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Abstract 
Despite huge advances in stem-cell, single-cell and epigenetic technologies, the precise molecular mechanisms that determine lineage specification 
remain largely unknown. Applying an integrative multiomics approach, e.g. combining single-cell RNA-seq, single-cell ATAC-seq together with 
cell-type-specific DNA methylation and 3D genome measurements, we systematically map the regulatory landscape in the mouse neocortex in 
vivo. Our analysis identifies thousands of novel enhancer-gene pairs associated with dynamic changes in chromatin accessibility and gene 
expression along the differentiation trajectory. Crucially, we provide evidence that epigenetic remodeling generally precedes transcriptional 
activation, yet true priming appears limited to a subset of lineage-determining enhancers. Notably, we reveal considerable heterogeneity in both 
contact strength and dynamics of the generally cell-type-specific enhancer-promoter contacts. Finally, our work suggests a so far unrecognized 
function of several key transcription factors which act as putative “molecular bridges” and facilitate the dynamic reorganization of the chromatin 
landscape accompanying lineage specification in the brain.  
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Introduction 
Cellular identity is established by the complex interplay between 
transcriptional regulators, cis-regulatory elements and chromatin 
landscape, which takes place within the physical constraints imposed 
by the 3D nuclear architecture (Schoenfelder and Fraser, 2019). These 
different layers of molecular interactions form the basis of Gene 
Regulatory Networks (GRNs), which ensure the precise temporal and 
spatial regulation of gene expression. Although our understanding of 
the molecular cascades involved in gene regulation has grown 
considerably over the last couple of years, the exact multi-layered 
mechanisms leading to lineage specification or developmental 
plasticity remain to be understood.   
 
Until very recently, the epigenetic and molecular programs that govern 
lineage commitments  have only been studied in vitro, mostly in bulk 
and restricted to only a few regulatory layers (Rubin et al., 2017; Ziller 
et al., 2015). Most tissues however, consist of heterogeneous cell 
populations which can be generally associated to distinct stages of 
lineage commitment. Single-cell technologies provide access to the 
dynamics of gene expression and chromatin accessibility, even in 
complex tissues and in vivo (Granja et al., 2019; Telley et al., 2019). 
Despite the tremendous potential of these technological advances to 
unravel the dynamics of lineage commitment, studies that integrate 
single-cell data with DNA methylation- and 3D genome organization 
patterns remain scarce (Argelaguet et al., 2019; Lee et al., 2019) .   
 
Many of these regulatory layers converge on distal enhancers, which 
represent the key building blocks of GRNs in eukaryotes. Changes in 
histone modifications/accessibility, as well as the binding of cell-type-
specific transcription factors (TFs) have been proposed to explain the 
relationship between enhancer activation and gene expression (Gorkin 
et al., 2020; He et al., 2020). Although enhancer-promoter contacts 
have been previously shown to be highly dynamic (Bonev et al., 2017; 
Javierre et al., 2016), many examples of pre-looped architecture have 
been identified (Ghavi-Helm et al., 2019) and the causal relationships 
between chromatin looping, epigenetic signature and tissue-specific 
gene expression remain to be understood.  
 
The mammalian embryonic neocortex represents a unique system to 
study the mechanisms of GRNs and enhancer dynamics in vivo. It is 
mostly composed of neural stem cells (NSC), intermediate progenitors 
(IPC) and postmitotic neurons in various stages of neuronal maturation 
(Götz and Huttner, 2005; Govindan and Jabaudon, 2017). Both 

chromatin organization (Preissl et al., 2018; Telley et al., 2019) as well 
as epigenetic regulation (Pereira et al., 2010) have been implicated in 
in determining fate choices in the cortex from studies on transcriptional 
dynamics in bulk (Aprea et al., 2013) and at the single-cell level (Loo 
et al., 2019; Telley et al., 2016, 2019).  
 
To assess how chromatin dynamics across multiple layers govern 
GRNs in the developing neocortex in vivo, here we integrate, for the 
first time, single-cell transcriptomic and epigenomic data with cell-
type-specific bulk DNA methylation and 3D genome organization 
using the mouse neocortex as a model system.  We identify key 
transcription factors to be associated with extensive changes in 
chromatin accessibility and provide evidence that chromatin 
remodeling occurs predominantly at distal regulatory elements. 
Furthermore, we identify thousands of novel cell-type-specific 
enhancer-gene pairs and show that although enhancer activation 
appears to precede gene expression, only a subset of enhancers acts as 
truly lineage-priming. Using an improved method to simultaneously 
map DNA methylation and 3D genome architecture of immunoFAC-
sorted cells, we show that although regulatory contacts between 
enhancers and promoters are in general correlated with gene 
expression, considerable heterogeneity in both contact strength and 
dynamics exists. Finally, we identify a new role for transcription 
factors as key components of the cell-type-specific reorganization of 
the chromatin landscape during lineage specification in the mouse 
brain.  

Results 

Profiling gene expression dynamics during neuronal differentiation 
at single-cell resolution 
To identify changes in the gene regulatory landscape upon 
differentiation at the single-cell level, we decided to construct 
independent transcriptomic and epigenetic maps of cortical 
development in vivo. To this end, we dissected the somatosensory area 
of the E14.5 neocortex and performed in parallel scRNA-seq and 
scATAC-seq (10x Genomics; Methods) in biological duplicates 
(Figure 1A).  
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To gain insight into the transcriptional dynamics during neuronal 
differentiation, we first examined our scRNA-seq data. The two 
replicates were highly comparable (Figure S1A; r=0.979) and we 
obtained 7469 cells in total that passed quality control, with a median 
of 16812 UMIs and 4439 genes/per cell (Figure S1B-F). Next, we 
clustered the cells using a graph-based approach (Stuart et al., 2019), 
annotated the resulting clusters based on known marker genes (Figure 
1B and S1G). The resulting 11 clusters were highly reproducible 
between biological replicates (Figure S1H-I) and captured all major 
cell types of the developing cortex: neural stem cells (NSC), 
intermediate progenitor cells (IPC) and projection neurons (PN1-3), as 
well as rarer and transcriptional distinct cell types. We also confirmed 
the expression of selected marker genes using immunohistochemistry 
(Figure 1D).  
 
The observed UMAP projection displayed a gradual progression from 
NSC to IPC and then to PN (Figure 1B), reflecting a continuum of 
transcriptional changes compared to the rather distinct cell types 
reported in the adult cortex (Zeisel et al., 2018). Next, we used two 
independent methods to infer the developmental trajectory and identify 
changes in gene expression: a generalized RNA velocity approach 
(Figure 1E, S1J; Bergen et al., 2020) and Monocle3 (Figure 1F-G, 

S1K; Cao et al., 2019). Both approaches were highly comparable, 
suggesting a transition from NSC into IPC, followed by neuronal 
commitment and maturation (PN1-3). Consistent with a previous 
lineage-tracing results (Telley et al., 2016), our trajectory analysis 
revealed transcriptional waves of key neurogenic factors in NSC 
(Hes1, Id4, Hes5), IPC (Neurog2, Eomes), PN1 (Neurod2), PN2 
(Rnd2) and PN3 (Mapt) (Figure S1L-M), Besides these known factors, 
we identified a number of novel genes exhibiting cell-type-specific 
expressions along the studied differentiation trajectory, and which we 
could verify by independent FISH-experiments (Figure 1G-I). For 
example Fhl1, a skeletal and cardiac muscle protein involved in 
muscular dystrophy (Cowling et al., 2011) was exclusively expressed 
in NSC. Chd7, a member of the chromodomain family of chromatin 
remodellers and associated with the CHARGE syndrome (Vissers et 
al., 2004), was also expressed in NSC but became upregulated in IPC, 
consistent with previous reports in the adult brain (Feng et al., 2013) 
and the developing cerebellum (Feng et al., 2017). Finally, the cell 
adhesion protein Lrfn5, which has been linked to autism (de Bruijn et 
al., 2010), developmental delays and mental retardation (Mikhail et al., 
2011) was upregulated upon neuronal maturation where it is most 
likely involved in synaptic formation (Choi et al., 2016).  

Figure 1. scRNA-seq analysis of mouse E14.5 cortical development  
(A) Schematic representation of the model system and the experimental approach. Neural stem cells (NSC), intermediate progenitor cells (IPC) and 
projection neurons (PN). (B) scRNA-seq UMAP projection of 7469 cells derived from the E14.5 somatosensory cortex. IN= interneurons, CR= Cajal-
Retzius neurons, MG= Microglia, Mural= Mural cells, _M indicated the corresponding mitotic (G2-M) population. (C) UMAP visualization with 
expression levels of the indicated marker genes (D) Representative immunofluorescence images of the indicated genes in coronal sections of a 
E14.5 cortex. Scale = 50µm. (E) Direction of neuronal differentiation inferred from estimated RNA velocities and plotted as streamlines on the UMAP. 
(F) Trajectory analysis depicting the inferred pseudotime on the UMAP projections. (G) Pseudotime heatmap ordering of the top 3000 most variable 
genes across neural differentiation. (H) Expression levels of the indicated genes across differentiation. Each dot shows the expression in an individual 
pseudotime-ordered cell, the line represents the smoothed fit of expression levels. (I) Representative FISH images of the depicted genes in coronal 
sections of a E14.5 cortex. Scale = 50µm.  
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Figure 2. scATAC-seq identifies dynamic TF motifs and variable distal regulatory elements   
(A) scATAC-seq UMAP projection of 5877 cells derived from the E14.5 somatosensory cortex. (B) Genomic tracks showing the accessibility of 
aggregated scATAC-seq clusters (top) and of 1000 random single-cells (bottom) at the Dll1 gene locus. (C-D) Heatmap clustering of chromVAR bias-
corrected accessibility deviations for the most 100 variably expressed TFs (C) or based on ChIP-seq peaks (D). Single-cell cluster identities are 
indicated on top of the plot.  

