 1|𝑎(𝑡) = 𝑖, 𝑠(𝑡) = 𝑗) = 𝑏𝑖𝑗, 18 

𝑃(𝑠(𝑡 + 1) = 0|𝑎(𝑡) = 𝑖, 𝑠(𝑡) = 𝑗) = 1 − 𝑏𝑖𝑗. 19 

We assumed that every stay in the anxiety state produced a negative outcome normalized to −1. 20 

The relative cost of compulsion was denoted as c. Although 𝑏00>0 allows passive anxiety, we 21 

focused on 𝑏00=0 in the main article. More general cases, including passive anxiety, are 22 

considered in the Supplementary Note. 23 
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 1 

Demonstration of OCD-like behavior 2 

For the example in Figure 1, we fixed the parameters of the anxiety-relief transition as 𝑏00=0, 3 

𝑏10=1, 𝑏01=0.9, 𝑏11=0.5, and c=0.01 and the learning parameters as 𝛼=0.1, 𝛽=1, 𝛾 = 0.5, and 4 

𝜈+=0.8, except for 𝜈−. For Figure 1c, the trace factor for punishment was set as 𝜈−=0.6 and the 5 

initial values of variables as 𝜂𝑎𝑠
± (0) = 𝑞𝑎𝑠(0) = 𝑠(0) = 0 . The simulation consisted of 100,000 6 

time steps. For Figure 1d, we set the trace factors as 𝜈−=0.1 and the initial values as 𝜂𝑎𝑠
± (0) =7 

𝑞𝑎1(0) = 𝑠(0) = 0, 𝑞00(0) = 3, and 𝑞10(0) = −3, to show that reinforcement of obsession 8 

started from even a low obsession rate. After 50,000 time steps, compulsion (a=1 in s=1) was 9 

always prevented, and other (a=0 in s=1) was forced regardless of the choice probability, 10 

demonstrating the behavioral therapy of ERP. 11 

For Figure 1e and f, we evaluated the fraction of 100 simulation runs in which the 12 

obsession rate was reinforced from a low obsession rate on 40 × 40 grids in (+, −) space. In 13 

each simulation, 200 instances of forced obsessions were intermittently caused in the relief state 14 

because spontaneous obsession scarcely occurred at a low obsession rate. The simulation was 15 

judged to be obsession-reinforced if the choice probability of obsession became larger than the 16 

initial value. The initial values of variables were set as 𝜂𝑎𝑠
± (0) = 𝑞𝑎1(0) = 𝑠(0) = 0, 𝑞00(0) =17 

5, and 𝑞10(0) = −5. Each forced obsession was caused when 𝜂𝑎𝑠
± (𝑡) sufficiently approached 18 

zero in the relief state (𝜂𝑎𝑠
± (𝑡) < 0.001). 19 

 20 

Participants 21 

In total, 33 patients with OCD and 168 HCs participated in the behavioral task. Fifteen HCs were 22 

excluded for medical or experimental reasons, and the subsequent analysis was conducted in 33 23 
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OCD patients and 153 HCs. There were no significant differences in age, sex, or handedness 1 

(Supplementary Table 1). All OCD patients and 13 of the 153 HCs were recruited at Kyoto 2 

Prefectural University of Medicine (KPUM), whereas 140 of the 153 HCs were recruited at 3 

Advanced Telecommunications Research Institute International (ATR). The Medical Committee 4 

on Human Studies at KPUM and the Ethics Committee at ATR approved all procedures in this 5 

study. All participants gave written informed consent after receiving a complete description of 6 

the study. All methods were carried out following the approved guidelines and regulations. 7 

Trained, experienced clinical psychiatrists and psychologists assessed all participants. 8 

All patients were primarily diagnosed using the Structured Clinical Interview for DSM-9 

IV Axis I Disorders-Patient Edition (SCID)49. Exclusion criteria were 1) cardiac pacemaker or 10 

other metallic implants or artifacts; 2) significant disease, including neurological diseases, 11 

disorders of the pulmonary, cardiac, renal, hepatic, or endocrine systems, or metabolic disorders; 12 

3) prior psychosurgery; 4) psychotropic medication except for SRIs; 5) DSM-IV diagnosis of 13 

mental retardation and pervasive developmental disorders based on a clinical interview and 14 

psychosocial history; and 6) pregnancy. We excluded patients with current DSM-IV Axis I 15 

diagnosis of any significant psychiatric illness except OCD as much as possible, and only two 16 

patients with trichotillomania, one patient with a tic disorder, one patient with panic disorder, 17 

and one patient with bulimia nervosa were included as patients with comorbidities. The 18 

experienced clinical psychiatrists or psychologists applied the Yale-Brown Obsessive-19 

