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The end of the Last Glacial Maximum (LGM) in Europe (~16.5 ka ago) set in motion major 

changes in human culture and population structure1. In Southern Europe, Early 

Epigravettian material culture was replaced by Late Epigravettian art and technology about 

18-17 ka ago at the beginning of southern Alpine deglaciation, although available genetic 

evidence from individuals who lived ~14 ka ago2–5 opened up questions on the impact of 

migrations on this cultural transition only after that date. Here we generate new genomic data

from a human mandible uncovered at the Late Epigravettian site of Riparo Tagliente 

(Veneto, Italy), that we directly dated to 16,980-16,510 cal BP (2σ). This individual, affected 

by a low-prevalence dental pathology named focal osseous dysplasia, attests that the very 

emergence of Late Epigravettian material culture in Italy was already associated with 

migration and genetic replacement of the Gravettian-related ancestry. In doing so, we push 

back by at least 3,000 years the date of the diffusion in Southern Europe of a genetic 

component linked to Balkan/Anatolian refugia, previously believed to have spread during the 

later Bølling/Allerød warming event (~14 ka ago4,6). Our results suggest that demic diffusion 

from a genetically diverse population may have substantially contributed to cultural changes 

in LGM and post-LGM Southern Europe, independently from abrupt shifts to warmer and 

more favourable conditions. 

During the LGM (~30-16.5 ka ago7) European hunter-gatherers coped with dramatic environmental 

and climatic upheavals by either migrating or adapting to extreme ecological conditions and 

reconnecting into large-scale networks4,8,9. Following the beginning of deglaciation large zones of 

the Alps were recolonised by hunter-gatherers. On the eastern Italian side this process started ~17 

ka ago from the pre-Alpine valley bottoms10,11 and then reached altitudes as high as 1700 m above 

mean sea level (amsl) in the Bølling-Allerød temperate interstadial as a consequence of the 

progressive timberline rise12 (Supplementary Information section 1). In this time frame, material 

culture of Italy and Balkan/eastern Europe shows change over time in raw material procurement, 

lithic production, subsistence strategies, funerary practices, and variability of portable art, all of 

which document the transition from Early to Late Epigravettian13–15. 

Current understanding of this cultural shift links the Late Epigravettian culture in 

northeastern Italy to a major population turnover, starting around 14ka ago at Riparo Villabruna16 
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(Vercellotti et al., 2008). It was explained as the effect of migrations from East, putatively 

facilitated by the Bølling-Allerød event, a warmer and more favourable period that began only 

about 14.7 ka ago4,5. Nevertheless, the processes underlying the beginning of Late Epigravettian 

culture and technology in the southern Alpine and Adriatic area started around 3,000 years earlier 

(~18-17ka ago) and are far from being disentangled due to the still fragmentary  evidence for 

interactions between hunter-gatherers located on opposite sides of the Great Adriatic-Padanian 

Region17 (in Italy  and the Balkans).

To understand the full extent of the role played by demic processes in this key transition in 

Late Glacial Europe we focused on the left hemimandible of an individual found at Riparo 

Tagliente (Tagliente218) associated with Late Epigravettian evidence (Supplementary Information 

section 2). During the LGM and the Late Glacial, the Adriatic Sea basin played a critical role in 

shaping the economy and mobility of Epigravettian groups. Geomorphological and 

sedimentological processes linked to the extension of Alpine glaciers and to the lowering of the sea 

level at ~120m amsl formed a vast plain area that connected the Italian and Balkan peninsulas. The 

central Slovenian passage was used by large pachyderms and ruminants such as cervids and bisons 

which, alongside with bears, were the main game targeted by Epigravettian hunter-gatherers19. 

Riparo Tagliente (northeastern Italy) represents the earliest available evidence of human occupation

of the southern Alpine slope11 while the main glaciers in the area started withdrawing 17.7 ka ago20, 

and is therefore critical to address questions on the impact of human movement in this time frame 

(Fig.1). We performed anthropological and genetic analyses to assess the biological background of 

the sampled individual. The hemimandible was also directly dated to independently ascertain its 

chronology and the possible contemporaneity with contextual post-cranial human remains from a 

partially preserved burial (Tagliente121; Supplementary Information section 2).

