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Abstract14

An important feature in spatial population genetic data is often “isolation-by-distance,” where15

genetic differentiation tends to increase as individuals become more geographically distant. Re-16

cently, Petkova et al. (2016) developed a statistical method called Estimating Effective Migration17

Surfaces (EEMS) for visualizing spatially heterogeneous isolation-by-distance on a geographic18

map. While EEMS is a powerful tool for depicting spatial population structure, it can suffer19

from slow runtimes. Here we develop a related method called Fast Estimation of Effective Migra-20

tion Surfaces (FEEMS). FEEMS uses a Gaussian Markov Random Field in a penalized likelihood21

framework that allows for efficient optimization and output of effective migration surfaces. Fur-22

ther, the efficient optimization facilitates the inference of migration parameters per edge in the23

graph, rather than per node (as in EEMS). When tested with coalescent simulations, FEEMS24

accurately recovers effective migration surfaces with complex gene-flow histories, including those25

with anisotropy. Applications of FEEMS to population genetic data from North American gray26

wolves shows it to perform comparably to EEMS, but with solutions obtained orders of mag-27

nitude faster. Overall, FEEMS expands the ability of users to quickly visualize and interpret28

spatial structure in their data.29
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Introduction30

The relationship between geography and genetics has had enduring importance in evolutionary31

biology (see Felsenstein, 1982). One fundamental consideration is that individuals who live near32

one another tend to be more genetically similar than those who live far apart (Kimura, 1953,33

Kimura and Weiss, 1964, Malécot, 1948, Wright, 1943, 1946). This phenomenon is often referred34

to as “isolation-by-distance” (IBD) and has been shown to be a pervasive feature in spatial popu-35

lation genetic data across many species (Dobzhansky and Wright, 1943, Meirmans, 2012, Slatkin,36

1985). Statistical methods that use both measures of genetic variation and geographic coordi-37

nates to understand patterns of IBD have been widely applied (Battey et al., 2020, Bradburd38

and Ralph, 2019). One major challenge in these approaches is that the relationship between ge-39

ography and genetics can be complex. Particularly, geographic features can influence migration40

in localized regions leading to spatially heterogeneous patterns of genetic covariation (Bradburd41

and Ralph, 2019).42

Multiple approaches have been introduced to model non-homogeneous IBD in spatial popu-43

lation genetic data (Al-Asadi et al., 2019, Bradburd et al., 2018, Duforet-Frebourg and Blum,44

2014, Hanks and Hooten, 2013, McRae, 2006, Petkova et al., 2016, Ringbauer et al., 2018, Safner45

et al., 2011). Particularly relevant to our proposed approach is the work of Petkova et al. (2016)46

and Hanks and Hooten (2013). Both approaches model genetic distance using the “resistance47

distance” on a weighted graph. This distance metric is inspired by concepts of effective resistance48

in circuit theory models, or alternatively understood as the commute time of a random walk on49

a weighted graph or as a Gaussian graphical model (specifically a conditional auto-regressive50

process) (Chandra et al., 1996, Hanks and Hooten, 2013, Rue and Held, 2005). Additionally,51

the resistance distance approach is a computationally convenient and accurate approximation52

to spatial coalescent models (McRae, 2006), though it has limitations in asymmetric migration53

settings (Lundgren and Ralph, 2019).54

Hanks and Hooten (2013) introduced a Bayesian model that uses measured ecological co-55

variates, such as elevation, to help predict genetic distances across sub-populations. Specifically,56

they use a graph-based model for genotypes observed at different spatial locations. Expected57

genetic distances across sub-populations in their model are given by resistance distances com-58

puted from the edge weights. They parameterize the edge weights of the graph to be a function59

of known biogeographic covariates, linking local geographic features to genetic variation across60

the landscape.61

Concurrently, the Estimating Effective Migration Surfaces (EEMS) method was developed62

to help interpret and visualize non-homogeneous gene-flow on a geographic map (Petkova et al.,63

2016, Petkova, 2013). EEMS uses resistance distances to approximate the between-sub-population64

component of pairwise coalescent times in a “stepping-stone” model of migration and genetic drift65

(Kimura, 1953, Kimura and Weiss, 1964). EEMS models the within-sub-population component of66

pairwise coalescent times, with a node-specific parameter. Instead of using known biogeographic67

covariates to connect geographic features to genetic variation as in Hanks and Hooten (2013),68

EEMS infers a set of edge weights (and diversity parameters) that explain the genetic distance69

data. The inference is based on a hierarchical Bayesian model and a Voronoi-tessellation-based70

prior to encourage piece-wise constant spatial smoothness in the fitted edge weights.71

EEMS uses Markov Chain Monte Carlo (MCMC) and outputs a visualization of the posterior72

mean for effective migration and a measure of genetic diversity for every spatial position of73

the focal habitat. Regions with relatively low effective migration can be interpreted to have74

reduced gene-flow over time whereas regions with relatively high migration can be interpreted75

as having elevated gene-flow. EEMS has been applied to multiple systems to describe spatial76

genetic structure, but despite EEMS’s advances in computational tractability with respect to the77
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previous work, the MCMC algorithm it uses can be slow to converge, in some cases leading to78

days of computation time for large datasets (Peter et al., 2018).79

These inference problems from spatial population genetics are related to a growing area of80

interest in the graph signal processing literature referred to as “graph learning” (Dong et al.,81

2019, Mateos et al., 2019). In graph learning, a noisy signal is measured as a scalar value at82

a set of nodes from the graph, and the aim is then to infer non-negative edge weights that83

reflect how spatially “smooth” the signal is with respect to the graph topology (Kalofolias, 2016).84

In population genetic settings, this scalar could be an allele frequency measured at locations85

in a discrete spatial habitat with effective migration rates between sub-populations. Like the86

approach taken by Hanks and Hooten (2013), one widely used representation of smooth graph87

signals is to associate the smoothness property with a Gaussian graphical model where the88

precision matrix has the form of a graph Laplacian (Dong et al., 2016, Egilmez et al., 2016). The89

probabilistic model defined on the graph signal then naturally gives rise to a likelihood for the90

observed samples, and thus much of the literature in this area focuses on developing specialized91

algorithms to efficiently solve optimization problems that allow reconstruction of the underlying92

latent graph. For more information about graph learning and signal processing in general see93

the excellent survey papers of Dong et al. (2019) and Mateos et al. (2019).94

To position the present work in comparison to the “graph learning” literature, our contribu-95

tions are twofold:96

• In population genetics, it is impossible to collect individual genotypes across all the geo-97

graphic locations and, as a result, we often work with many, often the majority, of nodes98

having missing data. As far as we are aware, none of the work in graph signal processing99

considers this scenario and thus their algorithms are not directly applicable to our setting.100

In addition, if the number of the observed nodes is much smaller than the number of nodes101

of a graph, one can project the large matrices associated with the graph to the space of102

observed nodes, therefore allowing for fast and efficient computation.103

• On the other hand, highly missing nodes in the observed signals can result in significant104

degradation of the quality of the reconstructed graph unless it is regularized properly.105

Motivated by the Voronoi-tessellation-based prior adopted in EEMS (Petkova et al., 2016),106

we propose regularization that encourages spatial smoothness in the edge weights.107

Building on advances in graph learning, we introduce a method, Fast Estimation of Effective108

Migration Surfaces (FEEMS), that uses optimization rather than MCMC to obtain penalized-109

likelihood-based estimates of effective migration parameters. In contrast to EEMS which uses a110

node-specific parameterization of effective migration, we optimize over edge-specific parameters111

allowing for more flexible migration processes to be fit, such as spatial anisotropy, in which112

the migration process is not invariant to rotation of the coordinate system (e.g., migration is113

more extensive along a particular axis). We develop a fast quasi-Newton optimization algorithm114

(Nocedal and Wright, 2006) and apply it to a dataset of gray wolves from North America. The115

output is comparable to the results of EEMS but is provided in orders of magnitude less time.116

With this improvement in speed, FEEMS opens up the ability to perform fast exploratory and117

iterative data analysis of spatial population structure.118

Results119

Overview of FEEMS120

Figure 1 shows a visual schematic of the FEEMS method. The input data are genotypes and spa-121

tial locations (e.g., latitudes and longitudes) for a set of individuals sampled across a geographic122
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region. We construct a dense spatial grid embedded in geographic space where nodes represent123

sub-populations, and we assign individuals to nodes based on spatial proximity (see Supp. Fig. 1124

for a visualization of the grid construction and node assignment procedure). The density of the125

grid is user defined and must be explored to appropriately balance model-mis-specification and126

computational burden. As the density of the lattice increases, the model is similar to discrete127

approximations used for continuous spatial processes, but the increased density comes at the cost128

of computational complexity.129

We assume exchangeability of individuals within each sub-population and estimate allele130

frequencies, pfjpkq, for each sub-population, indexed by k, and single nucleotide polymorphism131

(SNP), indexed by j, under a simple Binomial sampling model. We also use the recorded sample132

sizes at each node to model the precision of the estimated allele frequency. The use of allele133

frequencies allows a number of advantages in this context: (1) Allele frequencies can be more134

easily shared between researchers than individual genotypes due to privacy concerns, which is135

especially relevant in human population genetic studies; (2) We usually gain large computational136

savings in memory and speed because in most population genetic studies the number of observed137

locations, in which allele frequencies are estimated, is smaller than the total number of individuals138

sampled i.e. many individuals are sampled from the same spatial location.139

With the estimated allele frequencies in hand, we model the data at each SNP using an140

approximate Gaussian model whose covariance is shared across all SNPs, in other words we141

assume that the observed frequencies at each SNP is an independent realization of the same142

spatial process after rescaling by SNP-specific variation factors. The latent frequency variables,143

fjpkq, are modeled as a Gaussian Markov Random Field (GMRF) with a sparse precision matrix144

determined by the graph Laplacian and a set of residual variances. The graph’s weighted edges,145

denoted by wij between nodes i and j, represent gene-flow between the sub-populations (Fried-146

man et al., 2008, Hanks and Hooten, 2013, Petkova et al., 2016). We analytically marginalize out147

the latent frequency variables and use penalized restricted maximum likelihood to estimate the148

edge weights of the graph after removing the SNP-specific mean allele frequencies by projecting149

the data onto contrasts (Felsenstein, 1982, Hanks and Hooten, 2013, Petkova et al., 2016). Our150

overall goal is to solve the following optimization problem:151

pw “ arg min
lďwďu

`pwq ` φλ,αpwq,

where w is a vector that stores all the unique elements of the weighted adjacency matrix, l and152

u are element-wise non-negative lower and upper bounds for w, and `pwq is the negative log-153

likelihood function that comes from the GMRF model described above. The penalty, φλ,αpwq,154

controls how constant or smooth the output migration surface will be and is controlled by the155

hyperparameters λ and α. Specifically, the hyperparameters determine a penalty function based156

on the squared differences between edge weights for pairs of edges that share a common node,157