Compulsive Scale (Y-BOCS)21 for clinical evaluation of obsessive-compulsive symptoms in 20 

patients with OCD. Handedness was classified based on a modified 25-item version of the 21 

Edinburgh Handedness Inventory. 22 
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We divided OCD into two groups by medication status. Thirteen patients with OCD were 1 

drug-free for all types of psychotropic medication, and the remaining 20 patients were taking 2 

SRIs only. The SRI and imipramine equivalent doses20 are summarized in Supplementary Table 3 

2. OCD patients with higher SRI doses (higher than or equal to imipramine equivalent dose 150 4 

mg) were grouped into the OCDHighSRI group (n = 10) and those with lower SRI doses (less than 5 

imipramine equivalent dose 150 mg) or no psychotropic medications were grouped into OCDLow-6 

NoSRI (OCDLowSRI, n = 10; OCDNoSRI, n = 13). The threshold was determined by considering a 7 

meta-analysis of the SRI treatment19 and common clinical doses used in Japan. To evaluate the 8 

antidepressant effects of SRI, we compared the depressive symptoms evaluated by the HDRS22 9 

between OCDHighSRI and OCDLow-NoSRI patients. There was one missing value of the HDRS in the 10 

OCDHighSRI group. 11 

 12 

Behavioral task and statistical analysis 13 

The delayed feedback task was similar to the one in our previous research23, except for 14 

the presented stimuli. Participants chose one of the two options (abstract cues) displayed on the 15 

screen by pressing a left or right button in each trial within 1 s after an auditory cue (Figure 2a). 16 

Depending on the selected stimulus, monetary feedback with different outcomes (+10, +40, −10, 17 

or −40 yen) was displayed either immediately after the button press or three trials later (Figure 18 

2b and c). We did not offer monetary feedback for the first five trials because participants can 19 

learn the relationships between stimuli and outcomes or delays quickly. If participants pressed a 20 

button before the auditory cue or more than 1 s passed without any button press, −50 yen was 21 

displayed as a punishment. Such trials were considered error trials, and delayed outcomes were 22 

not considered. 23 
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At each trial, two abstract cues were displayed side by side on the screen (Figure 2a). We 1 

prepared 16 pairs (Figure 2b), counterbalancing the number of appearances of each stimulus. The 2 

16 pairs of stimuli were presented in pseudorandom order. Each pair was presented as the 3 

scheduled number of trials in each session: each of six pairs [+10(0) vs. +40(0); +10(3) vs. 4 

+40(3); −10(0) vs. −40(0); −10(3) vs. −40(3); +10(0) vs. +40(3); −10(0) vs. −40(3)] was 5 

presented in 10 trials during a single session, and each of 10 pairs [+40(0) vs. +40(3); +10(0) vs. 6 

+10(3); −10(0) vs. −10(3); −40(0) vs. −40(3); +10(3) vs. +40(0); −10(3) vs. −40(0); +10(0) vs. 7 

−10(0); +40(0) vs. −40(0); +10(3) vs. −10(3); +40(3) vs. −40(3)] was presented in five trials 8 

during a single session. Each participant performed 110 trials during a single session and six 9 

sessions in each experiment. About 28 min was required for participants to complete six 10 

sessions. At the beginning of each session, the session number was displayed on the screen for 11 

2.5 s. Before the task, each participant practiced the test session under the same task settings 12 

except for stimuli, and we confirmed that all participants understood the task set. 13 

The total outcome (except for punishments related to button press errors), reaction time, 14 

and the number of error trials were compared between the OCD and HC groups. Patients with 15 

OCD showed a significantly lower total monetary outcome compared with HCs [median 16 

(interquartile range): OCD patients, 2890 (1590–3600) yen; HCs, 4550 (3020–5950) yen; 17 

Brunner-Munzel test, statistic = 4.08, p = 0.0002], whereas there were no group differences in 18 

reaction time [median (interquartile range): OCD patients, 524.6 (487.1–565.4) ms; HCs, 522.6 19 

(475.3–575.9) ms; Brunner-Munzel test, p > 0.05)] and number of button press errors [median 20 

(interquartile range): OCD patients, 4 (2–9); HC, 4 (2–8); Brunner-Munzel test, p > 0.05). These 21 

results suggested impaired learning in OCD individuals compared with HCs. Based on our 22 

hypothesis of trace factors +/−, patients with OCD would show impaired learning in the stimuli 23 
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with delayed feedback. Therefore, the optimal choice rate of the representative four pairs of 1 

stimuli with the same delay and different magnitude [pairs with no delays: +40(0) vs. +10(0) and 2 