Tagliente2

The left hemimandible Tagliente2 is mesially broken to the alveolus of the first premolar (P3), while

the ramus is mostly complete, except for the condyle and coronoid process. Four permanent teeth 

(P4-M3) are still in place into their respective alveoli, but only a tiny apical portion of the LP3 root is 

preserved. The presence of wear pattern on the third molar (wear stage 230) and its eruption suggest 

that the mandible can be ascribed to a young adult, while the robusticity index (42.59, this study) 

and the gonial angle (110°) fall within the range of male variability18. X-ray microCT scans and 

digital segmentation of Tagliente2 (Extended Data Fig.1) identified the presence of a rounded 

alteration close to the buccodistal aspect of the P4 root. The identified lesion shows homogeneous 
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radiopacity surrounded by a radiotransparent thin area (Extended Data Fig.2) and consists of an 

irregular (Volume = 10.71 mm3; bucco-lingual diameter= 2.48cm; mesio-distal diameter = 2.90cm; 

see Extended Data Fig.1) and compact dental tissue which was mechanically removed (see 

Methods) and physically analysed through histological examination (see Methods). The latter 

suggests the presence of stratified and acellular cementum material (Extended Data Fig.2), which 

together with anatomical position and morphology (Fig.1b) provides evidence ascribable to focal 

cemento-osseous dysplasia (FCOD; Supplementary Information section 3), a benign lesion of the 

bone in which normal bone is replaced by fibrous tissue, followed by calcification with osseous and

cementum tissue31 (Supplementary Information section 4).

Radiocarbon Dating

The hemimandible of Tagliente2 was directly dated to 16,980-16,510 cal BP  (95.4% probability 

using IntCal2029 in OxCal v.4.332) confirming the attribution to the Late Epigravettian chronological

range. This result is consistent with the associated material culture, and with the attribution to the 

same cultural context as Tagliente1 (16,130–15,560 cal BP21; Supplementary Information section 

5).

Ancient DNA

We extracted DNA from five samples taken from mandibular and tooth tissues and screened

for the presence of endogenous human DNA through a pooled whole genome sequencing. One of 

the healthy mandibular samples yielded sufficient endogenous DNA (5.06%) and was re-sequenced 

to achieve a total genome wide coverage of 0.28x, yielding 266K SNPs overlapping with the 

Human Origins SNP Array. We also provide a number of non-reference sites found to overlap 

genes known to be involved with cementoma insurgence, which, given the low coverage and 

ancient DNA degradation, are reported here with no further interpretation.

Overall contamination estimated from mtDNA was 2.158% and 0.60 – 1.53% from the X 

chromosome. The mtDNA haplogroup is a basal U4'9, consistent with a European Palaeolithic 

individual (Fig. 2A). X/Autosome coverage ratio in the order of 0.56 confirmed the individual was 

male, and the chromosome Y haplogroup estimated to be I2, which captures the majority of the 

post-Villabruna diversity in Europe (Fig. 2B). From a population perspective, we performed a MDS

analysis based on outgroup f3 distances (Fig. 3A) and found the sample to fall within the broader 

European Western Hunter Gatherer (WHG) genetic variation, pointing to an affinity to the 
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previously described Villabruna Cluster4, known to have largely replaced previous European Hunter

Gatherer populations at least ~14 ky ago. One of the defining feature of the Villabruna cluster is a 

higher affinity with Near Eastern genetic components, compared with pre-existing palaeolithic West

Eurasians: the significantly negative f4 test (Kostenki14, Tagliente2, Druze, Mbuti: f4=-0.0037; 

standard error= 0.00063; Z=-5.88) further confirmed Tagliente2 to share genetic features with the 

Villabruna cluster and to be in discontinuity with the preceding European genetic background. We 

followed up this observation using a series of f4 tests in the form (Tagliente2, X; Y, Mbuti), where 

