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Abstract

Genetic risk scores (GRS), also known as polygenic risk scores, are a tool to estimate individ-
uals’ liabilities to a disease or trait measurement based solely on genetic information. They
have value in clinical applications [1] as well as for assessing relationships between traits and
discovering causal determinants of complex disease [2, 3]. However, it has been shown that
these scores are not robust to differences across continental populations [4, 5] and may not
be portable within them either [6]. Even within a single population, they may have variable
predictive ability across sexes and socioeconomic strata [7], raising questions about their
potential biases. In this paper, we investigated the accuracy of two different GRS across
population strata of the UK Biobank [8], separated along principal component (PC) axes,
considering different approaches to account for social and environmental confounders. We
found that these scores did not predict the real differences in phenotypes observed along the
first principal component, with evidence of discrepancies on axes as high as PC45. These
results demonstrate that the measures currently taken for correcting for population structure
are not sufficient, and the need for social and environmental confounders to be factored into
the creation of GRS.

Main

There have been a number of genetic scores created for traits ranging from risk of coronary
artery disease [9, 10] to educational attainment [11]. These scores are used more and more
as tools in research studies to help uncover links between traits and mechanisms of disease
susceptibility. For instance, they have been used as the genetic instruments in Mendelian ran-
domization studies to establish the causal relationship between an exposure and an outcome.
They also have a potential clinical application—namely the stratification of individuals ac-
cording to their risk of disease as predicted by their genetics, allowing for those at high risk
to be monitored more closely or to be given medical interventions before the onset of the
disease [1].

Population structure has been a concern in medical, statistical, and population genetics
for years, as it may lead to spurious results in association studies, and GRS inherit this
problem. It was shown that scores developed in UK Biobank (UKB) were confounded by
population structure when applied in the Finnish population [6], but to our knowledge, the
extent to which population structure in the ascertainment population affects the predictions
remains unexplored, including in the papers that introduce them.

To investigate this question explicitly, we used two different GRS, one for coronary
artery disease (CAD) called the metaGRS [10], and one for body mass index (BMI) [12],
which we chose for several reasons. First, we wanted to investigate outcomes relating to
a binary trait (CAD) and a quantitative one (BMI). Second, both scores were constructed
using parameters tuned in subsets of the UKB, in which they were validated using the rest
of the cohort. Third, the scores were generated in different ways, though both were in
line with best practices at the time they were published: for CAD, markers contributing to
the metaGRS were selected from a meta-analysis of several previously-published genetic risk
scores, and their weights were estimated using UKB data. For BMI, the GRS was constructed
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from a previous meta-analysis of BMI genome-wide association studies and the algorithm
LDpred [13], and validated using the UKB. The metaGRS was developed using all UKB
participants, while the BMI GRS was created in the white British subset only, comprising
81.45% of the cohort. Finally, these scores are representative examples of GRS that assume
a highly polygenic genetic architecture, with millions markers—the majority of which do not
have validated associations with the trait in question—contributing to the calculation of the
scores. The large number of markers potentially makes these GRS vulnerable to confounding
due to population structure.

GRS—including the ones used in this study—are often assessed by dividing individuals
according to quantiles of their GRS, with the lowest and highest quantiles being of particular
interest. They are also assessed through regression (Methods, section M6): the trait is used
as the outcome and the GRS is included as one of the predictor variables. Here, the values of
interest are the significance of association between the GRS and the trait, and the regression
coefficient of the GRS, which can be interpreted as the average per standard error effect on
the measurement of a quantitative trait, or on the log odds ratio of having a binary trait.
We can use this information to estimate the expected difference in trait mean or the odds
ratio of its prevalence between two arbitrary groups of people (Methods, section M7).

