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Abstract 21 

Molecular motors couple chemical transitions to conformational changes that perform 22 

mechanical work in a wide variety of biological processes. Disruption of this coupling can 23 

lead to diseases, and therefore there is a need to accurately measure mechanochemical 24 

coupling in motors in both health and disease. Optical tweezers, with nanometer spatial 25 

and millisecond temporal resolution, have provided valuable insights into these 26 

processes. However, fluctuations due to Brownian motion can make it difficult to precisely 27 

resolve these conformational changes. One powerful analysis technique that has 28 

improved our ability to accurately measure mechanochemical coupling in motor proteins 29 

is ensemble averaging of individual trajectories. Here, we present a user-friendly 30 

computational tool, Software for Precise Analysis of Single Molecules (SPASM), for 31 

generating ensemble averages of single-molecule data. This tool utilizes several 32 

conceptual advances, including optimized procedures for identifying single-molecule 33 

interactions and the implementation of a change point algorithm, to more precisely resolve 34 

molecular transitions. Using both simulated and experimental data, we demonstrate that 35 

these advances allow for accurate determination of the mechanics and kinetics of the 36 

myosin working stroke with a smaller set of data. Importantly, we provide our open source 37 

MATLAB-based program with a graphical user interface that enables others to readily 38 

apply these advances to the analysis of their own data. 39 

  40 
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Statement of Significance 41 

Single molecule optical trapping experiments have given unprecedented insights into the 42 

mechanisms of molecular machines. Analysis of these experiments is often challenging 43 

because Brownian motion-induced fluctuations introduce noise that can obscure 44 

molecular motions. A powerful technique for analyzing these noisy traces is ensemble 45 

averaging of individual binding interactions, which can uncover information about the 46 

mechanics and kinetics of molecular motions that are typically obscured by Brownian 47 

motion. Here, we provide an open source, easy-to-use computational tool, SPASM, with 48 

a graphical user interface for ensemble averaging of single molecule data. This 49 

computational tool utilizes several conceptual advances that significantly improve the 50 

accuracy and resolution of ensemble averages, enabling the generation of high-resolution 51 

averages from a smaller number of binding interactions.  52 

  53 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.10.241752doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.241752
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

4 

Introduction 54 

Molecular motors generate force and movement in a wide array of cellular 55 

processes, including muscle contraction, packaging of DNA into viral capsids, intracellular 56 

transport, DNA damage repair, and cell motility. These motors have complex 57 

mechanochemical cycles where chemical transitions are coupled to conformational 58 

changes in the protein structure that generate mechanical work. The kinetics and 59 

mechanics of these transitions are tuned to the specific molecular role of the motor in the 60 

cell, and subtle changes in these properties can lead to an array of diseases (1). 61 

Therefore, there is a need for experimental and computational techniques for probing 62 

these relationships. 63 

Single-molecule optical trapping techniques, with nanometer spatial and 64 

millisecond temporal resolution, have proven to be powerful tools for studying the 65 

mechanochemical coupling in motors. One widely used optical trapping technique is the 66 

three-bead assay (Fig. 1A) (2, 3). In this assay, two beads are held in place by dual-beam 67 

optical tweezers. The motor’s track (e.g., actin) is strung between these beads and then 68 

lowered onto a third, surface-bound bead. This third bead is sparsely coated with motor 69 

molecules (e.g., myosin), such that only a single motor interacts with the track at any 70 

given time. The positions of the two optically trapped beads are monitored to study the 71 

interactions between the motor and the track (Fig. 1B), where motor binding to the track 72 

causes both displacement of the beads as well as a reduction in the bead variance. This 73 

assay has been applied to study several motor and non-motor systems, including dynein 74 

(4), the lac repressor (5), kinesins (6), and several myosin isoforms (7-15).  75 
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Analysis of the individual time-dependent trajectories of motor-induced 76 

displacements in the bead positions can provide information about both the mechanics 77 

and the kinetics of the motor’s mechanochemical cycle. However, it can be difficult to 78 

resolve details of these trajectories, as the amplitude of Brownian motion-induced 79 

fluctuations in the bead position are frequently larger than the size of motor-induced 80 

displacements. One powerful method for extracting high spatial and temporal resolution 81 

information from noisy traces is post-synchronization ensemble averaging (13, 16). In this 82 

method, trajectories from multiple individual binding interactions are aligned and then 83 

averaged together, thereby increasing the signal-to-noise ratio. This technique has been 84 

applied to successfully identify substeps of the myosin working stroke (12, 13, 17) and 85 

transitions in the ribosome (16) that likely would have been obscured using other analysis 86 

methods. While this is a powerful tool for analyzing single-molecule data, there is no 87 

software in the public domain that is tailored to performing these calculations, and this 88 

has limited the adoption of these tools by many groups. 89 

We have developed a MATLAB-based computational tool, Software for Precise 90 

Analysis of Single Molecules (SPASM), with a graphical user interface for the 91 

identification and ensemble averaging of single-molecule trajectories. This computational 92 

tool utilizes several conceptual advances, including an optimized method for identifying 93 

binding interactions from noisy data and improved precision in determining the exact 94 

initiation and termination times of binding interactions using a change point algorithm. 95 

Using both simulated and experimental data sets, we demonstrate that these advances 96 

permit the generation of accurate, high-resolution ensemble averages using fewer 97 

individual binding trajectories than were previously required. Our easy-to-use 98 
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computational tool includes an intuitive graphical user interface and is offered both as 99 

open source code and as a standalone program which does not require full installation of 100 

MATLAB. Finally, we provide a user guide, a separate tool for simulating data, and sample 101 

data sets to help other researchers apply this tool to their own single-molecule data.  102 
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Methods 103 

Implementation of the computational tool 104 

The SPASM computational tool, which includes a graphical user interface, was 105 

written in MATLAB (MathWorks). The program uses the Signal Processing Toolbox and 106 

the Optimization Toolbox, but neither toolbox is required for analysis. The code was 107 

tested on MATLAB versions R2017b through R2020a for both Windows and macOS 108 

operating systems. Standalone versions of the program for both Windows and macOS 109 

were generated using the MATLAB Compiler. For more details, see the Supporting 110 

Materials. 111 

 112 

Detection of binding interactions 113 

Binding interactions between a motor and its track in the optical trap can be 114 

identified using either a variance (18) or a covariance (2, 19) threshold, since the binding 115 

of a motor to its track causes a reduction in both the variance and covariance of the two 116 

beads (Fig. 2). The covariance between the beads at any time, t, is calculated by: 117 

Covt(A, B)  =  Ewc,t[A ∗ B] – Ewc,t[A] ∗ Ewc,t[B] 118 

where A is the position of one bead (bead A), B is the position of the other bead (bead 119 

B), and Ewc,t[X] denotes the mean of X over a window of size wc centered at t. Before 120 

generating a histogram of covariance values, the covariance is smoothed using a second-121 

order Savitzky-Golay filter with window size ws to remove high-frequency noise. The 122 

values of wc and ws can be optimized using the computational tool. See the Supporting 123 

