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Abstract

Public databases contain a planetary collection of nucleic acid sequences, but their systematic exploration has been
inhibited by a lack of efficient methods for searching this corpus, now exceeding multiple petabases and growing
exponentially [1, 2]. We developed a cloud computing infrastructure, Serratus, to enable ultra-high throughput
sequence alignment at the petabase scale. We searched 5.7 million biologically diverse samples (10.2 petabases)
for the hallmark gene RNA dependent RNA polymerase, identifying well over 105 novel RNA viruses and thereby
expanding the number of known species by roughly an order of magnitude. We characterised novel viruses related
to coronaviruses and to hepatitis δ virus, respectively and explored their environmental reservoirs. To catalyse a
new era of viral discovery, we established a free and comprehensive database of these data and tools. Expanding
the known sequence diversity of viruses can reveal the evolutionary origins of emerging pathogens and improve
pathogen surveillance for the anticipation and mitigation of future pandemics.
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Introduction

Viral zoonotic disease has had a major impact on human health over the past century despite dramatic advances in
medical science, notably the 1918 Spanish influenza, AIDS, SARS, Ebola, and COVID-19. There are an estimated
3×105 mammalian virus species [3] from which infectious diseases in humans may arise [4], of which only a fraction is
currently known. Global survey and monitoring of virus diversity is required for improved prediction and prevention
of future epidemics; this effort is a focus of international consortia and hundreds of research laboratories worldwide
[5, 6].

Virus discovery can be aided through re-analysis of the petabases of high-throughput sequencing data available in
public databases such as the Sequence Read Archive (SRA) [1, 7–12]. This data spans millions of ecologically diverse
biological samples, many of which capture viral transcripts incidental to the goals of the original studies [13]. To
catalyse global virus discovery, we developed the Serratus cloud computing infrastructure for ultra-high throughput
sequence alignment.

We screened 5.7 million libraries comprising 10.2 petabases (10.2×1015 bases) of sequencing data, and report
883,502 RNA-dependent RNA polymerase (RdRP)-containing contigs which cluster at 90% amino-acid identity
into 140,208 species-like operational taxonomic units (sOTUs), of which 132,260 were novel, i.e. >10% diverged
from a previously known RdRP. We assembled 11,120 runs identified in this screen, recovering coronavirus and
corona-like virus contigs including sequences from nine novel sOTUs. To demonstrate the broader utility of our
approach, we also report 53 novel delta- and delta-like viruses related to the human pathogen hepatitis δ virus, and
252 representatives of a recently characterised family of huge bacteriophages.

Virus discovery is a fundamental step in preparing for the next pandemic. We lay the foundations for years of
future research by enabling direct access to hundreds of thousands of virus sequences, captured from the collective
efforts of over a decade of high-throughput sequencing studies. A free, interactive repository of Serratus data is
available at https://serratus.io.

Results

Accessing the planetary virome with petabase-scale alignment

Serratus is a free, open-source cloud-computing infrastructure optimised to enable petabase-scale sequence align-
ment against a set of query sequences. Using Serratus, we aligned in excess of one million short-read sequencing
datasets per day for under 1 US cent per dataset (Extended Figure 1). We used a widely available commercial
computing service to deploy up to 22,250 virtual CPUs simultaneously (see Methods), leveraging SRA data mirrored
onto cloud platforms as part of the NIH STRIDES initiative [14].

Our search space spans data deposited over 13 years from every continent and ocean, and all kingdoms of life
(Figure 1). We applied Serratus in two of many possible configurations. First, to identify libraries containing known
or closely related viruses we searched 3,837,755 (ca. May 2020) public RNA-seq, meta-genome, meta-transcriptome,
and meta-virome datasets (termed sequencing runs [1]) against a nucleotide pangenome of all known coronavirus
sequences plus all vertebrate RefSeq viruses (Extended Figure 3). We then aligned 5,686,715 runs (ca. January
2021) against known viral RdRP amino acid sequences, completing this search within 11 days (Figure 1a and
Methods).

Previous approaches for identifying sequences across the entire SRA rely on pre-computed indexes [15–17]
requiring exact substring or hash-based matches which limit sensitivity to diverged sequences (Extended Figure 1f).
Pre-assembled reads (e.g. NCBI Transcriptome Shotgun Assembly database [2]) enable efficient alignment-based
searches, [8], but are currently available only for a small fraction of the SRA. Serratus aligns a query of up to
hundreds of Mb against unassembled libraries, achieving much greater sensitivity to diverged viruses compared to
substring (k-mer) indexes while using far less computational resources than assembly (Figure 1g, and Methods).

A sketch of viral RNA dependent RNA polymerase

Viral RdRP is a hallmark gene of RNA viruses which lack a DNA stage of replication [18]. We identified RdRP
by a well-conserved amino acid sub-sequence we call the “palmprint”. Palmprints are delineated by three essential
motifs which together form the catalytic core in the RdRP structure (Figure 2 and [19]). We constructed species-like
operational taxonomic units (sOTUs) by clustering palmprints at a threshold of 90% amino-acid identity, chosen
to approximate taxonomic species [19].

3,376,880 (59.38%) sequencing runs contained ≥1 reads mapping to the RdRP query (E-value ≤1e-4). We
assembled aligned reads from each library (and their mate-pairs when available), yielding 4,261,616 contigs. 881,167
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Figure 1: Searching the planetary virome
a Total bases searched from the 5,686,715 SRA sequencing runs analysed in the viral RdRP search grouped by
sample taxonomy, where available (see Extended Figures 1 and 3, and Extended Table 1). 8,871/15,016 (59%) of
known RdRP species-like operational taxonomic units (sOTUs) were observed in the SRA, and 131,957 unique and
novel RdRP sOTUs were identified (see Extended Figure 2). sOTUs identified in multiple taxonomic groups are
counted in each group separately, numbers shown indicate the number of novel sOTUs in each group. b Release
dates of the runs included in the analysis reflecting the growth rate of available data. c Sample locations for 635,656
RdRP-containing contigs (27.8% of samples lacked geographic metadata). The high density of RdRP seen in North
America, Western Europe and Eastern Asia reflects the substantial acquisition bias for samples originating from
these regions. Interactive map is available at https://serratus.io/geo.

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2021. ; https://doi.org/10.1101/2020.08.07.241729doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.07.241729
http://creativecommons.org/licenses/by/4.0/


Figure 2: RNA dependent RNA Polymerase in the Sequence Read Archive
a The RdRP palmprint is the protein sequence spanning three well-conserved sequence motifs (A, B, and C), includ-
ing intervening variable regions, exemplified within full-length poliovirus RdRP structure with essential aspartic
acid residues(*) (pdb: 1RA6 [20]). Conservation was calculated from RdRP alignment in [21], trimmed to the
poliovirus sequence; motif sequence logos are shown below. b Per-phylum histogram of amino acid identity of novel
species-like operational taxonomic units (sOTUs) aligned to the NCBI non-redundant protein database. inlay
Preston plot of palmprint abundances indicates that singleton palmprints (i.e., observed in exactly one run) occur
within 95% confidence intervals of the value predicted by extrapolation from high-abundance palmprints (linear
regression applied to log-transformed data), and this distribution is consistent through time (Extended Figure 2).

(20.7%) contained a high-confidence palmprint identified by Palmscan (false discovery rate = 0.001, further discussed
in a companion manuscript [19]), representing 260,808 unique palmprints. Applying Palmscan to reference sequence
databases[2, 21, 22] we obtained 45,824 unique palmprints, which clustered into 15,016 known sOTUs. If a newly
acquired palmprint aligned to a known palmprint at ≥90% identity, it was assigned membership to that reference
sOTU, otherwise it was designated novel. We clustered novel palmprints at 90% identity, obtaining 131,957 novel
sOTUs, representing an increase of known RNA viruses by a factor ~9.8. Clustering novel palmprints at genus-like
75% and family-like 40% thresholds yielded 78,485 and 3,599 novel OTUs, representing increases of 8.0x and 1.9x,
respectively (Figure 2b).

We extracted host, geospatial, and temporal metadata for each biological sample when available (Figure 1c),
noting that the majority (88%) of novel RdRP sOTUs were observed from metagenomic or environmental runs,
where accurate host inference is challenging. Mapping observations of virus marker genes across time and space
suggests ecological niches for these viruses, while improved characterisation of sequence diversity can improve PCR
primer design for in situ virus identification.

We estimate that ~1% of sOTUs are endogenous virus elements (EVEs), i.e. viral RdRPs which have serendip-
itously reverse-transcribed into a host germline. We did not attempt to systematically distinguish EVEs from
virus RdRPs, noting that EVEs with intact catalytic motifs are likely to be recent insertions which can serve as a
representative sequence for related exogenous viruses.

