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 20 

Abstract 21 

 Current sequencing-based methods for profiling microbial communities rely on marker 22 

gene (e.g. 16S rRNA) or metagenome shotgun sequencing (mWGS) analysis. We present a new 23 

approach based on highly multiplexed oligonucleotide probes designed from reference 24 

genomes in a pooled primer-extension reaction during library construction to derive relative 25 

abundance data. This approach, termed MA-GenTA: Microbial Abundances from Genome 26 

Tagged Analysis, enables quantitative, straightforward, cost-effective microbiome profiling that 27 

combines desirable features of both 16S rRNA and mWGS strategies. To test the utility of the 28 

MA-GenTA assay, probes were designed for 830 genome sequences representing bacteria 29 

present in mouse stool specimens. Comparison of the MA-GenTA data with mWGS data 30 

demonstrated excellent correlation down to 0.01% relative abundance and a similar number of 31 

organisms detected per sample. Despite the incompleteness of the reference database, NMDS 32 

clustering based on the Bray-Curtis dissimilarity metric of sample groups was consistent 33 

between MA-GenTA, mWGS and 16S rRNA datasets.  MA-GenTA represents a potentially useful 34 

new method for microbiome community profiling based on reference genomes. 35 

 36 

  37 
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Main 38 

The primary molecular methods for determining microbial composition are based on 39 

marker gene sequencing or whole metagenome shotgun sequencing (mWGS). The 16S 40 

ribosomal RNA (rRNA) marker gene has been widely used for bacterial profiling for decades 41 

across diverse ecosystems1,2. Using this method, taxonomic classification of the bacterial 42 

community can be obtained at modest cost and a resolution that ranges from sub-species to 43 

family level, depending on the 16S rRNA segment that is sequenced3–6. Continued reduction in 44 

the cost of DNA sequencing has meant that mWGS approaches have become increasingly 45 

common due to the greater information on gene content, taxonomic resolution, and strain-46 

level variation7, despite higher cost and complexity of data analysis.  47 

 The Human Microbiome Project8 and similar large-scale investments9 established 48 

methods and reference datasets for characterization of microbial profiles across diverse human 49 

body sites. As a result, the tools and reference genome datasets for characterizing human 50 

microbiomes are much better developed than for those involving other organisms. The mouse 51 

is widely used in microbiome studies that seek to demonstrate a causal role of microbes 52 

affecting a given trait and to understand the mechanisms by which microbes contribute to 53 

phenotypes10. The vast majority of mWGS sequences from mouse gut samples have no matches 54 

to named organisms in public databases11, substantially limiting the informativeness of this 55 

approach.  56 

One approach to the limited reference genome sequences is construction of in silico 57 

genomes based on computational sequence assembly of large mWGS datasets to create 58 

“metagenome assembled genomes” or MAGs12–14. The integrated Mouse Gut Metagenomic 59 

Catalog (iMGMC)15 is one such effort. Combining 1.3 Tbp of data from 298 mouse metagenomic 60 

libraries, Lesker, et al. assembled 1.2 million contigs; a subset of these could be grouped into 61 

830 high quality MAGs (hqMAGs) that are predicted to be >90% complete and <5% 62 

contaminated based on the representation of single copy genes16.   63 

Here we describe a new approach to metagenome profiling termed MA-GenTA 64 

(Microbial Abundances from Genome Tagged Analysis) that combines the specificity of mWGS 65 

analysis with a simplified laboratory and analytical workflow (Figure 1). The availability of 66 
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custom-designed highly multiplexed pools of oligonucleotides (“oligos”) has opened 67 

possibilities for a range of new assay methods to specifically target microbes at the species, 68 

strain, and even gene level. We adapted the Allegro Targeted Genotyping assay’s single primer 69 

enrichment technology that is widely used for genotyping17,18 and implemented it as a 70 

quantitative, straightforward, and cost-effective method for profiling mouse microbial 71 

communities based on the iMGMC hqMAGs.  72 

 73 

Results 74 

The MA-GenTA assay is based on approximating the relative abundance of hundreds of 75 

microbial species using sets of probes designed to be unique to each genome. The approach 76 

includes design of compatible probes directed at the genomes (or genes) of interest, library 77 

construction that uses the probe pools in a primer extension reaction, and integration of data 78 

across multiple probes to determine species abundance (Fig. 1). Oligonucleotide probe sets 79 

were designed using 830 iMGMC hqMAGs
15. Preliminary results using a padlock probe 80 

design19,20 suggested that 20 probes per genome were sufficient to provide quantitative relative 81 

abundance information (data not shown). The padlock probe assay does not allow decoding of 82 

any additional adjacent sequence data for confirmation of probe specificity. We therefore 83 