Materials for details. 124 
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A histogram of the filtered covariance between the two beads shows two distinct 125 

populations corresponding to bound (B) and unbound (U) states (Fig. 2). This histogram 126 

can be used to determine covariance thresholds for detecting binding interactions (10). 127 

We use one of two methods to detect binding interactions from the covariance: (1) 128 

assigning a single threshold based on the minimum value between the covariance peaks 129 

or (2) using a peak-to-peak method which requires that the covariance extend between 130 

the bound peak and the unbound peak. The advantages and disadvantages of these 131 

methods are discussed in detail in the Results and Discussion. 132 

Once potential binding interactions have been identified, temporal thresholds can 133 

be applied to filter the interactions. Any observed reductions in the covariance which are 134 

shorter than a user-defined minimum duration are ignored to lower the chance of 135 

mistakenly identifying random correlated noise as a binding interaction. Also, any two 136 

binding interactions which are separated in time by less than a user-defined minimum 137 

separation are ignored to lower the chance of mistakenly identifying random noise as 138 

premature detachment between the motor and the track. Note that this filtering takes 139 

place after the change points have been located. 140 

 141 

Binding interaction alignment using a change point algorithm and the generation of 142 

ensemble averages 143 

Constructing ensemble averages requires the synchronization of individual binding 144 

interactions at transitions between the bound and unbound states. Here, we implement a 145 

change point algorithm to identify transitions. This algorithm uses maximum likelihood 146 

estimation to locate the times, or change points, where changes in both the mean and 147 
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variance of each bead’s position have most likely occurred. For each binding interaction 148 

identified using covariance thresholds, the algorithm searches for the change points 149 

within a window of data. For the kth binding interaction, this window spans from  150 

t1 =  tk,start − 0.49 ∗ min (tk,end − tk,start, tk,start − tk−1,end) 152 

to 151 

tN =  tk,end + 0.49 ∗ min (tk,end − tk,start, tk+1,start – tk,end) 153 

where tk,start and tk,end denote the beginning and end times of the kth interaction as 154 

estimated by the covariance threshold method. The window must be wide enough that it 155 

includes the entirety of the kth interaction but not so wide that it contains part of another 156 

interaction. The computational tool automatically searches the default window for change 157 

points, but it also allows for manual adjustment of both the search window and the 158 

identified change points. 159 

The algorithm considers the average position between beads A and B during this 160 

window. For each pair of time points within the window, (ti, tj), the algorithm calculates 161 

the likelihood that these points coincide with changes in the mean and variance of the 162 

data. Each pair divides the window into three intervals: [t1, ti], [ti+1, tj], and [tj+1, tN], 163 

where 1 < i < j < N. The log-likelihood score, L(ti,tj), assigned to (ti, tj) measures how well 164 

normal distributions can be fit to these intervals of data: 165 

L(ti,tj) = − [
j − i

2
ln (σ2

[ti+1,tj])] − [
N − j + i

2
ln (σ2

[t1,ti]∪[tj+1,tN])] 166 

where σ2 is the variance of the data during the corresponding interval (see the Supporting 167 

Materials for the derivation). L is maximized where the values of ti and tj best divide the 168 
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window into three sequences of normally distributed data, and these values of ti and tj 169 

are then assigned as the change points. 170 

After synchronization at the change points, both time forward and time reversed 171 

ensemble averages of individual binding interactions are generated from the average of 172 

the two beads’ positions using well-established methods (16). Shorter-lived binding 173 

interactions are extended in time to match the duration of the longest-lived binding 174 

interaction. The value of this extension equals the average position of the beads during 175 

either the first or last 5 ms of the binding interaction for the time reversed and time forward 176 

averages, respectively. 177 

 178 

Generation of simulated single-molecule data 179 

To test the accuracy of the program and to aid in the selection of proper window 180 

sizes for the analysis of experimental data, we created an additional program to simulate 181 

data that resembles single-molecule interactions with user-defined substep sizes and 182 

kinetics. The code for this program is provided alongside SPASM so that users can adapt 183 

the simulation parameters for their system of interest. Rather than explicitly solving the 184 

equations of motion for the optically trapped beads, the parameters used for simulation 185 

can be empirically varied until the simulated data matches the experimental data. 186 

Trapping data is simulated using a continuous-time Markov jump process in which the 187 

motor switches among a baseline detached state and two successive attached states, 188 

each with a unique displacement, representing a motor with a two-substep working 189 

stroke. The user can set the number of states, the rates of transitioning between the 190 

states, and the displacements of each state. High-frequency Gaussian noise is added to 191 
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simulate Brownian motion. To simulate mechanical coupling between the beads (i.e., 192 

higher covariance), a fraction of the noise in each bead’s position, f, is shared between 193 

the two beads. When the motor is dissociated from its track, f is set to a larger number so 194 

that the motion of the two beads is correlated. When the motor is bound to the track, f is 195 

set to a lower number, resulting in a lower covariance. Drift in the system is simulated by 196 

the addition of low-frequency noise. For additional details, see the Supporting Materials 197 

and the provided code. 198 

 199 

Analysis of simulated data 200 

To test our analysis approach, we generated simulations with well-defined 201 

characteristics. Data were simulated with a 2 kHz sampling rate. First, we generated 10 202 

data sets (sets 1-10), each containing 100 binding interactions, to simulate beta cardiac 203 

myosin based on previous optical trapping and kinetic measurements (7, 20, 21). The 204 

rate of transitioning from the detached state to the first attached state was set to 0.5 s-1. 205 

The rate of transitioning from the first attached state to the second attached state was set 206 

to 70 s-1, matching the rate of ADP release (22). The rate of transitioning from the second 207 

attached state to the detached state was 4 s-1, matching the rate of ATP-induced 208 

actomyosin dissociation at 1 µM ATP. The myosin was modeled to have a two-substep 209 

working stroke with a 4.7 nm substep followed by a second substep of 1.9 nm (7). 210 