φλ,αpwq “
λ

2
‖∆pw ` α logpwq‖22,

where ∆ is a signed graph incidence matrix indicating if two edges are connected to the same158

node. Note that λ controls the overall strength of the penalization placed on the output of159

migration surface while α controls the relative strength of the penalization on the logarithmic160

scale. Thus, if the model is highly penalized, the fitted surface will favor a homogeneous spatial161

process on the graph across orders of magnitude of edge weights and if the penalty is low,162

more flexible graphs can be fit, but are potentially prone to over-fitting. Akin to the choice in163

admixture models of the number of latent ancestral populations or clusters (K), inspecting the164
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input spatial coordinates 
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neg-log-lik=42248.129 neg-log-lik=-49628.186
penalty=81944.836 penalty=7989.123

neg-log-lik=-61162.348
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log(w)

10-2 100 102

lower than average  
“effective migration” 

higher than average  
“effective migration”

estimated migration surface 
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Figure 1: Schematic of the FEEMS model: The full panel shows a schematic of going
from the raw data (spatial coordinates and gentoypes) through optimization of the edge weights,
representing effective migration, to convergence of FEEMS to a local optima. (A) Map of sample
coordinates (black points) from a dataset of gray wolves from North America (Schweizer et al.,
2016). The input to FEEMS are latitude and longitude coordinates as well as genotype data
for each sample. (B) The spatial graph edge weights after random initialization uniformly over
the graph to begin the optimization algorithm. (C) The edge weights after 20 iterations of
running FEEMS, when the algorithm has not converged yet. (D) The final output of FEEMS
after the algorithm has fully converged. The output is annotated with important features of the
visualization.

outputs across a series of λ and α values is recommended and demonstrated (below). We use165

sparse linear algebra routines to efficiently compute the objective function and gradient of our166

parameters, allowing the use of widely applied quasi-Newton optimization algorithms (Nocedal167

and Wright, 2006) implemented in standard numerical computing libraries like scipy (Virtanen168

et al., 2020). See the materials and methods section for a detailed description of the statistical169

models and algorithms used.170

Evaluating FEEMS on “out of model” coalescent simulations171

While our statistical model is not directly based on a population genetic process, it is useful172

to see how it performs on simulated data under the coalescent stepping stone model. In these173
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simulations we know, by construction, the model we fit (FEEMS) is different from the true174

model we simulate data under (the coalescent), allowing us to assess the robustness of the fit to175

a controlled form of model mis-specification. In Figure 2 we use msprime (Kelleher et al., 2016) to176

recapitulate and extend the results of Petkova et al. (2016), simulating data under the coalescent177

in three simple migration scenarios with two different spatial sampling designs. Note that in178

Supp. Fig. 2 we display a larger set of simulations with additional sampling configurations. For179

brevity, here we only show results for λ “ .001 and α “ 50, based on values that performed well180

after experimental tuning. In Supp. Fig. 3 and Supp. Fig. 4, we also show results varying λ and181

α for two migration scenarios with one particular sampling design.182

The first migration scenario (Figure 2A-C) is a spatially homogeneous model where all the183

migration rates are set to be a constant value on the graph, this is equivalent to simulating data184

under an homogeneous isolation-by-distance model. In the second migration scenario (Figure 2D-185

E) we simulate a non-homogeneous process by representing a geographic barrier to migration,186

lowering the migration rates by a factor of 10 in the center of the habitat relative to the left and187

right regions of the graph. Finally, in the third migration scenario (Figure 2G-I) we simulate188

a pattern which corresponds to anisotropic migration with edges that point east/west being as-189

signed to a five-fold higher migration rate than edges pointing north/south. For each migration190

scenario we simulate two sampling designs. In the first “dense-sampling” sampling design (Fig-191

ure 2B,E,I) we sample individuals for every node of the graph. Next, in the “sparse-samplng”192

sampling design (Figure 2C,F,J) we randomly sample individuals for only 20% of the nodes.193

As expected, FEEMS performs best when all the nodes are sampled on the graph, i.e. when194

there is no missing data (Figure 2B,E,H). Interestingly, in the simulated scenarios with many195

missing nodes, FEEMS can still partly recover the migration history, including the presence of196

anisotropic migration (Figure 2F). A sampling scheme with a central gap leads to a slightly197

narrower barrier in the heterogeneous migration scenario (Supp. Fig. 2I) and for the anisotropic198

scenario, a degree of over-smoothness in the northern and southern regions of the center of the199

graph (Supp. Fig. 2N). For the missing at random sampling design, FEEMS is able to recover200

the relative edge weights surprisingly well for all scenarios, with the inference being the most201

challenging when there is anisotropic migration. We emphasize that the potential for FEEMS202

to recover anisotropic migration is novel relative to EEMS, which was parameterized for fitting203

non-stationary isotropic migration histories and produces banding patterns perpendicular to the204

axis of migration when applied to data from anisotropic coalescent simulations (see Petkova205

et al. (2016) supplementary figure 2; see also Supp. Note “Edge versus node parameterization”206

for a related discussion). Overall, even with sparsely sampled graphs, FEEMS is able to pro-207

duce visualizations that qualitatively capture the migration history in “out of model” coalescent208

simulations.209

Application of FEEMS to genotype data from North American gray210

wolves211

To assess the performance of FEEMS on real data we used a previously published dataset of212

111 gray wolves sampled across North America typed at 17, 729 SNPs (Schweizer et al., 2016),213

Supp. Fig. 5). This dataset has a number of advantageous features that make it a useful test case214

for evaluating FEEMS: (1) The broad sampling range across North America includes a number of215

relevant geographic features that, a priori, could conceivably lead to restricted gene-flow averaged216

throughout the population history. These geographic features include mountain ranges, lakes and217

island chains. (2) The scale of the data is consistent with many studies for non-model systems218

whose spatial population structure is of interest. For instance, the relatively sparse sampling219

leads to a challenging statistical problem where there is the potential for many unobserved220
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Figure 2: FEEMS fit to coalescent simulations: We run FEEMS on coalescent simulations,
varying the migration history (columns) and sampling design (rows). The first column (A-
C) shows the ground-truth and fit of FEEMS to coalescent simulations with a homogeneous
migration history i.e. a single migration parameter for all edge weights. Note that the ground-
truth simulation figures (A,D,F) display coalescent migration rates, not fitted effective migration
rates output by FEEMS. The second column (D-F) shows the ground truth and fit of FEEMS
to simulations with a heterogeneous migration history i.e. reduced gene-flow, with 10 fold lower
migration, in the center of the habitat. The third column (H-J) shows the ground truth and
fit of FEEMS to an anisotropic migration history with edge weights facing east-west having five
fold higher migration than north-south. The second row (B,E,H) shows a sampling design with
no missing observations on the graph. The final row (C,F,I) shows a sampling design with 80%
of nodes missing at random.

nodes (sub-populations), depending the density of the grid chosen. Before applying FEEMS, we221

confirmed a signature of spatial structure in the data through regressing genetic distances on222

geographic distances and top genetic PCs against geographic coordinates (Supp. Fig. 6, 7, 8, 9).223

We ran FEEMS with four different values of the smoothness parameter, λ (from large λ “224

10 to small λ “ 10´5q, while setting the tuning parameter α to a value that we found that225

worked for multiple data applications and simulations (α “ 50, Figure 3). One interpretation226

of our regularization penalty is that it encourages fitting models of homogeneous and isotropic227

migration. When λ is very large (Figure 3A), we see FEEMS fits a model where all of the edge228
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lambda=10
nll=-20791.90071
pen=92.48926

A

lambda=0.01
nll=-42501.98979
pen=7106.36831

B

lambda=0.001
nll=-61160.16350
pen=7186.75145

C

lambda=0.00001
nll=-72766.61094
pen=1218.35331

D
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10
0

10
2

log10(w)

Figure 3: The fit of FEEMS to the North American gray wolf dataset for different
choices of the smoothing regularization parameter λ: (A) λ “ 10, (B) λ “ 10´2, (C)
λ “ 10´3, and (D) λ “ 10´5. As expected, when λ decreases from large to small (A-D), the fitted
graph becomes less smooth and presumably eventually over-fits to the data, revealing a patchy
surface in (D), whereas, earlier in the regularization path FEEMS fits a completely homogeneous
surface with all edge weights having the same fitted value, like in (A).

weights on the graph nearly equal the mean value, hence all the edge weights are colored white229

in the relative log-scale. In this case, FEEMS is fitting a completely homogeneous migration230

model where all the estimated edge weights get assigned the same value on the graph. Next,231

as we sequentially lower the penalty parameter and (Figure 3B,C,D) the fitted graph begins to232

appear more complex and heterogeneous as expected (discussed further below).233

We also ran multiple replicates of ADMIXTURE for K “ 2 to K “ 8, selecting for each234

K the highest likelihood run among replicates to visualize (Supp. Fig. 10). As expected in235

a spatial genetic dataset, nearby samples have similar admixture proportions and continuous236

gradients of changing ancestries are spread throughout the map (Bradburd et al., 2018). Whether237

such gradients in admixture coefficients are due to isolation by distance or specific geographic238

features that enhance or diminish the levels of genetic differentiation is an interpretive challenge.239

Explicitly modeling the spatial locations and genetic distance jointly using a method like EEMS240

or FEEMS is exactly designed to explore and visualize these types of questions in the data241

(Petkova et al., 2016, Petkova, 2013).242

Once we have run FEEMS for a grid of regularization parameters it is helpful to look more243

closely at particular solutions that find a balance between spatial homogeneity and complexity244

(Figure 4). Spatial features in the FEEMS visualization qualitatively matches the structure245

plot output from ADMIXTURE using K “ 6 (Supp. Fig. 10). We add labels on the figure to246

highlight a number of pertinent features: (A) St. Lawrence Island, (B) the coastal islands and247

mountain ranges in British Columbia, (C) The boundary of Boreal Forest and Tundra eco-regions248
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Figure 4: FEEMS applied to a population genetic dataset of North American gray
wolves: We show the fit of FEEMS to a previously published dataset of North American gray
wolves. This fit corresponds to a setting of tuning parameters at λ “ 10´3, α “ 50. We show the
fitted parameters in log-scale with lower effective migration shown in orange and higher effective
migration shown in blue. The bold text letters highlights a number of known geographic features
that could have plausibly influenced Wolf migration over time: (A) St. Lawerence Island, (B)
Coastal mountain ranges in British Columbia, (C) The boundary of Boreal Forest and Tundra
eco-regions in the Shield Taiga, (D) Queen Elizabeth Islands, (E) Hudson Bay, and (F) Baffin
Island. We also display two insets to help interpret the results and compare them to EEMS. In
the top left inset we show a map of sample coordinates colored by an ecotype label provided by
Schweizer et al. (2016). These labels were devised using a combination of genetic and ecological
information for 94 “un-admixed” gray wolf samples, and the remaining samples were labeled
“Other”. We can see these ecotype labels align well with the visualization output provided by
FEEMS. In the right inset we display a visualization of the posterior mean effective migration
rates from EEMS.