Most (60.5%) recovered palmprints were found in exactly one run (singletons), and are observed within the
expected frequency range predicted by extrapolating from more abundant sequences (Figure 2b). The abundance
distribution of distinct palmprints is consistent with log-log-linear for each year from 2015 to 2020 (Extended
Figure 2e), and over time, singletons are confirmed by subsequent runs at an approximately constant rate (Extended
Figure 2g). The majority of novel viruses will be singletons until the diversity represented by the search query and
the fraction of the planetary virome sampled in the SRA both approach saturation. Extrapolating one year forward,
when the SRA is expected to double in size, we project 430,000 (95% CI [330K, 561K]) additional unique palmprints
will be identified by running Serratus with its current query (Figure 2b).

The total number of virus species is estimated to be 108 to 1012 [23], thus our expansion captured at most 0.1%
of the global virome. However, if exponential data growth continues, we are at the cusp of identifying a significant
fraction of Earth’s total genetic diversity with tools such as Serratus.
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Expanding the scope of known Coronaviridae

The SARS-CoV-2 pandemic has significantly impacted human society. We further exemplify the potential of
Serratus for virus discovery with Coronaviridae (CoV), including a recently proposed sub-family [24] which contains
a CoV-like virus, Microhyla alphaletovirus 1 (MLeV), in the frog Microhyla fissipes, and Pacific salmon nidovirus
(PsNV) described in the endangered Oncorhynchus tshawytscha [25].

First, we identified 52,772 runs containing ≥ 10 CoV-aligned reads or ≥ 2 CoV k-mers (32-mer, [17]). These
runs were de novo assembled with a new version of synteny-informed SPAdes called coronaSPAdes (discussed in a
companion manuscript [26]). This yielded 11,120 identifiable CoV contigs which we annotated for a comprehensive
assemblage of Coronaviridae in the SRA (see Methods for discussion). With this training data we defined a scoring
function to predict subsequent success of assembly (Extended Figure 3c).

CoV and neighbouring palmprints comprise 70 sOTUs, 44 of which are described in public databases. 17 CoV
sOTUs contained partial RdRP (inclusive of full palmprint) from an amplicon-based virus discovery study not yet
publicly deposited [27]. The remaining 9 sOTUs are novel viruses, with protein domains consistent with a CoV or
CoV-like genome organisation (Extended Figure 4).

We operationally designate MLeV, PsNV and the nine novel viruses broadly as group E, noting that all were
found in samples from non-mammalian aquatic vertebrates (Figure 3). Notably, Ambystoma mexicanum (axolotl)
nidovirus (AmexNV) was assembled in 18 runs, 11 of which yielded common ~19 kb contigs. Easing the criteria
of requiring an RdRP match in a contig, 28/44 (63.6%) of the runs from the associated studies were AmexNV
positive [28–30]. Consistent assembly breakpoints in AmexNV, PsNV and similar viruses suggests that the viral
genomes of this clade of CoV-like viruses are organised in at least two segments, one containing ORF1ab with
RdRP, and a shorter segment containing a lamin-associated domain protein, spike and N’ accessory genes (Figure
3). An assembly gap with common breakpoints is present in the published PsNV genome [25]. Together these
seven monophyletic species likely represent a distinct clade of segmented CoV-like nidoviruses, although molecular
validation of this hypothesis is warranted.

In addition to identifying genetic diversity within CoV, we cross-referenced CoV+ library meta-data to identify
possible zoonoses and vectors of transmission. Discordant libraries, one in which a CoV is identified and the viral
expected host [31] does not match the sequencing library source taxa, were rare, accounting for only 0.92% of cases
(Extended Table 1e).

In data from a 2010 virome sequencing study of children with febrile illness [32], we identified sequencing runs
from two children, one febrile (SRR057949) and one afebrile (SRR057961) with reads mapping to the β-CoV, Murine
Hepatitis Virus (MHV). We assembled a complete 31.3 kb MHV genome from each replicate taken from the febrile
child and a partial genome from the afebrile child. MHV can infect human cells in vitro [33], but clinical infection
may be rare and missed by targeted diagnostic assays. Infectious agents are the leading cause of pyrexia of unknown
origin (PUO) in children and immunocompromised adults [34]. This highlights the need for rapid and unbiased
metagenomic sequence diagnostics, technically akin to Serratus. This would help resolve the etiology of a sub-set
of PUO and serve as an early-warning surveillance system for zoonoses, enabling more efficacious public-health
intervention.

An important limitation for these analyses is that the nucleic acid reads do not prove viral infection has occurred
in the nominal host species. For example, we identified five libraries in which a porcine, avian or bat coronavirus
was found in plant samples. The parsimonious explanation is that CoV was present in faeces/fertiliser originating
from a mammalian or avian host applied to these plants. However, this exemplifies a merit of unbiased search in
identifying transmission vectors and monitoring the geo-temporal boundaries of a virus.

Rapid expansion into the viral unknowns

The global mortality from viral hepatitis exceeds that of HIV/AIDS, tuberculosis or malaria [35]. Hepatitis δ virus
(HDV) has a small circular RNA genome (~1.7 knt) which folds into a rod-like shape and encodes three genes: a
delta antigen protein, and two self-cleaving ribozymes (drbz) [36].

Prior to 2018, HDV was the sole known member of its genus; 13 drbz-containing members have since been
characterised [37–42], and recently a second class of ribozyme (known as hammerhead or hhrbz) characteristic of
plant viroids was identified in delta-like viruses we refer to as epsilon viruses [43]. By sequence search for the delta
antigen protein and ribozymes, we identified 14 deltaviruses, 39 epsilonviruses and 311 enigmatic sequences with
deltavirus-like synteny we term zeta viruses (Figure 4, Extended Figure 5). The evolutionary histories of these
mammalian deltaviruses are explored further in a companion paper [41].

The zeta virus circular genomes are highly compressed, ranging from 324-789 nt and predicted to fold into rod-
like structures. They contain a hhrbz in each orientation and encode two ORFs, one sense and one anti-sense. Both

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2021. ; https://doi.org/10.1101/2020.08.07.241729doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.07.241729
http://creativecommons.org/licenses/by/4.0/


Figure 3: Expanding Coronaviridae
a Phylogram for group E sequences. Six viruses were similar to PsNV in Ambystoma mexicanum (axolotl;
AmexNV), Puntigrus tetrazona (tiger barb; PtetNV), Hippocampus kuda (seahorse; HkudNV), Syngnathus ty-
phle (broad-nosed pipefish; StypNV), Takifugu pardalis (fugu fish; TparNV), and the Acanthemblemaria sp.
(blenny; AcaNV). More distant members identified were in Hypomesus transpacificus (the endangered delta smelt;
HtraNV), Silurus sp. (catfish) SilNV, and Monopterus albus (asian swamp eel) MalbNV. b Unrooted phylogram
for Coronaviridae annotated with genera (Greek letters) and group E CoV-like nidoviruses (see also Extended Fig-
ure 4). Maximum likelihood tree generated by clustering the RdRp amino acid sequences at 97% identity to show
~sub-species variability. c Genome structure of AmexNV and the contigs recovered from group E CoV-like viruses
annotated with hidden-Markov model matches. AmexNV contigs contain an identical 129 nt trailing sequence
(Tr). All the putatively segmented CoV-like are monophyletic with PsNV. A gap in the PsNV reference sequence
[25] is shown with circles, overlapping the common contig ends seen in these viruses.
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Figure 4: Expanding deltaviruses and hugephages
a Genome structure for the Marmota monax Delta virus (MmonDV) and a DV-like genome detected in an envi-
ronmental dataset each containing a negative-sense delta-antigen (δAg) ORF; two delta ribozymes (dvrbz); and
characteristic rod-like folding, where each line shows the predicted base-pairing within the RNA genome, coloured
by base-pairing confidence score (p-num) [44]. b Similar genome structure for the Sulabanus spp. Epsilon virus-like
(SulaEV) and an EV-like genome from an environmental dataset each containing a negative-sense epsilon-antigen
(εAg) ORF; two hammerhead ribozymes (hhrbz); and rod-like folding. c Example of the compact genome structure
of a Zeta virus-like from an environmental dataset containing two predicted zeta-antigen (ζAg+/-, protein align-
ment is shown in the outer circles) ORFs without stop codons; two hhrbz overlapping with the ORFs; and rod-like
folding. Further novel genomes are shown in Extended Figures 5 and 6. d Maximum-likelihood phylogenetic
tree of DVs derived from a delta-antigen protein alignment with bootstrap values. Two divergent environmental
DV could not yet be placed. e Tree showing huge phage clade expansion. Black dots indicate branches with
bootstrap values >90. Outer ring indicates genome or genome fragment length: gray are sequences from [45] and
reference sequences, shadings indicate previously defined clades of phages with very large genomes (200-735 kbp).
The Kabirphages (light purple) are shown in expanded view in Extended Figure 7.