We then generated 10 more data sets to analyze with SPASM (sets 11-20). Each 211 

of these sets of data contained 100 simulated binding interactions. The rate of 212 

transitioning from the detached state to the first attached state remained at 0.5 s-1. The 213 

rate of transitioning from the first attached state to the second attached state, however, 214 
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was much lower at 5 s-1, and the rate of transitioning from the second attached state to 215 

the detached state was 2 s-1. As before, the myosin was modeled to have a two-substep 216 

working stroke with a 4.7 nm substep followed by a second substep of 1.9 nm. 217 

With the simulated data, the exact locations of transition points between the bound 218 

and unbound states are known, allowing us to test the performance of different analysis 219 

methods with regards to: (1) the frequency of false positive binding interactions (i.e., when 220 

the bound state is incorrectly detected while the motor is actually unbound), (2) the 221 

number of false negative binding interactions (i.e., when the unbound state is incorrectly 222 

detected while the motor is actually bound), and (3) the error in determining the correct 223 

initiation and termination times of each binding interaction. 224 

To determine the number of false positives, each detected binding interaction was 225 

mapped to the nearest overlapping real binding interaction. If a detected binding 226 

interaction did not overlap with any real binding interactions, it was counted as a false 227 

positive. If multiple detected binding interactions were mapped to the same real binding 228 

interaction, all but the closest were also counted as false positives. As we fixed the 229 

number of simulated binding interactions within each data set, rather than the total 230 

duration of each data set, the data sets typically varied in duration. A longer set of data is 231 

expected to result in more false positives, and so the frequency of false positives was 232 

calculated by dividing the number of false positives by the duration of the data set. To 233 

determine the number of false negatives, each real binding interaction was mapped to 234 

the nearest overlapping detected binding interaction. If a real binding interaction did not 235 

overlap with any detected binding interactions, it was counted as a false negative. If 236 

multiple real binding interactions were mapped to the same detected binding interaction, 237 
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all but the closest were also counted as false negatives. The error was calculated as the 238 

difference between the computationally identified transition points and the nearest 239 

simulated transition points for which the corresponding binding interactions overlapped. 240 

 241 

Statistical analysis 242 

Simulated binding interactions were detected using either the single threshold 243 

method or the peak-to-peak method, and the frequency of false positives and the number 244 

of false negatives were determined. To test for a significant difference in the mean 245 

frequency of false positives or the mean number of false negatives between the two 246 

methods, p-values were obtained from the independent two-sample t-test. To test if the 247 

median error of the detected transition points was significantly changed with the addition 248 

of the change point algorithm, p-values were obtained from the Wilcoxon rank sum test.  249 

Ensemble averages were generated from each method of analysis, as well as from 250 

the known locations of actual simulated binding interactions. To extract parameters from 251 

the ensemble averages, exponential curves were fit to each average, yielding estimates 252 

for the substep sizes and rates of the simulated data. For each extracted parameter, a 253 

Kruskal-Wallis test was used followed by pairwise Wilcoxon rank sum tests to determine 254 

p-values.  255 

 256 

Design of optical trapping apparatus 257 

Experiments were performed on a custom-built, microscope free dual beam optical 258 

trap, based on (23, 24). The optical layout is described in the Supporting Materials and 259 

Methods (Fig. S1). Briefly, the output from a 10 W 1064 nm laser beams (IPG Photonics) 260 
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was rotated by 45 degrees and then separated into vertically and horizontally polarized 261 

components to form 2 independent traps. Optical traps were independently steerable 262 

using acoustic optical deflectors (Gooch and Housego) and frequency synthesizer boards 263 

under FPGA control (Analog Devices, AD9910 Direct Digital Synthesis evaluation 264 

boards). The displacement of the beads from the center of the optical trap was measured 265 

at the back focal plane using two quadrant photodiodes (First Sensor). Data were low 266 

pass filtered (Frequency Devices) to the Nyquist frequency and digitized on a National 267 

Instruments FPGA board (PCIe 7852) with simultaneously sampling analog to digital 268 

converters. System control was accomplished by custom software written in LabView. 3D 269 

stage control was achieved using a piezoelectric stage (Mad City Labs). Fluorescence 270 

was illuminated using the output of a 50 mW 532 laser (Crystalaser). Imaging was 271 

performed using an EMCCD camera (Andor). 272 

 273 

Optical trapping experiments 274 

Porcine cardiac myosin and actin were purified from cryoground tissue (Pelfreez) 275 

as previously described (25, 26). Bead coated flow cells were assembled as previously 276 

described (2, 7, 8). All experiments were performed in KMg25 buffer (60 mM MOPS pH 277 

7.0, 25 mM KCl, 2 mM EGTA, 4 mM MgCl2, 1 mM DTT). All buffers and dilutions were 278 

prepared fresh each day. Biotin-labeled actin (2 µM) was prepared using 10% biotin actin 279 

(Cytoskeleton) in KMg25 buffer. The mixture was allowed to polymerize for 20 minutes, 280 

and then the actin was stabilized using tetramethylrhodamine isothiocyanate-labeled 281 

phalloidin. Streptavidin beads (Bangs Labs) were washed in 1 mg/mL BSA in KMg25 282 

buffer three times. Flow cells were loaded with myosin (4-20 nM in KMg25 with 200 mM 283 
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KCl) for 5 minutes and then blocked with 1 mg/mL BSA for 5 minutes. Activation buffer 284 

contained KMg25 with the addition of 1 µM ATP, 192 U/mL glucose oxidase, 48 µg/mL 285 

catalase, 1 mg/mL glucose, and ~25 pM Biotin rhodamine-phalloidin actin. A small 286 

amount (4 µL) of streptavidin beads were loaded into the flow cell, and the flow cell was 287 

sealed with vacuum grease. Trapping experiments were conducted as previously 288 

described (2). Two streptavidin beads were optically trapped, forming a bead-actin-bead 289 

dumbbell. Trap stiffness was determined by fitting of the power spectral density collected 290 

at 20 kHz. The bead-actin-bead dumbbell was pretensed to approximately 2-3 pN and 291 

then lowered onto a surface bead to search for binding interactions. Approximately 1 in 5 292 

beads showed binding interactions. Data were acquired at 2 kHz and filtered to 1 kHz.  293 
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Results and Discussion 294 

Ensemble averaging of single-molecule binding interactions 295 

 Ensemble averaging is a powerful method for analyzing single-molecule data, 296 

since it can uncover subtle molecular transitions obscured by Brownian motion (13, 16). 297 

In ensemble averaging, the time-dependent trajectories of individual binding interactions 298 

are synchronized and then averaged. While ensemble averaging techniques are broadly 299 

applicable, we will focus in this paper on their application to studying the interaction 300 

between myosin molecular motors and actin. 301 

Using ensemble averaging of optical trapping data, it has been shown that many 302 

myosin isoforms have a two-substep working stroke, where the first substep corresponds 303 

to the release of inorganic phosphate and the second substep corresponds to a transition 304 

associated with ADP release (Fig. 1C-D) (7-10, 12-14, 17, 27). It is difficult to distinguish 305 

the second transition from raw data traces due to Brownian motion. However, ensemble 306 

averaging allows for easier visualization of this transition by increasing the signal-to-noise 307 

ratio.  308 

One can collect information about both the kinetics and mechanics of the working 309 

stroke substeps from the post-synchronized ensemble averaged trajectories of individual 310 

binding interactions (13, 16). These interactions can be synchronized upon actomyosin 311 

attachment and then averaged forward in time or, alternatively, synchronized upon 312 

actomyosin detachment and then averaged backward in time (Fig. 1E-F). The magnitude 313 

of the initial displacement seen in the time forward averages gives the size of the first 314 

substep of the myosin working stroke, a transition which occurs within the dead time of 315 

typical optical tweezer instruments. The amplitude of the subsequent exponential rise in 316 
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displacement in the time forward averages gives the size of the second substep of the 317 

working stroke. The rate of this exponential rise is the rate of transitioning from the first 318 

substep to the second substep, and it is associated with ADP release in myosins (13). 319 