   Figure legend continued on the next page. 
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Collectively, our scRNA-seq data consistently recapitulates known 
transcriptional dynamics during neurogenesis, reveals cell-type-
specific expression of novel genes and provides a molecular roadmap 
to investigate the influence of epigenetic regulation on gene expression 
in the context of corticogenesis. 

Accessibility changes at distal regulatory regions and TF binding 
motifs identified using scATAC-seq 
In order to dissect the molecular mechanism orchestrating the observed 
transcriptional dynamics, we next focused on the scATAC-seq 
analysis. Again, the two biological replicates were highly correlated 
(Figure S2A; r=0.975), revealed a very high number of unique 
fragments per cell and showed strong enrichment at the transcription 
start site (TSS) (Figure S2B). After filtering for low-quality cells and 
potential doublets we acquired in total 5877 cells with a median of 
46899 fragments per cell and a characteristic fragment size distribution 
and periodicity (Figure S2C-E), making this, to our knowledge, one of 
the highest resolution scATAC-seq datasets available.  
  
First, we counted the number of Tn5 insertions in 5 kb genomic 
windows to generate a high-quality union peak set with a fixed length 
of 501 bp, as previously described (Granja et al., 2019). Next, we 
determined the number of fragments per peak, followed by 
dimensionality reduction using latent semantic indexing (LSI), batch 
correction using Harmony (Korsunsky et al., 2019), graph-based 
clustering and UMAP-visualization. We identified 7 highly 
reproducible clusters (Figure 2A, S2F-G), which we subsequently 
annotated based on the gene body accessibility of known marker genes 
(Figure S2H-I). Similar to the scRNA-seq, we observed again that 
NSC, IPC and projection neurons (PN1, PN2) do not form separate 
clusters but were rather associated with a gradual progression in cell 
state (Figure 2A). However no distinct mitotic clusters of the 
progenitor cell types were identified, presumably due to the high 
similarities of the chromatin accessibility landscape during different 
cell cycle phases (Estève et al., 2020; Hsiung et al., 2015; Ma et al., 
2020). Studying the pro-neuronal gene Dll1 locus as an example, we 
were able to observe chromatin accessibility dynamics at the single-
cell level, and particularly at distal regions (Figure 2B).  
 
To identify key transcription factors whose binding correlates with 
changes in chromatin accessibility, we used ChromVAR (Figure 2C; 
Fornes et al., 2020; Schep et al., 2017). TFs associated with a high 
motif accessibility in NSC included classical neural TFs such as Sox2, 
Pax6 or Lhx2, as well as Tead2 and c-Fos/Jun (AP-1), which have been 
recently described as important in NSC (Mukhtar et al., 2020; Pagin et 
al., 2020). Conversely, neurogenic transcription factors such as Eomes 
and Neurod2 were associated with a strong increase in motif 
accessibility during the transition from NSC to IPC, and IPC to PN1 
respectively (Figure 2C and 2E). Since TF-binding motifs are only 
predictive for real binding events, we verified our findings using 
publicly available ChIP-seq data (Schep et al., 2017). Overall, both 
motif- and peak-based accessibility showed a high correlation with the 
expression level of the respective transcription factors (Figure 2C-E 
and Figure 1). 
 
To determine how accessibility at regulatory elements changes upon 
differentiation, we first identified differentially accessible regions as 
previously described (Granja et al., 2019) and grouped them 
subsequently into distal and promoter associated elements (Figure 2F). 
The majority of changes in accessibility occurred within distal 
elements rather than on promoters, indicating that the former are more 
cell-type-specific than the latter (Figure 2F-G and S2J). To corroborate 
this finding, we visualized the Fhl1 locus (expressed only in NSC – 
Figure 1). Parallel to Fhl1 downregulation, four distal elements became 
less accessible, while the promoter region remained constant (Figure 
2H). These findings are consistent with the hypothesis that promoter 

accessibility, while required, may not be sufficient for transcription 
(Corces et al., 2016; Klemm et al., 2019).  
 
Collectively, our scATAC-seq data identify major reorganization of 
the chromatin landscape during neural differentiation at the single-cell 
level. This extensive remodelling is associated with unique binding 
patterns of cell-type-specific transcription factors. We also 
demonstrate that the accessibility at distal regulatory elements (such as 
enhancers) is highly dynamic and frequently correlated with changes 
in gene expression, compared to relatively invariant/static promoters. 

Lineage-specific enhancer-gene pairs underlie the reorganization of 
chromatin landscape 
To uncover how dynamic accessibility at distal regulatory elements 
relates to changes in gene expression genome-wide, we employed an 
approach pioneered by the Greenleaf Lab (Granja et al., 2019, 2020). 
First, we integrated the scRNA-seq and scATAC-seq data by using 
canonical correlation analyses (Stuart et al., 2019), which resulted in 
overall high prediction scores, minimal cross-annotations between the 
datasets and high intermixed projection of the integrated cells on a joint 
UMAP (Figure S3A-D). Next, we calculated the pairwise correlation 
between changes in gene expression and chromatin accessibility of 
nearby distal peaks (±500 kb, at least 5 kb away from a TSS) to link 
potential distal regulatory elements and their putative target genes. 
These analyses identified 16978 positively correlated pairs (r≥0.35, 
FDR≤0.1) with each gene being connected to a median of 3 distal 
regions (Figure S3E). Positively correlated distal regions were usually 
located closer to their predicted target genes (Figure S3F) and were 
characterized by overall higher accessibility compared to non-
correlated pairs (also referred to as control pairs, -0.35≥r≤0.35, 
FDR>0.1) but not compared to negatively correlated pairs (r≤-0.35, 
FDR≤0.1; Figure S3G). 
 
To address if the identified pairs are cell-type-specific, we clustered 
the identified distal regions based on their pseudobulk accessibility. 
Intriguingly, we found that the majority of the newly identified 
positively correlated pairs (which we will refer to as enhancer-gene 
pairs for simplicity) were characterized by high cell-type specificity in 
both enhancer accessibility and target gene expression (Figure 3A). 
This is further emphasized by the striking contrast to the negatively 
correlated and control pairs (Figure S3H-I). Finally, we found a 
significant overlap of our positively (90/334, p<6.636e-24) correlated 
enhancer-gene pairs with validated forebrain enhancers (Visel et al., 
2013).  
 
To further validate these findings, we focused on the Rnd2 locus, a 
gene involved in neuronal migration (Heng et al., 2008), which was 
up-regulated in IPC and mainly expressed in newborn neurons (PN1) 
(Figure S1L-M). As observed before, we found no correlation between 
Rnd2 expression and its promoter accessibility but we identified 
several distal regions, which correlated positively with Rnd2 
expression (Figure 3B). Some of those included previously validated 
Rnd2 enhancers (Heng et al., 2008) but others were completely novel. 
Importantly, the closest genes of these putative new Rnd2 enhancers 
were either not expressed (Gm11634, LOC666331) or their expression 
pattern was not correlated to the enhancer accessibility (Brca1, Nbr1, 
Rdm1) (Figure 3B).  
 
  

 
(E) UMAP projections, colored by gene body accessibility of the indicated TFs or by their chromVAR motif bias-corrected deviations (F) Heatmap of 
aggregated accessibility Z-scores (per cluster) of differentially accessible peaks in distal regions (≥± 5kb from TSS, top) or within promoters (≤± 
500bp from TSS, bottom). Labels indicate the name and the distance in bp to the nearest TSS. (G) Box-whisker plot, showing the standardized 
variance between differential peaks within promoter or distal regions. Statistical significance is calculated using wilcoxon rank-sum test. (H) Genomic 
tracks showing the accessibility of aggregated scATAC-seq clusters at the Fhl1 gene locus (highlighted in grey). The promoter region (black 
rectangle) and four putative regulatory elements (dashed black rectangle) are also highlighted. 
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Figure 3. Lineage dynamics of enhancer-gene pairs and transcription factor motifs 
(A)Heatmaps of aggregated accessibility of putative enhancers (left) and gene expression levels of their linked genes (right) for each of the 16978 
positively correlated enhancer-gene pairs identified (rows). Rows were clustered by enhancer accessibility using feature binarization (Methods). (B) 
Genomic tracks depicting aggregated accessibility (per cluster) at the Rnd2 gene locus. Arcs represent Rnd2 linked enhancers and their correlation 
score. The promoter region (black rectangle), previously characterized enhancers (Heng et al., 2008; grey dashed rectangle) and putative predicted 
enhancers (black dashed rectangle) are highlighted. (C) Scatter plot showing the enrichment of transcription factor binding motifs within cluster-
specific positive correlated enhancer-gene pairs. Red and blue dots indicate significantly (log10(P) ≥ 2; abs(logFC) ≥ 0.25) enriched or depleted motifs, 
respectively. The binding motifs of the highlighted TFs are depicted in the bottom. 

Figure legend continued on the next page.  
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To address which TFs are associated with the identified cell-type-
specific enhancers, we calculated the motif enrichment for TFs 
expressed during neurogenesis (Figure 3C). We found that some NSC-
specific TFs such as Sox2 and Tead2 were enriched only in NSC-
specific enhancers, while others such as Lhx2 and Pou3f2 (also known 
as Brn2) were enriched in both NSC and IPC enhancers. Conversely, 
neurogenic TFs such as Neurog2, Eomes and Neurod2 were depleted 
in NSC enhancers but became strongly enriched in both IPC and PN1-
2 specific enhancers. Importantly, this approach allowed us to identify 
Insm1 (Tavano et al., 2018) and Tfap2c (Pinto et al., 2009), two TFs 
with a described role in inducing and regulating IPC fate, to be 
specifically enriched within IPC-specific enhancer-gene pairs. 
Interestingly, Ctcf – a transcription factor frequently associated with 
3D genome architecture (Bonev and Cavalli, 2016), was actually 
depleted in almost all clusters. 
 