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2021. ; https://doi.org/10.1101/2020.08.07.241729doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.07.241729
http://creativecommons.org/licenses/by/4.0/


ORFs generally lack stop codons and encompass the entire genome, potentially producing an endless tandem-repeat
of antigen. The atypical coiled-coil domain of the HDV antigen [46] is conserved in the antigens of new delta and
epsilon viruses, whereas epsilon and zeta genomes show analogous hhrbzs (Extended Figure 6), supporting that
these sequences may share common ancestry. These abundant elements may help to solve a long-standing question
about the origins of circular RNA subviral agents in higher eukaryotes (Extended Figure 6), historically regarded
as molecular fossils of a prebiotic RNA world [47]

To evaluate the feasibility of applying Serratus in the context of microbiome research, we sought to locate
bacteriophages related to recently reported huge phages [45], searching for terminase amino acid sequences. Targeted
assembly of 287 high-scoring runs returned 252 terminase-containing contigs ≥140 kbp. Phylogenetics of these
sequences resolved new groups of phages with large genomes (Figure 4e). While most phages were from a single
animal genus, we identified closely related phages crossing animal orders, including related phages in a human from
Bangladesh (ERR866585) and groups of cats (PRJEB9357) and dogs (PRJEB34360) from England, sampled 5
years apart. Similarly, we recovered two 554 kbp Lak megaphage genomes (among the largest animal microbiome
phages reported to date) that are extremely closely related to sequences previously reported from pigs, baboons and
humans (Extrended Figure 7), [48]. These two genomes were circularised and manually curated to completion. The
large carrying capacity of such phages and broad distribution underlines their potential for extensive lateral gene
transfer amongst animal microbiomes and modification of host bacterial function. The newly-recovered sequences
substantially expand and augment the inventory of phages with genomes whose length range overlaps with those of
bacteria.

Discussion

Since the completion of the the human genome, growth of DNA sequencing databases has outpaced Moore’s Law
[49]. Serratus provides rapid and focused access to genomic sequences captured over more than a decade by the
global research community which would otherwise be inaccessible in practice. This work and further extensions
of petabase scale genomics [16, 17, 50] are shaping a new era in computational biology, enabling expansive gene
discovery, pathogen surveillance, and pangemomic evolutionary analyses.

Optimal translation of such massive datasets into meaningful biomedical advances requires free and open col-
laboration amongst scientists [51, 52]. The current pandemic underscores the need for prompt, unrestricted and
transparent data sharing. With these goals in mind, we deposited 7.3 terabytes of virus alignments and assemblies
into an open-access database which can be explored via a graphical web interface at https://serratus.io or
programatically through the tantalus R package and its PostgreSQL interface.

The “metagenomics revolution“ of virus discovery is accelerating [22, 53]. Innovative fields such as high-
throughput viromics [54] can leverage vast collections of virus sequences to inform policies that predict and mitigate
emerging pandemics [55, 56]. Combining ecoinformatics with virus, host, and geotemporal metadata offers a proof
of concept for a global pathogen surveillance network, arising as a byproduct of centralised and open data sharing.

Human population growth and encroachment on animal habitats is bringing more species into proximity, leading
to increased rate of zoonosis [4] and accelerating the Anthropocene mass extinction [57, 58]. Serratus enhances
our capability to chronicle the full genetic diversity of our planet’s diminishing biosphere. The need to invest in
collection and curation of biologically diverse samples with emphasis on geographically under-represented regions
has never been more pressing. If not for the conservation of endangered species, then to better conserve our own.
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1 Materials and Methods

1.1 Serratus alignment architecture

Serratus (https://github.com/ababaian/serratus) is an open-source cloud-infrastructure designed for ultra-
high throughput sequence alignment against a query sequence or pangenome (Extended Figure 1). Serratus com-
pute costs are dependent on search parameters (expanded discussion available: https://github.com/ababaian/

serratus/wiki/pangenome_design). The nucleotide vertebrate viral pangenome search (bowtie2, database size:
79.8 Mb) reached processing rates of 1.29 million SRA runs in 24-hours at a cost of $0.0062 US dollars per dataset
(Extended Figure 1). The translated-nucleotide RdRP search (DIAMOND, database size: 7.1 Mb) reached processing
rates exceeding 0.5 million SRA runs in 12-hours at a cost of $0.0042 per dataset. All 5,686,715 runs analysed in
the RdRP search were completed within 11 days for a total cost of $23,980 or $̃2,350 per petabase. For a detailed
breakdown of Serratus project costs and recommendations for managing cloud-computing costs, see Serratus wiki:
https://github.com/ababaian/serratus/wiki/budget.

1.1.1 Computing cluster architecture

The processing of each sequencing library is split into three modules dl (download), align, and merge. The
dl module acquires compressed data (.sra format) via prefetch, from the Amazon Web Services (AWS) Simple
Storage Service (S3) mirror of the Sequence Read Archive (SRA), decompresses to FASTQ with fastq-dump, and
splits the data into chunks of 1 million reads or read-pairs (fq-blocks) into a temporary S3 cache bucket. To
mitigate excessive disk usage caused by a few large datasets, a total limit of 100 million reads per dataset was
imposed. The align module reads individual fq-blocks and aligns to an indexed database of user-provided query
sequences using either bowtie2 (v2.3.4.1,--very-sensitive-local) [59] for nucleotide search, or DIAMOND (v2.0.6 -
development version, --mmap-target-index --target-indexed --masking 0 --mid-sensitive -s 1 -c1 -p1

-k1 -b 0.75 ) [60] for translated-protein search. Finally, the merge module concatenates the aligned blocks into a
single output file (.bam for nucleotide, or .pro for protein) and generates alignment statistics with a Python script
(see Summarizer below).

1.1.2 Computing resource allocation

Each component is launched from a separate AWS autoscaling group with its own launch template, allowing the
user to tailor instance requirements per task. This enabled us to minimise the use of costly block storage during
compute-bound tasks such as alignment. We used the following Spot instance types; dl: 250GB SSD block storage,
8vCPUs, 32GB RAM (r5.xlarge) ~1300 instances; align: 10GB SSD block storage, 8vCPUs, 8GB RAM (c5.xlarge)
~4,300 instances; merge: 150GB SSD block storage, 4vCPUs, 4GB RAM (c5.large) ~60 instances. Users should
note that it may be necessary to submit a service ticket to access more than the default 20 EC2 instance limit.

AWS Elastic Compute Cloud (EC2) instances have higher network bandwidth (up to 1.25 GB/s) than block
storage bandwidth (250 MB/s). To exploit this, we used S3 buckets as a data buffering and streaming sys-
tem to transfer data between instances following methods developed in a previous cloud architecture (https:
//github.com/FredHutch/sra-pipeline). This, combined with splitting of FASTQ files into individual blocks,
effectively eliminated file input/output (i/o) as a bottleneck, since the available i/o is multiplied per running instance
(conceptually analogous to a RAID0 configuration or a Hadoop distributed filesystem [61].

Using S3 as a buffer also allowed us to decouple the input and output of each module. S3 storage is cheap
enough that in the event of unexpected issues (e.g., exceeding EC2 quotas) we could resolve system problems in
realtime and resume data processing. For example, shutting down the align modules to hotfix a genome indexing
problem without having to re-run the dl modules, or if an alignment instance is killed by a Spot termination, only
that block needs to be reprocessed instead of the entire sequencing run.

1.1.3 Work queue and scheduling

The Serratus scheduler node controls the number of desired instances to be created for each component of the
workflow, based on the available work queue. We implemented a pull-based work queue. Upon boot-up each
instance launches a number of worker threads equal to the number of CPU available. Each worker independently
manages itself via a boot script, and queries the scheduler for available tasks. Upon completion of the task, the
worker updates the scheduler of the result: success, or fail, and queries for a new task. Under ideal conditions, this
allows for a worst-case response rate in the hundreds of milliseconds, keeping cluster throughput high. Each task
typically lasts several minutes depending on the pangenome.

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2021. ; https://doi.org/10.1101/2020.08.07.241729doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.07.241729
http://creativecommons.org/licenses/by/4.0/


The scheduler itself was implemented using Postgres (for persistence and concurrency) and Flask (to pool
connections and translate REST queries into SQL). The Flask layer allowed us to scale the cluster past the number
of simultaneous sessions manageable by a single Postgres instance. The work queue can also be managed manually
by the user, to perform operations such as re-attempt downloading of an SRA accession upon a failure or to pause
an operation while debugging. Up to 300,000 SRA jobs can be processed in the work queue per batch process.

The system is designed to be fully self-scaling. An ”autoscaling controller” was implemented which scales-in or
scales-out the desired number of instances per task every five minutes based on the work queue. As a backstop,
when all workers on an instance fail to receive work instructions from the scheduler, the instance self shuts-down.
Finally a ”job cleaner” component checks the active jobs against currently running instances. If an instance has
disappeared due to SPOT termination or manual shutdown, it resets the job allowing it to be processed up by the
next available instance.

To monitor cluster performance in real-time, we used Prometheus and node exporter to retrieve CPU, disk,
memory, and networking statistics from each instance, postgres exporter to expose performance information
about the work queue, and Python exporter to export information from the Flask server. This allowed us to
identify and diagnose performance problems within minutes to avoid costly overruns.