sought to develop a method based on a single-primer extension assay, in which sequence 84 

adjacent to each probe is determined, allowing confirmation that the probe did in fact bind to 85 

the intended target.  86 

Computational analysis suggests that each hqMAG is consistent with representing a 87 

single bacterial species and about 12% of hqMAGs are concordant with genome sequences of 88 

bacterial isolates that are present in GenBank. Most, though do not correspond with isolated 89 

bacteria, so in considering a probe design strategy, we decided to develop two completely 90 

independent probe sets for each hqMAG. We reasoned that concordance of relative abundance 91 

between these probe sets would provide additional support for the conjecture that the 92 

hqMAGs are reasonable approximations of bona fide genome sequences and that the 93 

organisms they represent are commonly found in the mouse gut.  94 
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Two defined-composition genomic DNA positive controls and a no-template negative 95 

control (NTC) were initially used to assess the specificity of each probe set. Escherichia coli 96 

gDNA and the ZymoBIOMICS Microbial Community Standard (Mock), which contains three 97 

species present in the iMGMC hqMAG set, one of which is an E. coli strain, were used as the 98 

positive controls.  99 

Alignment of primary sequence reads showed that probes from many MAGs were 100 

detected for the Allegro and JAX designs for E. coli (493, 751), and Mock (264, 315) samples 101 

(grey dots in Fig. 2a). The vast majority of the MAGs matched in the E. coli and Mock samples 102 

were represented by a small number of probes with low relative abundance. After applying a 103 

probe-abundance threshold of ≥0.001% (Supplementary Fig. 1), there was only 1 MAG 104 

represented by >10 probes for both the Allegro and JAX designs in the E. coli sample and 3 and 105 

2 MAGs for the Allegro and JAX designs in the Mock sample as expected (colored dots in Fig. 106 

2a). For the E. coli sample, 99.95% and 99.28% of reads mapped to the E. coli genome for the 107 

Allegro and JAX designs, respectively. For the Mock community sample, 99.92% and 98.36% of 108 

reads mapped to the three genomes present in the Allegro design and two in the JAX design, 109 

respectively. 110 

In negative control samples, only a few thousand reads were obtained. NTC reads 111 

corresponded to 179 and 312 different probes and 77 and 138 MAGs in the Allegro and JAX 112 

designs, respectively (Fig. 2a). Of these probes, 94 (Allegro) and 142 (JAX) from E. coli 113 

overlapped with the NTC probes and 66 (Allegro) and 96 (JAX) from the Mock overlapped with 114 

the probes in the NTC. There are several potential sources of these reads: 1) contamination of 115 

the NTC with mouse stool DNA that was processed on the same batch; 2) contamination of the 116 

reagents used for library preparation; 3) self-annealing of primers within the probe set; or 4) 117 

sequencing-associated barcode-hopping. While there were many MAGs detected in the NTC, 118 

most of those MAGs were represented by only a few probes. No MAGs in the Allegro design 119 

and only one MAG in the JAX design had more than 10 probes represented (Fig. 2a). The MAG 120 

detected in the JAX dataset (single-China_7-4_110307.52) is a Muribaculaceae and present at 121 

high abundance in the majority of mouse samples. 122 
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 The Allegro and JAX probe sets have no sequence overlap, thus they represent two 123 

completely independent assays for relative abundance of hqMAGs in mouse specimens. High 124 

concordance in probe representation and relative abundance would therefore support both the 125 

reliability of the MA-GenTA assay and the structural validity of the detected MAGs as 126 

representing a species present in the test sample. The Allegro and JAX probe sets were used to 127 

assay 72 mouse stool pellet samples, averaging 3.7 million sequencing reads per sample (Table 128 

1, Supplementary Table 1). All reads for both datasets were mapped to the iMGMC hqMAGs 129 

reference. After mapping, reads that mapped to multiple regions were removed to produce 130 

uniquely mapped reads. The uniquely mapped reads were then filtered to include only reads 131 

that aligned adjacent to the designed probe region; this allowed us to determine probe-derived 132 

(on-target) reads. The two probe sets yielded similar numbers of sequencing reads and mapped 133 

reads (Fig. 2b). There was a larger variation in the proportion of uniquely mapped reads and 134 

fewer on-target reads in the Allegro dataset compared to the JAX dataset, suggesting that the 135 

JAX design pipeline may be more effective in selecting unique regions of each MAG. The 136 

previously chosen 0.001% minimum probe-abundance and 10 probes per MAG (ppM) 137 

thresholds were applied to the mouse samples (Fig. 2c). The number of MAGs observed in the 138 

mouse samples after applying the thresholds decreased by ~50% (Fig. 2d). However, over 90% 139 

of the reads matched MAGs present above the thresholds (Fig. 2d).  140 

Comparison of the MAG abundances between the two designs without a probe 141 

abundance threshold gave a Pearson correlation coefficient of 0.98, demonstrating that the 142 