All of our analyses are restricted to the white British subset (Figure 1a), a population
which shows fine-scale structure [14]. To explore the effect of this structure on GRS predic-
tions, we divided the cohort into groups based on where they fell along the genetic principal
component (PC) axes calculated for the white British subsample (Methods, section M2). It
has been shown that demographic processes relate directly to the PC projection, providing
a way of summarizing the underlying genealogical history of the samples [15]. If the scores
are confounded by population structure in the very cohort in which they were built, this will
result in a mismatch between real and estimated differences in phenotype measurement or
prevalence between groups. We calculated the mean GRS for each PC group and designated
the one with the higher mean GRS as Ghigh, the high risk group, and the other group as
Glow, the low risk group (Figure 1b). The distributions of the scores in both groups are
similar, but shifted from one another, as shown Figure 2ac.

We then calculated the predicted differences in BMI mean and CAD prevalence be-
tween Ghigh and Glow by the GRS and compared them to the actual difference in prevalence
observed in the cohort. For both BMI and CAD, the predicted score underestimates the
true differences between Ghigh and Glow along PC1 (Figures 2b and 2d, respectively). The
mean BMI of Ghigh is predicted to be 0.0321 kg/m2 higher than that of Glow, but in reality,
we observed that it is 0.2859 kg/m2 higher. For CAD, the score predicts that Ghigh should
have a prevalence of CAD that is 1.25% higher than that of Glow, but we observe that it is
actually 7.81% higher.

To confirm that the discrepancy was driven by PC1, we estimated null distributions of
the difference in mean BMI and the odds ratio of CAD prevalence (Methods, section M7).
Briefly, we randomly sampled two groups, G′high and G′low so that for a given risk score, the
distribution of the GRS matched those of Ghigh and Glow, respectively. For each risk score
on each PC, we performed 1 million resamplings of G′high and G′low, each time recording
the difference in BMI/the odds ratio of CAD prevalence between them. This generated
an empirical distribution of BMI differences/odds ratios of CAD prevalences, given a risk
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score distribution of Glow and Ghigh to which we compare the true difference between Ghigh

and Glow (Figures 2bd, S2 and S3). We found that while the mean differences of our null
distributions coincided with scores’ predictions, the observed difference deviated significantly
(p < 0.005 in all cases) from the null (Supplement, section S3.1).

a

Mean GRS = 0.0140

Ghigh                              

Mean GRS = -0.0114

              Glow

b

Figure 1: Stratifying the UKB white British subset according to population structure: a) First two
principal components of the white British-only PCA. Each point is an individual, colored by his or her country
of origin within in the UK or the Republic of Ireland. Since there were only 228 individuals born in the Republic
of Ireland, we combined them with the 1,888 who were born in Northern Ireland, for purposes of this plot. b)
Density plot of the distribution of PC1 measurements, with the lower and upper 40% highlighted in purple and
teal, respectively. We also show the mean metaGRS score (for CAD) for each group. Because the lower 40%
have a mean GRS higher than that of the upper 40%, they are predicted to be at a higher risk of CAD and thus
are labeled Ghigh. Analogously, the upper 40% group is label Glow.

Both BMI and CAD risk are affected by environmental and lifestyle factors that could,
in turn, vary along PCs. We adjusted for these potential confounders in different sub-
analyses (Methods, section M9 and Supplement section S3 for details). Briefly, the first
way was by matching individuals from Glow to individuals in Ghigh for age, sex, and smoking
habits, as well as for lifestyle variables (sub-analysis M1) and pollution variables (M2) (Table
S3). The lifestyle variables include Townsend deprivation index, alcohol consumption, and
exercise habits. The pollution variables include covariates pertaining to nitrogen dioxide,
nitrogen oxides, and particulate matter pollution. Individuals who could not be matched
were excluded from the analysis. The second way of adjusting for environmental and lifestyle
confounding was to create corrected, or modified PCs (mPCs), which we then used in place
of the genetic PCs in our analyses. We used two approaches here. In the first, mPCs were
the residuals of the regression of 22 environmental and lifestyle covariates on the original
genetic PCs (R1). In the second, we performed PC analysis on the same 22 covariates, and
the projections of these covariates were then regressed onto the genetic PCs to generate
the mPCs (R2). We observed very high correlations between the mPCs and genetic PCs
(ρ > 0.97 in all cases) (Table S6, Supplement, section S4.4 for details).