in the Shield Taiga, (D) Queen Elizabeth Islands, (E) Hudson Bay, and (F) Baffin Island. Many249

of these features were described in Schweizer et al. (2016) by interpretation of ADMIXTURE,250

PCA, and FST statistics. FEEMS is able to succinctly provide an interpretable view of these251

data in a single visualization. Indeed many of these geographic features plausibly impact gray252

wolf dispersal and population history (Schweizer et al., 2016).253
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Method Sparse Grid (run-time) Dense Grid (run-time)

EEMS 27.43hrs N/A
FEEMS (total) 13.02s 3.54min
FEEMS (init) 8.25s 2min 11s

FEEMS (λ “ 10q 604ms 10.7s
FEEMS (λ “ 10´2q 442ms 7.78s
FEEMS (λ “ 10´3q 917ms 9.18s
FEEMS (λ “ 10´5q 2.81s 53.9s

Table 1: Runtimes for FEEMS and EEMS on the North American gray wolf dataset:
We show a table of runtimes for FEEMS and EEMS for two different grid densities, a sparse
grid with 307 nodes and a dense grid with 1207 nodes. In the first two rows we show the total
runtimes for both EEMS and FEEMS. In the following rows we show the total runtime for
FEEMS, broken down into multiple components i.e. initialization time and the time to fit four
solutions with different smoothing parameters.

Comparison to EEMS254

We also ran EEMS on the same gray wolf dataset described throughout this manuscript. We255

used default parameters provided by EEMS but set the number of burn-in iterations to 20ˆ106,256

MCMC iterations to 50ˆ 106, and thinning intervals to 2000. We were unable to run EEMS in257

a reasonable run time (ď 3 days) for the dense spatial grid of 1207 nodes so we ran EEMS and258

FEEMS on a sparser graph with 307 nodes.259

We find that FEEMS is multiple orders of magnitude faster than EEMS, even when running260

multiple runs of FEEMS for different regularization settings on both the sparse and dense graphs261

(Table 1). The total FEEMS run-times in Table 1 also include the time needed to construct262

relevant graph data structures and initialization. We note that constructing the graph and fitting263

the model with very low regularization parameters are the most computationally demanding steps264

in running FEEMS.265

We find that many of the same geographic features that have reduced or enhanced gene-flow266

are concordant between the two methods. The EEMS visualization, qualitatively, best matches267

solutions of FEEMS with lower regularization penalties (Figure 4, Supp. Fig. 11); however, based268

on the ADMIXTURE results and visual inspection in relation to known geographical features,269

we find these solutions to be less satisfying compared to those with higher penalties and believe270

the solutions output from lower penalties are likely overfitting the data. Indeed, we only see a271

small gain in the R2 when comparing observed and fitted distances computed from the output272

graphs of Figure 3C and Figure 3D (Supp. Fig. 6). We note that in many of the EEMS runs the273

MCMC appears to not have converged (based on visual inspection of trace plots) even after a274

large number of iterations.275

Discussion276

FEEMS is a fast approach that provides an interpretable view of spatial population structure277

in real datasets and simulations. We want to emphasize that beyond being a fast optimization278

approach for inferring population structure, our parameterization of the likelihood opens up a279

number of exciting new directions for improving spatial population genetic inference. Notably,280

one major difference between EEMS and FEEMS is that in FEEMS each edge weight is assigned281

its own parameter to be estimated whereas, in EEMS, each node is assigned a parameter and282
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each edge is constrained to be the average effective migration between the nodes it connects (see283

Materials and Methods and Supp. Note “Edge versus node parameterization” for details). The284

node-based parameterization in EEMS makes it difficult to incorporate anisotropy and asymme-285

teric migration (Lundgren and Ralph, 2019). As we have shown here, FEEMS’s simple and novel286

parameterization already has potential to fit anisotropic migration (as shown in coalescent sim-287

ulations) and may be extendable to other more complex migration processes (such as long-range288

migration, see below).289

FEEMS estimates one set of graph edge weights for each setting of the tuning parameters λ290

and α which control the smoothness of the fitted edge-weights. One general challenge, which is291

not unique to this method, is selecting a particular set of tuning parameters. A natural approach292

is to use cross-validation, which estimates the out-of-sample fit of FEEMS for a particular model293

(selection of λ and α). While cross-validation might be useful for assessing the choice of tuning294

parameters, in preliminary experiments applying cross validation by holding out individuals or295

observed nodes, and assessing performance via the model-likelihood, we found too much variation296

across cross-validation folds to reliably tune λ and α (results not shown). In order to reduce the297

variation across different folds, we also applied cross-validation with standardization (Bradburd298

et al., 2018), where the model-likelihood is standardized for each fold, and approximate leave-one-299

out cross-validation Wilson et al. (2020), where the leave-one-out CV likelihood is approximated300

with a few steps of the quasi-Newton algorithm warm-started from the full training set migration301

surfaces. Neither of these approaches were promising for reliable model selection. We suspect302

this poor performance is due to spatial dependency of allele frequencies and the large fraction303

of unobserved nodes. In unsupervised learning settings like this one, it is not obvious that304

estimates of out of sample fit will always lead to the most biologically interpretable models and305

sometimes other metrics can be preferable, such as those based on the stability of the solution to306

perturbations like variable initialization (Wu et al., 2016). Stability-based approaches for model307

selection could be a fruitful future direction to develop a formal procedure for tuning. Currently,308

we recommend fitting FEEMS with several values of the tuning parameters and interpreting the309

results in an integrative fashion with other analyses.310

We find it useful to fit FEEMS to a sequential grid of regularization parameters and to look at311

what features are consistent and vary across multiple fits. Informally, one can gain an indication312

of the strongest features in the data by looking at the order they appear in the regularization313

path i.e. what features overcome the strong penalization of smoothness in the data and that314

are highly supported by the likelihood. For example, early in the regularization path, we see315

regions of reduced gene-flow occurring in the west coast of Canada that presumably correspond to316

Coastal mountain ranges and islands in British Columbia (Figure 3B) and this reduced gene-flow317

appears throughout more flexible fits with lower λ.318

Beyond tuning the unknown parameters, we encountered other challenges when solving this319

difficult optimization problem. Notably, the objective function we optimize is non-convex so any320

visualization output by FEEMS should be considered a local optimum and, as a result, with321

different initialization we could get different results. Overall, we found the output visualization322

was not sensitive to initialization, and thus our default setting is constant initialization fitted323

under an homogeneous isolation by distance model (See Materials and Methods).324

When comparing to EEMS, we found FEEMS to be much faster (Table 1). While this is325

encouraging, care must be taken because the goals and outputs of FEEMS and EEMS have326

a number of differences. FEEMS fits a sequential grid of solutions for different regularization327

parameters whereas EEMS infers a posterior distribution and outputs the posterior mean as328

a point estimate. So in order to compare the results, in principal, one must compare many329

FEEMS visualizations to a single EEMS visualization. FEEMS is not a Bayesian method and330

unlike EEMS, which explores the entire landscape of the posterior distribution, FEEMS returns331
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a particular point estimate: a local minimum point of the optimization landscape. Setting the332

prior hyper-parameters in EEMS act somewhat like a choice of tuning parameters, except that333

EEMS uses hierarchical priors that in principle allow for exploration of multiple scales of spatial334

structure in a single run; this arguably results in less sensitivity to user-based settings but requires335

potentially long computation times for adequate MCMC convergence.336

One natural extension to FEEMS, pertinent to a number of biological systems, is incorpo-337

rating long-range migration (Bradburd et al., 2016, Pickrell and Pritchard, 2012). In this work338

we have used a triangular lattice embedded in geographic space and enforced smoothness in339

nearby edge weights through penalizing their squared differences (see Materials and Methods).340

We could imagine changing the structure of the graph by adding edges to allow for long-range341

connection; however our current regularization scheme would not be appropriate for this setting.342

Instead, we could imagine adding an additional penalty to the objective, which would only allow343

a few long range connections to be tolerated. This could be considered to be a combination of344

two existing approaches for graph-based inference, graphical lasso (GLASSO) and graph Lapla-345

cian smoothing, combining the smoothness assumption for nearby connections and the sparsity346

assumption for long-range connections (Friedman et al., 2008, Wang et al., 2016). Another po-347

tential methodological avenue to incorporate long-range migration is to use a “greedy” approach.348

We could imagine adding long-range edges one a time, guided by re-fitting the spatial model349

and taking a data driven approach to select particular long-range edges to include. The pro-350

posed greedy approach could be considered to be a spatial graph analog of TreeMix (Pickrell and351

Pritchard, 2012).352

Another interesting extension would be to incorporate asymmetric migration into the frame-353

work of resistance distance and Gaussian Markov Random Field based models. Recently, Hanks354

(2015) developed a promising new framework for deriving the stationary distribution of a con-355

tinuous time stochastic process with asymmetric migration on a spatial graph. Interestingly, the356

expected distance of this process has a similar “flavor” to the resistance distance based models,357

in that it depends on the pseudo-inverse of a function of the graph Laplacian. Hanks (2015) used358

MCMC to estimate the effect of known covariates on the edge weights of the spatial graph. Future359

work could adapt this framework into the penalized optimization approach we have considered360

here, where adjacent edge weights are encouraged to be smooth.361

Finally, when interpreted as mechanistic rather than statistical models, both EEMS and362

FEEMS implicitly assume time-stationarity, so the estimated migration parameters should be363

considered to be “effective” in the sense of being averaged over time in a reality where migration364

rates are dynamic and changing (Pickrell and Reich, 2014). The MAPS method is one recent365

advance that utilizes long stretches of shared haplotypes between pairs of individuals to perform366

Bayesian inference of time varying migration rates and population sizes (Al-Asadi et al., 2019).367

With the growing ability to extract high quality DNA from ancient samples, another exciting368

future direction would be to apply FEEMS to ancient DNA datasets over different time transects369

in the same focal geographic region to elucidate changing migration histories (Mathieson et al.,370