MAG abundance as measured by the Allegro and JAX probe sets were highly consistent (Fig. 143 

3a). The points on the plot are colored by the number of probes detected in each MAG in both 144 

probe sets, showing higher abundance and better concordance between the probe sets for 145 

MAGs with reads from 10 or more probes. The MAGs were also plotted based on the number of 146 

probes detected in each dataset across all mouse samples, illustrating that MAGs tend to have 147 

high or low probe representation in both probe sets (Fig. 3b).  148 

 149 

Comparison of the MA-GenTA assay to other microbial community profiling assays 150 
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 7

 mWGS data was available for 69 mouse fecal samples, enabling correlation of relative 151 

abundance data for each MAG between the two assays. MAGs were separated into groups 152 

based on the number of probes observed by MA-GenTA in each sample (e.g. from 1 to 20) and 153 

a Pearson correlation was performed on each group of MAGs between the MA-GenTA and 154 

mWGS abundance data (Fig. 3c and Supplementary Fig. 2, 3, Supplementary Table 2). For both 155 

the Allegro and JAX datasets, MAGs with ≥15 probes detected have relative abundance 156 

correlations of R ≥ 0.9 to the mWGS data. MAGs represented by less than 10 probes had poor 157 

Pearson correlations between the relative abundance of MA-GenTA and mWGS data (R ≤ 0.23 158 

for Allegro and R ≤ 0.52 for JAX). Poor correlation of MAGs with fewer probes could be due to 159 

poor probe performance, improperly assembled MAGs, pan-genome differences between the 160 

MAG and the organisms present in our samples, sequencing depth disparities between the MA-161 

GenTA assay and mWGS, or inflated abundance values in mWGS caused by read-mapping 162 

hotspots or conserved regions.  163 

16S rRNA gene sequencing, mWGS, and the MA-GenTA assay are distinct ways of 164 

determining the number of bacterial species present in a sample. We compared the number of 165 

observed MAGs from the MA-GenTA assay with the number of 16S rRNA v1-v3 OTUs and MAGs 166 

detected in the mWGS data across the mouse samples from three studies (Fig. 3d-g). A MAG 167 

was considered present if at least 10 probes had >0.001% probe abundance. These thresholds 168 

were used in subsequent analyses of mouse stool datasets. The sensitivity to detect a MAG 169 

depends upon sequencing depth (more reads means it is more likely reads from a low-170 

abundance genome will be detected) and probe representation (if a MAG truly represents the 171 

genome of a species present in the sample, then reads from a large fraction of probes should 172 

be observed).  173 

All the datasets were filtered with MAG/OTU relative abundance thresholds of 0.1%, 174 

0.01%, 0.001%, and no threshold. The total number of MAGs across the all HLB samples was 175 

compared between the MA-GenTA (JAX and Allegro) assay and mWGS at each threshold (Fig. 176 

3d). There was a steep increase in the number of mWGS MAGs as thresholds were lowered, 177 

while the MAGs in the JAX and Allegro assays increased slightly. The Venn diagram for each 178 

threshold shows high overlap of MAGs detected between JAX and Allegro MA-GenTA datasets, 179 
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with an increasing number of low-abundance MAGs detected only in the mWGS assay. Within 180 

the HLB dataset, the Allegro and JAX MA-GenTA datasets yielded similar numbers of MAGs, 181 

which were also similar to the number of 16S OTUs across all thresholds on a per-sample basis 182 

(Fig. 3e). The mWGS data detected similar numbers of MAGs to the 16S and targeted data for 183 

the 0.1% and 0.01% relative abundance thresholds, but much larger numbers at the 0.001% 184 

cutoff and without an abundance threshold. This observation is consistent with data shown in 185 

Supplementary Fig. 4 where many MAGs had ≥ 0.01% relative abundance in the mWGS data 186 

(yellow tones), but lower abundance and <10 probes per MAG in both MA-GenTA datasets. The 187 

CCF dataset consisted of JAX, Allegro, and mWGS data (Fig. 3f). Similar patterns to the HLB data 188 

were seen, except that more MAGs were observed in the mWGS data than the MA-GenTA 189 

MAGs at a 0.01% threshold. Most CCF samples that had more MA-GenTA reads than mWGS 190 

reads; when the reference database was extended to include lower completeness MAGs, fewer 191 

hqMAGs were observed using mWGS reads, suggesting that non-specific mapping could explain 192 

some of the discrepancy (Supplementary Fig.5). In the VNDR dataset, only 16S rRNA data was 193 

available for comparison. For these samples, more MAGs were detected by the MA-GenTA than 194 