To determine the temporal relationship between enhancer accessibility 
and gene expression, we ordered the positively correlated pairs based 
on their enhancer accessibility as a function of the integrated 
pseudotime (Figure 3D). This systematic analysis showed that for the 
transient cell states (IPC, PN1 and PN2) enhancer accessibility 
significantly precedes upregulation of their linked gene despite overall 
strong correlation (Figure3A and Methods). Similar TF motif-centric 
analysis (Figure 3E) showed that motif accessibility and expression for 
transcriptional activators such as Pax6, Sox2, Eomes or Neurog2 were 
highly correlated, while known repressors such as Insm1, Id4 and Hes1 
displayed a strong negative correlation. Furthermore, we observed that 
expression precedes motif accessibility for the majority of transiently 
expressed TFs.  
 
To address if all predicted enhancers of a gene are characterized by 
similar accessibility dynamics, we visualized the changes in 
accessibility of individual enhancers linked to a transcription factor, its 
expression and the average accessibility of its binding motifs (Figure 
3F, S3J). While the majority of the linked enhancers became accessible 
shortly prior or at the onset of gene expression, some enhancers (such 
as Eomes:-159192 and Neurod2:8330) acquired accessibility 
considerably earlier, suggesting that they may act in lineage-priming 
(Figure 3F) and could be bound by different TFs (Figure S3K).  
 
In summary, the analysis of the integrated scRNA-seq and scATAC-
seq datasets allowed us to identify matched enhancer-gene pairs, which 
led to several novel findings. First, we find both known and novel TFs 
particularly enriched in the cell-type-specific enhancers. Second, we 
provide additional support for a long-standing hypothesis in the field, 
namely that enhancer activation precedes gene expression, although 
only a subset of enhancers appears to be truly lineage-priming. Finally, 
the identification of enhancer-gene pairs in single cells, in vivo sets the 
stage to systematically interrogate how TFs facilitate and maintain 
GRNs during development. 

Enhancer-gene pairs reveal target genes of neurogenic transcription 
factors  
Identifying the direct downstream targets of TFs is one of the most 
challenging steps in reconstructing GRNs. Although best results are 
generally achieved by combining ChIP-seq and misexpression analysis 
(Berest et al., 2019; Feng et al., 2020), such data remain mostly 
unavailable. We developed an approach using the obtained enhancer-
gene pairs in order to predict bona-fide target genes of (cell-type) 
specific transcription factors (Methods). We focused first on Eomes, a 
transcriptional activator expressed in IPC, known to support neuronal 
expansion (Figure 1C-D; Sessa et al., 2008). Eomes motif was enriched 
specifically in IPC enhancer-gene pairs (Figure 3C) and displayed the 
highest accessibility within the IPC cluster (Figure 4A). We verified 
the putative downstream targets of Eomes (Figure 4B) using three 

orthogonal approaches. First, gene ontology (GO) analysis identified 
categories, reminiscent of the known function of Eomes in the 
developing brain (Figure 4C; reviewed by Hevner, 2019). Second, an 
analogous approach using Eomes ChIP-seq peaks instead of binding 
motifs (Sessa et al., 2017) was characterized by comparable 
accessibility pattern (Figure S4A), identified very similar target genes 
(Figure S4B) and resulted in highly overlapping GO terms (Figure 
S4C). Finally, several putative Eomes targets were previously 
identified to be either bound by it (Cdh8, Satb2, Dll1) or 
downregulated upon its ablation (Eomes, Dach1, Sstr2, Azi2, Cdh8, 
Satb2) (Sessa et al., 2017). Importantly, our approach allowed us to 
also predict novel direct targets of Eomes, which could not be 
identified with conventional promoter-based approaches. A 
representative example is Sstr2, an important receptor for neuronal 
migration and axon outgrowth (Stumm et al., 2004) (Figure 4D-E).  
 
After verifying our strategy with Eomes, we next asked whether our 
approach would similarly capture targets of putative repressors. Insm1, 
has a known function as transcriptional repressor in the NSC to IPC 
cell differentiation (Farkas et al., 2008; Monaghan et al., 2017; Tavano 
et al., 2018), was strongly upregulated in IPC (Figure 3F, S3J) and 
displayed a specific enrichment of its motifs only within IPC enhancer-
gene pairs (Figure 3C). While no Insm1 cortex-specific ChIP-seq data 
exists, we found that Insm1 binding motifs lose accessibility upon 
differentiation (PN1-2) (Figure 4F). We identified 713 potential target 
genes (Figure 4G), the majority of which displayed a negative 
correlation with Insm1 expression (430/713). Overall the identified 
targets were associated with GO terms such as negative regulation of 
neurogenesis, fully consistent with Insm1’s repressor function in IPC 
differentiation (Farkas et al., 2008; Tavano et al., 2018) (Figure 4H). 
Putative targets included NSC-specific genes such as Sox2, Notch1, 
Id4, Zfp36l1 and the previously identified direct target Plekha7 
(Tavano et al., 2018) (Figure 4G-J and S4D-E), whose downregulation 
likely contributes to the transition from NSC to IPC.  Finally, we 
observed a significant overlap of predicted targets with genes 
downregulated upon Insm1 overexpression in the E14.5 cortex 
(Tavano et al., 2018) (Figure 4K - 48/406, p<7.761e-17). 
 
Collectively, these results highlight how integrating scRNA and 
scATAC and utilizing correlated enhancer-gene pairs can be used to 
successfully infer GRNs downstream of TFs, even in the absence of 
ChIP-seq validation or functional experiments. Using Eomes and 
Insm1 as examples, we could not only verify several known 
downstream genes, but also identify novel targets, significantly 
expanding our understanding of how TFs can modulate the chromatin 
landscape to regulate gene expression. 

Immuno-Methyl-Hi-C allows integration of single-cell epigenomics 
with bulk 3D genome organization and DNA methylation  
To obtain a more comprehensive view of how chromatin landscape is 
reorganized during neural differentiation, we decided to employ a bulk 
approach using scRNA-based markers to sort precise cell populations, 
followed by combined mapping of 3D genome architecture and DNA 
methylation. Our method is based on the recently described methyl Hi-
C protocols (Lee et al., 2019; Li et al., 2019), with the following 
improvements: 1) enrichment of desired cell types by immunoFACS; 
2) significantly reduced input requirements (100-200k cells) and 3) 
higher proportion of Hi-C contacts/unique reads (Methods). 
 
We decided to focus on the three major cell types identified using our 
scRNA-seq data and isolated NSC (Pax6+), IPC (Eomes+) and PN 
(Tubb3+) G0G1 cells from E14.5 somatosensory cortex in biological 
triplicates (Figure 5A, S5A-B). Our improved Methyl-Hi-C method 
was characterized by high bisulfite conversion efficiencies (Figure 
S5C-D), distance dependent decrease in contact probability (Figure 

 
(D) Left, heatmap depicting scaled enhancer accessibility of positive correlated enhancer-gene pairs in individual cells ordered along the integrated 
pseudotime. Right, heatmap depicting the difference between the pseudo-temporal maxima of enhancer accessibility and expression of the linked 
gene (referred to as “dPD”) and box-whisker plots with the median of these differences (M). Negative values mean that accessibility precedes gene 
expression. Significance was calculated using one-sample Wilcoxon signed rank test. (E) Analogous to (D) but heatmaps depict the pseudotemporal 
ordering of chromVAR scaled deviation scores (left), the correlation between motif accessibility and TF expression (middle) and difference between 
the pseudo-temporal maxima of motif accessibility and expression of the linked gene (referred to as “dPD”). (F) Pseudotime heatmap ordering of 
enhancer accessibility (individual or aggregate), linked gene expression and motif accessibility of indicated TFs. 
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S5E) and high reproducibility (Figure S5F). Furthermore, CpG 
methylation at gene bodies (Figure S5G) or Ctcf bound sites (Figure 
S5I) followed the expected pattern and did not change across cell types, 
indicating that global methylation levels remain the same.  
 
Consistent with our previous results using an in vitro differentiation 
system (Bonev et al., 2017), we observed a global reorganization of 
chromatin interactions associated with fewer compartment transitions 
but stronger overall compartment strength (Figure 5B and 5D), as well 
as increased insulation at TAD boundaries and promoters upon 
neuronal differentiation (Figure 5C and S5H). However, this increase 
of insulation was not associated with changes in DNA methylation at 
TAD boundaries or accessibility/DNA methylation at CTCF bound 
sites (Figure 5C and S5H-I). We identified 322 differentially insulated 
domain boundaries (~11% of all) (Figure 5E), many of which were in 
close proximity to TSS of cell-type-specific expressed genes such as 
Gas1 (NSC), Cxcd12 (IPC) or Flrt2 (PN) (Figure 5F-H, S5J), 
consistent with our previous findings (Bonev et al., 2017). Visual 
inspection of the identified loci highlighted several intra-TAD 
changes, which were frequently associated with dynamic enhancer 
accessibility (Figure 5F-G, S5J), prompting us to study the genome-
wide dynamics of 3D connectivity and DNA methylation at the 
identified enhancer-gene pairs. 

Enhancer-gene pairs are associated with cell-type-specific changes 
in DNA methylation and chromatin looping  
To address if there is a global rewiring of regulatory interactions, we 
first examined the aggregated Hi-C enhancer-promoter contacts, as 
previously described (Bonev et al., 2017; Methods). Strikingly, we 
found that: 1) positively correlated enhancer-gene pairs were 
characterized by increased contact strength compare to control (non-
correlated) pairs and 2) interactions of positively correlated enhancer-
gene pairs were much more cell-type-specific than control pairs with 
highest contact strength present in the cell type where the enhancer is 
the most active (Figure 6A and S6A). This effect was particular 
pronounced in NSC and PN, while IPC specific enhancer-gene pairs 
appeared to be in close proximity already in NSC. Nevertheless, IPC 
pairs increased in contact enrichment during the transition into IPC and 
decreased again in PN. These results suggest that although the majority 
of regulatory contacts can reform rapidly even between cells separated 
by only 1-2 cell divisions (NSC-IPC), there are some which are already 
pre-looped.  
 