1.1.4 Generating viral summary reports

We define a viral pangenome as the entire collection of reference sequences belonging to a taxonomic viral family,
which may contain both full-length genomes and sequence fragments such as those obtained by RdRP amplicon
sequencing.

We developed a Summarizer module written in Python to provide a compact, human- and machine-readable syn-
opsis of the alignments generated for each SRA dataset. The method was implemented in serratus summarizer.py

for nucleotide alignment and serratus psummarizer.py for amino acid alignments. Reports generated by the
Summarizer are text files with three sections described in detail online (https://github.com/ababaian/serratus/
wiki/.summary-Reports). In brief, each contains a header section with alignment meta-data and one-line sum-
maries for each virus family pangenome, reference sequence and gene respectively, with gene summaries provided
for protein alignments only.

For each summary line we include descriptive statistics gathered from the alignment data such as the number
of aligned reads, estimated read depth, mean alignment identity, and coverage, i.e. the distribution of reads across
each reference sequence or pangenome. Coverage is measured by dividing a reference sequence into 25 equal bins
and depicted as an ASCII text string of 25 symbols, one per bin; for example oaooomoUU:oWWUUWOWamWAAUW. Each
symbol represents blog2(n + 1)c where n is the number of reads aligned to a bin in this order: .:uwaomUWAOM^.
Thus, ‘ ’ indicates no reads, ‘.’ exactly one read, ‘:’ two reads, ‘u’ 3-4 reads, ‘w’ 5-7 reads and so on; ‘^’ represents
> 213 = 8, 192 reads in the bin. For a pangenome, alignments to its reference sequences are projected onto a
corresponding set of 25 bins. For a complete genome, the projected pangenome bin number 1, 2, . . . , 25 is the same
as the reference sequence bin number. For a fragment, a bin is projected onto the pangenome bin implied by the
alignment of the fragment to a complete genome. For example, if the start of a fragment aligns half way into a
complete genome, bin 1 of the fragment is projected to bin b 252 c = 12 of the pangenome. The introduction of
pangenome bins was motivated by the observation that bowtie2 selects an alignment at random when there are
two or more top-scoring alignments, which tends to distribute coverage over several reference sequences when a
single viral genome is present in the reads. Coverage of a single reference genome may therefore be fragmented,
and binning to a pangenome better assesses coverage over a putative viral genome in the reads while retaining
pangenome sequence diversity for detection.

1.1.5 Identification of viral families within a sequencing dataset

The Summarizer implements a binary classifier predicting the presence or absence of each virus family in the query.
For a given family F , the classifier reports a score in the range [0,100] with the goal of assigning a high score to
a dataset if it contains F and a low score if it does not. Setting a threshold on the score divides datasets into
disjoint subsets representing predicted positive and negative detections of family F . The choice of threshold implies
a trade-off between false positives and false negatives. Sorting by decreasing score ranks datasets in decreasing
order of confidence that F is present in the reads.

Naively, a natural measure of the presence of a virus family is the number of alignments to its reference sequences.
However, alignments may be induced by non-homologous sequence similarity, for example low-complexity sequence.
The score for a family was therefore designed to reflect the overall coverage of a pangenome because coverage across
all or most of a pangenome is more likely to reflect true homology, i.e. the presence of a related virus. Ideally,
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coverage would be measured individually for each base in the reference sequence, but this could add undesirable
overhead in compute time and memory for a process which is executed in the Linux alignment pipe (FASTQ
decompression → aligner → Summarizer → alignment file compression). Coverage was therefore measured by
binning as described above, which can be implemented with minimal overhead.

A virus that is present in the reads with coverage too low to enable an assembly may have less practical value
than an assembled genome. Also, genomes with lower identity to previously known sequences will tend to contain
more novel biological information than genomes with high identity and will tend to have fewer alignments highly
diverged segments. With these considerations in mind, the classifier was designed to give higher scores when
coverage is high, read depth is high, and/or identity is low. This was accomplished as follows. Let H be the number
of bins with at least 8 alignments to F , and L be the number of bins with from 1 to 7 alignments. Let S be the
mean alignment percentage identity, and define the identity weight w = ( S

100 )−3, which is designed to give higher
weight to lower identities, noting that w is close to one when identity is close to 100% and increases rapidly at lower
identities. The classification score for family F is calculated as ZF = max(w(4H + L)), 100). By construction, ZF

has a maximum of 100 when coverage is consistently high across a pangenome, and is also high when identity is
low and coverage is moderate, which may reflect high read depth but many false negative alignments due to low
identity. Thus, ZF is greater than zero when there is at least one alignment to F and assigns higher scores to SRA
datasets which are more likely to support successful assembly of a virus belonging to F .

1.1.6 Sensitivity to novel viruses as a function of identity

We aimed to assess the sensitivity of our pipeline as a function of sequence identity by asking what fraction of novel
viruses is detected at increasingly low identities compared to the reference sequences used for the search. Several
variables other than identity affect sensitivity, including read length, whether reads are mate-paired, sequencing
error rate, coverage bias, and presence of other similar viruses which may cause some variants to be unreported
in the contigs. Coverage bias can render a virus with high average read depth undetectable, in particular if the
query is RdRP-only and the RdRP gene has low coverage or is absent from the reads. Successful detection might
be defined in different ways, depending on the goals of the search; e.g. a single local alignment of a reference to a
read (maximising sensitivity, but not always useful in practice); a micro-assembled palmprint; a full assembly contig
that contains a complete palmprint or otherwise classifiable fragment of a maker gene; or an assembly of a complete
genome. We assessed alignment sensitivity of bowtie2 --very-sensitive-local and Serratus-optimised DIAMOND

as a function of identity by simulating typical examples in representative scenario: unpaired reads of length 100
with a base call error rate of 1%. We manually selected test-reference pairs of RefSeq complete Ribovirus genomes
at RdRP aa identities 100%, 95% ... 20%, generating simulated length-100 reads at uniformly-distributed random
locations in the test genome with a mean coverage of 1000x. For bowtie2, the complete reference genome was
used as a reference; for DIAMOND the reference was the translated amino acid sequence of the RdRP gene ( 400aa),
which was identified by aligning to the Wolf18 dataset. These choices model the coronavirus pan-genome used as
a bowtie2 query and the rdrp1 protein reference used as a DIAMOND query, respectively. Sensitivity was assessed as
the fraction of reads aligned to the reference. With bowtie2, the number of unmapped reads reflects a combination
of lack of alignment sensitivity and divergence in gene content as some regions of the genome may lack homology to
the reference. With DIAMOND, the number of unmapped reads reflects a combination of lack of alignment sensitivity
and the fraction of the genome which is not RdRP, which varies by genome length 1g. They show that the fraction
of aligned reads by bowtie2 drops to around 2% to 4% at 90% RdRP aa identity, and maps no reads for most of
the lower identity test-reference pairs. DIAMOND maps around 5% to 10% of reads down to 50% RdRP aa identity,
then less than 1% at lower identities; around 30% to 35% is the lower limit of practical detection.

1.2 Defining viral pangenomes and the SRA search space

1.2.1 Nucleotide search pangenomes

To create a collection of viral pangenomes, a comprehensive set of complete and partial genomes representing the
genetic diversity of each viral family, we used two approaches.

For Coronaviridae, we combined all RefSeq (n = 64) and GenBank (n = 37,451) records matching the NCBI
Nucleotid server query "txid11118[Organism:exp]" (date accessed: June 1st 2020). Sequences <200 nt were
excluded as well as sequences identified to contain non-CoV contaminants during preliminary testing (such as
plasmid DNA or ribosomal RNA fragments). Remaining sequences were clustered at 99% identity with UCLUST [62]
and masked by Dustmasker [63] with --window 30 and --window 64. The final query contained 10,101 CoV
sequences (accessions in Extended Table 1a, masked coordinates in Extended Table 1b). SeqKit (v.0.15) was used
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for working with fasta files [64].
For all other vertebrate viral family pangenomes, RefSeq sequences (n = 2,849) were downloaded from the NCBI

Nucleotide server with the query "Viruses[Organism] AND srcdb refseq[PROP] NOT wgs[PROP] NOT cellular

organisms[ORGN] NOT AC 000001:AC 999999[PACC] AND ("vhost human"[Filter] AND "vhost vertebrates"[Filter])"

(date accessed: May 17th 2020). Retroviruses (n = 80) were excluded as preliminary testing yielded excessive num-
bers of alignments to transcribed endogenous retroviruses. Each sequence was annotated with its taxonomic family
according to its RefSeq record; those for which no family was assigned by RefSeq (n = 81) were designated as
”unknown”.

The collection of these pangenomes was termed cov3m, and was the sequence reference used for this study.