The results on PC1 hold for all adjustment techniques, for both CAD and BMI scores
(Figure 3). While the results are attenuated by matching and by using mPCs, clear differ-
ences between the score predictions and true observations remained. The observed difference
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a b

c d

Figure 2: Distributions of risk scores in low- and high-risk groups and of the differences in pheno-
type/prevalence: (a) Histogram of the BMI risk score for Ghigh (light purple) and Glow (blue) defined for
PC1, with the overlap shown in dark purple. (b) Density plot of the difference in mean BMI in groups that were
resampled 1 million times so that their distributions matched that in a. Dark grey shows 95% of the distribution,
with the light grey extension of this showing 99%. The vertical blue dotted line shows the difference in mean
BMI predicted by the BMI GRS between Ghigh and Glow on PC1. The vertical red line shows the observed BMI
difference between Ghigh and Glow on PC1. (c) Histogram of the CAD risk score for Ghigh and Glow defined
for PC1. Coloring is the same as for a. (d) Density plot of the difference in CAD prevalence in groups that were
resampled so that their distributions matched that in c. This plot is analogous to b, but for CAD prevalence.
The same plots for PC2, PC3 and PC45 are shown in Figures S1 and S3.

in mean BMI (Figure 3a) differed from the predicted difference more significantly than CAD
did (Figure 3b, Table S2), possibly due to the lower standard error for the quantitative trait
(Supplement, section S5).

Discrepancies between observed and predicted differences, before adjusting for potential
confounders, were also seen for population strata defined on PC2, PC3 and PC45, for both
GRS (Figure S3). For CAD, the 95% confidence intervals for the observed prevalences
after accounting for confounders often overlapped with the point estimate for the GRS
predictions, suggesting that the prevalence predicted by the scores is a plausible value for the
true prevalence (Figure 4b). This is especially true in the mPC analysis, which suggests the
difference with the GRS predictions at baseline was due to several socio-economic factors.

The results for BMI on PC2 (Figure 4a) show stable estimations for predicted dif-
ferences between mean BMI in Glow and Ghigh across all sub-analyses, but the observed
results differed strongly between the mPC analyses and the non-mPC analyses. At baseline
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a b

Figure 3: Differences between predicted and observed differences in phenotype/prevalence on PC1:
Point estimates (boxes) and 95% confidence intervals (lines) of predicted (in grey) vs. observed (in black)
differences in (a) mean BMI and (b) CAD prevalence between Ghigh and Glow on PC1. From top to bottom, the
subsets of the UK Biobank used were all white British individuals, after matching for lifestyle variables (factors in
M1), after matching for pollution variables (factors in M2), regressing out all lifestyle and pollution variables out
of the genetic PCs (R1), and after regressing the PCs of all the lifestyle and pollution variables out of the genetic
PCs (R2). Note that the predicted differences in prevalence/mean were recalculated for each analysis, using the
individuals who were available for the observed analyses.

(no adjustment/no matching), the differences in BMI between the groups is small and not
statistically different from zero (Figure S3a). In the matched subsamples (M1, M2), the
observed differences were lower than what was predicted, but both contained the predicted
difference in their 95% confidence intervals. When correcting for the 22 environmental and
lifestyle covariates simultaneously (R1, R2), the result is the opposite: the GRS underesti-
mates the observed differences between groups split along the mPCs. This suggests that the
GRS fails to properly capture the reality of the phenotype heterogeneity when population
structure and environmental variables co-occur.