Y is a population of interest and X is either Villabruna (~14ky ago4), Bichon (~13.7ky ago4) or a 

Mesolithic Italian from Grotta Continenza (~11.9ky ago33; Fig. 3 B). We chose three independent 

WHG samples to control for potential biases introduced by the genotyping strategy, and indeed 

found small discrepancies when we compared results obtained using capture (Villabruna) or 

shotgun (Bichon and Continenza) data. To minimise this effect we chose to put more weight on the 

interpretation of shotgun results, deemed to be more readily comparable with the shotgun data 

generated for Tagliente2 in this study. We also show that the data available is sufficient to achieve 

significance in a f4 test when the order of X and Y populations are inverted, as for (Tagliente, Y, 

Grotta Continenza, Mbuti, Extended Data Fig.3). The higher affinity of Continenza and Bichon to 

later WHG (Loschbour, Iberia_HG and Continenza, Bichon, and Villabruna themselves) when 

compared to Tagliente2 may be explained by the more ancient age of Tagliente2 or with the former 

individuals being genetically closer to the genetic ancestry that reached central Europe at least by 

14ka ago. Alternatively, the higher affinity emerging among more recent WHG samples may also 

be ascribed to subsequent admixtures between the newly arrived Tagliente2 individuals and pre-

existing Dolní Věstonice- or Goyet-like (~35ka ago4) genetic substrates, as already reported for 

Loschbour (~8.1ka ago4,34). We then modelled the position of Tagliente2 within the tree proposed 

by Fu and colleagues (2016; Extended Data Fig.4A) and found that it may fit well within the 

Villabruna branch confirming previous results (Extended Data Fig.4B). Notably, alternative 

qpGraphs in which Villabruna was modelled as a mixture between Tagliente2 and Věstonice 

(Extended Data Fig.4C) or between Tagliente2 and Goyet (Extended Data Fig.4D) yield 

comparable summary statistics and would allow for up to 10% contribution from Věstonice or up to

5% contribution from Goyet into the later samples belonging to the Villabruna cluster. To minimise 

the effects of the mismatch between capture and shotgun data due to attraction, we also explore the 

feasibility of the basic qpGraph (Extended Data Fig.4B) using, where possible, shotgun samples 

(Extended Data Fig.5). 
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Discussion

Tagliente2 is clearly associated with Late Epigravettian material culture, and its direct date 

(~17ka ago) is consistent with the chronology of the lowermost layers attested at Riparo Tagliente11.

Therefore, this individual belongs to one of the earliest human groups that first occupied the 

southern Alpine slopes at the end of the LGM, when mountain ranges in Southern Europe became 

accessible to the expansion of animals and predators10,17. In the same temporal interval there is 

evidence of a shift from Solutrean to Magdalenian material culture in Southwestern Europe, and 

from Early to Late Epigravettian material culture in a vast area ranging from the Rhone river to the 

Southern Russian plain35. In this broad context, the individual found at Riparo Tagliente denotes the

presence in the region of human groups from Eastern Europe/Anatolia, therefore backdating by at 

least 3ka the occurrence of genetic components previously reported for the later Villabruna cluster 

(~14ka ago2–6). At the same time, even earlier migrations into Southern Europe might be envisaged 

to explain the presence of  Villabruna- or Tagliente2-related genetic components in the ~18.7 ka-old

sample found at El Mirón, Spain4,34. Tagliente2 seems to be basal to all samples that are more recent

than Villabruna based on both autosomic DNA and Y chromosome. From an autosome perspective, 

this may result from an admixture between Villabruna and survivors of the Věstonice or Goyet 

clusters between 17 and 14 ka ago. Nevertheless, the symmetrical relationship of Tagliente2 and 

other post 14kya European hunter-gatherers with Věstonice, Ostuni, Goyet or Kostenki (Fig. 3B) 

does not seem to support this scenario in spite of the promising qpGraph (Extended Data Fig.4). In 

addition, we report slight f4 discrepancies in the analysis when the same individuals is obtained 

either through capture or shotgun (e.g. Anatolia_N in Fig. 3 B), or when using Bichon or 

Continenza versus Villabruna, all of which show the importance of avoiding capture and shotgun 

samples within the same f4 test. 