16S OTUs at lower abundances (Fig. 3g).  195 

 In order to demonstrate the utility of the MA-GenTA assay in characterizing microbial 196 

profiles in an experimental context, we used the MA-GenTA datasets for analysis of the HLB 197 

samples. Prior results identified OTU differences between C57BL/6J mice and HLB444 mice, 198 

which carry a mutation in the Klf15 gene, on both a standard chow diet and after introduction 199 

of a high-fat, high-sugar diet (HF)
21. HLB444 mice are resistant to diet-induced obesity when fed 200 

the HF diet. To determine the ability of the MA-GenTA assay to differentiate these groups, the 201 

Bray-Curtis dissimilarity metric was applied to the 16S, mWGS, and MA-GenTA data of the same 202 

samples and viewed with non-metric multi-dimensional scaling (NMDS) plots (Fig. 4a). All assays 203 

showed samples clustered by diet (Chow vs. HF) and mouse strain (C57BL/6J vs. HLB444). 204 

PERMANOVA analysis for each of the sequencing assays confirmed significant clustering 205 

between mouse strain and diet: Allegro assay (f = 2.6961, p = 0.0029), JAX assay (f = 13.629, p = 206 

0.0009), 16S (f = 19.581, p = 0.0009), mWGS (f = 2.05, p = 0.0099) (Supplementary Table 3).  207 

 208 
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Functional analysis using MA-GenTA 209 

 Given the relative abundance of MAGs in each sample, we inferred the functional 210 

potential of each sample based on links of proteins encoded in each MAG to KEGG pathways. 211 

MA-GenTA read counts for each MAG in the HLB samples were assigned to KEGG pathways on a 212 

per-sample basis and then converted to relative abundance. Linear discriminant analysis in 213 

LEfSe was used to determine differentially abundant pathways between the two mouse strains 214 

and the two diets. The number of differentially abundant pathways varied across comparisons 215 

(HLB444 vs. B6 on HF diet (53,60), HLB444 vs. B6 on Chow (66,63), Chow vs. HF in HLB444 216 

(101,103), and Chow vs. HF in B6 (75,81)) for the Allegro and JAX datasets respectively 217 

(Supplementary Table 4). Inter-assay KEGG pathway concordance was 82% for HLB444 vs. B6 on 218 

HF, 72% for HLB444 vs. B6 on Chow, 96% for Chow vs. HF in HLB444, and 77% for Chow vs. HF 219 

in B6. Consideration of the response of HLB444 and B6 strains to the HF diet showed 220 

differences in carbohydrate metabolism between the two strains on the HF diet, with HLB444 221 

animals having higher representation of glycolysis, TCA cycle, and oxidative phosphorylation, 222 

and B6 animals with higher representation of pathways related to utilization of other sugars 223 

(Fig. 4b, Supplementary Figs. 6-13). These and other differences distinguished the response to 224 

HF diet of these two mouse strains and suggest microbial differences contribute to the ability of 225 

HLB mice to adapt to the HF diet.  226 

 227 

Specificity of MA-GenTA in a complex microbial environment 228 

 As an additional way to assess the specificity of probe targeting, both probe sets were 229 

used to assay metagenomic DNA extracted from a human stool specimen, which serves as a 230 

highly complex microbial sample with few organisms in common with mouse fecal bacteria 231 

(Supplementary Fig. 14). While there are deep-branching similarities in the gut microbiota of 232 

human and mouse, there are major differences at the genus and species level
11,22,23. There 233 

were sixteen MAGs detected in the human stool sample using the same thresholds for 234 

detection as used for the mouse samples (minimum of 10 probes per MAG at ≥0.001% probe 235 

abundance). The taxa associated with the detected MAGs have previously been found in human 236 

stool samples24–30. 237 
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 238 

Discussion 239 

 As the field of microbial community profiling grows, the need for informative, cost-240 

effective, and streamlined assays of microbial composition becomes more important. Although 241 

initially developed for genotyping applications, we have shown that by combining results from 242 

multiple rigorously selected probes per genome, the Allegro Targeted Genotyping Assay can 243 

produce accurate microbial relative abundance data across at least three orders of magnitude 244 

dynamic range at a cost that is only moderately higher than 16S rRNA profiling. MA-GenTA 245 

bridges the gap between 16S rRNA gene sequencing and mWGS, combining some of the 246 

strengths of each approach (Table 2).  247 

 A hallmark and major motivation of mWGS sequencing is the ability to analyze 248 

functional capability of the organisms in an environment. Strategies have been described to 249 

predict function based on OTU composition
31–33, but they are strongly dependent on the 250 

reference databases and perform poorly on datasets from non-human-associated microbes34. 251 