For the time reversed ensemble averages, the exponential rise in displacement prior to 320 

detachment has an amplitude equal to the size of the second substep, and the rate of this 321 

exponential gives the rate of transitioning from the second substep to the detached state, 322 

a transition which corresponds to ATP-induced actomyosin dissociation (13).  323 

 324 

MATLAB-based computational tool for generating ensemble averages 325 

Here, we have generated an easy-to-use MATLAB-based computational tool, 326 

SPASM, which finds binding interactions within noisy data, accurately identifies 327 

transitions between the bound and unbound states, and then generates ensemble 328 

averages. This tool includes several improvements and optimized procedures for both the 329 

identification and alignment of binding interactions, which are discussed below. The tool 330 

features a graphical user interface for ease of use and is packaged with an accompanying 331 

user guide. We provide the code for this tool as well as a compiled executable file that 332 

does not require a full installation of MATLAB. We also provide a resource for simulating 333 

single-molecule data, as well as the sample simulated data sets used in our analysis (see 334 

Supporting Materials).  335 

 336 

Generation of covariance histogram to identify binding interactions 337 

The first step in generating ensemble averages is the identification of binding 338 

interactions from single-molecule data traces. When optically trapped, the two beads in 339 
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the bead-actin-bead dumbbell undergo fluctuations in their position due to Brownian 340 

motion (Fig. 2A). The motion of these beads is mechanically coupled through the actin 341 

filament, as evidenced by the covariance between their positions (Fig. 2B). When the 342 

surface-bound motor binds to the actin filament, it causes several pronounced changes: 343 

(1) it reduces the positional variance of each bead’s position, (2) it reduces the coupled 344 

motion (covariance) of the two trapped beads, and (3) it displaces the mean position of 345 

each bead. The majority of analysis methods for identifying binding interactions utilize the 346 

changes in the mean position, variance, and/or covariance of the optically trapped beads 347 

upon binding to actin (11, 18, 19, 24, 28). 348 

One popular method for selecting binding interactions is to set a threshold based 349 

on the variance or covariance of the beads. The choice of using a variance or covariance 350 

threshold for binding interaction identification will partially be dictated by the optical trap 351 

layout. For systems which only monitor the position of a single bead, one must use a 352 

variance threshold for the position of the single bead. For systems where both bead 353 

positions are monitored, a covariance threshold is preferred since it is less sensitive to 354 

noisy fluctuations in the data. While we focus on the use of our computational tool with a 355 

covariance threshold, the same approaches and conclusions will hold true for a variance 356 

threshold based on the position of one bead. A version of SPASM that uses a variance 357 

threshold is provided (see Supporting Materials). 358 

Our computational tool identifies binding interactions from the change in the 359 

covariance between the positions of the two trapped beads that occurs upon myosin 360 

binding to actin. SPASM first calculates the covariance over a sliding window in time and 361 

then smooths the covariance over a separate window. With properly chosen window 362 
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lengths, the histogram of the covariance values reveals two populations (Fig. 2C), where 363 

the higher covariance population corresponds to unbound states and the lower population 364 

corresponds to bound states (2). One can then select binding interactions based upon 365 

thresholds that distinguish between these two populations (see Selection of binding 366 

interactions below). 367 

The success of this approach depends on the degree of separation between the 368 

two peaks in the covariance histogram. If the peaks are not well separated, the analysis 369 

is more susceptible to false and/or missed binding interactions. The ability to generate a 370 

histogram with two well separated peaks depends partly on the selection of proper 371 

window lengths for the calculation and smoothing of the covariance. Optimal values for 372 

these parameters, in turn, depend on the kinetics of the myosin’s interaction with actin, 373 

the compliance of the myosin and/or myosin-surface attachment, the pretension between 374 

the optically trapped beads, and the noise in the system. Therefore, the window lengths 375 

often need to be determined empirically. If the kinetics of the myosin’s transitions are 376 

known from other experimental measurements, one can simulate data and select window 377 

lengths which optimize analysis of the simulated data (see Supporting Materials). If kinetic 378 

information about the myosin’s transitions is unknown, it may not be possible to generate 379 

meaningful simulated data. In these cases, the window lengths can be determined 380 

empirically through the computational tool’s graphical user interface, which allows the 381 

user to vary the window lengths until a suitable bimodal covariance histogram is achieved. 382 

 383 

Selection of binding interactions 384 
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Once a suitable covariance histogram with two well-defined peaks has been 385 

generated, the next step is to determine proper thresholds for the covariance which will 386 

be used to detect binding interactions. One possibility for distinguishing the bound state 387 

from the unbound state is to use a single covariance threshold located at the minimum 388 

value between the two peaks of the covariance histogram (10). Here, detected 389 

interactions start when the covariance drops below this threshold value, and they end 390 

when the covariance rises back above this threshold value (Fig. 2D). Alternatively, one 391 

could identify the binding interactions using a set of two different covariance thresholds, 392 

located at the two peaks of the covariance histogram. In this ‘peak-to-peak’ approach, a 393 

binding interaction is considered to start when the covariance drops from the threshold 394 

defined by the unbound peak to the threshold defined by the bound peak. Likewise, a 395 

binding interaction is considered to end when the covariance rises from the threshold 396 

defined by the bound peak to the threshold defined by the unbound peak (Fig. 2D). 397 

We tested the abilities of the single threshold and peak-to-peak methods to 398 

accurately detect simulated binding interactions between actin and cardiac myosin. 399 

Interactions were simulated using a continuous-time Markov jump process with kinetics 400 

and mechanics based on previously measured parameters for ventricular cardiac myosin 401 

(7, 21, 22) (see Materials and Methods for details). With simulated data, the exact 402 

locations of the binding interactions are known, allowing for easy comparison between 403 

the simulated interactions and the interactions detected by the computational tool using 404 

either method (Fig. 2D). 405 

We generated 10 independent sets of simulated data, each containing 100 binding 406 

interactions (sets 1-10). For each data set, we used our computational tool to calculate 407 
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the covariance histogram, locate the peaks and minimum of the histogram, and identify 408 

binding interactions using either the single threshold method or the peak-to-peak method. 409 

When we used a single threshold to identify binding interactions, we correctly detected 410 