Tagliente2 therefore provides evidence that the major migrations which strongly affected the

genetic background of all Europeans2–6, started considerably earlier in Southern Europe than 

previously reported, and in this region they do not seem to be limited to favourable, warmer periods

(e.g. Greenland Interstadial 1, ~14.7-13ka ago). Our results rather show that population movements 

were already in place during the cold phase immediately following the LGM peak. At this stage, 

Italy, the Balkans, and Eastern Europe/Western Asia were already connected into the same network 

of potential LGM refugia, and exchanged both genes and cultural information. This finding also 

backdates previous conclusions concerning a plausible demic component to change over time in the 

coeval material culture of Southern Europe2–6, and temporally locates this process at the transition 

between Early and Late Epigravettian or even possibly at an early stage of the Epigravettian and at 

the very beginning of the Magdalenian sequence. The latter scenario stems from interpreting the 

traces of Villabruna/Tagliente2 genetic components recorded at El Mirón (~19ka ago4,34)  as the 
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result of an early phase of this westward expansion, rather than as a proliferation from Western 

European refugia. Further genetic evidence from Southern European contexts dated between ~24-19

ka ago, however, will be needed in the future to test this hypothesis. 

Discontinuity between Early Epigravettian and Late Epigravettian lithic tool manufacturing 

is documented since ~18-17ka cal BP in Southern and Eastern Europe, despite the biased spatial 

and temporal distribution of the archaeological record13. In the period of interest, however, human 

groups inhabiting Southern Europe were exposed to limited ecological risk8,36 and in this time frame

there is at present a lack of evidence of their direct impact on megafaunal extinction, which is 

consistently associated with short interstadial (warming) events during the LGM and following the 

beginning of the Bølling/Allerød event19,27,28. In this context, the emergence of Late Epigravettian 

lithic technology may have been less prone to local adaptation than to the transmission of culture 

via population movement and human interaction37. Tagliente2, therefore, suggests that cumulative 

cultural change observed in Southern Europe from the end of LGM to the end of the Younger Dryas

(~11.7 ka ago) was at least in part triggered by gene flow from eastern refugia into Northeastern 

Italy and that this process, in its early stage, was independent of warming events, and contributed to 

the gradual replacement of pre-LGM ancestry across the Italian peninsula38.

Furthermore, our analysis offers new insights on the presence and distribution of a rare 

dental pathology (FCOD) that has never been reported before in human fossils and is today more 

frequently associated with female individuals of African American or Southeastern Asian descent39. 

Although etiology and developmental trajectory of this pathologic condition are yet to be 

understood, this work documents its presence in pre-Neolithic and pre-industrial societies of 

Europe.

In conclusion, the present results open a debate on the impact of demic diffusion on the very

origin of the Late Epigravettian material culture and the mechanisms underlying patterns recorded 

before and after the onset of the Bølling/Allerød event. These include the later convergent 

emergence across Eurasia of a more flexible and responsive technology, and of schematic art40 

associated with change in demographic pressure, environmental challenges, and mobility41–43.
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Fig. 1 Geographical, ecological, and cultural context of the study a) Palaeogeographic map of 

Europe during Late Glacial, centered at 17 ka ago. Coordinate system ETRS89 / UTM zone 32N 

(EPSG 25832); Digital Elevation Model (base topography – Copernicus Land Monitoring Service 

2019 (CLMS, http://land.copernicus.eu/pan european), and General Bathymetric Chart of the 

Oceans (GEBCO 2019 grid, doi:10.5285/836f016a-33be-6ddc-e053-6c86abc0788e). Sea level drop 

at – 110 m7. Scandinavian and British Islands ice sheets, mountain glaciers Last Glacial Maximum 

(LGM) extent (striped areas) and freshwater systems modified after22. Scandinavian and British 