2018). There are a number of technical challenges in ancient DNA data that make this a difficult371

problem, particularly high levels of missing and low-coverage data. Our modeling approach could372

be potentially more robust, in that it takes allele frequencies as input, which may be estimable373

from dozens of ancient samples at the same spatial location, in spite of high degrees of missingness374

(Korneliussen et al., 2014).375

In closing, we look back to a review titled “How Can We Infer Geography and History from376

Gene Frequencies?” published in 1982 (Felsenstein, 1982). In this review, Felsenstein laid out377

fundamental open problems in statistical inference in population genetic data, a few of which we378

restate as they are particularly motivating for our work:379

• “For any given covariance matrix, is there a corresponding migration matrix which would380
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be expected to lead to it? If so, how can we find it?”381

• “How can we characterize the set of possible migration matrices which are compatible with382

a given set of observed covariances?”383

• “How can we confine our attention to migration patterns which are consistent with the384

known geometric co-ordinates of the populations?”385

• “How can we make valid statistical estimates of parameters of stepping stone models?”386

The methods developed here aim to help address these longstanding problems in statistical387

population genetics and to provide a foundation for future work to elucidate the role of geography388

and dispersal in ecological and evolutionary processes.389

Materials and Methods390

Model description391

See Supp. Note “Mathematical notation” for a detailed description of the notation used to describe392

the model. To visualize and model spatial patterns in a given population genetic dataset, FEEMS393

uses an undirected graph, G “ pV, Eq with |V| “ d, where nodes represent sub-populations and394

edge weights pwijqpi,jqPE represent the level of gene-flow between sub-populations i and j. For395

computational convenience, we assume G is a highly sparse graph, specifically a triangular grid396

that is embedded in geographic space around the sample coordinates. We observe a genotype397

matrix, Y P Rnˆp, with n rows representing individuals and p columns representing SNPs. We398

imagine diploid individuals are sampled on the nodes of G so that yijpkq P t0, 1, 2u records the399

count of some arbitrarily predefined allele in individual i, SNP j, on node k P V. We assume a400

commonly used simple Binomial sampling model for the genotypes:401

yijpkq|fjpkq „ Binomial
`

2, fjpkq
˘

, (1)

where conditional on fjpkq for all j, k, the yijpkq’s are independent. We then estimate an allele402

frequency at each node and SNP by maximum likelihood:403

pfjpkq “

řnk

i“1 yijpkq

2nk
,

where nk is the number of individuals sampled at node k. We estimate allele frequencies at o of404

the observed nodes out of d total nodes on the graph. From (1), the estimated frequency in a405

particular sub-population, conditional on the latent allele frequency, will approximately follow a406

Gaussian distribution:407

pfjpkq|fjpkq „ N

˜

fjpkq,
fjpkq

`

1´ fjpkq
˘

2nk

¸

.

Using vector notation, we represent the joint model of estimated allele frequencies as:408

pfj |fj „ No
´

Afj ,diag
`

df,n
˘

¯

, (2)

where pfj is a oˆ 1 vector of estimated allele frequencies at observed nodes, fj is a dˆ 1 vector409

of latent allele frequencies at all the nodes (both observed and unobserved), and A is a o ˆ d410
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node assignment matrix where Ak` “ 1 if the kth estimated allele frequency comes from sub-411

population ` and Ak` “ 0 otherwise; and diagpdf,nq denotes a o ˆ o diagonal matrix whose412

diagonal elements corresponds to the appropriate variance term at observed nodes.413

To summarize, we estimate allele frequencies from a subset of nodes on the graph and define414

latent allele frequencies for all the nodes of the graph. The assignment matrix A maps these415

latent allele frequencies to our observations. Our summary statistics (the data) are thus p pF ,nq416

where pF is a oˆ p matrix of estimated allele frequencies and n is a oˆ 1 vector of sample sizes417

for every observed node. We assume the latent allele frequencies come from a Gaussian Markov418

Random Field:419

fj „ Nd
´

µj1, µjp1´ µjqL
:
¯

, (3)

where L is the graph Laplacian and µj represents the average allele frequency across all of the420

sub-populations. Note that the multiplication by the SNP-specific factor µjp1´µjq ensures that421

the variance of the latent allele frequencies vanishes as the average allele frequency approaches422

to 0 or 1. One interpretation of this model is that the expected squared Euclidean distance423

between latent allele frequencies on the graph, after being re-scaled by µjp1´ µjq, is exactly the424

resistance distance of an electrical circuit (Hanks and Hooten, 2013, McRae, 2006):425

rj,ik “
E
”

`

fjpiq ´ fjpkq
˘2
ı

µjp1´ µjq
“ poi ´ okq

JL:poi ´ okq “ L
:

ii ´ 2L:ik `L
:

kk,

where oi is a one-hot vector (i.e., storing a 1 in element i and zeros elsewhere). It is known that426

the resistance distance is equivalent to the expected commute time between nodes i and k of a427

random walker on the weighted graph G (Chandra et al., 1996). Additionally, the model (3) forms428

a Markov random field, and thus any latent allele frequency fjpiq is conditionally independent of429

all other allele frequencies given its neighbors which are encoded by nonzero elements of L (Koller430

and Friedman, 2009, Lauritzen, 1996).1431

Using the law of total variance formula, we can derive from (2), (3) an analytic form for the432

marginal likelihood. Before proceeding, however, we further approximate the model by assuming433

1
2fjpkqp1 ´ fjpkqq « σ2µjp1´ µjq for all j and k. This assumption is mainly for computational434

purposes and may be a coarse approximation in general. On the other hand, the assumption is435

not too strong if we exclude SNPs with extremely rare allele frequencies, and more importantly,436

we find it leads to a good empirical performance, both statistically and computationally. With437

this approximation the residual variance parameter σ2 is still unknown and needs to be estimated.438

With the above considerations, we arrive at the following marginal likelihood:2439

pfj „
b

µjp1´ µjq ¨No
´

µj1,AL
:AJ ` σ2diag

`

n´1
˘

¯

, (4)

where diagpn´1q is a oˆ o diagonal matrix computed from the sample sizes at observed nodes.440

To remove the SNP means we transform the estimated frequencies by a contrast matrix, C P441

Rpo´1qˆo, that is orthogonal to the one-vector:442

1Specifically, since we use a triangular grid embedded in geographic space to define the graph G, the pattern
of nonzero elements is prefixed by the structure of the sparse traingular grid.

2To be more precise, under (2), (3), the law of total variance formula leads to specific formulas for the mean and
variance structure as given in (4), whereas the marginal distribution of pfj is not necessarily a Gaussian distribution.
We simply chose the Gaussian distribution here to enable easy calculation for the data likelihood. We believe
the specific choice of the likelihood is not that critical as long as the first two moments of the distribution can be
matched closely.
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C pfj „
b

µjp1´ µjq ¨No´1

˜

0,CAL:AJCJ ` σ2Cdiag
`

n´1
˘

CJ

¸

. (5)

Letting pΣ “ 1
p
xFsxFs

J

be the oˆ o sample covariance matrix of estimated allele frequencies after443

rescaling, i.e. xFs is a matrix formed by rescaling the columns of pF by
a

pµjp1´ pµjq, where pµj is444

an estimate of the average allele frequency (see above). We can then express the model in terms445

of the transformed sample covariance matrix:446

p ¨C pΣCJ „Wo´1

˜

CAL:AJCJ ` σ2Cdiag
`

n´1
˘

CJ, p

¸

, (6)

where Wp denotes a Wishart distribution with p degrees of freedom.3 Note we can equivalently447

use the sample squared Euclidean distance (often refereed to as a genetic distance) as a summary448

statistic: letting pD be the genetic distance matrix withDik “
řp
j“1p

pfjpiq´ pfjpkqq
2{p ¨pµjp1´pµjq,449

we have450

pD “ 1diagppΣqJ ` diagppΣq1J ´ 2pΣ,

and so451

C pDCJ “ ´2C pΣCJ,

using the fact that the contrast matrix C is orthogonal to the one-vector. Thus we can use the452

same spatial covariance model implied by the allele frequencies once we project the distances on453

to the space of contrasts:4454

´
p

2
¨C pDCJ „Wo´1

˜

CAL:AJCJ ` σ2Cdiag
`

n´1
˘

CJ, p

¸

.

Overall, the negative log-likelihood function implied by our spatial model is (ignoring constant455

terms):456

`pw, σ2;C pΣCJq “ p ¨ tr

˜

´

CAL:AJCJ ` σ2Cdiagpn´1qCJ
¯´1

C pΣCJ

¸

´ p ¨ log det

˜

CAL:AJCJ ` σ2Cdiagpn´1qCJ

¸´1

, (7)

3Our model (6) says that the p SNPs are independent. This assumption is unlikely to hold when SNPs
are in close chromosomal proximity are analyzed due to linkage disequilibrium. In (Petkova et al., 2016), they
introduce the effective degree of freedom ν P ro ´ 1, ps to account for such dependency and instead consider the
model ν ¨C pΣCJ „ Wo´1pCAL:AJCJ ` σ2Cdiag

`

n´1
˘

CJ, νq with ν being estimated alongside other model
parameters. In FEEMS, we note that the degree of freedom parameter does not affect the point estimate produced
by our algorithm.