Indeed, we find that there were statistically significant differences (p < 0.05, Figure S4)
between Ghigh and Glow in age, Townsend deprivation index, nitrogen dioxide air pollution,
and amount of exercise for PC2 and mPC2 for both mPC analyses (Table S4), suggesting that
regressing out environmental factors does not succeed in completely removing their effects.
These results suggest that the GRS falsely captures differences in susceptibility between
groups separated on PC2, which appears to separate individuals born in Wales from those
born in the rest of the British isles. In the UKB, individuals born in Wales had the lowest
Townsend deprivation index (indicating less deprivation) among the white British born in
the UK or elsewhere. This persistence of effects even after regression occurs on PC3 as well
(Table S5), where there are statistically significant differences in age, Townsend deprivation
index, smoking, and exercise across the genetic PC and the mPCs (Supplement, section
S4.3).

For PC3, we observe another interesting phenomenon in the case of BMI: the differences
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Figure 4: Differences between predicted and observed differences in phenotype/prevalence on PC2:
Point estimates (boxes) and 95% confidence intervals (lines) of predicted (in grey) vs. observed (in black) of (a)
the mean difference in BMI between Ghigh and Glow and (b) the odds ratio of CAD prevalence between Ghigh
and Glow. Groups are defined along the PC2 axis, and the analyses shown are at baseline (no adjustments),
matching (M1, M2) and mPC (R1, R2).

predicted by the GRS between groups along PC3 are very small or non-significant (Figure
S3cd), especially at baseline, but the Ghigh group has an observed mean BMI that is between
0.1 and 0.24 lower than that of the Glow group (depending on the sub-analysis, Figure 5a).
This is also observed for CAD on PC45: Ghigh actually has a lower prevalence of CAD than
Glow but the GRS predicts the opposite (Figure S3ef), although we note that the disease
prevalence between Ghigh and Glow is not significantly different for M2 and the mPC analyses
(Figure 5d). Despite the fact that there is a high amount of uncertainty in our estimates
for both observed CAD prevalence and mean BMI when stratifying along PC45, the fact
that this PC is correlated with the traits and the risk scores at all, for both phenotypes,
is remarkable, given how little genetic variance is explained by this axis (0.0036%). It also
stands in contrast to the PCs provided by the UKB, which only go up to 40, and which
summarize the genetic variation in the whole dataset, rather than the white British subset,
and suggests that even the smallest PCs, representing very fine-scale population structure,
may need to be taken into account in risk prediction.

Except for PC1, for which the GRS underestimates CAD prevalence differences be-
tween groups even after accounting for covariates, all of our adjusted analyses for CAD
show odds ratios that are increasingly close to the ones predicted by the GRS, compared
to baseline. This result illustrates the importance of adjusting for lifestyle and environ-
mental factors when applying GRS, and demonstrates how these covariates can vary across
PC axes independently of one’s genetic risk, despite PCs being constructed entirely from
genetic information. Though we have used only two GRS in our analysis, we do not believe
the concerns are restricted to these specific scores, as they were generated using different
methodologies and for different traits—one binary and one quantitative. We also doubt that
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this issue is restricted to construction of GRS in the UKB, but as this is one of the largest
cohorts available right now to build these scores, an appropriate first step was to check how
much population structure can affect risk prediction in that cohort. We also highlight that
there may be other examples of confounded PCs that we missed due to the fact that we only
investigated the top 50 PCs.

The use of two different methods to account for environmental differences is appropriate
here, as benefits and drawbacks exist for both. In our matching strategy, we were not able
to match on all the variables that might be relevant to the trait, much less to adjust for
all of them simultaneously, as we could with the mPC analyses. However, as we saw in our
results for PC2 and PC3, regressing out the relevant covariates does not always remove the
differences between the groups. Additionally, we adjusted for the same set of covariates for
both traits, even though risk factors like smoking do not necessarily have direct causal effects
on BMI. This is not a problem in the matching analysis (except for unnecessarily restricting
our sample size), but may introduce collider biases in the mPC analyses. There is also an
interpretability problem inherent to the mPC analyses: regular PCs are pure summaries of
the genetic data, but mPCs are not, and what they retain from the population stratification
that truly exists in the cohort is an open question.