Islands ice sheets (pale blue) at 17 ka after23. Alpine glaciers extent (dashed outline) modelled at 17 

ka from24 (https://doi.org/10.5446/35164). Modelled extension is generally underestimated in the 

northwestern Alps and overestimated in the eastern and south-western Alps24. Coloured areas refer 

to the distribution of Epigravettian and Magdalenian material culture at 17ka ago, while white 

symbols indicate the geographic location of the main sampling sites discussed in the text, 

encompassing a period ranging from ~30 to 8ka . b) 3D lateral view of the hemimandible 

Tagliente2. Reduced opacity shows  roots, pulp chambers, dentine and enamel of the preserved 

teeth, as well as the cementome in red between the distal side of P3 root and the mesial root side of 

M1. c) Comparison between palaeoclimate, palaeoenvironmental proxies, and cultural proxies over 

the 30-11 ka cal BP time span. Key to panels: (1) Reconstruction of past vegetation based on 

Southern Alpine foreland palaeoecological records12,22,25,26; (2) Eurasian major megafaunal 

transitions (regionwide extirpations or global extinctions, or invasions, of species or major clades) 

identified in Late Pleistocene Holarctic megafaunal data sets through a DNA or paleontological 

studies19,27; (3) NGRIP δ18O record in 20 yrs means on the GICC05 time scale28; (4) Material 

cultural sequence for Eastern and Southern Europe. The chronological interval obtained for 

Tagliente2 is indicated by a red rectangle (16,980-16,510yrs cal BP, 2σ interval, IntCal2029).
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Fig.2 Uniparental haplogroups of Tagliente2. Panel A shows the mtDNA haplogroup of 

Tagliente2 (in red) within a number of pre (Green) and post (Gold) Villabruna samples. Panel B 

shows the chrY haplogroup of Tagliente2 (in red) surrounded by post-Villabruna samples 

(including Bichon, BC). Y Haplogroup splits are drawn according to the dater estimates based on 

high coverage modern sequences from Karmin et al. 2015. The ancient individuals are mapped on 

this tree considering the available haplogroup-informative available SNP data and private mutations

in the ancient samples have been ignored.
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Fig. 3: Demographic inference from Tagliente 2. A) Mutidimensional Scaling based on (Mbuti; 

X, Tagliente2) outgroup f3 statistics show Tagliente2 (red star) to cluster within the Villabruna 

Cluster (in gold) and away from the pre-existing South European samples (in green). B) f4 tests 

(Tagliente2, X,  Y, Mbuti +/- 3 s.e.) where X is either a Mesolithic Italian, Villabruna or Bichon 

WHG sample and Y, shown along the y axis, is a population of interest.
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Methods

Radiocarbon dating

The teeth from the hemimandible (Tagliente2) were pretreated at the Department of Human 

Evolution at the Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig, 

Germany, using the method previously published44. Circa 500 mg of the whole root of the tooth is 

taken. The sample is then decalcified in 0.5M HCl at room temperature until no CO2 effervescence 

is observed. 0.1M NaOH is added for 30 minutes to remove humics. The NaOH step is followed by 

a final 0.5M HCl step for 15 minutes. The resulting solid is gelatinized following Longin (1971)45 at

pH3 in a heater block at 75°C for 20h. The gelatine is then filtered in an Eeze-FilterTM (Elkay 

Laboratory Products (UK) Ltd.) to remove small (<80 m) particles. The gelatine is then 
ultrafiltered46 with Sartorius “VivaspinTurbo” 30 KDa ultrafilters. Prior to use, the filter is cleaned 

to remove carbon containing humectants47,48. The samples are lyophilized for 48 hours. The date is 

corrected for a residual preparation background estimated from 14C free bone samples. These bones 

were kindly provided by D. Döppes (MAMS, Germany), and one was extracted along with the 

batch from the tooth49. To assess the preservation of the collagen yield, C:N ratios, together with 

isotopic values must be evaluated. The C:N ratio should be between 2.9 and 3.6 and the collagen 

yield not less than 1% of the weight50. For the tooth stable isotopic analysis is evaluated at MPI-

EVA, Leipzig (Lab Code R-EVA 1606) using a ThermoFinnigan Flash EA coupled to a Delta V 

isotope ratio mass spectrometer. The Tagliente tooth passed the collagen evaluation criteria and 

between 3 and 5 mg of collagen inserted into pre-cleaned tin capsules. This was sent to the 

Mannheim AMS laboratory (Lab Code MAMS) where was graphitized and dated51.