Because probe design for the MA-GenTA assay requires reference genomes, this approach does 252 

not contribute to bacterial discovery. However, gene and pathway abundance data can be 253 

inferred from MA-GenTA data by pairing read counts to pathways represented in the reference 254 

genomes more directly than based on 16S rRNA sequences.  255 

 Capture-based targeted sequencing methods have been widely used for exome 256 

sequencing and cancer mutation profiling17,18,35, and represent a potential alternative approach 257 

for microbiome profiling. Guitor, et al. recently described a method for highly multiplexed 258 

detection of antibiotic resistance genes and bacteria that relies on biotinylated capture 259 

probes36,37. These probes and streptavidin bead capture kits are costly and require each 260 

specimen to be processed separately, making library preparation laborious. By contrast, the 261 

Allegro workflow involves pooling after a sample-specific tagging step and combination of pools 262 

can yield up to 3072 uniquely barcoded libraries on a single sequencing run. Up to 100k probes 263 

can be included in a single Allegro design. Unlike array-based platforms38, it is straightforward 264 

to alter the design of the MA-GenTA probe pool with each reagent order, allowing both the 265 
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refinement of the selected probes for each genome and the inclusion of additional content over 266 

time. 267 

The ability to synthesize probes based on user-defined parameters allows for broad or 268 

targeted study of microbial communities, specific species or strains, genes of interest, antibiotic 269 

resistance or virulence markers. Probe designs that focus on universal genes may be a good 270 

choice for species tagging, while probes targeting variable regions could provide additional 271 

information on pangenome variation. An important factor to consider when designing a probe 272 

pool for MA-GenTA is the reference database from which probes are chosen, including how 273 

representative the database is of organisms present in the sample. Across mouse mWGS 274 

samples, only about 60% of reads matched the iMGMC hqMAGs, reinforcing the need for a 275 

more robust reference for the mouse stool microbial community. Further optimization of the 276 

MA-GenTA assay might involve adjusting the number of probes per genome and how 277 

thresholds for probe abundance and probe representation are used to reduce noise and 278 

increase confidence of MAG assignment. Although not examined here, the specificity of the 279 

MA-GenTA assay would also be advantageous in specimens with high proportions of host 280 

genomic DNA where mWGS analysis is inefficient. The MA-GenTA assay could also be adapted 281 

to an RNAseq format for quantitative gene expression analysis. 282 

 283 

Methods 284 

Probe design and filtering 285 

The “high quality” MAG set from the integrated Mouse Gut Metagenomic Catalog 286 

(iMGMC) was accessed from GitHub (https://github.com/tillrobin/iMGMC). The hqMAG set 287 

comprised 830 dereplicated genome equivalents predicted to be >90% complete and <5% 288 

contaminated based on analysis by CheckM16. Two probe design strategies were used. For the 289 

JAX design, the probe selection program CATCH39 was run on each hqMAG separately to design 290 

over 50,000 40-base probes per MAG. BLAST was used to match probes to Prokka-annotated 291 

ORFs40. Probes with BLAST matches shorter than 40 bp in length or less than 100% identity 292 

were removed, followed by probes corresponding to genome regions on a pre-defined discard 293 

list. Discard regions included annotations listed as tRNAs, ribosomal proteins, and with encoded 294 
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proteins with the term “repeat” or “hypothetical” in the name. Probes were required to have 295 

between 45 and 65% G+C nucleotides. Probes with multiple matches within the hqMAG or to 296 

more than one hqMAG were also excluded. Probes matching the single-copy MUSiCC gene list41 297 

were flagged for probe selection. All resulting probes were sent to Tecan Genomics (Redwood 298 

City, CA) where probe compatibility was assessed for probe pool production based on the 299 

Allegro Targeted Genotyping protocol, and probe pools with 20 probes per MAG were 300 

synthesized (JAX design), with 10 representing MUSiCC genes and 10 representing non-MUSiCC 301 

genes. The iMGMC hqMAGs were also used by Tecan Genomics to create a second probe pool 302 

(Allegro design) with 20 probes per MAG. There were 16 MAGs that did not pass probe-303 

synthesis filtering metrics for the JAX design but were present in the Allegro design. The final 304 

probe pools contained 16,600 probes for the Allegro design and 16,280 probes for the JAX 305 

design. Cross-reference between the hqMAG set and the ZymoBIOMICs Microbial Community 306 