To address this hypothesis directly, we examined the contact strength 
of each positively correlated or control enhancer-promoter pair 
independently for each cluster. First, we confirmed that only changes 
in contact strength in positively correlated, but not in control pairs were 

Figure 4. Gene regulatory networks associated with the TF Eomes and Insm1 
(A) TF footprint of Eomes binding motif in the indicated scATAC clusters. The Tn5 insertion bias track is shown below. Footprint is calculated using 
ArchR (Granja et al., 2020) (B) Scatter plot depicting predicted downstream targets of Eomes based on the aggregated correlation between gene 
expression and accessibility of linked enhancers containing the Eomes motif (linkageScore) versus the statistical significance of the motif enrichment 
(hypergeometric test). Significant genes are colored based on the Pearson correlation between their expression and the expression of Eomes. (C) 
Bar plot depicting the GO enriched terms, enrichment scores and gene ratios of the predicted Eomes targets. (D) Genomic tracks depicting aggregated 
accessibility (per cluster) and Eomes Chip-seq profile (black) at the Sstr2 gene locus. Arcs on top represent linked Sstr2 enhancers, overlapping with 
Eomes motif and colored by Pearson correlation of the enhancer accessibility and Sstr2 expression. Note the overlap of Eomes binding sites and 
linked enhancers. (E) scRNA UMAP projection, colored by the expression levels of Sstr2. (F) TF footprint of Insm1 binding motif in the indicated 
scATAC clusters. (G) as in (B) but based on Insm1 instead of Eomes. (H) Bar plot depicting the GO enriched terms, enrichment scores and gene 
ratios of the predicted Insm1 targets. (I) Smoothed fit line plots depicting the scaled gene expression levels of Insm1 and some of its predicted 
downstream target genes across pseudotime. (J) Genomic tracks depicting aggregated accessibility (per cluster) at the known Isnm1 target Plekha7 
(highlighted in grey; Tavano et al., 2018). Arcs on top represent linked Plekha7 enhancers, overlapping with Insm1 motif and colored by Pearson 
correlation of the enhancer accessibility and Plekha7 expression. (K) Volcano plot of significantly (FDR< 0.1) down (blue) and upregulated (red) 
genes upon overexpression of Insm1 in E14.5 cortex (Tavano et al., 2018).  
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statistically significant (Figure 6B and S6B). Next, we plotted each pair 
separately and found, surprisingly, that individual enhancer-promoter 
pairs were characterized by a continuum of contact strengths ranging 
from strongly (Hi-C score ≥50) to weakly connected (Hi-C score ≤30)    
(Figure 6C). Examples of dynamic enhancer-promoter contacts include 
several cell-type-specific genes such as Gas1 (also depicted in Figure 
5F), Gli3 and Nr2e1 in NSC; Eomes and Gas2 in IPC and neuronal-
specific genes such as Sox5 and Clstn2.  For some enhancer-promoter 
pairs the contact strength remained the same or even became stronger 
upon cell type transitions. Importantly, although non-correlated pairs 
were also characterized by high heterogeneity, they did not display the 
same bias in contact strength towards the cell type where the enhancer 
was active (Figure S6C).   
 
To understand how DNA methylation is related to changes in enhancer 
accessibility and gene expression, we analysed the dynamics of CpG 
methylation at the identified enhancer-gene pairs. We found that 
promoter regions of the positively correlated linked pairs displayed 
consistent hypomethylation levels throughout neurogenesis (Figure 
6D), in agreement with results in other differentiation systems 
(Meissner et al., 2008).  
 
Contrary, DNA methylation levels at enhancers were lowest in cells 
where enhancers were most accessible (Figure 6E-F). This is fully 
consistent with previously described decrease of DNA methylation 
upon enhancer activation (Hahn et al., 2019; Noack et al., 2019; Stadler 
et al., 2011; Zhu et al., 2016). Although the majority of enhancers 

became hypomethylated upon activation, there was considerable 
heterogeneity in DNA methylation levels (Figure 6G). Non-correlated 
enhancers were associated with higher overall levels of DNA 
methylation and were not as dynamic (Figure S6D-F). Interestingly, 
although chromatin interactions between anti-correlated pairs did not 
change significantly, DNA methylation levels varied between cell 
types, suggesting that these two molecular layers are not strictly 
correlated (Figure S6G-H).  
 
In summary, we showed that, overall, regulatory interactions between 
correlated enhancer-gene pairs are fairly dynamic and strongest in the 
cell type where the enhancer is active and the linked gene expressed. 
Nevertheless, there is a considerable heterogeneity at the level of 
individual enhancer-promoter pairs: while many follow the classical 
model of cell-type-specific looping, some appear to be already pre-
looped before transcription occurs and others are only weakly 
interacting with their target promoters. DNA methylation levels at 
enhancers are generally anti-correlated with accessibility but, again, 
vary considerably from enhancer to enhancer. Importantly, both of 
these metrics, 3D contact strength and DNA methylation, could not be 
simply inferred from scRNA/scATAC, highlighting the importance of 
using multiple epigenome layers to study GRNs.   

Figure 5. Immuno-methyl-Hi-C identifies global changes in 3D genome architecture during cortical development, independent of DNA 
methylation 
(A) Schematic representation of the immunoFACS-based methyl-Hi-C experiment. (B)  Knight-Ruiz balanced contact matrices for chr3 at 250 kb 
resolution (top) and DNA methylation levels (bottom). Scale bar is adjusted to account for the total coverage on chr3 in each cell type. (C) Average 
contact enrichment (top) and DNA methylation levels (bottom) across TADs. (D) Average contact enrichment between pairs of 250 kb loci arranged 
by their eigenvalue (shown on top). Numbers represent the compartment strength (Methods) (E) K-means clustering of differential TAD boundaries 
(n=322) based on the insulation score. (F) Contact maps (top) and aggregated accessibility of matched scATAC-seq clusters (bottom) for 
representative examples of a NSC- (F) or a PN- (G) specific TAD boundary (indicated by arrow) at the Gas1 or Flrt2 gene loci, respectively. Dynamic 
contacts are highlighted with dashed ellipse.  (H) scRNA UMAP projection, colored by the expression levels of indicated genes.  
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Epigenome remodelling is associated with tissue-specific 
transcription factors  
Given the observed dynamics and heterogeneity at the identified 
enhancer-gene pairs in both DNA methylation and interaction strength, 
we sought to identify the potential molecular mechanisms underlying 
these observations. Transcription factors have been previously 
suggested as potential mediator of such processes by us and others 
(Bonev et al., 2017; Hahn et al., 2019), but it is unclear which and to 
what extend they participate in these biological processes.  
 
To address this question, we developed a computational method to 
assess the average interaction strength and cellular specificity for each 
TF based on accessible sites containing their binding motif (Methods). 
We first verified the method using pairs of convergent Ctcf sites as 
control (Rao et al., 2014), which had the highest maximum normalized 
Hi-C score as expected (Figure 7A – Ctcf_ForRev). Surprisingly, we 
found several key neurogenic factors which have not been previously 

described in the context of chromatin loop formation (Figure 7A and 
S7A). These include the basic helix-loop-helix TF Neurog2, as well as 
members of the POU-domain-class3 (Pou3f2, Pou3f3) and Sox (Sox2, 
Sox4, Sox8) families. Interestingly, in addition to high interaction 
strength, these factors were also characterized by the highest variance, 
suggesting that strong interactions were formed transiently in a cell-
type-specific manner. To confirm these findings, we used two different 
approaches. First, we plotted the aggregated Hi-C contact maps for 
Pou3f2 motif containing peaks and observed high interaction in NSC 
and IPC followed by a drop in PN where Pou3f2 is downregulated 
(Figure 7B-C). Similarly, contact strength of Neurog2 motif containing 
peaks was the highest in IPC, which correlated well with its expression 
pattern (Figure 7B-C). Second, we used ChIP-seq based peaks to 
confirm the cell-type-specificity between Neurog2/Eomes bound sites, 
as well as Pax6, as previously described (Figure S7B; Bonev et al., 
2017). This dynamic pattern of chromatin interaction matched well 
with the changes in accessibility at TF bound sites (Figure S7C). 

Figure 6. Chromatin loops and enhancer methylation levels are highly heterogeneous, yet mostly cell-type specific 
(A) Aggregated Hi-C maps between enhancer (Enh) and the transcription start site (TSS) of NSC-, IPC- and PN-specific positively correlated 
enhancer-gene pairs. Genes are oriented according to transcription (arrow). Number in the top-right corner indicates the ratio of the center enrichment 
to the mean of the four corners (Methods). (B-C) Box-whisker (B) and scatter plots colored by density (C), depicting the Hi-C score at positively 
correlated cluster-specific enhancer-gene pairs. Statistical significance is calculated using wilcoxon rank-sum test. (D-E) Average DNA methylation 
levels at TSS (± 2kb) (D) and enhancer (± 2kb) (E) of positively correlated cluster-specific enhancer-gene pairs. Lines: mean values from biological 
replicates; semi-transparent ribbons: SEM (F-G) Box-whisker (F) and scatter plots colored by density (G), depicting the average DNA methylation 
levels at enhancers of positively correlated cluster-specific pairs. Statistical significance is calculated using wilcoxon rank-sum test. 
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Next, we asked if we could use an analogous approach to identify TFs 
related to dynamic DNA methylation (Methods). Among those 
predicted to be associated with low levels of DNA methylation, we 
found Nrf1 (Figure 7D-F), which has been previously characterized to 
be highly sensitive to DNA methylation levels (Domcke et al., 2015), 
thus validating our approach. Neurod2 and Neurog2 were some of the 
TFs with the highest variance (Figure 7D-E and G) and while Neurod2 
has been previously shown to be important for establishing cell-type-
specific DNA methylation in the cortex (Hahn et al., 2019), not much 
is known about the role of Neurog2 in this process. We confirmed these 
findings using positively correlated enhancer-gene pairs as well as 
Neurog2/Neurod2 peaks (based on ChIP-seq data), instead of motifs 
(Figure S7D-E).  
 