DNA Extraction and Sequencing 

The DNA extraction and sample library was prepared in the dedicated ancient DNA laboratory at

the Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia. The library quan-

tification and sequencing were performed at the Estonian Biocentre Core Laboratory. The main

steps of the laboratory work are detailed below.

DNA extraction

Tooth/bone material was powdered at the aDNA clean lab of the Department of Cultural Heritage, 

University of Bologna by G.O. and S.S. and sent to the University of Tartu. To approximately 20 

mg of powder 1000 µl of 0.5M EDTA pH 8.0 and 25 µl of Proteinase K (18mg/ml) were added 

inside a class IIB hood. The sample was incubated for 24 h on a slow shaker at room temperature. 

DNA extracts were concentrated to 250 µl using Vivaspin® Turbo 15 (Sartorius) concentrators and 

purified in large volume columns (High Pure Viral Nucleic Acid Large Volume Kit, Roche) using 
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10X (2.5 ml ) of PB buffer (Qiagen) following the manufacturers’ instructions with the only change

being a 10 minute incubation at 37 degrees prior to the final elution spin and eluted in 100 μl of EB 

buffer (QIAGEN). Samples were stored at -20 C.

Library preparation

The extracts were built into double-stranded, single-indexed libraries using the NEBNext® DNA 

Library Prep Master Mix Set for 454™ (E6070, New England Biolabs) and Illumina-specific 

adaptors52  following established protocols52–54. DNA was not fragmented and reactions were 

scaled to half volume, adaptors were made as described in52 and used in a final concentration of 

2.5uM each. DNA was purified on MinElute columns (Qiagen). Libraries were amplified using the 

following PCR set up: 50μl DNA library, 1X PCR buffer, 2.5mM MgCl2, 1 mg/ml BSA, 0.2μM 

inPE1.0, 0.2mM dNTP each, 0.1U/μl HGS Taq Diamond and 0.2μM indexing primer. Cycling 

conditions were: 5’ at 94C, followed by 18 cycles of 30 seconds each at 94C, 60C, and 68C, with a 

final extension of 7 minutes at 72C. Amplified products were purified using MinElute columns and 

eluted in 35 μl EB (Qiagen). Three verification steps were implemented to make sure library 

preparation was successful and to measure the concentration of dsDNA/sequencing libraries – 

fluorometric quantitation (Qubit, Thermo Fisher Scientific), parallel capillary electrophoresis 

(Fragment Analyser, Advanced Analytical) and qPCR.

Library quality and quantity have been assessed by using Agilent Bioanalyzer 2100 High 

Sensitivity and Qubit DNA High Sensitivity (Invitrogen). The initial shotgun screening was done 

on NextSeq500 using the High-Output 75 cycle single-end kit. The secondary, paired-end 

sequencing was performed on the NovaSeq6000 (Illumina), flowcell S1, without any other samples 

to ensure no index-hopping due to the single-indexing of the sample, generating 150-bases paired-

end reads. Whole genome sequencing with Illumina paired-end (2x150 bp) led to 488 million high-

quality reads. About 6.99% of the reads could be successfully mapped on the human genome 

sequence with a duplication rate of 51%, leading to an average 0.28x genome coverage. The 

mapped reads showed nucleotide misincorporation patterns which were indicative of post-mortem 

damage (Extended Data).

Sequencing filtering, mapping and variant calling analysis

Before mapping, the paired end reads were merged and corrected using FLASH55. The merged 

reads were trimmed of adapters, indexes and poly-G tales occuring due to the specifics of the 

NextSeq500 and NovaSeq technology using cutadapt-1.1156. Sequences shorter than 30 bp were 

also removed with the same program to avoid random mapping of sequences from other species. 