−10(0) vs. −40(0); pairs with delays: +40(3) vs. +10(3) and −10(3) vs. −40(3)] were compared 3 

among groups. A mixed-design two-way repeated-measures ANOVA with a within-participants 4 

factor of sessions (1–6 sessions) and a between-participants factor of groups (OCDLow-NoSRI 5 

patients, OCDHighSRI patients, and HCs) was conducted to clarify the between-group differences. 6 

Degrees of freedom were corrected using Chi-Muller’s epsilon because Mendoza’s multisample 7 

sphericity test indicated that the assumption of sphericity had been violated. Bonferroni-Holm–8 

corrected post-hoc comparisons were conducted to clarify the between-group differences. 9 

 10 

Model comparison and parameter estimation for the delayed feedback task 11 

We fitted the behavioral data with actor-critic learning with separate eligibility traces for positive 12 

and negative prediction errors. We defined 16 states for possible pairs of stimuli presented at 13 

each trial. Available actions at each state involved the choosing of alternative stimuli. To 14 

facilitate model-fitting in the face of limited experimental data from each participant, we used 15 

regularizing priors that favored realistic values and maximum a posteriori estimation rather than 16 

maximum likelihood estimation24. The learning rate α and trace factor  were constrained to the 17 

range of 0 ≤ α ≤ 0.95 and 0 ≤  ≤ 0.95 with a uniform prior. The exploration-exploitation degree 18 

 was constrained to the range of 0 ≤  ≤ 100 with a gamma (2,3) prior distribution that favored 19 

relatively lower values. We fixed the discount factor γ = 0, because the term of the next state 20 

value was just noise in our delayed feedback task in which the state of each trial was randomly 21 

selected. We optimized parameters by minimizing the negative log posterior of the data with 22 

different parameter settings using the hyperopt package50. Likelihood ratio tests to assess the 23 
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contribution of the additional parameter in our model (four parameters: α, , +, −) compared 1 

with the standard actor-critic learning model (three parameters: α, , ) showed that the 2 

additional parameter was justified in 128 of 186 participants (X2 test with one degree of freedom, 3 

p < 0.05). Because our target model was validated in behavioral data, we applied the separate 4 

eligibility trace model in the substantive analysis. 5 

We evaluated the performance of parameter estimation in actor-critic learning with 6 

separate eligibility traces. We created 200 simulation data points using a model with the 7 

following parameters: α, 0.1  0.05 (mean  SD); , 1  0.2; + and −, randomly selected within 8 

0.01–0.95. The parameter estimation was quite accurate51 (Supplementary Figure 2). 9 

Specifically, Pearson’s r and the mean absolute error between the true and estimated + or − 10 

were 0.99 and 0.03, respectively (Supplementary Figure 2). 11 

We compared the +/− distribution in our model among three groups (OCDLow-NoSRI 12 

patients, OCDHighSRI patients, and HCs) using PERMANOVA with the ADNOIS function and 13 

10,000 permutations using the Euclidean distance implemented in the statistical package R52. 14 

The multivariate homogeneity of group dispersions was confirmed with the betadisper function 15 

with 10,000 permutations in R52. The learning rate α and inverse temperature  were compared 16 

using the Kruskal-Wallis test. To further investigate relationships between clinical characteristics 17 

and estimated parameters in the HC group, we conducted clustering analysis using HDBSCAN25. 18 

We detected two clusters (balanced cluster, n = 83; imbalanced cluster, n = 59; the remaining 11 19 

HCs were not clustered) and evaluated their obsessive-compulsive trait using the five PI 20 

subscales: “Checking”, “Dirt”, “Doubt”, “Impulse”, “Precision”26. In addition, the propensity to 21 

adhere to fine-grained details was evaluated using the Attention to Detail subscale of AQ27. 22 

There were 15 missing values in PI (n = 127) and 1 missing value in AQ (n = 141). The 23 
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therapeutic effects of SRIs were evaluated by the Spearman’s rank correlation between the SRI 1 

dose and the imbalanced settings of  (+–−). 2 

 3 

Imaging data acquisition, preprocessing, and statistical analysis 4 

rs-fMRI data were collected using three different MRI scanners: 49 OCDNoSRI participants and 5 