80 +/- 4 of the 100 binding interactions on average, and we incorrectly detected 4 +/- 1 411 

false positive binding interactions per 100 seconds of data, on average (Table 1). The 412 

reported errors are standard deviations. When we used the peak-to-peak method to 413 

identify binding interactions, we correctly detected 65 +/- 5 of the 100 binding interactions 414 

on average, and we did not detect any false positive binding interactions. Although the 415 

peak-to-peak method misses a greater number of binding interactions, the false positive 416 

rate is lower for this method (p < 0.001).  417 

A single threshold could work well for selecting binding interactions if the two 418 

populations of the histogram are sufficiently distinct. However, it is often not possible to 419 

obtain sufficient separation between the peaks due to factors that lower the signal-to-420 

noise ratio (e.g., system noise, insufficient pretension between the beads, fast binding 421 

kinetics). In these cases, this single threshold approach is prone to identifying false 422 

positive interactions, where the covariance crosses the threshold even though the 423 

actomyosin has remained in an unbound state. These false positive binding interactions 424 

do not generate a net displacement in the optical trap, and so their inclusion in the 425 

ensemble averages is expected to lead to an underestimation of the true size of the 426 

working stroke. A methodology has been developed which attempts to correct for these 427 

false positive interactions through the use of normalization factors (10). Alternatively, as 428 

the vast majority of these false positive interactions arise due to either Brownian motion 429 

(or system noise) induced rapid downward spikes in the covariance (which lead to very 430 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.10.241752doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.241752
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

22 

short detected interactions) or rapid upward spikes in the covariance (which lead to 431 

multiple detected interactions in quick succession), it is possible to avoid these false 432 

positive interactions through the use of temporal filters that exclude interactions which are 433 

too short or pairs of interactions which are too close to one another. However, it is not 434 

always easy to determine appropriate values for these temporal filters. Further, the use 435 

of these temporal filters may lead to the exclusion of many correctly identified binding 436 

interactions. When we used optimized values for these filters to exclude all of the false 437 

positive interactions that were detected by the single threshold method, we were left with 438 

fewer interactions than were detected by the peak-to-peak method (Fig. S2). 439 

With the peak-to-peak method, the criteria for detecting a binding interaction is 440 

much stricter than with the single threshold method, and the number of identified false 441 

positive binding interactions is expected to decrease while the number of missed, short-442 

lived binding interactions increases. Unlike the inclusion of false positive interactions, the 443 

exclusion of these missed binding interactions does not adversely affect the size or shape 444 

of the ensemble averages. Although we demonstrate that the peak-to-peak method 445 

performs better in data traces with moderate separation between the peaks of the 446 

covariance histogram, some experimental data might have better peak separation. In this 447 

case, the single threshold method would be preferable since it maximizes the number of 448 

captured binding interactions. The computational tool allows the user to try both methods, 449 

and it automatically determines appropriate values for the thresholds. 450 

 451 

Alignment of binding interactions using covariance thresholds 452 
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After binding interactions are identified, they must be precisely aligned at the 453 

transitions between the bound and unbound states to generate accurate ensemble 454 

averages. The most critical step in aligning these interactions is the careful determination 455 

of when exactly a transition occurs. Inadequate determination of these transitions will lead 456 

to inaccurate measurements of the substep sizes and/or kinetics. Several methods have 457 

been applied to locate transitions in single-molecule data traces, including Hidden Markov 458 

Models (28) and step finding algorithms (29), but a frequently used method for post-459 

synchronization is to align the binding interactions based on the same thresholds used to 460 

identify the binding interactions (2, 10, 13). 461 

To test the abilities of the single threshold and peak-to-peak methods to accurately 462 

identify the transitions, we used the same 10 simulated data sets containing 100 463 

transitions each, as described previously (sets 1-10). When we used a single threshold 464 

to identify transition times, we found that the detected attachment times occurred 28.2 465 

(95% confidence intervals: +13.8, -21.7) milliseconds after the actual attachment times, 466 

on average (Table 2), and the detected detachment times occurred 28.6 (+11.9, -19.1) 467 

milliseconds before the actual detachment times, on average. On the other hand, when 468 

we used the peak-to-peak method to identify transitions, we found that the detected 469 

attachment times occurred 55.5 (+195.5, -69.0) milliseconds before the actual attachment 470 

times, on average, and the detected detachment times occurred 50.4 (+188.1, -64.9) 471 

milliseconds after the actual detachment times, on average. Taken together, the single 472 

threshold method has better temporal resolution when identifying transitions between the 473 

bound and unbound states.  474 
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When binding interactions are aligned based on the covariance thresholds, it is 475 

assumed that the covariance drops and rises in conjunction with transitions between the 476 

bound and unbound states. With the single threshold method, this is a fairly reasonable 477 

assumption, explaining why it outperforms the peak-to-peak method. Each true transition 478 

point separates more highly correlated bead motion (i.e., the unbound state) from less 479 

highly correlated bead motion (i.e., the bound state). The covariance is calculated over a 480 

window, so when the covariance window is centered at a transition point, the window will 481 

include equal amounts of more highly and less highly correlated data. The covariance at 482 

the transition point should then lie at some intermediate value between the two peaks of 483 

the covariance histogram. However, the single threshold method is not perfect at locating 484 

the transition points. First, while the value of the covariance at a transition point will likely 485 

be near the minimum value between the two peaks of the covariance histogram, there is 486 

no guarantee that it will lie exactly at this minimum value. Additionally, synchronized large-487 

scale movement of both beads due to the myosin’s power stroke can produce transient 488 

spikes in the covariance value during transitions, and these spikes can potentially 489 

decrease the accuracy of the single threshold method in identifying exact transition times. 490 

The peak-to-peak method produced poorer alignment than the single threshold 491 

method. When the peak-to-peak method is used to identify transitions, it is assumed that 492 

transitions occur when the covariance crosses the upper threshold, defined by the 493 

position of the unbound peak. This is inherently less accurate for estimating transition 494 

points than the single threshold method. A window of data which has a covariance value 495 

that is similar to the value of the unbound peak contains primarily correlated data and, 496 

therefore, it is unlikely that the center of this window is near the actual transition point. In 497 
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fact, the calculated transition point using the peak-to-peak method would be expected to 498 

deviate from the actual transition point by at least half the window size. 499 

Taken together, our data show that when binding interactions are synchronized 500 

using a single covariance threshold, the resulting ensemble averages are expected to 501 

have better alignment of binding interactions. However, as noted previously, the use of a 502 

single covariance threshold to detect binding interactions is more susceptible to false 503 

positive binding interactions which would lead to an underestimation of the true substep 504 

sizes. The peak-to-peak method is better for binding interaction detection without 505 

including false positives, but it lacks the necessary temporal resolution to accurately align 506 

the detected interactions. 507 

 508 

Change point algorithm for aligning interactions 509 

Rather than relying on the covariance when estimating transition times, we tested 510 

the use of separate methods for detecting and synchronizing binding interactions. To 511 

improve our ability to locate the transition times of each binding interaction, we 512 

implemented a change point algorithm (see Materials and Methods for details). Change 513 

point algorithms have been used in step finding for transitions in biological processes, 514 

where the algorithm identifies the most likely times in which there was a change in a 515 

parameter such as motor position or rotation of the myosin lever arm (29, 30). We have 516 

adapted the change point algorithm for the three-bead assay, where we search for the 517 

most likely transition times based on changes in both the mean and the variance of the 518 

bead positions, as both of these parameters differ between the bound and unbound states 519 