The sequences were aligned to the reference sequence GRCh37 (hs37d5) using Burrows-Wheeler 
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Aligner (BWA 0.7.12)57 and the command mem with seeding disabled. After alignment, the 

sequences were converted to BAM format and only sequences that mapped to the human genome 

were kept with samtools-1.358. Afterwards, the data from different flow cell lanes were merged and 

duplicates were removed using picard 2.12 (http://broadinstitute.github.io/picard/index.html). 

Indels were realigned using GATK-3.559 and reads with a mapping quality less than 10 were filtered

out using samtools-1.3 (ref). In order to maximise the coverage of sites included in the 1240 Human

Origin capture array, a random read with mapping quality above 30 and phred score above 33 was 

chosen to represent the pseudo-haploid genotype of our sample, and then merged with reference 

data from ancient and modern European samples.

aDNA authentication

As a result of degrading over time, aDNA can be distinguished from modern DNA by certain 

characteristics: short fragments and a high frequency of C=>T substitutions at the 5' ends of 

sequences due to cytosine deamination. The program mapDamage2.060 was used to estimate the 

frequency of 5' C=>T transitions. Rates of contamination were estimated on mitochondrial DNA by 

calculating the percentage of non-consensus bases at haplogroup-defining positions as detailed in 

(ref). Each sample was mapped against the RSRS downloaded from phylotree.org and checked 

against haplogroup-defining sites for the sample-specific haplogroup.

Samtools 1.958 option stats was used to determine the number of final reads, average read length, 

average coverage etc.

Calculating genetic sex estimation

Genetic sex was calculated using the methods described in61,estimating the fraction of reads 

mapping to Y chromosome out of all reads mapping to either X or Y chromosome. Additionally, 

sex was determined using a method described in62, calculating the X and Y ratio by the division of 

the coverage by the autosomal coverage. 

Determining mtDNA and Y chromosome haplogroups

Mitochondrial DNA haplogroups were determined using Haplogrep2 on the command line. For the 

determination, the reads were re-aligned to the reference sequence RSRS and the parameter --rsrs 

were given to estimate the haplogroups using Haplogrep2 [83,84]. Subsequently, the identical 

results between the individuals were checked visually by aligning mapped reads to the reference 

sequence using samtools 0.1.1958 command tview and confirming the haplogroup assignment in 

PhyloTree.
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A total of 5703 Y chromosome haplogroup informative variants63,64 from regions that uniquely map 

to Y chromosome were covered by at least one read in the sample and these were called as haploid 

from the BAM file using the --doHaploCall function in ANGSD65. Derived and ancestral allele and 

haplogroup annotations for each of the called variants were added using BEDTools 2.19.066 

intersect option. Haplogroup assignments of each individual sample were made by determining the 

haplogroup with the highest proportion of informative positions called in the derived state in the 

given sample.

MDS, f3, f4 and qpGraph Reference samples were downloaded from 

https://reich.hms.harvard.edu/downloadable-genotypes-present-day-and-ancient-dna-data-compiled-

published-papers and merged with the newly generated Tagliente2 data. A set of Outgroup f367 in 

the form (X, Y, Mbuti) was run on samples listed in Fig.3A, and the resulting pairwise distance 

matrix (distance=1-f3) was used to compute a Multi Dimensional Scaling (MDS). The f4 test67 was 

run using the popstats.py script68. qpGraph were generated using Admixtools67, starting from the 

backbone described in Fu et al. 2016 and investigating putative positions for Tagliente2 as informed

by the f4 results described in Fig. 3B.

Histopathological examination

A thin  section of 0.005 mm was sampled for  histological  analysis.  The cross-section  has  been

performed following mesiodistal direction based on the best location for core sampling. The core

was fixed in buffered neutral formalin 10% in order to protect the fibrous elements of cementum

from damage caused by the acids used as decalcifying agent performed with Trichloroacetic acid

for 7 days. Finally, the section was coloured by Hematoxylin / Eosin.  The sample was mounted on

frosted  glass  slides  and  thin-sectioned  using  a  Struers  Accutom-50.  The  preparation  of  the

histological section was carried out at the Centro Odontoiatria e Stomatologia F. Perrini, Pistoia,

Italy. the section was studied using a Nikon E200 microscope. Photomicrographs were captured

using NIS D 3.0 Software and edited in Adobe Photoshop CC.