Finally, we focused on our attention on Neurog2, as it was one of the 
few TFs which showed high cell specificity in both chromatin 
interactions and DNA methylation, and due to its well-characterized 
role in neuronal differentiation in the cortex (Mattar et al., 2008; 
Schuurmans et al., 2004). Using the linkageScore method described 
earlier, we identified Eomes as a putative target of Neurog2 (Figure 
S7F). Visual inspection at the Eomes locus showed a complex 
regulatory network with at least 8 positively correlated enhancer-gene 
pairs (Figure 7H). Importantly, enhancers bound strongly by Neurog2 
engaged in strong, cell-type-specific looping with the Eomes promoter 
only in IPCs (Figure 7H-I, loci 5-7), while other enhancers were either 
pre-looped (Figure 7H-I, loci 1-4) or not interacting strongly (Figure 
7H-I, locus 8). DNA methylation levels at Neurog2 bound enhancers 

were either very low (Figure 7J, locus 5) or decreased specifically in 
IPC (Figure 7J, loci 4, 6 and 7).  
 
Collectively, these experiments identify the previously 
underappreciated role of transcription factors in dynamic chromatin 
looping and DNA methylation. Furthermore, several novel TFs with a 
well-characterized role in cortical development such as Neurog2, 
Pou3f2 and Eomes are associated with strong cell-type-specific 
looping, but only Neurog2 binding is correlated with changes in DNA 
methylation. Finally, we identify Eomes as a potential downstream 
target of Neurog2 and highlight the complex regulatory network of pre-
looped and dynamic enhancers involved in regulating its expression. 

Discussion 

The identification of lineage specific gene regulatory networks during 
development has remained challenging, in particular in complex, 
heterogeneous tissues in vivo. Another layer of complexity derives 
from the difficulty to simultaneously profile the multiple level of 
molecular regulation at play. Here, we combined single-cell 
transcriptomics and epigenomics with cell-type-specific bulk DNA 
methylation and 3D genome architecture in vivo to address how the 
chromatin landscape is reorganized during cortical development. Our 
rich datasets and the novel computational methods for data integration 
provided numerous insights into crucial cell fate transitions during 
neural differentiation in the embryonic cortex.   
 

Figure 7. Neurog2 is associated with changes in both chromatin looping and DNA methylation levels 
(A) Scatterplots depicting the maximum Hi-C score and the normalized variance at pairs of accessible peaks associated with specific TF binding 
motifs. TFs are colored based on the Pearson correlation between their expression and the accessibility of their binding motif. Grey circles represent 
non-significant TFs (p>0.05; permutation test). Only TFs where correlation between expression and motif accessibility can be calculated (Figure 3E) 
are considered. (B) Aggregated Hi-C plots between intraTAD pairs of accessible peaks overlapping with the indicated TF motif. Number in the top-
right corner indicates the ratio of the center enrichment to the mean of the four corners (Methods). (C) Violin plots depicting the expression levels of 
indicated TFs per scRNA cluster. (D) as in (A) but comparing the minimum DNA methylation level and the normalized SD at accessible peaks 
associated with specific TF binding motifs (E-G) Average DNA methylation levels at accessible peaks overlapping with the indicated TF binding 
motifs. Lines: mean values from biological replicates; semi-transparent ribbons: SEM (H) Contact maps (top) and aggregated accessibility of matched 
scATAC-seq clusters (bottom) at the Eomes locus. Depicted are the identified linked enhancers (1-8, arcs) and Neurog2 ChIP-seq track (Sessa et 
al., 2017). Arcs on top are colored by Pearson correlation of the enhancer accessibility and Eomes expression. (I-J) Heatmaps depicting the Hi-C 
score of linked enhancer-Eomes pairs (I) or the DNA methylation levels at the corresponding Eomes enhancers (J). 
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We observed that during neuronal differentiation cells transition along 
a continuum of cellular states, in contrast with the defined cell types 
present in the mature postnatal cortex (Zeisel et al., 2015). Using RNA 
velocity and trajectory analysis approaches, we confirmed the dynamic 
expression of several known TFs (Telley et al., 2016) and identified 
novel temporally-regulated genes related to chromatin remodeling 
(Chd7, Rbbp7) or associated with autism and mental retardation 
(Lrfn5).  Our findings confirm and significantly advance initial single-
cell data (Loo et al., 2019; Telley et al., 2016, 2019), which were based 
on a small cohort of cells and/or low sequencing depth. 
 
Our matched scATAC-seq data represents one of the highest-quality 
scATAC datasets currently available (46899 unique fragments/cell), 
paving the way to comprehensively characterize the dynamics of the 
chromatin landscape in neuronal differentiation. As suggested by other 
model systems (Corces et al., 2016; Klemm et al., 2019), promoter 
accessibility is generally not correlated with gene expression, while 
distal elements and transcription factor motifs are characterized by 
high variability and specificity.  
 
Using an integration approach pioneered by the Greenleaf (Granja et 
al., 2019, 2020) and Satija (Stuart et al., 2019) labs, we identified 
thousands of positively correlated enhancer-gene pairs, generating a 
rich resource to study GRNs in the cortex. We found a previously 
unexpected connection between expression of cell-type-specific TFs 
and the accessibility at the enhancers overlapping their binding motif, 
indicating that many TFs potentially function by remodeling the 
chromatin landscape. Whether or not binding of these TFs is a cause 
(thus challenging the concept of only a limited number of pioneer TFs) 
or a consequence of changes in enhancer accessibility, remains to be 
seen. Using an integrated trajectory analysis, we showed that enhancer 
activation generally precedes transcription at dynamic genes, although 
only a subset of enhancers appears to be truly lineage-priming. Our 
findings corroborate prior conclusions in early mammalian 
embryogenesis (Argelaguet et al., 2020) and recent data using 
simultaneous paired ATAC/RNA measurements in single cells (Ma et 
al., 2020).    
 
3D genome architecture and DNA methylation represent two 
additional less characterized molecular layers of the regulatory 
landscape, but have only rarely been coupled to single-cell epigenomic 
measurements (Clark et al., 2018). Our immuno-FACS approach 
allowed us to combine the resolution and depth of bulk Hi-C/DNA 
methylation with cell-type-specificity. The reduced input requirements 
and the improved resolution compared to prior studies (Lee et al., 2019; 
Li et al., 2019) enable the application of this method to other tissues 
and model organisms, where high-quality antibodies exist.  
 
Previous studies have produced somewhat conflicting results regarding 
the importance of 3D genome architecture on gene regulation(Deng et 
al., 2012; Ghavi-Helm et al., 2019; Llinares-Benadero and Borrell, 
2019; Lupiáñez et al., 2015; Nora et al., 2017) and the cell-type-
specificity of regulatory loops (Bonev et al., 2017; Ghavi-Helm et al., 
2014; Javierre et al., 2016). Our results indicate that contact strength 
between enhancers and promoters (as well as DNA methylation levels) 
is not simply a consequence of gain in accessibility/expression and 
cannot be inferred from other type of measurements (such as matched 
accessibility/gene expression), as even highly correlated enhancer-
gene pairs were characterized by a continuum of interactions scores. 
Despite this apparent heterogeneity, there are clear genome-wide 
trends in the data, suggesting that the majority of enhancer-promoter 
interactions are dynamic and cell-type-specific, although such 
differences are rather quantitative than binary (loop vs no loop).  
Finally, we provide evidence that a subset of transcription factors is 
associated with strong and cell-type-specific chromatin looping, 
potentially acting as “molecular bridges” to facilitate the 
reorganization of the epigenetic landscape in development. We 
identify the proneural TF Neurog2 as one of the few factors correlating 
with both dynamic 3D contacts and DNA methylation changes and 
characterize the chromatin landscape at its predicted downstream 
targets Eomes and Rnd2.  
 

Collectively, our data provides a comprehensive view of the 
reorganization of the epigenetic regulatory landscape during lineage 
commitment in the mouse cortex. The novel insights gained from our 
integrative analysis can be used to more precisely define, compare and 
ultimately engineer cellular identities both in development and 
evolution, as well as for therapeutic and regenerative purposes. Our 
results pave the way for functional studies aiming to resolve the 
relative influence of dynamic vs pre-looped enhancers on gene 
expression and the importance of transcription factor binding to the 
rewiring of the regulatory 3D genome. Finally, our data provides a rich 
resource to study the reorganization of chromatin, the transcriptomic 
landscape and the establishment of lineage-specific GRNs in cortical 
development. 
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Materials and Methods 

Experimental Model and Subject Details 
Time-mated pregnant C57BL/6JRj mice were obtained from Janvier 
Laboratories (Route du Genest, 53940 Le Genest-Saint-Isle, France) 
and kept under standard housing conditions according to local 
regulations of the Regierung Oberbayern, Germany. E14.5 mouse 
embryos were used sex independent. Each biological replicate 
represents a single embryo from different mothers in case of scRNA-
seq/scATAC-seq or a pool of 4-6 littermates from separate mothers in 
case of MethylHiC. All experiments were performed according to 
national guidelines and where approved by local authorities (Regierung 
Oberbayern, Germany: ROB-55.2-2532.Vet_02-19-175).   