(Fig. 3A). For each binding interaction identified by the covariance threshold method (Fig. 520 
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3B), our algorithm examines the positions of the trapped beads in a window surrounding 521 

that interaction and finds the two points (i.e., binding initiation and detachment) within this 522 

window that most likely represent transitions in the mean and variance of the data (Fig. 523 

3C; see Methods for details). 524 

To test the ability of the change point algorithm to accurately identify transition 525 

times, we again analyzed the same 10 sets of simulated data described above (sets 1-526 

10). We found that the attachment times detected by the change point algorithm occurred 527 

0.5 (+9.0, -5.5) milliseconds after the actual attachment times, on average (Table 2), and 528 

the detachment times detected by the change point algorithm occurred 0.7 (+4.8, -4.2) 529 

milliseconds after the actual detachment times, on average (Table 2). Statistical testing 530 

demonstrates that the change point algorithm outperforms both the single threshold 531 

method (pstart < 0.001, pend < 0.001) and the peak-to-peak method (pstart < 0.001, pend < 532 

0.001) in identifying transition times. As our simulated data were generated with a 533 

sampling frequency of 2 kHz, these average errors of about 0.5 ms indicate that the 534 

change point algorithm was typically correct within 1 point. It is possible that a higher 535 

sampling frequency would further increase the accuracy. 536 

To explore the ability of these three methods to accurately identify transition points, 537 

we generated cumulative distributions of the differences between the detected transition 538 

times and the actual simulated transition times for both the initiation and termination of 539 

the binding interactions (Fig. 4). Here, the width of the distribution reveals the precision 540 

of the corresponding method, while the sign and magnitude of the average error reveals 541 

the systematic bias of that method. As expected, the cumulative distributions of errors 542 

generated from the peak-to-peak method are wide, indicating low precision at identifying 543 
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the transitions, while the distributions generated from the single threshold method are 544 

narrower, indicating higher precision. The distributions generated from the change point 545 

algorithm are very narrow, and the mean error is close to 0. This indicates that the change 546 

point algorithm is very precise and has lower systematic bias than either the single 547 

threshold or peak-to-peak method. 548 

 549 

Comparison of ensemble averages generated using different methods 550 

 To test our predictions about the relative accuracy of the ensemble averages when 551 

using each method of analysis, we generated ensemble averages from the 10 sets of 552 

simulated data studied previously (sets 1-10). First, we generated ensemble averages 553 

using the actual locations of all 1000 simulated binding interactions to align the binding 554 

interactions (Fig. 5A-B, real). We also generated ensemble averages for each of the 10 555 

sets of data, using the actual locations of the 100 simulated binding interactions within 556 

each set. Exponential curves were fit to each of these averages to estimate the substep 557 

sizes and rates of the simulated myosin working stroke (Fig. 5C-F, real; Table 3). The 558 

magnitude of substep 1 estimated from the time forward averages was 4.7 (95% 559 

confidence intervals: +0.4, -0.4) nm, on average, while the magnitude of the total step 560 

estimated from the time forward averages was 6.4 (+0.2, -0.2) nm, on average. The 561 

magnitude of substep 1 estimated from the time reversed averages was 5.7 (+0.2, -0.3) 562 

nm, on average, while the magnitude of the total step estimated from the time reversed 563 

averages was 6.5 (+0.1, -0.2) nm, on average. The estimated rate of transitioning from 564 

the first substep to the second substep (kf) was 68.7 (+15.8, -20.9) s-1, and the estimated 565 
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rate of transitioning from the second substep to the detached state (kr) was 4.3 (+2.2, -566 

1.9) s-1. 567 

We then used either the single threshold method or the peak-to-peak method to 568 

detect binding interactions within each data set. When the single threshold method was 569 

used to detect binding interactions, we applied a filter to ignore any detected interactions 570 

which were shorter than 77 ms or within 63 ms of another detected interaction, to avoid 571 

including false positive interactions (Fig. S2; Fig. S3 shows the effect of including these 572 

false positive binding interactions). To identify transitions between the bound and 573 

unbound states for each interaction, we either included or omitted the change point 574 

algorithm. For each of these analysis methods, we used the binding interactions and 575 

transitions detected over all 10 data sets to generate ensemble averages (Fig. 5A-B). As 576 

before, we also generated ensemble averages from the binding interactions detected 577 

within each of the 10 sets of data, and exponential curves were fit to each average to 578 

estimate the substep sizes and rates of the simulated myosin working stroke (Fig. 5C-F; 579 

Table 3). As expected, using the change point algorithm to align the binding interactions 580 

resulted in the most accurate estimates. 581 

When the peak-to-peak method was used to both detect and align the binding 582 

interactions, the ensemble averages were misshapen (Fig. 5, PTP). The time forward 583 

average, for example, includes the characteristic increase in displacement but then drops. 584 

This drop is due to the fact that the binding interaction termination times detected by the 585 

peak-to-peak method often came after the actual termination times, leading to the 586 

inclusion of baseline data at the end of the time forward average. The time forward 587 

average also appears to start too late, as the peak-to-peak method typically guesses that 588 
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binding initiation times occur before they actually do (Fig. 4). Exponential curves were 589 

very poorly fit to these ensemble averages. 590 

When the single threshold method was used to both detect and align the binding 591 

interactions, the ensemble averages had better overall shape (Fig. 5, ST). However, 592 

similar to the averages generated with the peak-to-peak method, misalignment among 593 

the individual trajectories resulted in very gradual transitions between the bound and 594 

unbound states. The time forward average, for example, appears to start too early, as the 595 

single threshold method typically guesses that binding initiation times occur after they 596 

actually do (Fig. 4).  597 

When the change point algorithm was used to align the binding interactions, the 598 

ensemble averages featured much sharper transitions (Fig. 5, PTP/CP and ST/CP). 599 

However, very sharp spikes in displacement occur at the transition times (Fig. 5A-B, 600 

PTP/CP and ST/CP). Brownian motion-driven fluctuations in the bead positions can 601 

cause changes in the data from one point to the next which are not due to transitions 602 

between the bound and unbound states. If such noise happens to occur near a real 603 

transition point, it offers an attractive candidate for the change point, and the change point 604 

algorithm may choose that point instead of the less pronounced yet correct transition time. 605 

However, we have shown that the transition times estimated by the change point 606 

algorithm are within 1 to 2 points of the actual simulated transition times, on average 607 