Data Availability

Whole  genome  sequences  generated  for  this  study  are  freely  available  for  download  at

www.xxx.xx/xxxx_xxxx/xxxx_xxx/
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Extended Data Fig.1. Digital reconstruction of the hemi-mandible. A1) A spline curve was 

digitized at the cervical line of each crown dentine. A2) A best-fit plane (cervical plane) was 

obtained. A3) The hemimandible was oriented with the best-fit plane computed at the cervical lines 

(i.e., the cervical plane that best fits a spline curve digitized at the cervical line), parallel to the xy-

plane of the Cartesian coordinate system and rotated along the z-axis to have its lingual aspect 

parallel to the x-axis. B1) Virtual model oriented in occlusal view. Transparency level set at 72% to 

highlight the lesion (in red). B2) Cementome in occlusal view. It was excluded from the context to 

calculate the Volume and diameters. B3) the outline corresponds to the silhouette of the oriented 

cementome as seen in occlusal view and projected onto the cervical plane. The contour of the 

section identified by the cervical plane represents the cementome outline. The size of the bounding 

box enclosing the silhouette was used to collect mesiodistal (MD) and buccolingual (BL) diameters.

M= Mesial; B= Buccal; = D=Distal; L=Lingual.
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Extended Data Fig.2. Tagliente 2 virtual (left) and physical (right) section. On the left, microCT 

distal view of the premolar and its pathological cementum tissue. On the right, histological section. 

Magnification (250X) of the cementum tissue colored by Hematoxylin/Eosin. B = Buccal; L = 

Lingual; scalebar = 0.5mm.
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Extended Data Fig.3: F4 tests in form (Tagliente, X, Mesolitic_Italian_Continenza,Mbuti), where 

X is one of the populations reported along the Y axis and consistent with Figure 3 B, showing that 

the available SNPs are sufficient to yield significance in a f4 test.
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Extenced Data Fig.4: Tagliente2 within the Fu et al. 2016 qpGraph model. We started from the 

qpGraph originally proposed in Fu et al. 2016 (Panel A: Final Score 37628.736;  dof: 8; no f2 

outliers; worst f4: Mbu,Ust,Goy,Ita   Z=-3.330) and informed by the f4 stats shown in Figure 3 

placed Tagliente 2 as a basal branch of the Villabruna cluster (Panel B: Final Score 38182.359;  dof:

15; no f2 outliers; worst f4: Mbu,Ust,Goy,Ita   Z=-3.330). We also explored alternative scenarios 

featuring Villabruna as an admixture of pre-existing Vestonice (Panel C: Final Score 39471.021;  

dof: 14; no f2 outliers; worst f4: Mbu,Ust,Goy,Ita   Z=-3.330) or Goyet (Panel D: Final Score 

37245.412;  dof: 14; no f2 outliers; worst f4: Ust,Ita,Goy,Ita   Z= 3.503) clusters. Notably, since the 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.10.241430doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.241430
http://creativecommons.org/licenses/by-nd/4.0/


number of events and degrees of freedom (dof) are different across different graphs, final scores are

not directly comparable.

Extended Data Fig.5: qpGraph using shotgun data. To minimize the bias introduced by using 

capture and shotgun data within the same analysis, we report also the tree proposed as Extended 

Data Fig.4B using, with the exception of Goyet, only shotgun data. Final Score: 34431.549; 

Degrees of freedom: 15; One f2 outlier: Mal, Sun , Z=2.346; Worst f4: Mbu,Ust,Sun,Goy, Z=3.541.
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Extended Data Fig.6 Sequencing read length and substitution rate for Tagliente2 whole genome sequence
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