1.2.2 Amino acid viral RNA-dependent RNA polymerase search panproteome

For the translated-nucleotide search of viral RNA-dependent RNA polymerase (RdRP; hereinafter viral RdRP is
implied) we combined sequences from several sources. 1) The ‘wolf18‘ collection is a curated snapshot (ca. 2018)
of RdRP from GenBank ([21] accessed: ftp://ftp.ncbi.nlm.nih.gov/pub/wolf/_suppl/rnavir18/RNAvirome.
S2.afa 2) The ‘wolf20‘ collection is RdRPs from assembled from marine metagenomes ([22] accessed: ftp://

ftp.ncbi.nlm.nih.gov/pub/wolf/_suppl/yangshan/gb_rdrp.afa) 3) All viral GenBank protein sequences were
aligned with diamond --ultra-sensitive against the combined ‘wolf18‘ and ‘wolf20‘ sequences (E-value <1e-6).
These produced local alignments which contained truncated RdRP, so each RdRP-containing GenBank sequence
was then re-aligned to the ‘wolf18‘ and ‘wolf20‘ collection to ”trim” them to ‘wolf‘ RdRP boundaries. 4) The above
algorithm was also applied to all viral GenBank nucleotide records to capture additional RdRP not annotated
as such by GenBank . A region of HCV capsid protein shares similarity to HCV RdRP, sequences annotated as
HCV-capsid were therefore removed. Eight novel coronavirus RdRP sequences identified in a pilot experiment were
added manually. The combined RdRP sequences from the above collections were clustered (uclust) at 90% amino
acid identity and the resulting representative sequences (centroids, N = 14 653) used as the rdrp1 search query.

In addition, we added Deltavirus antigen proteins from NC 001653, M21012, X60193, L22063, AF018077,
AJ584848, AJ584847, AJ584844, AJ584849, MT649207, MT649208, MT649206, NC 040845, NC 040729, MN031240,
MN031239, MK962760, MK962759, and eight additional homologs we identified in a pilot experiment.

1.2.3 SRA search space and queries

To run Serratus, a target list of SRA run accessions is required. We defined eleven (not-mutually exclusive)
queries as our search space which were named human, mouse, mammal, vertebrate, invertebrate, eukaryotes,
prokaryotes/others, bat (including genomic sequences), virome, metagenome and mammalian genome (Extended
Table 1 c). Our search was restricted to Illumina sequencing technologies and to RNA-seq, meta-genomic, and
meta-transcriptome library types for these organisms (except for mammalian genome query which was genome
or exome). Prior to each Serratus deployment, target lists were depleted of accessions already analysed. Re-
processing of a failed accession was attempted at least twice. In total, we aligned 3,837,755/4,059,695 (94.5%) of
the runs in our nucleotide-pangenome search (ca. May 2020) and 5,686,715/5,780,800 (98.37%) of the runs in our
translated-nucleotide RdRP search (ca. January 2021).

1.3 User interfaces for the Serratus databases

We implemented an on-going, multi-tiered release policy for code and data generated by this study, as follows. All
code, electronic notebooks and raw data is immediately available at https://github.com/ababaian/serratus and
on the s3://serratus-public/ bucket, respectively. Upon completion of a project milestone, a structured data-
release is issued containing raw data into our viral data warehouse s3://lovelywater/. For example, the .bam
nucleotide alignment files from 3.84 million SRA runs are stored in s3://lovelywater/bam/X.bam; the protein
.summary files are in s3://lovelywater/psummary/X.psummary, where X is a SRA run accession. These FAIR and
structured releases enable downstream and third-party programmatic access to the data.

Summary files for every searched SRA dataset are parsed into a publicly accessible AWS Relational Database
(RDS) instance which can be queried remotely via any PostgreSQL client. This enables users and programs to
perform complex operations such as retrieving summaries and meta-data for all SRA runs matching a given reference
sequence with above a given classifier score threshold. For example, one can query for all records containing at least
20 aligned reads to Hepatitis Delta Virus (NC 001653.2) and the associated host taxonomy for the corresponding
SRA datasets:
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SELECT genbank_id, run_id, tax_id, n_reads

FROM nsequence

JOIN srarun ON (nsequence.run_id = srarun.run)

WHERE n_reads >= 20

For users unfamiliar with SQL we developed Tantalus (https://github.com/serratus-bio/tantalus, an R

programming-language package which directly interfaces the Serratus PostgreSQL database to retrieve summary
information as data-frames. Tantalus also offers functions to explore and visualise the data.

Finally, the Serratus data can be explored via a graphical web interface by accession, virus, or viral family
at https://serratus.io/explorer. Under the hood, we developed a REST API to query the database from the
website. The website uses React+D3.js to serve graphical reports with an overview of viral families found in each
SRA accession matching a user query.

All four data access interfaces are under ongoing development, receiving community feedback via their respective
GitHub issue trackers to facilitate the translation of this data collection into an effective viral discovery resource.
Documentation for data access methods is available at https://serratus.io/access.

1.3.1 Geocoding BioSamples

To generate the map in figure 1c, we parsed and extracted geographic information from all 16 million BioSample
XML submissions. Geographic information is either in the form of coordinates (latitude/longitude) or free-form
text (e.g. ”France”, ”Great Lakes”). For each BioSample, coordinate extraction was attempted using regular
expressions. If that failed, text extraction was attempted using a manually curated list of keywords that capture
BioSample attribute names likely to contain geographic information. If that failed, then we were unable to extract
geographic information for that BioSample. Geocoding the text to coordinates was done using Amazon Location
Service on a reduced set of distinct filtered text values (52,028 distinct values from 2,760,241 BioSamples with
potential geographic text). BioSamples with geocoded coordinates were combined with BioSamples with submitted
coordinate information to form a set of 5,325,523 geospatial BioSamples. This is then cross-referenced with our
subset of SRA accessions with an RdRP match to generate the figure.

All intermediate and resulting data from this step is stored on the SQL database described in 1.3. Development
work is public at https://github.com/serratus-bio/biosample-sql.

1.4 Viral alignment, assembly and annotation

Upon identificationn of CoV reads in a run from alignment, we assembled 52,772 runs containing at ≥ 10 reads which
aligned to our CoV pan-genome or ≥ 2 reads with CoV-positive k-mers. ([17]). 11,120 of the resulting assemblies
contained identifiable CoV contigs, of which only 4,179 (37.58%) contained full-length CoV RdRP (Extended Table
1). The discrepancy between alignment-positive, assembly-positive and RdRP-positive libraries arises due random
sampling of viral reads and assembly fragmentation. In this respect, alignment or k-mer based methods are more
sensitive than assembly in detecting for the presence of low-abundance viruses (genome coverage <1) with high
identity to a reference sequence. Scoring libraries for genome-coverage and depth is a good predictor of ultimate
assembly success (Extended Figure 3) thus, it can be used to efficiently prioritise computationally expensive assembly
in the future.

1.4.1 DIAMOND optimisation and output

To optimise DIAMOND for small (< 10 Mb) databases such as the RdRP search database, we built a probabilistic
hash set which stores 8-bit hash values for the database seeds, using SIMD instructions for fast probing. This
index is loaded as a memory mapped file to be shared among processes and allows us to filter the query reads for
seeds contained in the database, thus omitting the full construction of the query seed table. We also eliminated
the overhead of building seed distribution histograms that is normally required to allocate memory and construct
the query table in a single pass over the data using a deque-like data structure. In addition, query reads were not
masked for simple repeats, as the search database is already masked. These features are available starting from
DIAMOND v2.0.8 with the command line flags --target-indexed --masking 0. In a benchmark of 4 sets of 1
million read from a bat metagenome (ERR2756788), optimisation reduced DIAMOND runtime against RdRP-search
from 197.96s (s.d=0.18s), to 21.29s (s.d=0.23s) per million reads, a speed-up of a factor of 9.3. This effectively
reduced the computational cost of translated-nucleotide search for Serratus from $0.03, to $0.0042 per library.

DIAMOND output files (we label .pro) were specified with the command -f 6 qseqid qstart qend qlen

qstrand sseqid sstart send slen pident evalue cigar qseq translated full qseq full qseq mate.
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1.4.2 coronaSPAdes

RNA viral genome assembly faces several distinct challenges stemming from technical and biological bias in se-
quencing data. During library preparation, reverse transcription introduces 5′ end coverage bias, and GC-content
skew and secondary structures lead to unequal PCR amplification [65]. Technical bias is confounded by biological
complexity such as intra-sample sequence variation due to transcript isoforms and/or to presence of multiple strains.

To address the assembly challenges specific to RNA viruses, we developed coronaSPAdes, described in de-
tail in a companion manuscript [26]. In brief, rnaviralSPAdes and the more specialized variant, coronaSPAdes,
combines algorithms and methods from several previous approaches based on metaSPAdes [66], rnaSPAdes [67]
and metaviralSPAdes [68] with a HMMPathExtension step. coronaSPAdes constructs an assembly graph from a
RNA-sequencing dataset (transcriptome, meta-transcriptome, and meta-virome are supported), removing expected
sequencing artifacts such as low-complexity (poly-A / poly-T) tips, edges, single-strand chimeric loops or double-
strand hairpins [67] and subspecies-bases variation [68].