In this paper, we have shown that population structure can cause a GRS to over- or
underestimate the phenotype differences between population strata. Because the scores take
information on the genome-wide variability, phenotype prediction using GRS are intrinsi-
cally confounded by population structure in the ascertainment cohort, and we can hardly
expect them to be robust to biases relating to population structure when applied to a new
population. Previous research has shown that this kind of confounding can lead to overesti-
mation of polygenic adaptation on height [16, 17]. Furthermore, the solution cannot be to
create “ancestry-corrected polygenic scores” [12], which are the residuals from a regression
of a certain number of genetic PCs on GRS, because this has the potential to remove real
effects. Finally, we highlight that a score’s association with population structure is not a
problem in and of itself. There is no reason why a genetic locus that has a causal effect on a
trait could not also have alleles whose frequencies vary across populations or subpopulations.
The issue of concern to us is that population structure causes the score to predict greater
or smaller differences across the population than actually exist. This can lead to problems
such as inaccurate assessment of an individual’s disease risk, or falsely attributing a genetic
cause to a subpopulation’s elevated rate of disease compared to another, when the true cause
might be social, economic, or environmental.
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Figure 5: Differences between predicted and observed differences in phenotype/prevalence on PCs 3
and 45: Point estimates (boxes) and 95% confidence intervals (lines) of predicted (in grey) vs. observed (in
black) along for Ghigh and Glow defined along (a) and (b) PC3, and (c) and (d) PC45. (a) and (c) show the
difference in mean BMI, while (b) and (d) show the odds ratio of CAD prevalence. As before, we show each
analysis: no matching or adjustments (baseline), then the matching analyses, and finally the mPC analyses.
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Online Methods

Except where otherwise noted, all analyses were performed in R version 4.0.0. [18].

M1 Study population

The UK Biobank (UKB) is a prospective cohort of of about half a million individuals from the
United Kingdom, recruited between the ages of 40 and 69 [8]. The full dataset is multiethnic,
but our analyses were concentrated on the subset of “White British” individuals, that were
defined as those who identified as “British” on the ethnicity question (field 21000) and who
clustered together in the UKB principal component analysis (PCA) on PCs 1 and 2, for a
total of 409,308 individuals. These people were also identified as “Caucasian” in field 22006
(genetic ethnic grouping). We selected this subset as we wished to avoid confounding due
to systemic biases affecting access to and quality of healthcare in the UK [19]. Given that it
represents 81.45% of the whole of the UKB, the genetic architecture of a given trait in this
population will have a heavy influence on the results of genetic analyses that use the full
UKB cohort. The analyses shown here were conducted under UK Biobank project number
49731.

M2 Principal component analysis of the white British

subset

We used flashPCA [20] to calculate the top 50 PCs on the unrelated white British UKB
participants, using the imputed genotype data, QCed so that all SNPs had a minor allele
frequence (MAF) ≥ 0.01, have genotypes available for at least 99% of samples, a posterior
probably of at least 0.9 on the imputed genotype, and whose p-values for being out of
Hardy-Weinberg equilibrium were ≥ 10−6. We removed the four regions of high LD/known
inversions suggested by the authors of flashPCA and used the --indep-pairwise function in
Plink v1.9b 5.2 [21, 22] to prune the SNPs using the suggested parameters of a 1000 kilobase
window, a step size of 50 variants, and an r2 of 0.05.

In order to create this subset of unrelated people for the PCA, we removed one in-
dividual from each pair of related individuals identified in a file provided by the UKB,
yielding 335,088 unrelated participants. We then used the loadings to project all 409,308
white British onto these 50 PCs. We computed the Pearson correlation coefficient between
the top 40 principal components provided by the UKB over the whole dataset and our PCs
computed on the white British, with strong correlation between our PC 1 and the UKB’s
PC 5 (correlation coefficient -0.961) and between our PC2 and the UKB’s PC 9 (correlation
coefficient of 0.917).