4We remark that besides the effective degree of freedom and the SNP-specific re-scaling by µjp1 ´ µjq, the
EEMS (Petkova et al., 2016) and FEEMS likelihoods are equivalent up to constant factors, as long as only one
individual is observed per node and the residual variance σ2 is allowed to vary across nodes—See Supp. Note
“Jointly estimating the residual variance and edge weights” for details. In addition, constant factors are effectively
absorbed into the unknown model parameters L and σ2 and therefore it does not affect the estimation of effective
migration rates, up to constant factors.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.08.07.242214doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.07.242214
http://creativecommons.org/licenses/by/4.0/


16

where w P Rm is a vectorized form of the non-zero lower-triangular entries of the weighted457

adjacency matrix W (recall that the graph Laplacian is completely defined by the edge weights458

L “ diagpW1q ´W so there is an implicit dependency here). Since the graph is a triangular459

lattice, we only need to consider the non-zero entries to save computational time, i.e. not all460

sub-populations are connected to each other.461

One key difference between EEMS (Petkova et al., 2016) and FEEMS is how the edge weights462

are parameterized. In EEMS, each node is given an effective migration parameter mi for node463

i P V and the edge weight is paramertized as the average between the nodes it connects, i.e. wij “464

pmi ` mjq{2 for pi, jq P E . FEEMS, on the other hand, assigns a parameter to every nonzero465

edge-weight. The former has fewer parameters, with the specific consequence that it only allows466

isotropy and imposes an additional degree of similarity among edge weights; instead, in the467

latter, the edge weights are free to vary apart from the regularization imposed by the penalty.468

See Supp. Note “Edge versus node parameterization” and Supp. Fig. 16 for more details.469

Penalty description470

As mentioned previously we would like to encourage that nearby edge weights on the graph471

have similar values to each other. This can be performed by penalizing the squared differences472

between all edges connected to the same node, i.e. spatially adjacent edges:473

φλ,αpwq “
λ

2

ÿ

iPV

ÿ

k,`PEpiq

˜

´

wik ` α logpwikq
¯

´

´

wi` ` α logpwi`q
¯

¸2

,

where φλ,α is our penalty function that represents the total amount of smoothness on the graph474

and Epiq denotes the set of edges that connected to node i. Here we penalize a weighted combina-475

tion of the edge weights on the original scale and logarithmic-scale where α, a tuning parameter,476

controls how strong the penalization is placed on the logarithmic scale—in the special case that477

α “ 0, it reduces to the commonly used Laplacian smoothing-type penalty. Adding a logarithmic478

scale leads to smooth graphs for small edge values and thus allow for an additional degree of479

flexibility across orders of magnitude of edge weights. The smoothness parameter, λ, controls480

the overall contribution of the penalty to the objective function. It is convenient to write the481

penalty in matrix-vector form which we will use throughout:482

φλ,αpwq “
λ

2
‖∆pw ` α logpwq‖22, (8)

where ∆ is a signed graph incidence matrix derived from a unweighted graph denoting if pairs483

of edges are connected to the same node. This penalty function (8) is also scale invariant, in the484

sense that for any c ą 0, φλ,αpwq “ φc´2λ,cαpcwq.485

One might wonder whether it is possible to use the `1 norm in the penalty form (8) in place486

of the `2 norm. While it is known that the `1 norm might increase local adaptivity and better487

capture the sharp changes of the underlying structure of the latent allele frequencies, (e.g. Wang488

et al., 2016), in our case, we found an inferior performance when using the `1 norm over the `2489

norm—in particular, our primary application of interest is the regime of highly missing nodes,490

i.e. o ! d, in which case the global smoothing seems somewhat necessary to encourage stable491

recovery of the edge weights at regions with sparsely observed nodes (see Supp. Note “Smooth492

penalty with `1 norm”). In addition, adding the penalty φλ,αpwq allows us to implement faster493

algorithms to solve the optimization problem due to the differentiability of the `2 norm, and as494

a result, it leads to better overall computational savings and a simpler implementation.495
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Optimization496

Putting (7) and (8) together, we infer the migration edge weights pw by minimizing the following497

penalized negative log-likelihood function:498

pw “ arg min
lďwďu

`pw, σ2;C pΣCJq ` φλ,αpwq

“ arg min
lďwďu

«

p ¨ tr

˜

´

CAL:AJCJ ` σ2Cdiagpn´1qCJ
¯´1

C pΣCJ

¸

(9)

´p ¨ log det

˜

CAL:AJCJ ` σ2Cdiagpn´1qCJ

¸´1

`
λ

2
‖∆pw ` α logpwq‖22

fi

fl ,

where l,u P Rm` represent respectively the entrywise lower- and upper bounds on w, i.e. we499

constrain the lower- and upper bound of the edge weights to l and u throughout the optimization.500

When no prior information is available on the range of the edge weights, we often set l “ 0 and501

u “ `8.502

One advantage of the formulation of (9) is the use of the vector form parameterizationw P Rm`503

of the symmetric weighted adjacency matrix W P Rdˆd` . In our triangular graph G “ pV, Eq,504

the number of non-zero lower-triangular entries is m “ Opdq ! d2, so working directly on the505

space of vector parameterization saves computational cost. In addition, this avoids the symmetry506

constraint imposed on the adjacency matrix W , hence making optimization easier (Kalofolias,507

2016).508

We solve the optimization problem using a constrained quasi-Newton optimization algorithm,509

specifically L-BFGS implemented in scipy (Byrd et al., 1995, Virtanen et al., 2020).5 Since our510

objective (9) is non-convex, the L-BFGS algorithm is guaranteed to converge only to a local511

minimum. Even so, we empirically observe that local minima starting from different initial512

points are qualitatively similar to each other across many datasets. The L-BFGS algorithm513

requires gradient and objective values as inputs. Note the naive computation of the objective (9)514

is computationally prohibitive since inverting the graph Laplacian has complexityOpd3q. We take515

advantage of the sparsity of the graph and specific structure of the problem to efficiently compute516

gradient and objective values. In theory, our implementation has computational complexity of517

Opdo` o3q per iteration which, in the setting of o ! d, is substantially smaller than Opd3q.6518

Estimating the residual variance and edge weights under the null model519

For estimating the residual variance parameter σ2, we first estimate it via maximum likelihood520

assuming homogeneous isolation by distance. This corresponds to the scenario where every edge-521

weight in the graph is given the exact same unknown parameter value w0. Under this model522

we only have two unknown parameters w0 and the residual variance σ2. We estimate these523

two parameters by jointly optimizing the marginal likelihood using a Nelder-Mead algorithm524

implemented in scipy (Virtanen et al., 2020). This requires only likelihood computations which525

are efficient due to the sparse nature of the graph. This optimization routine outputs an estimate526

5We solve using linearized ADMM when the penalty function is `1 norm, i.e. λ‖∆ppwq ` α logppwqq‖1 (Boyd
et al., 2011).

6More precisely, it is possible to achieve Opdo ` o3q per-iteration complexity if one employs a solver that is
specially designed for sparse Laplacian system. In our work we use sparse Cholesky factorization which may
slightly slow down the per-iteration complexity. See Supp. Material for the details of the gradient and objective
computation.
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of the residual variance pσ2 and the null edge weight ŵ0, which can be used to construct W p pw0q527

and in turn Lp pw0q.528

One strategy we found effective is to fit the model of homogeneous isolation by distance and529

then fix the estimated residual variance pσ2 throughout later fits of the more flexible penalized530

models—See Supp. Note “Jointly estimating the residual variance and edge weights”. Additionally531

we find that initializing the edge weights to pw0 to be a useful and intuitive strategy to set the532

initial values for the entries of w to the correct scale.533

Data description and quality control534

We analyzed a population genetic dataset of North American gray wolves previously published in535

Schweizer et al. (2016). For this, we downloaded plink formatted files and spatial coordinates from536

https://doi.org/10.5061/dryad.c9b25. We removed all SNPs with minor allele frequency less537

than 5% and with missingness greater then 10% resulting in a final set of 111 individuals and538

17, 729 SNPs.539

Population structure analyses540

We fit the Pritchard, Donnelly, and Stephens model (PSD) and ran principal components analysis541

on the genotype matrix of North American gray wolves (Price et al., 2006, Pritchard et al., 2000).542

For the PSD model we used the ADMIXTURE software on the un-normalized genotypes, running543

5 replicates per choice of K, from K “ 2 to K “ 8 (Alexander et al., 2009). For each K we544

choose the one that achieved the highest likelihood to visualize. For PCA, we centered and scaled545

the genotype matrix and then ran sklearn implementation of PCA, truncated to compute 50546

eigenvectors.547

Grid construction548

To create a dense triangular lattice around the sample locations, we first define an outer boundary549

polygon. As a default, we construct the lattice by creating a convex hull around the sample points550

and manually trimming the polygon to adhere to the geography of the study organism and551

balancing the sample point range with the extent of local geography using the following website552

https://www.keene.edu/campus/maps/tool/. We often do not exclude internal "holes" in553

the habitat (e.g. water features for terrestrial animals), and let the model instead fit effective554

migration rates for those features to the extent they lead to elevated differentiation. We also555

emphasize the importance of defining the lattice for FEEMS as well as EEMS and suggest this556

should be carefully curated with prior biological knowledge about the system.557

To ensure edges cover an equal area over the entire region we downloaded and intersected a558

uniform grid defined on the spherical shape of earth (Sahr et al., 2003). These defined grids are559

pre-computed at a number of different resolutions, allowing a user to test FEEMS at different560

grid densities which is an important feature to explore.561

Code Availability562

The code to reproduce the results of this paper and more can be found in https://github.com/563

jhmarcus/feems-paper. A python package implementing the method can be found in https:564

//github.com/jhmarcus/feems with documentation found in http://jhmarcus.com/feems/.565
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Data Availability566

We included a processed version of the dataset used in this manuscript in the feems package567

found here: https://github.com/jhmarcus/feems. An example tutorial on how to access the568

data the can be found here: http://jhmarcus.com/feems/notebooks/getting-started.html.569
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Supplementary Materials708

Mathematical notation709

We denote matrices using bold capital letters A. Bold lowercase letters are vectors a, and non-710

bold lowercase letters are scalars a. We denote by A´1 and A: the inverse and (Moore-Penrose)711

pseudo-inverse of A respectively. We use y „ Nppµ,Σq to express that the random vector y is712

modeled as a p-dimensional multivariate Gaussian distribution with fixed parameters µ and Σ713

and use the conditional notation y|µ „ Nppµ,Σq if µ is random.714

A graph is a pair G “ pV, Eq, where V denotes a set of nodes or vertices and E Ă V ˆ V715

denotes a set of edges. Throughout we assume the graph G is undirected, weighted, and contains716

no self loops, i.e. pi, jq P E ðñ pj, iq P E and = pi, iq R E and each edge pi, jq P E is given a717

weight wij “ wji ą 0. We write W to indicate the symmetric weighted adjacency matrix, i.e.718

Wij “

#

wij , if pi, jq P E ,
0, otherwise.

w P Rm is a vectorized form of the non-zero lower-triangular entries of W where m “ |E|{2 is719

the number of non-zero lower triangular elements. We denote by L “ diagpW1q´W the graph720

Laplacian.721

Gradient computation722

In practice, we make a change of variable from w P Rm` to z “ logpwq P Rm and the algorithm723

is applied to the transformed objective function:724

`pexppzq, σ2;C pΣCJq ` φλ,αpexppzqq “ r`pz, σ2;C pΣCJq ` rφλ,αpzq.