To deal with possible misassemblies and high-covered sequencing artefacts, a secondary HMMPathExtension step
is performed to leverage orthogonal information about the expected viral genome. Protein domains are identified
on all assembly graphs using a set of viral hidden Markov models (HMMs), and similar to biosyntheticSPAdes [69],
HMMPathExtension attempts to find paths on the assembly graph which pass through significant HMM matches in
order.

coronaSPAdes is bundled with the Pfam SARS-CoV-2 set of HMMs [70], although these may be substituted by
the user. This latter feature of coronaSPAdes was utilized for HDV assembly, where the HMM model of HDAg,
the Hepatitis Delta Antigen, was used instead of Pfam SARS-CoV-2 set. Note that despite the name, the HMMs
from this set are quite general, modeling domains found in all coronavirus genera in addition to RdRP, which is
found in many RNA virus families. Hits from these HMMs cover most bases in most known coronaviruse genomes,
enabling the recovery of strain mixtures and splice variants.

1.4.3 Micro-assembly of RdRP-aligned reads

Reads aligned by DIAMOND in the translated-nucleotide RdRP search are stored in the .pro alignment file. All sets
of mapped reads (3,379,127 runs) were extracted, and each non-empty set was assembled with rnaviralSPAdes [26]
using default parameters. This process is referred to as micro-assembly since a collection of DIAMOND hits is orders
of magnitude smaller than the original SRA accession (40±534 KB compressed size, ranging from a single read up
to 53 MB). Then bowtie2 [59] (default parameters) was used to align the DIAMOND read hits of an accession back to
the micro-assembled contigs of that accession. Palmscan --hicon was run on micro-assembled contigs, resulting
in high-confidence palmprints for 337,344 contigs. Finally mosdepth [71] was used to calculate a coverage pileup
for each palmprint hit region within micro-assembled contigs.

1.4.4 Classification of assembled RdRP sequences

Our methods for RdRP classification are described and validated in a companion paper [19]. Briefly, we defined a
barcode sequence, the polymerase palmprint (PP), as a ~100 aa segment of the RdRP palm sub-domain delineated
by well-conserved catalytic motifs. We implemented an algorithm, Palmscan, to identify palmprint sequences and
discriminate RdRPs from reverse transcriptases. The combined set of RdRP palmprints from public databases
and our assemblies were classified by clustering into operational taxonomic units (OTUs) at 90%, 75% and 40%
identity, giving species-like, genus-like and family-like clusters (sOTUs, gOTUs and fOTUs), respectively. Tentative
taxonomy of novel OTUs was assigned by aligning to palmprints of named viruses and taking a consensus of the
top hits above the identity threshold for each rank.

1.4.5 Quality control of assembled RdRP sequences

Our goal was to identity novel viral RdRP sequences and novel sOTUs in SRA libraries. From this perspective, we
considered the following to be erroneous to varying degrees: sequences which are (a) not polymerases, (b) not viral,
(c) with differences due to experimental artefacts, or (d) with sufficient differences to cause a spurious inference
of a novel sOTU. We categorised potential sources of such errors and implemented quality control procedures to
identify and mitigate them, as follows.

Point errors are single-letter substitution and indel errors which may be caused by PCR or sequencing per se.
Random point errors are not reproduced in multiple non-PCR duplicate reads and are unlikely to assemble because
such errors almost always induce identifiable structures in the assembly graph (tips and bubbles) which are pruned
during graph simplification. In rare cases, a contig may contain a read with random point errors. Such contigs
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will have low coverage ~1, and we therefore recorded coverage as a QC metric and assessed whether low-coverage
assemblies were anomalous compared to high-coverage assemblies by measures such as the frequencies with which
they are reproduced in multiple libraries compared to exactly one library, finding no noticeable difference when
coverage is low.

Chimeras of polymerases from different species could arise from PCR amplification or assembly. We used the
UCHIME2 algorithm [72] to screen assembled palmprint sequences, finding no high-scoring putative chimeras.
Mosaic sequences formed by joining a polymerase to unrelated sequence would either have an intact palmprint, in
which case the mosaic would be irrelevant to our analysis, or would be rejected by Palmscan due to the lack of
delimiting motifs.

Reverse transcriptases (RTs) are homologous to RdRP. Retroviral insertions into host genomes induce ubiquitous
sequence similarity between host genomes and viral RdRP. Palmscan was designed to discriminate RdRP from
sequences of RT origin. Testing on a large decoy set of non-RdRP sequences with recognisable sequence similarity
showed that the Palmscan false discovery rate for RdRP identification is 0.001. We estimated the probability of
false positives matches in unrelated sequence by generating sufficient random nucleotide and amino acid sequences
to show that the expected number of false positive palmprint identifications is zero in a dataset of comparable size
to our assemblies. We also regard the low observed frequency of palmprints in DNA WGS data (in 2.6 Pbp or
25.8% of reads, accounted for 100 known palmprints and 95 novel palmprints or 0.13% of the total identified) as a
de facto confirmation of the low probability false positives in unrelated sequence.

Endogenous viral elements (EVEs, i.e. insertions of viral sequence into host genomes which are potentially
degraded and non-functional) cannot be distinguished from viral genomes on the basis of the palmprint sequence
alone. To assess the frequency of EVEs in our data, we re-assembled 890 randomly-chosen libraries yielding one or
more palmprints using all reads, extracted the 23 530 resulting contigs with a positive palmprint hit by Palmscan,
and classified them using Virsorter2 [73]. Of these contigs, 11,914 were classified as viral, confirming the Palmscan

identification; 49 as Viridiplantae (green plants); 46 as Metazoa; 25 as Fungi and the remainder were unclassified.
Thus, 120/12034 = 1% of the classified contigs were predicted as non-viral, suggesting that the frequency of EVEs
in the reported palmprints is ~1%.

1.4.6 Annotation of CoV assemblies

Accurate annotation of CoV genomes is challenging due to ribosomal frameshifts and polyproteins which are cleaved
into maturation proteins [74], and thus previously-annotated viral genomes offer a guide to accurate gene-calls and
protein functional predictions. However, while many of the viral genomes we were likely to recover would be
similar to previously-annotated genomes in Refseq or GenBank, we anticipated that many of the genomes would
be taxonomically distant from any available reference. To address these constraints, we developed an annotation
pipeline called DARTH [75]1 which leverages both reference-based and ab initio annotation approaches.

In brief, DARTH consists of the following phases: standardise the ordering and orientation of assembly contigs
using conserved domain alignments, perform reference-based annotation of the contigs, annotate RNA secondary
structure, ab intio gene-calling, generate files for aiding assembly and annotation diagnostics, and generate a
master annotation file. It is important to put the contigs in the “expected” orientation and ordering to facilitate
comparative analysis of synteny and as a requirement for genome deposition. To perform this standardisation,
DARTH generates the six-frame translation of the contigs using the transeq [76] and uses HMMER3 [77] to search
the translations for Pfam domain models specific to CoV [70]. DARTH compares the Pfam accessions from the
HMMER alignment to the NCBI SARS-CoV-2 reference genome (NCBI Nucleotide accession NC 045512.2) to
determine the correct ordering and orientation, and produces an updated assembly FASTA file. DARTH performs
reference-based annotation using VADR [78], which provides a set of genome models for all CoV RefSeq genomes [79].
VADR provides annotations of gene coordinates, polyprotein cleavage sites, and functional annotation of all proteins.
DARTH supplements the VADR annotation by using Infernal [80] to scan the contigs against the SARS-CoV-2 Rfam
release [81] which provides updated models of CoV 5′ and 3′ untranslated regions (UTRs) along with stem-loop
structures associated with programmed ribosomal frame-shifts. While VADR provides reference-based gene-calling,
DARTH also provides ab initio gene-calling by using FragGeneScan [82], a frameshift-aware gene caller. DARTH also
generates auxiliary files which are useful for assembly quality and annotation diagnostics, such as indexed BAM files
created with SAMtools [83] representing self-alignment of the trimmed reads to the canonicalized assembly using
bowtie2 [59], and variant-calls using bcftools from SAMtools. DARTH generates these files so that the can be easily
loaded into a genome browser such as JBrowse [84] or IGV [85]. As the final step DARTH generates a single Generic
Feature Format (GFF) 3.0 file [86] containing combined set of annotation information described above, ready for

1https://bitbucket.org/tomeraltman/darth/
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use in a genome browser, or for submitting the annotation and sequence to a genome repository.