M3 Calculating genetic risk scores

We selected two Genetic Risk Scores (GRS) from the literature, one for a quantitative trait
and another for a binary trait, Body Mass Index (BMI)[12] and Coronary Artery Disease
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(CAD) [10], respectively. Both GRS are available at The Polygenic Score (PGS) Catalog [23],
where we accessed the necessary information on the SNPs used in the scores, including their
respective effect alleles and weights. We downloaded the data contained in this repository
and calculated both scores in Plink v1.9b 5.2 [21, 22] with the --score function using the
imputed UKB genetic data for each individual from the white British subset.

M4 Creating the risk groups

For each PC axis, we split the data into two groups: G`, individuals who were in the bottom
40% of the PC measurement; and Gu, individuals whose were in the top 40% for it. People
who fell in the middle 20% of the PC measurements were removed from analysis for that
PC in order to facilitate matching (see below). For a given risk score, we calculate the mean
GRS in G` and Gu and assign the label Ghigh to whichever of the two has the higher mean
GRS and the other group is correspondingly relabelled as Glow (Supplement section S2 for
details).

M5 Trait definitions

Body mass index measurements were taken from field 21001. Coronary artery disease was
defined in the same way as it was in Inouye et al.’s paper [10], using UKB fields 6150, 20002,
and 20004. In the linked medical and death records, we looked for ICD9 codes 410-412,
ICD10 codes I21-I24 and I25.2. Among the surgical procedure data, we looked for OPCS-
4 codes K40-K46, K49, K50.1, and K75. In the self-reported data, the relevant surgical
procedures were recorded as 1087, 1095, and 1581. Unlike the study’s authors, we did not
differentiate between incident and prevalent cases. Of the 408,729 white British individuals
for whom these data were available, 23,375 (5.72%) met the above criteria for CAD.

M6 Estimating the effect of the score on the trait

We created a regression model for the trait—logistic regression for CAD and linear regression
for BMI, following Inouye et al. [10]. With the trait as the outcome, we calculated the effects
of the risk score while simultaneously adjusting for age, sex, UKB genotyping array, and the
first 10 principal components calculated by the UKB, following Inouye et al. The regression
coefficient of the risk score, β̂ can be interpreted as the effect of the score on outcome
risk (binary trait) or on phenotype measurement (quantitative trait), per standard deviation
increase. Because the value of β̂ can vary depending on which combination of covariates were
included in the models, we explored the effect on the combination of covariates included in
the model using a quintile approach (Table S1, Supplement section S1 for details). For all
our analysis of CAD and its corresponding risk score, we use the β̂ from the regression that
used genotyping array and the risk score as its only covariates, which yielded a regression
coefficient of 0.4878. Meanwhile, we kept regression coefficient from the full model on BMI
(using age, sex, genotyping array, and first 10 UK Biobank provided principal components as
the other covariates), for a β̂ of 1.3710. We also performed sex-stratified analyses (Supplement
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section S6) in which case we removed sex from the regression model covariates but otherwise
kept them the same.

M7 Predicted and observed differences

We define s̄low, and s̄high as the mean GRSs for individuals in Glow and Ghigh, respectively.