After the change of variable, the objective value remains the same whereas it follows from the725

chain rule that ∇pr`pzq ` rφλ,αpzqq “ ∇p`pwq ` φλ,αpwqq dw where d indicates the Hadamard726

product or elementwise product—for notational convenience, we drop the dependency of ` on727

the quantities σ2 and C pΣCJ. Furthermore, the computation of ∇φλ,αpwq is relatively straight-728

forward, so in the rest of this section, we discuss only the computation of the gradient of the729

negative log-likelihood function with respect to w, i.e. ∇`pwq.730

Recall, by definition, the graph Laplacian L implicitly depends on the variable w through731

L “ diagpW1q ´W . Throughout we assume the first o rows and columns of L correspond732

to the observed nodes. With this assumption, our node assignment matrix has block structure733

A “ rIoˆo | 0oˆpd´oqs. To simplify some of the equations appearing later, we introduce the734

notation: we define735

Lfull :“ L`
11J

d
, Σ :“ AL´1

fullA
J ` σ2diagpn´1q, (10)

and

M :“ CJ
´

pCΣCq´1pC pΣCqpCΣCq´1 ´ pCΣCq´1
¯

C.

Applying the chain rule and matrix derivatives, we can calculate:736

∇`pwq “ B`pwq

BvecpLq
¨
BvecpLq
BwJ

,
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where vec is the vectorization operator and B`{BvecpLq and BvecpLq{BwJ are 1ˆ d2 vector and
d2 ˆ d matrix, respectively, given by

B`pwq

BvecpLq
“ p ¨ vec

´

L´1
fullA

JMAL´1,J
full

¯

,
BvecpLq
BwJ

“ S ´ T . (11)

Here S and T are linear operators that satisfy Sw “ diagpW1q and Tw “ W . Note S and737

T both have Opdq many nonzero entries, so we can perform sparse matrix multiplication to738

efficiently compute the matrix-vector multiplication B`{BvecpLq ¨ pS ´ T q. On the other hand,739

the computation of B`{BvecpLq is more challenging as it requires inverting the full dˆ d matrix740

Lfull. Next we develop a procedure that efficiently computes B`{BvecpLq. We proceed by dividing741

the task into multiple steps.742

1. Computing Σ´1 Recalling the block structure A “ rIoˆo | 0oˆpd´oqs of the node assign-743

ment matrix, we can write Σ as:744

Σ “
`

L´1
full

˘

oˆo
` σ2diagpn´1q,

where
`

L´1
full

˘

oˆo
denotes the oˆ o upper-left block of L´1

full. Following Petkova et al. (2016), the745

inverse Σ´1 has the form746

Σ´1 “X ` σ´2diagpnq, (12)

for some matrix X P Roˆo. Equating ΣΣ´1 “ I, it follows that
”

`

L´1
full

˘

oˆo
` σ2diagpn´1q

ı

`

X ` σ´2diagpnq
˘

“ I

ðñ

”

`

L´1
full

˘

oˆo
` σ2diagpn´1q

ı

X “ ´σ´2
`

L´1
full

˘

oˆo
diagpnq. (13)

Therefore, Σ´1 can be obtained by solving the oˆo linear system (13) and plugging the solution747

into (12). The challenge here is to compute
`

L´1
full

˘

oˆo
without matrix inversion of the full-748

dimensional Lfull.749

2. Computing
`

L´1
full

˘

oˆo
Let Lfull,oˆo be the o ˆ o block matrix corresponding to the ob-

served nodes of Lfull, and similarly let Lfull,pd´oqˆpd´oq and Lfull,oˆpd´oq “ L
J
full,pd´oqˆo be the

corresponding block matrices of Lfull respectively. The inverse of
`

L´1
full

˘

oˆo
is then given by the

Schur complement of Lfull,pd´oqˆpd´oq in L:

”

`

L´1
full

˘

oˆo

ı´1

“ Lfull,oˆo ´Lfull,oˆpd´oq
`

Lfull,pd´oqˆpd´oq
˘´1

Lfull,pd´oqˆo. (14)

See also Hanks and Hooten (2013), Petkova et al. (2016). Since every term in (14) has sparse
+ rank-1 structure, the matrix multiplications can be performed fast. In addition, for the term
`

Lfull,pd´oqˆpd´oq
˘´1, we can use the Sherman-Morrison formula so that the inverse is given

explicitly by

`

Lfull,pd´oqˆpd´oq
˘´1

“

ˆ

Lpd´oqˆpd´oq `
11J

d

˙´1

“ L´1
pd´oqˆpd´oq ´

1

d` 1JL´1
pd´oqˆpd´oq1

L´1
pd´oqˆpd´oq11JL´1

pd´oqˆpd´oq.
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Hence, in order to compute
`

Lfull,pd´oqˆpd´oq
˘´1

Lfull,pd´oqˆo, we need to solve two systems of750

linear equations:751

Lpd´oqˆpd´oqU “ Lfull,pd´oqˆo and Lpd´oqˆpd´oqu “ 1.

Note that the matrix Lpd´oqˆpd´oq is sparse, so both systems can be solved efficiently by per-752

forming sparse Cholesky factorization on Lpd´oqˆpd´oq (Hanks and Hooten, 2013). Alternatively,753

one can implement fast Laplacian solvers (Vishnoi et al., 2013) that solve the Laplacian system754

in time nearly linear in the dimension Opdq. After we obtain
”

`

L´1
full

˘

oˆo

ı´1

via sparse + rank-1755

matrix multiplication and sparse Cholesky factorization, we can invert the o ˆ o matrix to get756
`

L´1
full

˘

oˆo
.757

3. Computing
`

L´1
full

˘

dˆo
Write758

`

L´1
full

˘

dˆo
“

«

`

L´1
full

˘

oˆo
`

L´1
full

˘

pd´oqˆo

ff

.

Using the inversion of the matrix in a block form, the pd´ oq ˆ o block component is given by759

`

L´1
full

˘

pd´oqˆo
“ ´

`

Lfull,pd´oqˆpd´oq
˘´1

Lfull,pd´oqˆo
looooooooooooooooooooomooooooooooooooooooooon

(A)

`

L´1
full

˘

oˆo
loooomoooon

(B)

. (15)

Since each of the two terms (A) and (B) has been already computed in the previous step, there760

is no need to recompute them. In total, it requires a pd ´ oq ˆ o matrix and o ˆ o matrix761

multiplication.762

4. Computing the full gradient Going back to the expression of ∇`pwq in (11), and noting763

the block structure of the assignment matrix A, we have:764

B`pwq

BvecpLq
“ p ¨ vec

´

`

L´1
full

˘

dˆo
M

`

L´1
full

˘J

dˆo

¯

.

Let Π1 “ 1
`

1JΣ´11
˘´1

1JΣ´1 be projection to the space of constant vectors with respect to the
inner product xx,yy “ xJΣ´1y. Using the identity I ´Π1 “ ΣCJpCΣCJq´1C (McCullagh,
2009), then we can write M in terms of Π1:

M “ Σ´1 pI´Π1q pΣΣ´1 pI´Π1q ´Σ´1 pI´Π1q . (16)

Since Π1 is a rank-1 matrix, this expression of M allows easier computation. Finally we can765

put together (12), (13), (15), and (16), to compute the gradient of the negative log-likelihood766

function with respect to the graph Laplacian.767

Objective computation768

The graph Laplacian L is orthogonal to the one vector 1, so using the notation introduced in (10),769

we can express our objective function as770

`pwq ` φλ,αpwq “ p ¨ tr
´

`

CΣCJ
˘´1

C pΣCJ
¯

´ p ¨ log det pCΣCq
´1
`
λ

2
‖∆pw ` α logpwq‖22.
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With the identity I´Π1 “ ΣCJpCΣCJq´1C, the trace term is:

tr
´

`

CΣCJ
˘´1

C pΣCJ
¯

“ tr
´

CJ
`

CΣCJ
˘´1

C pΣ
¯

“ tr
´

Σ´1pI´Π1qpΣ
¯

.

The matrix inside the trace has been constructed in the gradient computation, see equation (16).771

In terms of the determinant, we use the same approach considered in Petkova et al. (2016)—in772

particular, concatenating CJ and 1, the matrix rCJ | 1s is orthogonal, so it can be shown that773

detpΣq “
detp1J1qdetpCΣCJq

detpCCJqdetp1JΣ´11q
.

Rearranging terms and using the fact detpU´1q “ detpUq´1 for any matrix U , we obtain:774

detpCΣCJq´1 “
detp1J1qdetpΣ´1q

detpCCJqdetp1JΣ´11q
“

o

1JΣ´11
detpΣ´1q.

We have computed Σ´1 in equation (12), so each of the terms above can be computed without any775

additional matrix multiplications. Finally, the signed graph incidence matrix ∆ defined on the776

edges of the graph is, by construction, highly sparse with Opdq many nonzero entries. Hence we777

implement sparse matrix multiplication to evaluate the penalty function φλ,αpwq while avoiding778

the full-dimensional matrix-vector product.779

Estimating the edge weights under the exact likelihood model780

Recall that, when describing our data model, we employed the approximation 1
2fjpkqp1´fjpkqq «781

σ2µjp1´µjq for all SNPs j and nodes k (see equation (4)) and estimated the residual variance σ2
782

under the homogeneous isolation by distance model. Here we examine whether this approxima-783

tion results in a significant difference with respect to the estimation quality of the edge weights784

of the graph.785

Without approximation, we can calculate the exact analytical form for the marginal likelihood786

of the estimated frequency as follows (after removing the SNP means):787

C pfj „
b

µjp1´ µjq ¨No´1

˜

0,CAL:AJCJ `Cdiagpn´1qAdiag

¨

˝

#

1´ L:kk
2

+d

k“1

˛

‚AJCJ

¸

,

(17)
where takudk“1 represents the vector a “ pa1, . . . , adq. We then consider estimating the edge788

weights with the likelihood based on (17) and without relying on approximating the residual789

variance. In particular, comparing to the model (5), this formulation does not introduce the790

unknown residual variance parameter σ2 but rather it is given implicitly by p1 ´ L:kkq{2. This791

means that the model (17) is well-defined only when L:kk ď 1 for all nodes k, hence leading to792

the following constrained optimization problem:793

pw “ arg min
lďwďu

!

`exactpw;C pΣCJq ` φλ,αpwq : L:kk ď 1 for all k P V
)

, (18)

where `exact is the negative log-likelihood function implied by the model (17) and φλ,α is our
smooth penalty function. The main difficulty of solving (18) is that enforcing the constraint
L:kk ď 1 for all nodes k P V, requires full computation of the pseudo-inverse of a d ˆ d matrix
L whereas in order to evaluate the likelihood, we only need to calculate L: on the observed
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nodes. To overcome this computational challenge, we may relax the constraint and consider the
following form as a proxy for optimization (18):

pw “ arg min
lďwďu

!