1.4.7 Phage assembly

Each metagenomic dataset was individually de novo-assembled using MEGAHIT [87], and filtered to remove contigs
smaller than 1 kbp in size. ORFs were then predicted on all contigs using Prodigal v2.6.3 [88] with the following
parameters: -m -p meta. Predicted ORFs were initially annotated using USEARCH [62] to search all predicted ORFs
against UniProt [89], UniRef90 and KEGG [90]. Sequencing coverage of each contig was calculated by mapping raw
reads back to assemblies using Bowtie2 [59]. Terminase sequences from Al-Shayeb et al. [45] were clustered at 90%
amino acid identity to reduce redundancy using CD-HIT [91], and HMM models were built with hmmbuild (from
the HMMER3 suite [77]) from the resulting set. Terminases in the assemblies from Serratus were identified using
hmmsearch, retaining representatives from contigs greater than 140 kbp in size. Some examples of prophage and
large phages that did not co-cluster with the sequences from Al-Shayeb et al., were also recovered because they
were also present in a sample that contained the expected large phages. The terminases were aligned using MAFFT

v.7.407 [92] and filtered by TrimAL [93] to remove columns comprised of more than 50% gaps, or 90% gaps, or
using the automatic gappyout setting to retain the most conserved residues. Maximum likelihood trees were built
from the resulting alignments using IQTREE v.1.6.6 [94].

1.4.8 Deploying the assembly and annotation workflow

The Serratus search for known or closely related viruses identified 37,131 libraries (14,304 by nucleotide and
23,898 by amino acid) as potentially positive for CoV (score ≥20 and ≥10 reads). To supplement this search
we also employed a recently developed index of the SRA called STAT [17] with which identified an additional
18,584 SRA datasets not in the defined SRA search space. The STAT BigQuery was WHERE tax id=11118 AND

total count >1 accessed on June 24th 2020.
We used AWS Batch to launch thousands of assemblies of NCBI accessions simultaneously. The workflow consists

of four standard parts: a job queue, a job definition, a compute environment, and finally, the jobs themselves. A
CloudFormation template2 was created for building all parts of the cloud infrastructure from the command line.
The job definition specifies a Docker image, and asks for 8 virtual CPUs (vCPUs, corresponding to threads) and
60 GB of memory per job, corresponding to a reasonable allocation for coronaSPAdes. The compute environment
is the most involved component. We set it to run jobs on cost-effective Spot instances (optimal setting) with an
additional cost-optimization strategy (SPOT CAPACITY OPTIMIZED setting), and allowing up to 40,000 vCPUs total.
In addition, the compute environment specifies a launch template which, on each instance, i) automatically mounts
an exclusive 1 TB EBS volume, allowing sufficient disk space for several concurrent assemblies, and ii) downloads
the 5.4 GB CheckV [95] database, to avoid bloating the Docker image.

The peak AWS usage of our Batch infrastructure was ~28,000 vCPUs, performing ~3,500 assemblies simulta-
neously. A total of 46,861 accessions out of 55,715 were assembled in a single day. They were then analysed by
two methods to detect putative CoV contigs. The first method is CheckV [95], followed selecting contigs associated
to known CoV genomes. The second method is a custom script3 that parses coronaSPAdes BGC candidates and
keeps contigs containing CoV domain(s). For each accession, we kept the set of contigs obtained by the first method
(CheckV) if it is non-empty, and otherwise we kept the set of contigs from the second method (BGC).

A majority (76%) of the assemblies were discarded for one of the following reasons: i) no CoV contigs were
found by either filtering method, ii) reads were too short to be assembled, iii) Batch job or SRA download failed,
or iv) coronaSPAdes ran out of memory. A total of 11,120 assemblies were considered for further analysis.

The average cost of assembly was between $0.30-$0.40 per library, varying depending on library-type (RNA-seq
versus metagenomic). This places an estimate of 46-95 fold higher cost for assembly alone compared to a cost of
$0.0042 or $0.0065 for an alignment based search.

1.5 Taxonomic and phylogenetic analyses

1.5.1 Taxonomy prediction for coronavirus genomes

We developed a module, SerraTax, to predict taxonomy for CoV genomes and assemblies (https://github.
com/ababaian/serratus/tree/master/containers/serratax). SerraTax was designed with the following re-
quirements in mind: provide taxonomy predictions for fragmented and partial assemblies in addition to complete

2https://gitlab.pasteur.fr/rchikhi_pasteur/serratus-batch-assembly/-/blob/master/template/template.yaml
3https://gitlab.pasteur.fr/rchikhi_pasteur/serratus-batch-assembly/-/blob/master/stats/bgc_parse_and_extract.py
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genomes; report best-estimate predictions balancing over-classification and under-classification (too many and too
few ranks, respectively); and assign an NCBI Taxonomy Database [96] identifier (TaxID).

Assigning a best-fit TaxID was not supported by any previously published taxonomy prediction software to the
best of our knowledge; this requires assignment to intermediate ranks such as sub-genus and ranks below species
(commonly called strains, but these ranks are not named in the Taxonomy database), and to unclassified taxa, e.g.
TaxID 2724161, unclassified Buldecovirus, in cases where the genome is predicted to fall inside a named clade
but outside all named taxa within that clade.

SerraTax uses a reference database containing domain sequences with TaxIDs. This database was constructed
as follows. Records annotated as CoV were downloaded from UniProt [89], and chain sequences were extracted.
Each chain name, e.g. Helicase, was considered to be a separate domain. Chains were aligned to all complete
coronavirus genomes in GenBank using UBLAST [62] to expand the repertoire of domain sequences. The reference
sequences were clustered using UCLUST [62] at 97% sequence identity to reduce redundancy.

For a given query genome, open reading frames (ORFs) are extracted using the EMBOSS getorf software [76].
ORFs are aligned to the domain references and the top 16 reference sequences for each domain are combined with
the best-matching query ORF. For each domain, a multiple alignment of the top 16 matches plus query ORF is
constructed on the fly by MUSCLE [97] and a neighbour-joining tree is inferred from the alignment, also using MUSCLE.
Finally, a consensus prediction is derived from the placement of the ORF in the domain trees. Thus, the presence
of a single domain in the assembly suffices to enable a prediction; if more domains are present they are combined
into a consensus.

1.5.2 Taxonomic assignment by phylogenetic placement

To generate an alternate taxonomic annotation of an assembled genome, we created a pipeline based on phylogenetic
placement, SerraPlace.

To perform phylogenetic placement, a reference phylogenetic tree is required. To this end, we collected 823
reference amino acid RdRP sequences, spanning all Coronaviridae. To this set we added an outgroup RdRP sequence
from the Torovirus family (NC 007447). We clustered the sequences to 99% identity using USEARCH ([62], UCLUST
algorithm, v11.0.667), resulting in 546 centroid sequences. Subsequently we performed multiple sequence alignment
on the clustered sequences using MUSCLE ([97], v3.8.31). We then performed maximum likelihood tree inference
using RAxML-NG ([98], PROTGTR+FO+G4, v0.9.0), resulting in our reference tree.

To apply SerraPlace to a given genome, we first use HMMER ([77], v3.3) to generate a reference HMM, based
on the reference alignment. We then split each contig into ORFs using esl-translate, and use hmmsearch (p-value
cutoff 0.01) to identify those query ORFs that align with sufficient quality to the previously generated reference
HMM. All ORFs that pass this test are considered valid input sequences for phylogenetic placement. Subsequently,
we use EPA-ng ([99], v0.3.7) to place each sequence on the RdRP reference tree. This produces a set of likely
placement locations on the tree, with an associated likelihood weight. We then use Gappa ([100], v0.6.1) to assign
taxonomic information to each query, using the taxonomic information for the reference sequences. Gappa assigns
taxonomy by first labelling the interior nodes of the reference tree by a consensus of the taxonomic labels of all
descendant leaves of that node. If 66% of leaves share the same taxonomic label up to some level, then the internal
node is assigned that label. Then, the likelihood weight associated with each sequence is assigned to the labels of
internal nodes of the reference tree, according to where the query was placed.

From this result, we select that taxonomic label that accumulated the highest total likelihood weight as the
taxonomic label of a sequence. Note that multiple ORFs of the same genome may result in a taxonomic label, in
which case, we select the longest sequence as the source of the taxonomic assignment of the genome.

1.5.3 Phylogenetic inference

We performed phylogenetic inferences using a custom snakemake pipeline (available at https://github.com/

lczech/nidhoggr), using ParGenes [101], v1.1.2. ParGenes is a treesearch orchestrator, built on top of ModelTest-
NG [102] and RAxML-NG, enabling higher levels of parallelisation for a given tree search.