Standard was determined using BLAST alignment
42, resulting in 3 MAGs matching genomes 307 

from the ZymoBIOMICS genomes (Escherichia coli, Enterococcus faecalis, and Pseudomonas 308 

aeruginosa).  309 

 310 

DNA Extraction of Mouse Stool Pellets and Controls 311 

Genomic DNA isolated from mouse stool pellets from several studies was used for 312 

evaluation of the MA-GenTA assay (Table 2). All procedures used for animal husbandry and 313 

collection of specimens were approved by the Jackson Laboratory Animal Care and Use 314 

Committee and research was conducted in conformity with the Public Health Service Policy on 315 

Humane Care and Use of Laboratory Animals. The HLB and VNDR study pellets and positive 316 

controls (E. coli, ZymoBIOMICS Mock) were lysed using Qiagen PowerBead garnet tubes with 1 317 

mL Qiagen InhibitEX buffer. The lysate was then processed with the QiaCube HT instrument 318 

using a modified Qiagen QIAamp 96 DNA QIAcube HT protocol
21 (Svenson). Each sample (a 319 

single stool pellet, 10-60 mg total weight) was added to a Qiagen PowerBead 0.7 mm garnet 320 

tube with 1 mL of QIAGEN InhibitEX buffer. All samples were incubated at 65°C for 10 minutes 321 

followed by 95°C for 10 minutes. The samples were then mechanically lysed for 2 cycles of 30 322 

seconds at 3,700 RPM on a QIAGEN Powerlyzer 24 Homogenizer, with a 1-minute rest period 323 
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between cycles. Samples were then centrifuged at 10,000 x g for 1 minute, and then 200 µL of 324 

this lysate was then mixed with AL Buffer (285 µl) and Proteinase K (5 µL). The lysate was 325 

incubated for 10 minutes at 70°C and followed by an ice incubation for 5 minutes. 485 µL of 326 

lysate was transferred to a QiaCube HT instrument, where the lysate was combined with 200 µL 327 

of 100% Ethanol and then bound to the Qiamp 96 plate. Each well of the Qiamp 96 plate was 328 

then washed with 600 µL of AW1 Buffer, AW2 Buffer, and then 100% Ethanol. DNA was then 329 

eluted with 100 µL of AE Buffer without using TopElute fluid. The CCF stool pellets were 330 

homogenized with 500 µL Tissue and cell lysis buffer (Lucigen©) by pipetting up and down. An 331 

aliquot of 100 µL was removed and treated with an enzyme cocktail (5 µL 10 mg/mL lysozyme, 332 

1 µL lysostaphin (5000 U/mL), 1 µL mutanolysin (5000 U/mL) and 20 µL Tissue and cell lysis 333 

buffer) for 30 minutes at 37°C. Buffer ASL (QIAGEN©) (200 µL with 0.5 µL anti-foaming agent 334 

DX) was added to each tube and mixed. Samples were placed on a QIAGEN© TissueLyser II bead 335 

beater for 2x 3 minutes (30 Hz) and then spun down in a microcentrifuge. Each sample (200 µL) 336 

was further processed on the QIAGEN QIAamp 96 DNA QIAcube HT protocol. 337 

 338 

Allegro Targeted Genotyping Sample Prep and Sequencing 339 

The Allegro Targeted Genotyping V2 protocol (publication number M01501, Tecan 340 

Genomics, Inc.) was followed for library preparation of all samples in duplicate with the Allegro 341 

and JAX probe pools. Briefly, gDNA samples were enzymatically fragmented, followed by 342 

ligation of barcoded adaptors. Barcoded samples were then purified and pooled together in 343 

groups of 48. Each pool of 48 samples was placed in an overnight annealing and extension 344 

reaction with the probe pool, followed by an AMPure XP bead purification. A qPCR step was 345 

used to determine the number of cycles used in the library amplification (18 cycles). Amplified 346 

libraries were bead purified (AMPure XP) and pooled in equimolar ratios for sequencing. A no 347 

template control (NTC), Escherichia coli gDNA (ATCC® 8739™), a human stool metagenome DNA 348 

sample43 (Petersen et al), and a defined composition microbial community control 349 

(ZymoBIOMICS Microbial Community Standard, Cat # D6300) were used as controls. Libraries 350 

created from the Allegro Targeted Genotyping Assay were pooled and sequenced on an 351 

Illumina NovaSeq SP 2x150bp run, using the custom R1 primer and 1% spike-in of phiX174 352 
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library as recommended. Libraries were loaded on the NovaSeq SP at 60% of standard loading 353 

per Allegro Targeted Genotyping Assay recommendation; only forward read data was used for 354 

analysis.   355 

 356 

Data analysis 357 

mWGS read mapping and 16S OTU generation 358 

The raw mWGS sequences were trimmed of adapters and low-quality bases using 359 

Cutadapt version 1.1444. Host contaminant sequences were identified and filtered out using 360 