`exactpw;C pΣCJq ` φλ,αpwq : L:kk ď 1 for all observed nodes k
)

. (19)

We can solve this problem efficiently using a gradient-based algorithm where the gradient of794

`exact with respect to L is given by795

B`exactpwq

BvecpLq
“ p ¨ vec

´

L´1
fullA

JMAL´1,J
full

¯

´ p ¨ diagpMqJdiagpp2nq´1qN ,

whereM is a oˆ o matrix defined in (16), while N is a oˆ d2 matrix whose rows correspond to796

the observed subsets of the rows of the d2 ˆ d2 matrix L´1
full bL

´1
full.797

Overall, when we implement the penalized restricted maximum likelihood procedure in (19),798

we find that it does not make much of a difference and output qualitatively comparable results to799

FEEMS—for example, Supp. Fig. 12 shows one such fit with a setting of λ “ 10´3 and α “ 50.800

Unfortunately, this approach has a drawback that after the algorithm reaches the solution, the801

term 1 ´ L:kk is not guaranteed to be positive for the unobserved nodes, since, due to the802

computational efficiency, the constraints L:kk ď 1 are only placed on the observed nodes. This,803

in principle, results in an ill-defined model if we would like interpretable results at unobserved as804

well as observed nodes, and therefore we replace the calculation (17) with the approximation (5)805

to avoid this issue. In addition, by decoupling the residual variance parameter σ2 from the806

graph-related weighted edges w, the model (6) has more resemblance to spatial coalescent model807

used in EEMS (Petkova et al., 2016).808

Jointly estimating the residual variance and edge weights809

One simple strategy we have used throughout the paper was to fit σ2 first under a model of810

homogeneous isolation by distance and prefix the estimated residual variance to the resulting pσ2
811

for later fits of the effective migration rates. Alternatively, one might come up with a strategy812

to estimate the unknown residual variance jointly with the edge weights, instead of prefixing it813

from the estimation of the null model—the hope here is to simultaneously correct the model814

misspecification and allow for improving model fit to the data.815

As it turns out, given such a small fraction of sampled spatial locations in the data, the816

strategy of jointly optimizing the marginal likelihood with respect to both variables has the817

tendency to overfit to the data unless it is properly regularized. Specifically, we can consider the818

model that generalizes (6), namely819

p ¨C pΣCJ „Wo´1

˜

CAL:AJCJ `Cdiagpn´1qAdiag
`

σ2
˘

AJCJ, p

¸

,

where σ2 is a dˆ 1 vector of node specific residual variances, i.e. each deme has its own residual820

parameter σk for all nodes k. If the node specific parameters σk’s are assumed to be same across821

all nodes, this reduces to the model (6). Supp. Fig. 13 shows the results of different strategies of822

estimating the residual variances. As expected, when the model has a single residual variance σ2,823

either prefixing it from the null model (Figure 4) or estimating it jointly with the edge weights824

(Supp. Fig. 13A) lead to similar and comparable outputs. The major difference is the high825

migration edge forming long path appearing in Supp. Fig. 13A to separate the reduced gene-826

flows in the middle, which tends to disappear as α increases. Whereas, if the residual variances827
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are allowed to be node specific, the fitted σ2
k’s are highly variable and as a result the estimated828

graph misses some geographic features present in the data, such as reduced effective migration829

around St. Lawerence Island (Supp. Fig. 13B). Presumably this is attributed to overfitting,830

due to the absence of data in many unobserved demes. In EEMS, in order to estimate the831

genetic diversity parameters for every spatial position, which play a similar role as the residual832

variance in FEEMS, a Voronoi-tessellation prior is placed to encourage sharing of information833

across adjacent nodes and prevent over-fitting. While we can similarly estimate the node specific834

residual variances on every node of the graph with our penalty function (φλ,α defined on the835

variable σ2q, we do not find it substantially improves the extent to which the model suits the836

data. Thus, we take the approach of fitting the single residual variance σ2 under the null model837

and prefixing it as a simple but effective strategy with apparent good empirical performance.838

Edge versus node parameterization839

One of the novel features of FEEMS is its ability to directly find the edge weights of the graph that840

best suit the data. This direct edge parameterization may increase the risk of model’s overfitting,841

but also allows for more flexible estimation of migration histories. Furthermore, as seen in842

Figure 2 and Supp. Fig. 2, it has potential to recover anisotropic migration processes. This is in843

contrast to EEMS wherein every spatial node is assigned an effective migration parametermk and844

a migration rate on each edge joining nodes k and k1 is given by the average effective migration845

wkk1 “ pmk `mk1q{2. Not surprisingly, parameterization via node-specific parameters induces846

implicit regularization by substantially constraining the feasible set of graph’s edge weights. In847

some cases, this has the desirable property of imposing an additional degree of similarity among848

edge weights, but it often restricts the model’s capacity to capture a richer set of structure849

present in the data, (e.g. Petkova et al., 2016, supplementary figure 2). To be concrete, Supp.850

Fig. 15 displays two different fits of FEEMS based on edge parameterization (Supp. Fig. 15A)851

and node parameterization (Supp. Fig. 15B), run on a previously published dataset of human852

genetic variation from Africa (see Peter et al. (2018) for details on the description of the dataset).853

Running FEEMS with a node-based parameterization is straightforward in our framework—all854

we have to do is to reparameterize the edge weights by the average effective migration and855

solve the corresponding optimization problem (9) with respect to m. It is evident from the856

results that FEEMS with edge parameterization exhibits subtle correlations that exist between857

the annotated demes in the figure whereas node parameterization fails to recover them. We also858

compare the model fit of FEEMS to the observed genetic covariance (Supp. Fig. 16) and find859

that edge-based parameterization provides a better fit to the African dataset. Supp. Fig. 17860

further demonstrates that in the coalescent simulations with anisotropic migration, the node861

parameterization is unable to recover the ground truth of the underlying migration rates even862

when the nodes are fully observed.863

Smooth penalty with `1 norm864

FEEMS’s primary optimization objective (see equation (9)) is:865

Minimize
lďwďu

`pw, σ2;C pΣCJq ` φλ,αpwq,

where the spatial smoothness penalty is given by φλ,αpwq “ λ
2 ‖∆pw ` α logpwqq‖22. It is widely866

known that `1-based method leads to better local adaptive fitting and structural recovery than867

`2-based methods (Wang et al., 2016), but at the cost of handling non-smooth objective functions868

that are often computationally more challenging and demanding. In a spatial genetic dataset,869
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one major challenge is to deal with the relatively sparse sampling design where there are many870

unobserved nodes on the graph. In this challenging statistical setting, our finding is that an871

`2-based method enables more accurate and reliable estimation of the geographic features.872

Specifically, writing φ`1λ,αpwq “ λ‖∆pw ` α logpwqq‖1, we considered the alternate following873

composite objective function:874

`pw, σ2;C pΣCJq ` φ`1λ,αpwq. (20)

To solve (20), we apply linearized alternating direction method of multipliers (ADMM) (Boyd875

et al., 2011), a variant of the standard ADMM algorithm, that iteratively optimizes the aug-876

mented Lagrangian over the primal and dual variables. The derivation of the algorithm is a877

standard calculation so we omit the detailed description of the algorithm. As opposed to the878

common belief about the effectiveness of the `1 norm for structural recovery, the recovered graph879

of FEEMS using `1-based smooth penalty shows less accurate reconstruction of the migration880

patterns, particularly when the sampling design has many locations with missing data on the881

graph (Supp. Fig. 18A, Supp. Fig. 19H). It appears that the `1-based penalty function is not882

capable of accurately estimating edge weights at regions with little data, partially due to its local883

adaptation, in contrast to the `2-based method that considers regularization more globally. This884

suggests that in order to use the `1 penalty φ`1λ,αpwq in the presence of many missing nodes, one885

needs an additional regularization term that promotes global smoothness of the graph’s edge886

weights, e.g., a combination of φ`1λ,αpwq and φλ,αpwq (same spirit as elastic net (Zou and Hastie,887

2005)), or φ`1λ,αpwq on top of node-based parameterization (Supp. Fig. 18B).888

Supplementary Figures889
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A

B

C

Supplementary Figure 1: Visualization of grid construction and node assignment:
(A) Map of sample coordinates (black points) from a dataset of gray wolves from North America.
The input to FEEMS are latitude and longitude coordinates as well as genotype data for each
sample. (B) Map of sample coordinates with an example dense spatial grid. The nodes of
the grid represent sub-populations and the edges represent local gene-flow between adjacent
sub-populations. (C) Individuals are assigned to nearby nodes (sub-populations) and summary
statistics (e.g., allele frequencies) are computed for each observed location.
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Supplementary Figure 2: Application of FEEMS to an extended set of coalescent
simulations: We display an extended set of coalescent simulations with multiple migration
scenarios and sampling designs. The sample sizes across the grid are represented by the size
of the grey dots at each node. The migration rates are obtained by solving FEEMS objective
function (9) where the regularization parameters are specified at λ “ 10´2, α “ 30 (I), λ “
10´4, α “ 30 (N), and λ “ 10´3, α “ 30 for the rest. (A, F, K) display the ground truth of the
underlying migration rates. (B, G, L) Shows simulations where there is no missing data on the
graph. (C, H, M) Shows simulations with sparse observations and nodes missing at random. (D,
I, N) Shows simulations of biased sampling where there are no samples from the center of the
simulated habitat. (E, J, O) Shows simulations of biased sampling where there are only samples
on the right side of the habitat.
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Supplementary Figure 3: Application of FEEMS to a heterogeneous migration sce-
nario with a “missing at random” sampling design: We run FEEMS on coalescent simula-
tion with a non-homogeneous process while varying hyperparameters λ (rows) and α (columns).
We randomly sample individuals for 20% of nodes. When λ grows, the fitted graph becomes
overall smoother, whereas α effectively controls the degree of similarity among low migration
rates.
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Supplementary Figure 4: Application of FEEMS to an anisotropic migration sce-
nario with a “missing at random” sampling design: We run FEEMS on coalescent simu-
lation with an anisotropic process while varying hyperparameters λ (rows) and α (columns). We
randomly sample individuals for 20% of nodes. When λ grows, the fitted graph becomes overall
smoother, whereas α effectively controls the degree of similarity among low migration rates.
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Supplementary Figure 5: SNP and individual quality control: (A) Displays a visu-
alization of the sample site frequency spectrum. Specifically, we display a histogram of minor
allele frequencies across all SNPs. We see a relatively uniform histogram which reflects the ascer-
tainment of common SNPs on the array that was designed to genotype gray wolf samples. (B)
Visualization of allele frequencies plotted against genotype frequencies. Each point represents a
different SNP and the colors represent the 3 possible genotype values. The black dashed lines
display the expectation as predicted from a simple binomial sampling model i.e. Hardy-Weinberg
equilibrium. (C) Displays a histogram of the missingness fraction per SNP. We observe the miss-
ingness tends to be relatively low for each SNP. (D) Displays a histogram of the missingness
fraction per sample. Generally, the missingness tends to be low for each sample.
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Supplementary Figure 6: Comparing predictions of observed genetic distances: We
display different predictions of observed genetic distances using geographic distance or the fitted
genetic distance output by FEEMS. (A) The x-axis displays the geographic distance between two
individuals, as measured by the great circle distance (haversine distance). The y-axis displays the
squared Euclidean distance between two individuals averaged over all SNPs. (B-D) The x-axis
displays the fitted genetic distance as predicted by the FEEMS model and y-axis displays the
squared Euclidean distance between two individuals averaged over all SNPs. For (B-D) we display
the fit of λ getting subsequently smaller p10, 10´3, 10´5q and as expected the fit becomes better
because we tolerate more complex surfaces and we are not evaluating the fit on out-of-sample
data.
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Supplementary Figure 7: Summary of top axes of genotypic variation: We display a
visual summary of Principal Components Analysis (PCA) applied to the normalized genotype
matrix from the North American gray wolf dataset. (A-D) Displays PC bi-plots of the top seven
PCs plotted against each other. The colors represent predefined ecotypes defined in (Schweizer
et al., 2016). We can see that the top PCs delineate these predefined ecotypes. (E) Shows a
“scree" plot with the proportion of variance explained for each of the top 50 PCs. As expected by
genetic data (Patterson et al., 2006), the eigen-values of the genotype matrix tend to be spread
over many PCs.
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Supplementary Figure 8: Relationship between top axes of genetic variation and
latitude: In each sub-panel we plot the PC value against latitude for each sample in gray the
wolf dataset. We see many of the top PCs are significantly correlated with latitude as tested by
linear regression.
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Supplementary Figure 9: Relationship between top axes of genetic variation and
longitude: In each sub-panel we plot the PC value against longitude for each sample in the
gray wolf dataset. We see many of the top PCs are significantly correlated with longitude as
tested by linear regression.
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Supplementary Figure 10: Summary of ADMIXTURE results: (A-G) Visualization of
ADMIXTURE results for K “ 2 to K “ 8. We display admixture fractions for each sample as
colored slices of the pie chart on the map. For each K we ran 5 replicate runs of ADMIXTURE
and in this visualization we display the solution that achieves the highest likelihood amongst
the replicates. The ADMIXTURE results qualitatively reveal a spatial signal in the data as
admixture fractions tend to be spatially clustered.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.08.07.242214doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.07.242214
http://creativecommons.org/licenses/by/4.0/