Using these values, along with β̂, we calculate Dpred, the predicted odds ratio of CAD preva-
lence in the Ghigh compared to Glow as

Dpred = exp
(
β̂ (s̄high − s̄low)

)
. (M1)

For BMI, Dpred is the predicted increase in mean BMI for Ghighcompared to Glow is

Dpred = β̂ (s̄high − s̄low) . (M2)

Next, we computed the actual differences in CAD prevalence and mean BMI between
Glow and Ghigh. To assess how significant this observed value between PC groups was, we
computed an empirical distribution of the observed difference using a resampling strategy
(Supplement, section S3.1 for details). We resampled individuals in our dataset without
regard to the PCs (or any other covariate, including age or sex) so that we created two new
groups, G′low, whose distributions of the given risk score matched that of Glow, and G′high,
which is defined analogously. We checked that distribution of risk scores matched using
Kolmogorov-Smirnov test, requiring a p-value such that p ≥ 0.5 before proceeding. Other-
wise, the sample was rejected and redrawn. Sampling was performed without replacement so
that the two groups would always be mutually exclusive. Once G′low and G′high were chosen,
we calculated the difference in mean BMI or CAD prevalence of the groups and recorded
them. We performed this sampling 1 million times to create a null distribution of these
differences, given the distribution of risk scores in the cohort. We then compared the dif-
ferences we find between Ghigh and Glow to this null distribution to get an empirical p-value
(Table S2). These empirical distributions, along with the predicted and observed differences
between Ghigh and Glow for both traits on PC1 are shown in Figure 2.

M8 Matching individuals

Because one can expect significant differences between Glow and Ghigh in terms of environ-
mental and/or socioeconomic risk factors affecting the trait, we have to account for these
factors. For each individual in Ghigh, we search for someone who matches them for age, sex,
smoking behavior, drinking behavior, exercise, socioeconomic characteristics, and pollution
exposures. If there is no sufficiently similar person in Glow, then the proband from Ghigh is
removed from our analyses, as is anyone from Glow who is unmatched to someone in Ghigh

once matching is finished. Matching is one-to-one—that is, every person who has a match,
has exactly one match. When an individual had multiple potential matches, we selected one
at random, leaving the others in the pool of potential matches. To avoid creating matches
among people who were not very far apart on the PC, we remove the middle 20% of the
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PC distribution, which forces a minimum PC distance between the members of a matched
pair. Because it was not possible to match on every variable at once and still have a large
enough sample on which to perform analysis, we matched on two sets of variables, M1 and
M2, and the variables used in each are reported in Table S3 (Supplement section S4.1 for
details). The thresholds for matches on each variable were found by balancing the need
to keep samples with the need to ensure that there were no differences between Ghigh and
Glow in the distributions of the variables in M1 and M2. Matching on the variables in M1

typically removed about two thirds of the datapoints, leaving between 106, 000 − 110, 000
individuals on which to compare CAD prevalence or mean BMI. The M2 criteria removed
more individuals (up to 72%) of the cohort, leaving between 91,500 and 107,500 individuals
in both cases.

M9 Modified principal components

Another way of solving the problem of differences in covariate distributions between G1 and
G2 is to regress the pollution and socioeconomic covariates out of the principal components
and then perform our analyses on these modified PCs (mPCs). This solves the problem of
finding enough suitable matches to retain enough samples for further analysis when con-
sidering all variables at once. Additionally, this process allows us to account for variables
that were not included in the previous matching. The full list of variables used is reported
in section S4.2 of the Supplement. While we do lose individuals due to missing data, we
are able to retain 168,607 individuals for each mPC analysis, which is more samples than
with matching. We performed an initial regression, which we will call R1, where the mPC
measurements were the residuals from the linear regression of all the above variables on the
original PC. However, the above variables are not all independent of each other, and are
in some cases—as with nitrogen dioxide air pollution measures—highly correlated with one
another. As an alternate way of generating the mPCs, which we will call R2, we performed
a PCA on the matrix of covariate measures to remap them into a space where each variable
was totally independent of all the others. We emphasize that the goal of this analysis was
to remove the correlation structure among the covariates, and not to reduce the number
of covariates tested. The remapped covariates were used in the regression to create the
mPCs of genetic data. The PCA of the environmental and socioeconomic factors used in the
second regression was performed using a singular value decomposition, implemented using
the prcomp function in R, with the parameters set to scale and center the matrix before
performing the PCA.
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