Kraken2 version 2.0.8-beta45. The clean sequences were aligned against the reference (iMGMC 361 

MAGs) using BWA version 0.7.1246 with parameter settings: bwa mem -M -P. The non-primary 362 

alignment reads were then filtered out using SAMtools version 0.1.1947 with parameter setting: 363 

-F 256. Reads were filtered using 97.5% ID and 50% coverage thresholds. Finally, the read count 364 

table by bin for each sample was generated from the alignment file. On average, about 60% of 365 

total mWGS reads mapped to the iMGMC 830 hqMAGs. 16S OTUs were generated for the HLB 366 

and VNDR data with USEARCH, using previously published parameters21,48. 367 

 368 

MA-GenTA read mapping and data analysis 369 

Raw sequences were trimmed using TrimGalore/CutAdapt to remove the 40 bp probe 370 

(https://github.com/FelixKrueger/TrimGalore)44. Read mapping to hqMAGs was performed 371 

using BWA. Sequences of up to 110 bp downstream of the probes were mapped to the iMGMC 372 

reference index. Reads mapped with <95.5% identity and ≤50% query length were removed. 373 

Secondary alignments with lower alignment scores were removed and then reads mapped to 374 

multiple sites with similar alignment scores were removed, which resulted in uniquely mapped 375 

reads. BEDtools intersect command was used to match read alignment locations to the genome 376 

locations of the designed probes to provide “on-target” read counts, removing reads that 377 

aligned to regions outside of the expected probe annealing location49. Counts tables were 378 

created representing the on-target read count and relative abundance of each probe in each 379 

hqMAG and the summed read counts and relative abundance for all probes per hqMAG. All 380 

analyses were performed in R (version 4.0.2)50. Allegro and JAX designs were compared based 381 
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on the relative abundance per MAG and the number of probes per MAG matched in each 382 

sample. A Pearson correlation was performed on the MAG abundance comparison between the 383 

two designs and between each design and the relative abundance based on mWGS sequencing. 384 

The JAX and Allegro data were compared to 16S and mWGS data for the same samples on the 385 

basis of alpha (observed) and beta diversity (Bray-Curtis dissimilarity) metrics using Phyloseq51.     386 

 387 

Functional analysis 388 

 Protein coding sequences in the hqMAGs were predicted using Prodigal52, implemented 389 

in Prokka40. Functional annotation of the predicted CDS regions was performed using EggNOG-390 

Mapper53, using Diamond54 for searches, and with overlap parameters requiring at least 25% 391 

query and reference coverage. For each sample, the number of reads mapping to each MAG 392 

was assigned to each KEGG pathway55 for all constituent CDS regions. Differences in pathway 393 

abundance among sample groups was determined using linear discriminant analysis effect size 394 

with LEfSe56.   395 

 396 

Data Availability 397 

 Sequence data created in this study have been deposited in GenBank with the 398 

BioProject accession PRJNA646241. The probe sequences used for this study have been 399 

deposited to GitHub: https://github.com/TheJacksonLaboratory/MA-GenTA. 400 

Code Availability 401 

 All code used for probe design and data analysis, along with read count tables have 402 

been deposited to GitHub: https://github.com/TheJacksonLaboratory/MA-GenTA. 403 
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 411 

Figure 1. Overview of the MA-GenTA strategy. MA-GenTA utilizes software (CATCH) to design 412 

thousands of probes per genome for multiple genomes (830 in this study). All probes from the 413 

initial design are filtered based on multiple parameters (%GC, BLAST matches to 414 

inclusion/exclusion lists, non-unique matches across genomes, etc). Unique probes are selected 415 

for each genome (20 in this study). Probe pools are synthesized and used to prepare 416 

sequencing libraries using the Allegro Targeted Genotyping kit, and then sequenced. Reads are 417 

then mapped to the reference genomes to produce count tables for downstream analysis.  418 

 419 

 420 
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 421 

Figure 2. Use of control samples to establish thresholds for defining MAG presence. 422 

Thresholds for declaring a MAG present in a sample were determined using a no template 423 

control (NTC), Escherichia coli genomic DNA, and ZymoBIOMICS Microbial Community 424 