To infer the maximum likelihood phylogenetic trees , we performed a tree search comprising 100 distinct starting
trees (50 random, 50 parsimony), as well as 1000 bootstrap searches. We used ModelTestNG to automatically select
the best evolutionary model for any given treesearch. The pipeline also automatically produces versions of the best
maximum likelihood tree annotated with Felsenstein’s Bootstrap ([103]) support values, and Transfer Bootstrap
Expectation ([104]) values.
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Data availability

Archival copies of all code generated for this study is available at https://github.com/serratus-bio. Electronic
notebooks for experiments are available at https://github.com/ababaian/serratus. Access to all data generated
in this study can be accessed at https://serratus.io/access. Assembled genomes contigs for this study are
available at https://serratus.io/access pending deposition into public repositories.
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Extended Table 1: SRA run queries and CoV assembly table Queries and accessions from this study. a SRA
queries to retrieve collections of datasets. b Run accessions, assembly statistics and select meta-data for the 11,120
runs for which Coronaviridae, or Coronaviridae-like sequences were assembled. c Assignment of assembled runs to
operational taxonomic units (OTUs) based on 97% identity of the RNA dependent RNA polymerase (RdRp) domain.
d Assignment of GenBank records to RdRp OTUs. e Assignment of expected viral host for GenBank records based
on Sequence Read Archive and JGI GOLD metadata [2, 31]. f Taxonomic source for RdRp containing assemblies.}

Extended Tables
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2 Extended Figures
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Extended Figure 1: Overview of the Serratus infrastructure.
a Schematic and data workflow (b) as described in the methods for sequence alignment. c The align module
accepts either a nucleotide or protein sequence query. d A nucleotide alignment completion rate for Serratus shows
stable and linear performance to complete 1.29 million SRA accessions in a 24-hour period and the e cost breakdown
for this run. Compute costs between modules are an approximate comparison of CPU requirements of each step.
The total average cost per completed SRA accession was $0.0062 US dollars for nucleotide search or $0.0042 for
translated-nucleotide search. f Biological cross-validation to measure alignment sensitivity for bowtie2 (nucleotide
search), diamond (translated nucleotide search) or 32 kmer for exact search. Briefly, two RdRP sequences sharing
the nominal amino acid identities form a ”pair”. 100 bp reads were simulated from the coding sequence of one pair
and mapped onto the second pair, with the fraction of reads mapped reported. A value of 50% indicates that half
the simulated reads at the given RdRP percent identity are mappable and thus detectable (see Methods).
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Extended Figure 2: Analysis of palmprint contigs recovered by Serratus

a Length distribution of amino acid sequences in the rdrp1 query (upper histogram) and micro-assembled contigs
(lower histogram, length=nucleotides/3). b Distribution of Palmscan confidence scores. c Observations of the 10
most frequent “super-motifs” (six well-conserved residues marked with asterisk) reported by Palmscan. d Distribu-
tion of coverage vs. abundance (number of runs where a given palmprint is observed), showing that palmprints have
similar underlying coverage distributions at all abundances. e Preston plot of distinct palmprints vs. abundance
exhibiting similar, approximately log-log-linear relationships to totals at end-of-year 2015 to 2019 and final totals
at approx. end of 2020 (all). f Preston plot of number of distinct palmprints observed in a given run vs. number
of runs. g Numbers of singletons and second observations (confirmations) at the end of each year showing that the
growth in singletons is matched by a comparable growth in confirmations. h Kingdom predicted by Virsorter2for
RdRP+ contigs (by Palmscan) obtained by full assembly of 880 randomly-chosen RdRP+ runs. i Number of palm-
prints in each phylum assigned by taxonomy (known) or predicted (novel). j Number of OTUs as a function of
clustering identity.
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Extended Figure 3: Distribution of select RNA virus families
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Extended Figure 3: Distribution of select RNA virus families (cont’d) Histogram of datasets matching select
RNA viral family by (a) nucleotide search against RefSeq pangenomes or (b) translated-nucleotide search against
RdRP query, binned by the average nucleotide or amino acid identity, respectively. Score (gradient colouring)
function approximates pangenome/gene coverage (see methods) used for manual inspection and to prioritise assem-
bly. Coarsely, nucleotide identity between 80-100% approximate amino acid identity of 90-100%. Interactive and
queryable versions of these plots for extended virus families are available at https://serratus.io/explorer. c
Relationship between the pangenome score function and the subsequent assembly success (defined by the presence
of an RdRP+ contig) measured from 52,772 libraries with reads aligning to Coronaviridae.
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Extended Figure 4: Genome organisation of Coronaviridae and neighbours
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Extended Figure 4: Genome organisation of Coronaviridae and neighbours (cont’d) a Length distribution
for 11,120 assembled contigs classified as CoV-positive, showing a peak around the typical CoV genome length, 4,179
(37.58%) of contigs also contained a match for RdRP. b Phylogram shown in Figure 3 showing the Mesoniviridae,
Tobaniviridae, and Roniviridae outgroups. c Triangular matrix showing median RdRp sequence identities between
selected Nidovirales and group E sequences. d Hidden Markov Model (HMM) protein domain matches from the
RdRp in exemplar sequences (contigs or GenBank sequences), grouped by genus. Novel sOTUs identified in this
analysis indicated by a coloured circle.
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Extended Figure 5: Newly characterised Deltavirus and Deltavirus-like genomes
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Extended Figure 5: Newly characterised Deltavirus and Deltavirus-like genomes (cont’d) Structure and
organisation of selected examples from the 14 delta virus-, 39 epsilon virus- and 311 zeta virus-like genomes iden-
tified in our study. a Similar to human deltavirus (HDV), delta virus-like genomes from vertebrates (PmacDV
SRR7910143; MmonDV SRR2136906; TgutDV SRR5001850; IchiDV SRR8954566 and BglaDV SRR8242383) and
environmental datasets (SRR7286070 and SRR6943136) share similar predicted stable rod-like folding, a predicted
ORF coding for the delta antigen (δAg) and a delta ribozyme (dvrbz) on each polarity. Folding of the circu-
lar DNA virus Porcine Circovirus 2 (PCV2) and a shuffled MmonDV sequence are shown as negative controls.
b Epsilon virus-like genomes detected in invertebrates (SulaEV SRR8739608; GsulEV SRR7170939 and BaerEV
SRR12300397) and environmental datasets (SRR8840728 and SRR6943136) show similar structure and organiza-
tion to deltaviruses, with one or two predicted ORFs (epsilon antigen or εAg) and two hammerhead ribozymes
(hhrbz) in equivalent genomic regions. c Zeta virus-like genomes detected in invertebrate (Ocassitermes sp. ZVs
SRR8924823) and environmental datasets (SRR7286070, SRR6943136, SRR8840728, SRR6201737, SRR5864109
and SRR12063536) are smaller than delta and epsilon agents. Up to 90% of the zeta genomes have sizes multiple
of 3 and predicted ORFs without stop codons, capable to encode endless tandem-repeated zeta antigens in both
polarities (ζAg+ and ζAg– shown as yellow and red arrows, respectively). Both genomic zeta polarities keep hhrbzs
(shown as arrows overlapping the ORFs) similar to the epsilon ribozymes (Extended Fig 6). Larger zeta virus-like
genomes (>651 nt) were less abundant (7% of all zeta genomes) and frequently show stop codons, or their sizes are
not multiple of 3.
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Extended Figure 6: Evolutionary history of deltavirus-like agents
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Extended Figure 6: Evolutionary history of deltavirus-like agents (cont’d) a Consensus structures (weighted
nucleotide conservation threshold of 90%) of deltavirus ribozymes, including the 14 genomes described in this work.b
Consensus structures of the two hammerhead ribozyme families (type III and extended-type III [43]) detected in
epsilon and zeta agents. Most positions of epsilon and zeta motifs are sequence conserved for each ribozyme family.c
MSA of the predicted antigen (N-term domain) from delta and epsilon agents (genomes detected in this study are
indicated with a red asterisk). The antiparalel coiled-coil of the HDV is delimited with a grey box, and conserved
residues involved in hydrophobic interactions are shown at the bottom [46], supporting a highly divergent connection
between delta and epsilon genomes. d Human HDV deltavirus is known to contain a viroid-like domain related
to the Pospiviroidae family of plant viroids. Both families of agents conserve a tertiary structure reminiscent of
the E-loop 5S rRNA (nucleotides in green) and are replicated by the RNA Pol II of the host [47]. Pospiviroids,
despite of lacking hhrbzs, share with zeta genomes a small rod structure, and in some cases, the presence of predicted
endless tandem-repeat ORFs, most notably in both polarities of numerous variants of the Hop Stunt Viroid (HSVd).
Whereas viroids have been historically regarded as non protein coding RNAs, our reported observations warrant
further investigation.
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Extended Figure 7: Huge phage and Lak phage detail Expanded view of maximum likelihood terminase large
subunit protein phylogenetic trees for (a) the expansion of the Kabirphage clade by newly recovered sequences from
different animal types (colored dots). Red branches are public data recovered by Serratus, black branches indicate
the previously reported genomes from [45]. b Publicly available Lak phage genomes [105] with sequences of two
newly reconstructed complete Lak megaphage genomes. These are the first reported Lak megaphages from dogs
(assembled from fecal sample metagenome reads from Allaway et al. 2020). The genomes have identical terminase
sequences (at the nucleotide level) although the dogs were in different housing areas and were sampled at different
times (D Allaway, personal communication).
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