53 HCs at Kajiicho Medical Imaging Center (dataset A), 10 OCDNoSRI participants and 18 HCs at 6 

Kyoto Prefectural University of Medicine (dataset B) for replication of the findings of dataset A, 7 

and 20 HCs with the delayed feedback task (10 HCs for the imbalanced cluster and the 8 

remaining 10 HCs for the balanced cluster) in ATR (dataset C). There was no overlap of 9 

participants among datasets. All demographic distributions were matched between groups 10 

(dataset A, Supplementary Table 4; dataset B, Supplementary Table 5; dataset C, Supplementary 11 

Table 6). Some of the participants in dataset A and B were included in our previous studies 12 

conducted for a different purpose using a different method14, 15, 28, 29. All fMRI imaging protocols 13 

using gradient EPI sequences are summarized in Supplementary Table 3. High-resolution T1-14 

weighted structural images were also acquired. 15 

Preprocessing of rs-fMRI data was conducted using fmriprep_ciftify 1.3.0.post2-2.3.053, 
16 

54. Briefly, typical preprocessing steps such as slice timing correction, motion correction, and 17 

spatial normalization into Montreal Neurological Institute space were conducted using fmriprep. 18 

We then converted the data from the volumetric NIfTI format to the surface-based CIFTI format 19 

(https://www.nitrc.org/projects/cifti/) using ciftify54. To remove artifacts and increase the 20 

signal/noise ratio, the time course of the rs-fMRI data was detrended, bandpass-filtered (0.01–21 

0.08 Hz), and linearly regressed out of nuisance variables (the temporal fluctuations of the entire 22 

brain and six head motion parameters, their derivatives, and six principal components of 23 
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anatomical CompCor55). With respect to motion artifacts, framewise displacement (FD) was not 1 

significantly different between groups in all datasets [median (interquartile range); dataset A: 2 

OCD patients, 0.082 (0.070–0.097) mm; HCs, 0.087 (0.067–0.10) mm; Brunner-Munzel test, p > 3 

0.05; dataset B: OCD patients, 0.095 (0.067–0.12) mm; HCs, 0.079 (0.062–0.094) mm; Brunner-4 

Munzel test, p > 0.05; dataset C: balanced cluster, 0.13 (0.11–0.18) mm; imbalanced cluster, 0.11 5 

(0.094–0.14) mm; Brunner-Munzel test, p > 0.05]. The first six functional scans were discarded 6 

to allow magnetization to reach equilibrium. For each participant, mean time series were 7 

extracted from 360 cortical and 358 subcortical parcels using CAB-NP31, which is the 8 

comprehensive whole-brain solution for large-scale functional networks based on the cortical 9 

parcellation developed by Glasser et al.56 (Human Connectome Project Multi-Modal 10 

Parcellation). Pearson correlation coefficients were calculated between each pair of parcels and 11 

transformed to Fisher’s Z scores to obtain the FC matrix. 12 

To evaluate the neural substrate of nonmedicated patients with OCD hypothetically 13 

related to + > −, we compared the FC matrices between 49 OCDNoSRI patients and 53 HCs 14 

(dataset A) using NBS32. We chose NBS because it facilitates the detection of a subnetwork 15 

related to the condition of interest while controlling the family-wise error rate. Briefly, NBS was 16 

performed in the following two steps. First, the between-group comparison for every possible FC 17 

was conducted and thresholded at t = 3.87 (corresponding to p = 0.0001) by considering the FD 18 

as a nuisance variable. We detected the thresholded subnetworks (networks of nodes 19 

interconnected by significant FCs), and their network size was calculated. Second, the 20 

significance of subnetworks was tested using 10,000 random permutations of groups, which 21 

determined the null distribution of the largest subnetwork size. Only subnetworks whose network 22 

size exceeded the estimated family-wise error-corrected p-value 0.05 were identified as the 23 
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network that was significantly different between OCDNoSRI patients and HCs. The detected 1 

subnetwork was visualized using BrainNet Viewer57. To confirm the robustness of the OCD 2 

network, we compared the mean FC of the detected OCD network between 10 OCDNoSRI patients 3 

and 18 HCs in the entirely independent dataset (dataset B) using the Brunner-Munzel test. To 4 

further explore whether the imbalanced (+ > −) HC cluster showed OCD-like characteristics 5 

also regarding a functional network, we compared every FC of the OCD network between 10 6 

HCs each in the imbalanced and balanced clusters (dataset C) detected in our delayed feedback 7 

task using the Brunner-Munzel test. 8 

  9 
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Data Availability 1 

The patients’ data supporting the conclusion of this paper are not publicly available due to them 2 

containing information that could compromise research participant privacy or consent. The 3 

theoretical derivation of our computational model is in the Supplementary Note along with the 4 

MATLAB source code. 5 
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