Experimental procedure 
Tissue preparation and dissociation  
Brains of E14.5 embryos were either used directly for in-situ 
hybridization and immunohistochemistry or were further dissected to 
isolate the somatosensory cortex with a prior removal of all meninges. 
The dissected cortex was dissociated using a papain-based neural 
dissociation kit (Miltenyi Biotec, Cat. N: 130-092-628) according to the 
manufacturer protocol with minor modifications. Briefly, samples were 
spun down with 300g for 2min. at RT, supernatant was removed and 
samples were mixed and incubated with prewarmed enzyme mix 1 for 
15min. at 37˚C under slow rotation. Enzyme mix 2 was added and gently 
mixed using a disposable Pasteur pipette (ThermoFisher, Cat. N: 
PP89SA). Subsequently, samples were incubated two times for 5min. at 
37˚C under slow rotation with a manual dissociation in between using a 
disposable Pasteur pipette. The single cell suspension was passed twice 
through a 40µM cell strainer (VWR, Cat. N: 734-2760), spun down with 
300g for 5min. at 4˚C and washed twice with ice cold HBSS 
(ThermoFisher, Cat. N: 14025092). After the final wash cells were 
resuspended in PBS with 1% BSA (ThermoFisher, Cat. N: AM2618) and 
the cell number as well as viability were assessed using Countess™ II 
Automated Cell Counter (Invitrogen).  
scRNA-seq and scATAC-seq 
Directly after tissue dissociation scRNA-seq (v3, 10x Genomics, Cat. N: 
PN-1000075, PN-1000074, PN-120262) as well as scATAC-seq (10x 
Genomics, Cat. N: PN-1000110, PN-1000086, PN-1000084) libraries 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.08.07.241828doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.07.241828
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 12 

were generated according to the manual instructions with a targeted 
recovery of 6000 cells/nuclei per sample.  
ImmunoFACS 
Dissociated cells were fixed for 10min. at RT in 1% freshly prepared 
Formaldehyde in PBS (ThermoFisher, Cat. N: 28908) under slow 
rotation and quenched by addition of Glycine (Invitrogen, Cat. N: 
15527013) to a final concentration of 0.2M. Fixed cells were spun down 
with 500g for 5min. at 4˚C, washed once with 1% BSA, 0.1% RNAsin 
plus RNase inhibitor (Promega, Cat. N: N261A) in PBS (wash buffer) 
and subsequently incubated for 10min. at 4°C in permeabilization buffer 
consistent of 0.1% freshly prepared Saponin (Sigma-Aldrich, Cat. N: 
SAE0073), 0.2% BSA (ThermoFisher, Cat. N: 15260-037) and 0.1% 
RNAsin plus RNase inhibitor in PBS. The permeabilization buffer was 
removed by centrifuging the cells with 2500g for 5min. at 4˚C followed 
by staining against Pax6 (1:40; BD Bioscience, Cat. N: 561664), Eomes 
(1:33; BD Bioscience, Cat. N: 566749) and Tubb3 (1:14; BD Bioscience, 
Cat. N: 560394) in staining buffer (0.1% saponin, 1% BSA, 0.1% RNAsin 
plus RNase inhibitor in PBS) for 1h at 4˚C under slow rotation. Cells were 
washed twice with permeabilization buffer, once with wash buffer 
containing DAPI (1:1000; ThermoFisher, Cat. N: 62248) and a final wash 
with wash buffer without DAPI. Between each washing step, the cells 
were incubated for 5min. at 4˚C with the respective buffer under slow 
rotation and spun down with 2500g for 5min. at 4˚C. After the last wash 
the cells were resuspended in PBS with 1% BSA and 1% RNAsin plus 
RNase inhibitor, passed through a 40µM cell strainer (ThermoFisher, 
Cat. N: 15342931) and immediately FAC-sorted. 
Fluorescence-activated cell sorting  
FAC-sorting was performed on a BD FACSAria Fusion (BD Bioscience) 
with four lasers (405, 488, 561, 640) using a 100µm nozzle. After 
selecting singlets using forward and side scatter, cells in G0G1 were 
identified by genomic content based on DAPI staining. Subsequently, 
these cells were divided into Tubb3 high for PN and low for progenitor 
cell types. The progenitor population was further subdivided into Pax6-
high/Eomes-low for NSC and Eomes-high for IPC. The set gates are 
displayed in Figure S5A. After sorting, cells were either directly pelleted 
(500g for 5min. at 4˚C), flash frozen in liquid nitrogen and stored at -80 
˚C for further usage or RNA was extracted using the Quick-RNA FFPE 
Miniprep kit (Zymo Research, Cat. N: R1008) with Zymo-Spin IC 
Columns (Zymo Research, Cat. N: C1004-250). 
Real Time Quantitative PCR (qPCR) 
Reverse transcription was performed using Maxima H Minus Reverse 
Transcriptase (ThermoFisher, Cat. N: EP0751) with OligodT primer 
(ThermoFisher, Cat. N: SO132) according to the manual instructions. 
Transcripts were quantified by using LightCycler® 480 SYBR Green I 
Master Mix (Roche, Cat. N: 04707516001) with the appropriate primers 
(see key resource table) on a Roche LightCycler® 480. 
Methyl-Hi-C 
For Methyl-Hi-C we adapted current protocols (Lee et al., 2019; Li et al., 
2019). Briefly, frozen pellets of fixed cells were thawed on ice, lysed with 
0.2% Igepal-CA630 (Sigma-Aldrich, Cat. N: I3021), permeabilized with 
0.5% SDS (Invitrogen, Cat. N:AM9823) and digested with 200U DpnII 
(New England Biolabs, Cat. N: R0543) overnight at 37˚C. Subsequently, 
sticky ends were filled by incubating the nuclei for 4h at RT with DNA 
Polymerase I (New England Biolabs, Cat. N: M0210) and a biotin-14-
dATP (Life Technologies, Cat. N: 195245016) containing nucleotide mix 
in DpnII buffer followed by proximity ligation for at least 6h at 16°C. 
Thereafter nuclei were lysed, proximity ligated DNA was reverse-
crosslinked overnight at 68˚C followed by a purification by ethanol 
precipitation. DNA was sheared to ~550 bp fragments using a Covaris 
S220 sonicator and end-repaired by incubating the samples with T4 
DNA Polymerase (New England Biolabs, Cat. N: M0203) for 4h at 20˚C. 
Prior to bisulfite conversion, sheared and biotinylated fully methylated 
pUC19 (Zymo Research, Cat. N: D5017) and unmethylated lambda DNA 
(Promega, Cat. N: D1521) was added to the samples (~ 0.01%). Bisulfite 
conversion was performed using the EZ DNA Methylation-Gold kit 
(Zymo Research, Cat. N: D5005) followed by library construction using 
the Accel-NGS® Methyl-Seq DNA Library kit (Swift Bioscience, Cat. N: 
30024) according to the manufacturer’s instructions until the adapter 
ligation step. After this step, biotin pulldown was performed using MyOne 
Streptavidin T1 beads (ThermoFisher, Cat. N: 65602) followed by 5 
washes with washing buffer containing 0.05% Tween-20 (Sigma-Aldrich, 
Cat. N: P9416) and two additional washes with low-TE water. Libraries 
were amplified on the streptavidin beads using the EpiMark Hot Start 
Taq (New England Biolabs, Cat. N: M0490) using following program: 
95˚C 30s; {95˚C 15s, 61˚C 30s, 68˚C 60s} x14; 68˚C 5min; Hold at 10˚C. 
Streptavidin T1 beads were pelleted on a magnetic rack and the 
prepared libraries within the supernatant were purified using 0.6x 
AMPure XP beads (Agencourt, Cat. N: A63881) to reach an average 
fragment size of approximately 500bp.  
Library QC and Sequencing  
Before sequencing, libraries were quantified by qPCR using either the 
NEBNext® Library Quant kit (New England Biolabs, Cat. N: E7630S) or 
the KAPA Library Quantification Kit (scRNA-seq libraries only; Roche, 
Cat. N: 07960298001). Size distribution of the obtained libraries was 
assessed using Agilent 2100 Bioanalyzer. Libraries were sequenced 
2x100bp paired end on an Illumina NovaSeq 6000 to depth of 
approximately 400 million PE reads per replicate for scRNA-seq, 473 
million PE reads per replicate for scATAC-seq and 320 million PE reads 
per replicate for MethylHiC. 

Sectioning, Immunohistology and In-situ hybridization 
Brains were fixed in freshly prepared 4% Formaldehyde in PBS at 4°C 
for at least 8h, washed once in PBS and cryoprotected in 30% sucrose 
for ~6h at 4˚C. Subsequently, brains were embedded in TFM-Tissue 
Freezing Media (TBS- Triangle Biomedical, Cat. N: 15-183-13), snap-
frozen on dry ice and finally cryosectioned (~10μm) using a CryoStar 
NX70 (ThermoFisher). Sections were collected on Superfrost Plus 
adhesive microscope slides (ThermoFisher, Cat.N: 7608105) and stored 
at -80°C until further use.  
For immunohistochemistry, the sections were hydrated in PBS and 
incubated for 30min. at RT in 0.1M Glycine (Invitrogen, Cat.N: 
15527013) in PBS followed by two washes with PBS. Subsequently 
sections were incubated for 1h at RT in PBS blocking buffer containing 
5% horse serum (Sigma Aldrich, Cat. N: H0146), 0.3% Triton X-100 
(Sigma Aldrich, Cat. N: X100). Staining was performed overnight at 4˚C 
with anti-Pax6-A488 (1:200, BD Biosciences, Cat. N: 561664), anti-
Eomes-PE (1:200, BD Biosciences, Cat. N: 566749) and anti-Tubb3-
A647 (1:200, BD Biosciences, Cat. N: 560394) antibodies in PBS 
blocking buffer. Section were washed three times for 10min with 0.1% 
Triton X-100 in PBS, followed by an incubation with DAPI (1:1000 diluted 
in PBS) for 10min. and finally mounted using Fluoromount-G (Invitrogen, 
Cat. N: 00-4958-02).   
RNA In-situ hybridization was performed using the RNAscope Multiplex 
Fluorescent Reagent kit v2 (ADCBio, Cat. N: 323100) according to the 
manual instructions. Briefly, slides were baked 30min. at 60˚C, 
dehydrated in ethanol and pre-treated with hydrogen peroxide for 10min. 
at RT. Antigen retrieval was performed for 5min. at ca. 98˚C, followed by 
protease incubation 15min. at 40˚C. Probe hybridization was done for 
2h at 40˚C. Signal amplification and detection reagents, including Opal 
fluorophores (Akoya Biosciences, Cat. N: FP1487001KT, 
FP1488001KT, FP1497001KT), were applied sequentially. Nuclei were 
counterstained with DAPI and slides mounted with Fluoromount-G 
(Invitrogen, Cat. N: 00-4958-02).  
All images were acquired using a Zeiss LSM 710 confocal microscope. 