Standard. a, The number of probes present for each MAG (y-axis) and the MAG abundance (x-425 

axis) for each control sample before applied thresholds is shown in gray. Blue (Allegro) and 426 

green (JAX) points indicate MAGs detected in each control sample after a 0.001% minimum 427 

probe-abundance threshold was applied. b, Sequencing reads from the Allegro and JAX probe 428 

pools were mapped to the iMGMC hqMAGs. Top:  Read counts per sample for total reads, 429 

aligned reads, uniquely mapped reads, and uniquely-mapped, on-target reads. Bottom: Same 430 

data as in the top panel, but expressed as percent of total reads. c, The number of MAGs 431 

detected with minimum probe abundance and probe representation (probes per MAG-ppM) 432 

thresholds is shown compared to the number of MAGs detected with no thresholds across 433 

mouse samples. d, Most reads correspond to probes that pass the probe-representation 434 

thresholds. 435 

 436 
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 437 

Figure 3. Comparison of MA-GenTA probe pools to established sequencing assays. a, The 438 

percent relative abundance of each MAG in each sample based on the Allegro design (x-axis) 439 

and the JAX design (y-axis) is shown. MAGs with 10 or more probes above the 0.001% probe-440 

abundance threshold in both designs are shown in blue. Pearson correlation of the two designs 441 

is R = 0.98. b, The number of probes per MAG detected using the Allegro design (x-axis) and JAX 442 

design (y-axis) As in C, MAGs with at least 10 probes with ≥0.001% abundance in both assays 443 

are colored blue. Most MAGs have ≥15 probes per MAG above the threshold (top right) or ≤5 444 

(bottom left). c, The relative abundance of each MAG as inferred from the targeted and mWGS 445 

data was compared across the mouse stool samples using histograms showing the number of 446 

MAGs (y-axis) with the number of probes observed per MAG (x-axis) with no minimum probe-447 

abundance threshold. The color-scale shows the Pearson correlation of the relative abundance 448 

between the Allegro (left) JAX (right) data and the mWGS data. d, The total number of MAGs 449 

present in each assay (JAX, Allegro, mWGS) are shown in Venn-diagrams, highlighting the 450 

overlapping MAGs between the assays. e, Samples from the HLB dataset are shown with 16S 451 

rRNA v1-v3 OTUs, and hqMAGs detected by Allegro, JAX, and mWGS assays at a range of 452 

minimum probe-abundance thresholds. f, CCF samples with hqMAGs detected by Allegro, JAX, 453 
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and mWGS assays. g, VNDR samples with 16S rRNA v1-v3 OTUs, and hqMAGs detected by 454 

Allegro and JAX assays. 455 

 456 

 457 

Figure 4. MA-GenTA as an assay for experimental group differentiation and functional 458 

analysis. a,  The Bray-Curtis dissimilarity metric was applied to HLB data from each sequencing 459 
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assay and shown in non-metric multi-dimensional scaling (NMDS) plots. Points are colored by 460 

diet, closed circles represent HLB444 samples, and open circles are C57BL/6J samples. All four 461 

sequencing assays cluster points based on diet and mouse strain. b, LDA analysis of KO 462 

pathways inferred by MA-GenTA MAG abundances shows differentially abundant pathways 463 

between HLB444 and B6 mouse strains on chow and HF diets.  464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 
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Table 1. Mouse specimen groups used for analysis. 489 

Study code Summary N samples Data Type Reference BioProject Accession 

HLB C57BL/6J and 

HLB444 mice 

on chow and 

high-fat diet 

29 16S Svenson et 

al.21 

PRJNA505515  

  
mWGS Unpublished PRJNA646227 

VNDR C57BL/6J and 

C57BL/6N 

mice from 

three vendors 

3 16S Long, et al., 

submitted for 

publication) 

PRJNA622479 

 

CCF C57BL/6J, 

CAST, and 

PWK mice 

40 mWGS Oh, et al., 

unpublished) 

PRJNA646095 

 490 

 491 

Table2. Comparison of microbial community profiling assays. 492 

Feature 
16S rRNA gene 

sequencing 

Whole metagenome 

sequencing 
MA-GenTA 

Taxonomic 

Resolution  

~Family/genus level for 

16S rRNA subregions; 

strain level for full-

length gene 

Species/strain level Species/strain level 

Gene content None High Inferred based on genome 

matches 

Analysis complexity Medium High Medium 

Cost <$50/sample >$100/sample $50-$75/sample 

Pros • Quick community 

survey 

• Large number of 

studies from many 

environments/hosts 

• New 

organism/gene 

discovery 

• Direct comparison 

of datasets with 

same reference 

for mapping 

• Efficient pooled-sample 

workflow 

• Customized target 

selection/pool 

composition 

• Direct comparison of 

datasets with same 

reference for mapping 

Cons • Limited taxonomic 

specificity 

• No gene content 

information 

• Possible mis-

assignment of 

reads to closely 

related organisms 

• Cost 

• Limited to existing 

organisms/genomes 

• Limited pan-genome 

characterization 

 493 

 494 

 495 
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