(Table 2; Fig. 4), and the resulting ensemble averages are very accurate. Appropriate fits 608 

can be obtained by omitting these spikes from the fitted data. 609 

The time reversed ensemble average generated from the actual locations of the 610 

simulated binding interactions led to an overestimate of the magnitude of substep 1 (Fig. 611 
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5B-C; Table 3). To generate the time reversed ensemble average, short-lived binding 612 

interactions are extended in time to match the duration of the longest-lived binding 613 

interaction, and the value of this extension equals the average position of the beads 614 

during the first 5 ms of the binding interaction. The rate of transitioning from the first 615 

substep to the second substep in our simulated data was 70 s-1, matching the rate of ADP 616 

release for beta cardiac myosin (22). Because of this fast rate, a large number of 617 

transitions to the second substep occur before the 5 ms used to generate the extensions, 618 

leading to inaccurate extension values. The proportion of binding interactions which are 619 

expected to transition to the second substep within the first 5 ms is given by the integral 620 

of the probability density function: 621 

proportion of substeps missed = ∫ ke−kt dt
0.005

0

 622 

For a rate of 70 s-1, this proportion is equal to about 30%, and this will lead to an 623 

overestimate of the size of the first substep. A possible fix is to shorten the 5 ms window 624 

used for calculating the extensions, but it then becomes crucial that the binding initiation 625 

times are determined with high accuracy. Neither the single threshold method nor the 626 

peak-to-peak method have sufficient resolution to accurately determine the exact initiation 627 

times (Fig. 4). Even the change point algorithm, which we have shown to have an average 628 

error of about 0.5 ms, would be insufficient for generating the time reversed ensemble 629 

averages of interactions with very fast kinetics. It is possible that this could be improved 630 

with faster data sampling. In the case of transitions with slower kinetics, this problem is 631 

easily avoided. When we simulated 1000 binding interactions using much slower rates (kf 632 

of 5 s-1 and kr of 2 s-1, sets 11-20), we were able to generate time forward and time 633 

reversed ensemble averages with accurate step sizes using multiple methods (Fig. S4). 634 
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 635 

Performance of the computational tool to analyze experimental data 636 

 To test the ability of the computational tool on real experimental data, we 637 

conducted optical trapping experiments using ventricular myosin at 1 µM ATP (Fig. 6). 638 

We intentionally collected a small data set consisting of 66 binding interactions from 5 639 

molecules. Binding interactions were identified using the peak-to-peak method, and 640 

transition points were identified using the change point algorithm. The SPASM 641 

computational tool was used to generate cumulative distributions of individual binding 642 

interactions (Fig. 6B). The cumulative distributions of the attachment durations is well fit 643 

by a single exponential function. This exponential rate gives the rate of actomyosin 644 

detachment, and it has a value of 4.7 s-1, which is consistent with the expected rate of 645 

ATP-induced actomyosin dissociation at 1 µM ATP (22). The cumulative distribution of 646 

total working stroke displacements is well fit by a single normal distribution (indicating 647 

likely single molecule conditions), with a mean of displacement of 6.3 nm and a standard 648 

deviation of 9.2 nm. This is consistent with previous measurements of the cardiac myosin 649 

working stroke (7, 21). Ensemble averages (Fig. 6C) reveal that, consistent with previous 650 

measurements (7, 21), ventricular cardiac myosin has a two-substep working stroke with 651 

a first substep of 4.4 nm and a total displacement of 6.4 nm. The time forward averages 652 

have a rate of 74 s-1, which is consistent with the rate of ADP release, and the time 653 

reversed averages have a rate of 3.2 s-1, which is consistent with the rate of ATP-induced 654 

actomyosin dissociation at 1 µM ATP (22). Taken together, our computational tool can 655 

generate accurate ensemble averages with sharp transitions from a relatively small set 656 

of experimental data. 657 
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  658 

Broader applicability of the approach 659 

The methods presented in this paper were applied to study actomyosin. As noted 660 

previously, the three-bead assay has been used to explore many different single-661 

molecule systems, including dynein, the lac repressor, and kinesins. Moreover, the 662 

general ideas behind our computational tool are broadly applicable to any set of data 663 

containing well-defined populations which can be distinguished through some aspect of 664 

the data. One such possibility is data obtained from single-molecule FRET experiments. 665 

In the Supporting Materials, we describe how to adapt the change point algorithm to 666 

systems where the desired change points occur in data with different distributions. 667 

 668 

Limitations 669 

 There are a number of limitations accompanying our computational tool and the 670 

methods we use to analyze our data. While the covariance between the position of each 671 

trapped bead in the three-bead assay is very helpful for locating binding interactions 672 

under many circumstances, it does have drawbacks. The covariance is calculated over a 673 

window, and therefore it does not always drop enough during short-lived binding 674 

interactions to register as a genuine binding interaction. Furthermore, depending on the 675 

quality of the data, it may be difficult or even impossible to obtain a covariance histogram 676 

with two distinct populations. This could stem from system compliances. One benefit of 677 

the peak-to-peak method is that the covariance histogram populations do not need to be 678 

completely separated to avoid false positive binding interactions, but a certain degree of 679 

separation is needed to make the covariance useful. Additionally, analysis is dependent 680 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.10.241752doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.241752
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

33 

on many parameters, including the window sizes used to calculate and smooth the 681 

covariance, and it can be difficult to choose appropriate values for these parameters for 682 

a given experimental system. The computational tool includes features which allow the 683 

user to correct for these drawbacks when they are encountered. Finally, as evidenced by 684 

the ensemble averages generated from our simulated data (Fig. 5), ensemble averaging 685 

has limitations for estimating the rates and substep sizes for transitions with very fast 686 

kinetics. 687 

 688 

Summary 689 

 Here, we developed a computational tool, SPASM, for the detection and alignment 690 

of single-molecule binding interactions and for the generation of ensemble averages 691 

which can reveal characteristics about the data that are often obscured by noise. We 692 

show that it can be advantageous to use separate techniques for the detection and 693 

alignment of binding interactions. Specifically, we show that the addition of a change point 694 

algorithm to identify transition times can generate precise ensemble averages with 695 

improved alignment. We offer the computational tool, with an intuitive graphical user 696 

interface, along with a user guide so that the reader can apply these methods to their own 697 

data.  698 
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Figure legends: 809 
 810 

Figure 1. Ensemble averaging of optical trapping data enables the study of 811 

mechanochemical coupling. (A) Diagram of the three-bead assay, where an actin 812 

filament strung between the two optically trapped beads is lowered onto a third surface-813 

bound bead that is sparsely coated with myosin. (B) Single-molecule binding interactions 814 

between cardiac myosin and actin at 1 µM ATP recorded in the optical trap. The average 815 

position between the optically trapped beads is plotted as a function of time, with blue 816 

horizontal bars indicating detected binding interactions. The mean position and variance 817 

of the beads change upon binding. Brownian motion obscures the second substep of the 818 

working stroke. (C) Schematic showing the two substeps of the myosin working stroke. 819 

(D) Idealized trace showing the position over time of a motor with a two-substep working 820 

stroke without Brownian motion. (E) Procedure for generating time forward ensemble 821 

averages from individual binding interactions. Individual trajectories are aligned at the 822 

initiation of binding and averaged forward in time (black line), and the average is fit with 823 

a single exponential function (red). The y-offset and amplitude of this exponential provide 824 

estimates of the average size of the first and second substeps, respectively. The rate of 825 

this exponential gives the rate of transitioning from the first substep to the second substep. 826 