39

●
●

●●

●
●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●●

●●●●●

●●●●

●

●

●

●

●

●

●● ●

● ● ●

●
●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

−2

−1

0

1

2

log(m)

Supplementary Figure 11: Application of EEMS to the North American gray wolf
dataset: We display a visualization of EEMS applied to the North American gray wolf dataset.
The more orange colors represent lower than average effective migration on the log-scale and the
more blue colors represent higher than average effective migration on the log-scale. The results
of EEMS are qualitatively similar to FEEMS.
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Supplementary Figure 12: Application of FEEMS on the North American gray
wolf dataset with an exact likelihood model: We display the fit of FEEMS based in the
formulation (19) to the North American gray wolf dataset. This fit corresponds to a setting
of tuning parameters at λ “ 10´3, α “ 50. Additionally we set the lower bound of the edge
weights to l “ 0.01, to ensure that the diagonal elements of L does not become too small—this
has an implicit effect on L:kk, preventing it from blowing up at unobserved nodes. The more
orange colors represent lower than average effective migration on the log-scale and the more blue
colors represent higher than average effective migration on the log-scale. Visually the result is
comparable to that of FEEMS fit (Figure 4) based in the formulation (9).
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Supplementary Figure 13: Application of FEEMS on the North American gray wolf
dataset with joint estimation of the residual variance and graph’s edge weights: We
show visualizations of fits of FEEMS to the North American gray wolf dataset when the residual
variance and edge weights of the graph are jointly estimated. Both fits correspond to a setting of
tuning parameters at λ “ 10´3, α “ 50. (A) Displays the estimated effective migration surfaces
where every deme shares a single residual parameter σ. The result is similar to the procedure
that prefixes σ from the homogeneous isolation by distance model (Figure 4), except the high
migration edge forming long path in (A) which disappears with higher values of α. (B) Displays
the estimated effective migration surfaces where each node has its own residual parameter σk
for all nodes k. These node specific residual parameters allow more flexible graphs, but at the
cost of over-fitting to the data. In particular, without adding smooth regularization term on the
residual variances, it fails to recover some geographic features like St. Lawerence Island.
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Supplementary Figure 14: Relationship between fitted and empirical covariance
on the North American gray wolf dataset: We display scatter plots of empirical genetic
covariances versus fitted covariances from FEEMS fits on the gray wolf dataset. (A) Corresponds
to the result shown in Figure 4. (B) Corresponds to the result shown in Supp. Fig. 13B. The x-
axis represents the transformed fitted covariance matrix, i.e. CApL:AJCJ`pσ2Cdiag

`

n´1
˘

CJ

(see equation (6)). The y-axis represents the transformed sample covariance matrix, i.e. C pΣCJ.
The simple linear regression fit is shown in orange dashed lines and R2 is given.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.08.07.242214doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.07.242214
http://creativecommons.org/licenses/by/4.0/


42

Deme A

Deme C

Deme E

Deme D

Deme F

Deme G

Supplementary Figure 15: Application of FEEMS to a dataset of human genetic vari-
ation from Africa with different parameterization: We display visualizations of FEEMS
to a dataset of human genetic variation from Africa with different parameterization of the graph’s
edge weights. See (Peter et al., 2018) for the description of the dataset. (A) Displays the re-
covered graph under the edge parameterization. (B) Displays the recovered graph under the
node parameterization. Both parameterization have their own regularization parameters λ and
α, but these parameters are not on the same scale. We set λ “ 2 ¨ 10´4, α “ 10 for the node
parameterization which is seen to yield similar results to those in (Peter et al., 2018). For the
edge parameterization, we keep the same λ value while we set α “ 60 so that the resulting graph
reveals similar geographic structure to the node parameterization. We also set the lower bound
l “ 0.01. From the plots, it is worth noting two important distinctions: (1) We see the migration
surfaces shown in (B) recover sharper edge features while the migration surfaces in (A) are over-
all smoother. This is attributed to the fact that node parameterization has its own additional
regularization effect on the edge weights, and in order to achieve similar degree of regularization
strength for the edge parameterization, it needs a higher regularization parameters, which results
in more blurring edges than the node parameterization. (2) When measuring correlation of the
estimated allele frequencies among nodes, we find that Deme B is the node with the second
highest correlation to Deme A, whereas Deme C (and nearby demes) is not as much correlated
to Deme A compared to Deme B. Panel (A) reflects this feature by exhibiting a corridor between
Deme A and Deme B and reduced gene-flow beneath that corridor. This reduced gene-flow disap-
pears in (B), even if the regularization parameters are varied over a range of values. Additionally,
Deme D is most highly correlated to Deme E, F, and G, and this is implicated by a long-range
corridor connecting those demes appearing in Panel (A) while not shown in (B). These results
point a conclusion that the form of the node parameterization is perhaps too strong and in this
case it limits model’s ability to capture desirable geographic features that are subtle to detect.
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Supplementary Figure 16: Relationship between fitted and empirical covariance
on a dataset of human genetic variation from Africa: We display scatter plots of em-
pirical genetic covariance versus fitted covariance from FEEMS fits on the African dataset.
(A) Corresponds to the result shown in Supp. Fig. 15A. (B) Corresponds to the result
shown in Supp. Fig. 15B. The x-axis represents the transformed fitted covariance matrix, i.e.
CApL:AJCJ ` pσ2Cdiag

`

n´1
˘

CJ (see equation (6)). The y-axis represents the transformed
sample covariance matrix, i.e. C pΣCJ. The simple linear regression fit is shown in orange dashed
lines and R2 is given.
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Supplementary Figure 17: Application of FEEMS based on node parameterization
to an extended set of coalescent simulations: We display an extended set of coalescent
simulations with the same migration scenarios and sampling designs as Supp. Fig. 2. The sample
sizes across the grid are represented by the size of the grey dots at each node. The migration
rates are obtained by solving the FEEMS objective function (9) with node parameterization
where the regularization parameters are specified at λ “ 10´3, α “ 50. (A, F, K) display the
ground truth of the underlying migration rates. (B, G, L) Shows simulations where there is no
missing data on the graph. (C, H, M) Shows simulations with sparse observations and nodes
missing at random. (D, I, N) Shows simulations of biased sampling where there are no samples
from the center of the simulated habitat. (E, J, O) Shows simulations of biased sampling where
there are only samples on the right side of the habitat.
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Supplementary Figure 18: Application of `1-norm-based FEEMS to a dataset of
human genetic variation from Africa: We display visualizations of FEEMS to a dataset
of human genetic variation from Africa with the `1-based penalty function. See Peter et al.
(2018) for the description of the dataset. (A) Displays the recovered graph under the edge
parameterization with `1 norm based penalty where the regularization parameters are specified
at λ “ 4 ¨ 10´2, α “ 30. (B) Displays the recovered graph under the node parameterization with
`1 norm based penalty where the regularization parameters are specified at λ “ 4 ¨ 10´2, α “ 1.
To minimize the objective (20), linearized ADMM is applied with 20, 000 number of iterations.
The lower bound is set to be l “ 0.01 for both parameterizations. Note that due to the high
degrees of missingness, the estimated effective migration surfaces using solely `1-based penalty
exhibit many likely artifacts (e.g., high migration edges forming long paths, seen in A) unless
an additional penalty term is added to promote global smoothness of the edge weights such as a
combination of `1 norm penalty function and node parameterization as shown in (B).
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Supplementary Figure 19: Application of `1-norm-based FEEMS to an extended
set of coalescent simulations: We display an extended set of coalescent simulations with the
same migration scenarios and sampling designs as Supp. Fig. 2. The sample sizes across the grid
are represented by the size of the grey dots at each node. The migration rates are obtained by
solving `1 norm based FEEMS objective (20) where the regularization parameters are specified
at λ “ 10´1, α “ 30 (I), λ “ 10´3, α “ 30 (N), and λ “ 10´2, α “ 30 for the rest. (A, F, K)
display the ground truth of the underlying migration rates. (B, G, L) Shows simulations where
there is no missing data on the graph. (C, H, M) Shows simulations with sparse observations
and nodes missing at random. (D, I, N) Shows simulations of biased sampling where there are no
samples from the center of the simulated habitat. (E, J, O) Shows simulations of biased sampling
where there are only samples on the right side of the habitat.
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