scRNA-seq 
scRNA-seq processing 
Raw sequencing data was converted to fastqs using cellranger mkfastq 
(10x Genomics, v3.1.0). scRNA reads were aligned to the GRCm38 
reference genome (mm10) and quantified using cellranger count (10x 
Genomics v3.1.0).  
scRNA-seq quality control 
We removed low-informative cells by filtering cells with less than 1000 
genes or 2500 UMIs per cell detected. To lower doublet representation 
we filtered cells with more than 7000 genes per cell detected and the top 
4% cells (estimated doublet percentage) with the highest number of 
UMIs. Finally, to remove any potential dead cells we filtered cells that 
have more than 10% mitochondrial counts.  
scRNA-seq clustering and dimensionality reduction 
Seurat v3.1.5 (Stuart et al., 2019) was used to further process the cells 
passing the QC filters. After log transformation, feature selection using 
variance stabilizing transformation (top 2000 most highly variable genes) 
and linear transformation, principal component analysis (PCA) was 
performed using the first 20 dimensions. After dimensionality reduction, 
Harmony (Korsunsky et al., 2019) was used to correct the batch effect 
between the two biological replicates. Next, we applied Louvain 
clustering with resolution 0.3, n.start=100 and n.iter=500 and visualized 
the data using UMAP (min.dist=0.5, spread=1, n.epochs=500). As they 
represent very few cells, the microglia and mural clusters were further 
manually identified based on the UMAP projection and the subclustering 
of the NSC cluster. Cluster identify was determined based on the top40 
differentially expressed genes (MAST – (Finak et al., 2015), min. log fold 
change of 0.25 and expressed in at least 25% of the cells in the cluster)  
scRNA-seq velocity and pseudotime analysis 
The percentage of spliced and unspliced reads was calculated using 
Velocyto v0.17 (La Manno et al., 2018) and RNA velocity was calculated 
using scVelo (dynamical model) (Bergen et al., 2020). Only cells passing 
the previously described QC were used and UMAP coordinates were 
transferred from Seurat. To calculate trajectory and pseudotime, we 
used Monocle3 (Cao et al., 2019), while retaining cluster assignment 
and UMAP coordinates from Seurat. Trajectory graph was constructed 
using the following parameters: minimal_branch_len=20, ncenter=600, 
geodesic_distance_ratio=0.275 and cells belonging to the NSC cluster 
were assigned as root cells. To calculate the change of gene expression 
as a function of the pseudotime, we fitted a generalized additive model 
using cubic regression splines and REML smoothing for each of the top 
3000 most variable genes (expressed in at least 20 cells). The values 
were then rescaled per gene from 0 to 1.     

scATAC-seq 
scATAC-seq processing 
Raw sequencing data was converted to fastqs using cellranger-atac 
mkfastq (10x Genomics, v1.2.0). Reads were aligned to the GRCm38 
reference genome (mm10) and quantified using cellranger-atac count 
(10x Genomics v1.2.0) using integrated doublet removal.  
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scATAC-seq quality control 
We calculated the QC statistics separately per replicate and filtered the 
combined 10x object (merged using cellranger-atac- aggr with no 
normalization). To ensure sufficient sequencing depth and high signal-
to-noise ratio, we filtered cells with less than 10000 unique fragments 
per cell and TSS enrichment ratio less than 8 or more than 25 (Figure 
S2B). To account for any remaining doublets after the automatic 
cellranger-atac filtering, we additionally removed cells with more than 
120000 unique fragments per cell. TSS enrichment was calculated as 
described (Granja et al., 2019). In brief, Tn5 insertions located within 
±2000 bp relative from each TSS (strand-corrected) were aggregated 
per TSS, normalized to the mean accessibility ±1900-2000 bp from the 
TSS and smoothed every 51bp. Maximum smoothed value was reported 
as TSS enrichment. Fragment size distribution for cells passing the QC 
filters was calculated using ArchR (Granja et al., 2020) and plotted with 
ggplot2.  
scATAC-seq clustering and dimensionality reduction 
To obtain a set of initial clusters we first counted the number of unique 
fragments in 5 kb genomic bins (Signac– 
https://github.com/timoast/signac). After binarization, the top20000 
accessible windows were kept and the matrix was transformed using log 
term frequency-inverse document frequency (TF-IDF) transformation 
using Signac. The normalized matrix was then used as an input for 
partial singular value decomposition (SVD) using irlba (Signac). After 
dimensionality reduction, Harmony (Korsunsky et al., 2019) was used to 
correct the batch effect between the two biological replicates. Next, we 
retained the first 20 dimensions, applied Louvain clustering with 
resolution 1, n.start=50 and n.iter=50 and visualized the data using 
UMAP (min.dist=0.5, spread=1.5, n.epochs=2000). For each cluster, 
peak calling was performed on the Tn5-corrected insertions as 
described in Granja et al. 2019. Peak size was then normalized to 501 
bp length, filtered by the mm10 ENCODE blacklist and then peaks were 
merged into a union set as previously described (Granja et al., 2019). 
Next, this high-quality peak set was used to generate the final clustering 
and visualization. First fragments containing within peaks were 
calculated using Signac, binarized and the top 25000 variable peaks 
were identified (using aggregated counts per million from the initial bin-
based clusters). The count matrix associated with those peaks was then 
again subjected to TF-IDF normalization followed by SVD as described 
above. After batch correction using Harmony (Korsunsky et al., 2019), 
the first 20 dimensions were retained and clusters were identified using 
Louvain algorithm (resolution=0.3, n.start=100, n.iter =200). Data was 
visualized using UMAP embedding (min.dist=0.5, spread=1.5, 
n.epochs=2000). Cluster identify was determined based on the top40 
differentially accessible gene bodies (Student’s t-test, min log fold 
change of 0.25 and expressed in at least 25% of the cells in the cluster).  
scATAC-seq calculation of promoter and gene body  
To calculate gene body accessibility scores, we counted the number of 
unique fragments along the whole span (TSS – TTS) of protein coding 
genes (EnsDb.Mmusculus.v79), extended 2000 upstream of TSS. To 
calculated promoter scores, we counted the number of unique fragments 
along promoters of protein coding genes (defined as the sequence -2000 
bp to +200 bp of the TSS.  
scATAC-seq motif and ChIP-seq accessibility deviations 
Motif accessibility was calculated using chromvar (Schep et al., 2017) 
as implemented in the Signac package 
(https://github.com/timoast/signac). In brief, position-weight-matrices 
were obtained from the JASPAR2020 motif database (Fornes et al., 
2020), to which entries present in the JASPAR2018 version but 
subsequently removed, were manually added. Each accessibility peak 
was then tested for the presence/absence of each transcription factor 
motif and GC-bias-corrected deviations were computed using the 
chromVAR ‘deviations’ function as implemented in Signac 
(‘RunChromVar’). Accessibility deviations associated with ChIP-seq 
peaks were computed analogously, but the overlap of ChIP-seq peaks 
and scATAC peaks was used as entry to chromVAR instead.  
scATAC-seq unique peaks identification  
Cluster-specific peaks were identified using feature binarization as 
described (Granja et al., 2019). In brief, pseudobulk replicates were 
created for clusters with N cells < 100, while real biological replicates 
were used for the remaining clusters. Peaks were considered as unique 
if they had adjusted P value less than 0.01 and minimum log fold-change 
of 0.25 to the next highest cluster. The identified unique peaks were split 
into two categories: promoter-associated (less than 500 bp away from a 
TSS) and distal (more than ±5 kb away from an annotated TSS).  
 TF footprinting 
The Tn5-normalized accessibility around TF motifs was calculated as 
previously described (Corces et al., 2018) using the ArchR package 
(Granja et al., 2020). The expected Tn5 bias was substracted from the 
calculated footprints to generate the final footprint plots.  

scRNA and scATAC-seq integration 
Label transfer and co-embedding 
To integrate scRNA and scATAC datasets we used Seurat’s CCA 
(Stuart et al., 2019). In brief, first we identified transfer anchors using the 
top 5000 most variable genes shared across both datasets using 
FindTransferAnchors (dims=1:20, k.anchor=20, k.filter=200, 
k.score=30, max.features=500). We then transferred the scRNA based 

labels using the inferred anchors and the harmony corrected low-
dimensional coordinates as weight reduction. After we confirmed the 
high-confidence of the prediction scores (Figure S3B), we then co-
embedded the scRNA and the scATAC cells in the same low-
dimensional space and recalculated UMAP embedding (Figure S3A, 
dims=1:20, n.epochs=2000, spread=1.5, min.dist=0.5). To enable more 
robust downstream correlation-based analysis we used the previously 
described Cicero-based kNN approach to group scATAC-seq 
accessibility (4892 groups, KNN=50) match grouped gene expression 
(based on scRNA-seq closest neighbors).      
Identifying pairs of matched genes and predicted enhancers 
To identify putative enhancers, where the accessibility of the predicted 
distal regions correlated with changes in gene expression (and not 
accessibility of the promoter), we adapted the approach first described 
by Granja et al. 2019. Briefly, the correlation between the logNormalized 
matched grouped scATAC and scRNA values was calculated for each 
pair of distal scATAC peak (at least 5kb away from any annotated TSS) 
and gene promoter within a maximum genomic distance of 500 kb. The 
significance of the calculated correlations was determined using a trans-
based null correlation and peak-to-gene links with significance of 
FDR<0.1 and Pearson correlation of > 0.35 were considered as 
positively correlated (referred to as putative enhancer-promoter pairs for 
simplicity in the text). In addition, we also identified two additional 
classes of peak-to-gene relationship: negatively correlated (FDR<0.1 
and r< -0.35) and control pairs (FDR>0.1 and -0.35 < r < 0.35). As the 
number of control pairs is much higher than either positively or 
negatively correlated once, we subsampled this category to match the 
positively correlated pairs. Cluster-specific pairs were determined using 
pseudobulk feature binarization as described above.  
Integrated pseudotime analysis 
Pseudotime on the combined integrated scRNA-scATAC object was 
calculated using Monocle3, analogous to scRNA-seq alone. Imputed 
gene expression values based on gene body accessibility and 
integration vectors as described previously were used together with 
measured scRNA values to construct a cellDataSet object, retaining 
cluster assignment (scRNA-based) and UMAP coordinates from Seurat. 
To calculate the change of accessibility and motifs deviations as a 
function of the pseudotime, we fitted a generalized additive model using 
cubic regression splines and REML smoothing, analogous to gene 
expression for scRNA-seq. The values were then rescaled per gene 
from 0 to 1. For each enhancer-gene pair we then ordered the cells 
based on their pseudotime and calculated the pseudotime difference 
between their respective maxima, which was used to infer the 
relationship between enhancer accessibility and gene expression 
(Figure 3D). Analogous process was repeated for TF motif deviations 
and the correlation between the gene expression pattern of each TF and 
its corresponding motif accessibility along the pseudotime was 
computed as well.     
Identification of predicted TF targets   
We reasoned that we can predicted direct targets of TF in the absence 
of available ChIP-seq data based on the enrichment of the TF motif in 
the positively correlated enhancer-gene pairs. First, we identified all 
enhancer-gene pairs which contained the corresponding TF motif (either 
in the distal region or the promoter region). We then calculated gene 
“linkageScore” by adding up the r2 from each pair per gene (if the motif 
was contained in the promoter, we used a value of r=1). To calculate 
motif enrichment, we used background peaks with similar GC content 
and determined significance using hypergeometric test. Although this 
approach works well for genes with multiple links, the significance of 
motif enrichment for genes with very few identified pairs cannot be 
accurately calculated.  

Methyl-Hi-C analysis 
Mapping and QC  
We mapped the joint Hi-C / DNA methylation data to the mm10 genome 
using JuiceMe (Durand et al., 2016). Only uniquely mapping reads 
(mapq>30) were retained for further analysis. After removal of PCR 
duplicates, reads were translated into a pair of fragment-ends (fends) by 
associating each read with its downstream fend. CpG methylation was 
assessed using MethylDackel 
(https://github.com/dpryan79/MethylDackel), in a “mergeContext” mode 
with the first 6 nucleotides omitted from further analysis. Reads from 
individual replicates were pooled and only Cs in a CpG context with at 
least 10x total coverage were further analysed. For Hi-C, reads mapping 
to the same restriction fragment or separated by less than 1 kb were 
excluded from further analysis. The QC metrics were reported in 
Supplementary Table S1.  
QC of bisulfite conversion efficiency 
To determine the efficiency of the bisulfite conversion we determined the 
proportion of CpG methylation which was detected in fragments 
mapping to the lambda DNA sequence. On average this represents 
~0.5%, suggesting 99.5% conversion rates (Figure S5C). To calculate 
the detection rate we determined the proportion of CpG on fully 
methylated pUC19 plasmid DNA and observed >96.5%, suggestion 
false negative rate of less than 3.5%.    
 Hi-C data processing 
The filtered fend-transformed read pairs were converted into “misha” 
tracks and imported into the genomic mm10 database. They were 
normalized using the Shaman package 
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(https://tanaylab.bitbucket.io/shaman/index.html) and the hi-c score was 
calculated using a kNN strategy on the pooled replicates as previously 
described (Bonev et al., 2017) with a kNN of 100.  
Contact probability, insulation and TAD boundary calling 
Contact probability as a function of the genomic distance was calculated 
as previously described (Bonev et al., 2017). The data was presented 
as a log10 contact probability in log10 genomic distance bins. To define 
insulation based on observed contacts we used the insulation score as 
previously defined (Bonev et al., 2017; Nagano et al., 2017). The 
insulation score was computed on the pooled contact map at 1 kb 
resolution within a region of ±250 kb and is multiplied by (-1) so that high 
insulation score represents strong insulation. Domain boundaries were 
then defined as the local 2 kb maxima in regions, where the insulation 
score is above the 90% quantile of the genome-wide distribution. 
Differential TAD boundaries were identified as previously described 
(Bonev et al., 2017) using genome-wide normalized insulation scores.  
Compartments and compartment strength 
We first calculated the dominant eigenvector of the contact matrices 
binned at 250 kb as described (Lieberman-Aiden et al., 2009) using 
scripts available at (https://github.com/dekkerlab/cworld-dekker). To 
determine the compartment strength, we plotted the log2 ratio of 
observed versus expected contacts (intrachromosomal separated by at 
least 10Mb) either between domains of the same (A-A, B-B) or different 
type (A-B), as previously described (Bonev et al., 2017). We calculated 
compartment strength as the ratio between the sum of observed 
contacts within the A and B compartment and the sum of 
intercompartment contacts (AA+BB)/(AB+BA).  
Average TAD contact enrichment 
The insulation and contact enrichment within TADs was calculated as 
previously described (Bonev et al., 2017). Briefly, TAD coordinates were 
extended upstream and downstream by the TAD length and this 
distance was split into 100 equal bins. The observed vs expected 
enrichment ratio was calculated in each of the resulting 100x100 grid 
(per TAD) and the average enrichment was plotted per bin. Average 
CpG DNA methylation was calculated for each of these 100 bins per 
TAD and was represented as mean ± 0.25 quantiles.   
Aggregated and individual contact strength at pairs of genomic features 
To calculate the contact enrichment ratio at pairs of genomic features 
(such as ChIP-seq peaks, accessible motif sites or linked pairs of 
enhancers and promoters), we used two complementary approaches. 
First, we aggregated Hi-C maps to calculate the log2 ratio of the 
observed vs expected contacts within a window of a specific size, 
centred on the pair of interest, as described previously (Bonev et al., 
2017). Furthermore, we calculated the average enrichment ratio of the 
contact strength in the center of the window (central 9 bins) vs each of 
the corners. This kind of analysis is useful to identify general patterns of 
changes in chromatin interactions in the data, but cannot distinguish the 
heterogeneity and the contribution of individual pairs. To address this 
question, we also extracted the kNN-based Hi-C score in a 10kb window 
centered around each of the pairs separately and represented the data 
as a scatter plot or boxplot. Significance was then calculated using 
Wilcoxon rank test.   
Average enrichment of linear marks at genomic features 
We used SeqPlots (Stempor and Ahringer, 2016) to calculate the 
average enrichment of linear chromatin marks (DNA methylation, 
chromatin accessibility, ChIP-seq) in window centered around the 
genomic feature of interest, or along scaled gene bodies.  
Inferring Hi-C contact strength and CpG DNA methylation associated 
with TF binding motifs 
Although ChIP-seq (and related techniques) remains the method of 
choice to identify the real binding sites of a TF, in many cases this is not 
feasible due to the lack of suitable antibodies. We reasoned that we 
could use predicted TF motifs at highly accessible peaks to examine how 
such potentially occupied motifs are spatially positioned to each other 
and how they are associated with changes in DNA methylation. Briefly, 
for each transcription factor motif we first identified the scATAC-based 
peaks which contain the predicted binding motif and then ranked these 
cites based on their maximum accessibility in aggregated pseudobulk 
scATAC-based clusters. To not overpenalize rare motifs, we selected 
the top 5000 most highly accessible regions per motif and created point-
based regions centered at the corresponding motif. TFs (and their 
corresponding motifs) which are not expressed in our data (RPKM>1 
based on pseudobulk scRNA-seq data) or are not within the top 3000 
most variable genes (based on scRNA-seq) were discarded from further 
analysis. 
To create a set of control regions, not enriched for any particular motif, 
we first selected a set of the top 50000 most highly accessible sites, 
analogous to motif-based analysis. Then, we sampled 5000 peaks 
randomly 1000 times to create a set of highly robust background peaks 
with similar characteristics. Next, we created pairs of these regions 
separated by at least 10kb, filtered for intra-TAD interactions and 
extracted the maximum Hi-C score (for each cell type) within a square 
window of 10x10 kb centered on each pair. We then calculated the 
median value per transcription factor motif per cell type and repeated 
this for each of the 1000 controls to generate a background distribution. 
To normalize for any non-specific interaction, we calculated the mean of 
the 1000 controls per cell type and subtracted it from the TF motif values. 
We then calculated the maximum Hi-C score (from all the three cell type) 
and the standard deviation per motif and plotted them as a scatter plot 

using ggplot2. To calculate the statistical significance, we used 
permutation based analysis (utilizing the 1000 repeated sampling of the 
random regions) and considered motifs with p<0.05 as significant. We 
also depicted the Pearson’s correlation between the motif deviation 
scores and the expression of the matching TF as described for Figure 
3E.   
For the analysis of DNA methylation, we extracted the average CpG 
methylation in 500 bp windows centered on the motif-based regions 
described above. We then generated a random permutation-based 
background exactly as described for the Hi-C and plotted the minimum 
DNA methylation and standard deviation for the three cell types as a 
scatter plot. Statistical significance was calculated as described above.     
As a complimentary analysis we calculated the average Hi-C score and 
enhancer DNA methylation for positively correlated enhancer-gene pairs 
and presented the data as scaled median Hi-C score per TF motif. 
Software 
Methyl-Hi-C data was processed using the JuiceMe pipeline, available 
at https://github.com/aidenlab/JuiceMe. The R package to compute the 
expected tracks and the Hi-C scores is available at 
https://bitbucket.org/tanaylab/shaman.   
Data Resources 
Data will be deposited on GEO and made available upon publication. 
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