(F) Procedure for generating time reversed ensemble averages from individual binding 827 

interactions. Individual trajectories are aligned upon dissociation and averaged 828 

backwards in time (black), and the average is fit with a single exponential function (red). 829 

The y-offset and amplitude of this exponential provide estimates of the average size of 830 

the total step and the second substep, respectively. The rate of this exponential gives the 831 

rate of transitioning from the second substep to the detached state. 832 
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 833 

Figure 2. Detection of binding interactions using either the single or peak-to-peak 834 

covariance threshold method. (A) Simulated optical trapping data showing the position 835 

of each optically trapped bead over time. (B) Covariance between the position of the 836 

optically trapped beads at each time point gives rise to a bimodal distribution. (C) A 837 

histogram of covariance values shows two distinct populations which correspond to the 838 

bound (B) and unbound (U) states. In the single threshold method, a binding interaction 839 

is detected when the covariance crosses the value located at the minimum between the 840 

two populations (green). In the peak-to-peak method, two thresholds are placed, one at 841 

the peak of each population (red), and a binding interaction is detected when the 842 

covariance transitions from one threshold to the other threshold. (D) Simulated binding 843 

interactions detected by the peak-to-peak method (red), binding interactions detected by 844 

the single threshold method (green), and actual simulated binding interactions (blue). The 845 

single threshold is more susceptible to false positive interactions (circled). The peak-to-846 

peak method is more susceptible to false negative interactions (boxed). 847 

 848 

Figure 3. The change point algorithm more precisely identifies transitions between 849 

bound and unbound states. (A) Simulated optical trapping data showing the average 850 

position between the optically trapped beads over time during a binding interaction. Data 851 

obtained during the bound state (purple) are drawn from a normal distribution with a 852 

shifted mean and a lower variance when compared to data obtained during the unbound 853 

state (black). The change point algorithm seeks to find the time points which best separate 854 

the two distributions. The locations of the actual simulated transitions are marked with 855 
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blue vertical lines. (B) Calculated covariance of the bead positions during the simulated 856 

binding interaction in (A). The attachment and detachment times identified by the single 857 

threshold (green) and the peak-to-peak (red) methods are shown with dashed vertical 858 

lines. The actual transitions are marked with solid blue vertical lines. (C) The change point 859 

algorithm determines the likelihood that any two points within an extended search window 860 

are the two transition points. (left) Plot of the likelihood assigned to each pair of points 861 

within the search window, viewed from the side (see Materials and Methods for details). 862 

The change points, which occur when the likelihood is maximized, are shown with dashed 863 

yellow vertical lines, while the actual transitions are marked with solid blue vertical lines. 864 

(right) The likelihood viewed from above. Regions of yellow correspond to higher 865 

likelihood, while regions of dark blue correspond to lower likelihood. The two change 866 

points are marked with solid black lines. 867 

 868 

Figure 4. The change point algorithm minimizes the error when detecting the 869 

locations of transitions. The error was calculated as the difference between the 870 

detected binding times and the actual simulated binding times for simulated data (sets 1-871 

10). (left) Cumulative distributions of the errors in determining the binding initiation times 872 

using the peak-to-peak method (red), the single threshold method (green), and the 873 

change point algorithm (yellow). Statistical comparisons can be found in Table 2. (right) 874 

Cumulative distributions of the errors when determining the binding termination times 875 

using the peak-to-peak method (red), the single threshold method (green), and the 876 

change point algorithm (yellow).  877 

 878 
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Figure 5. Ensemble averages of simulated binding interactions. 10 sets of data were 879 

simulated, each containing 100 binding interactions (sets 1-10). Interactions were 880 

detected using either the peak-to-peak (PTP) or the single threshold (ST) method, and 881 

interactions were aligned using either the transitions estimated by the covariance 882 

threshold method or the change points identified by the change point algorithm (CP). (A) 883 

(left) For each analysis method, all detected binding interactions were aligned at the 884 

estimated initiation times and averaged together to generate time forward ensemble 885 

averages. (right) For each analysis method, all detected binding interactions were aligned 886 

at the estimated termination times and averaged together to generate time reversed 887 

ensemble averages. Also shown are the time forward and time reversed ensemble 888 

averages generated from the known locations of the actual simulated binding interactions 889 

(blue, real). (B) A zoomed in view of the boxed segments of the ensemble averages in A 890 

highlights the misalignment in the averages when the change point algorithm is omitted. 891 

(C-F) For each of the 10 simulated sets of data containing 100 binding interactions, 892 

ensemble averages were generated and fit with single exponential functions. The substep 893 

sizes and rates of the simulated myosin working stroke were estimated from the 894 

exponential fits. Box plots show the estimated parameters for each analysis method. 895 

Outliers are indicated by red dots. The substep sizes were estimated from both the time 896 

forward (f) and the time reversed (r) ensemble averages. Horizontal dashed lines show 897 

the values of the simulated parameters. Statistical analysis for each parameter can be 898 

found in Table 3. 899 

 900 
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Figure 6. Ensemble averages of experimental optical trapping data. The kinetics and 901 

mechanics of cardiac myosin in 1 µM ATP were measured using the three-bead assay. 902 

(A) Experimental data trace showing the displacement (D) and covariance (C). (B) 903 

Cumulative distributions for the (left) binding interaction durations and (right) total working 904 

stroke displacements. The peak-to-peak method was used to detect binding interactions. 905 

Red lines show the cumulative fits based on (left) exponential and (right) normal 906 

distributions. The characteristic rate obtained from the fit to the distribution of attachment 907 

durations gives a detachment rate equal to 4.7 s-1, which is consistent with the expected 908 

rate of ATP-induced actomyosin dissociation at 1 µM ATP. The distribution of total step 909 

sizes has a mean of 6.3 nm and a standard deviation of 9.2 nm. (C) The change point 910 

algorithm was used to align the interactions identified using the peak-to-peak method. A 911 

total of 66 binding interactions from 5 molecules were analyzed. The resulting ensemble 912 

averages have estimated substep sizes of 4.4 nm and 2.0 nm. The estimated time forward 913 

rate is 74 s-1, and the estimated time reversed rate is 3.2 s-1. These values are consistent 914 

with previous measurements using a much larger data set, and they agree well with the 915 

previously measured rates of ADP release and ATP-induced dissociation 1 µM ATP. 916 

  917 
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Table legends: 918 

 919 

Table 1. Detection of binding interactions using either the single or peak-to-peak 920 

covariance threshold method. Average number of correctly identified binding 921 

interactions and frequency of false positive binding interactions detected with the single 922 

threshold method and peak-to-peak method for 10 data sets, each containing 100 923 

simulated binding interactions (sets 1-10). Calculated values were rounded to the nearest 924 

whole number. 925 

 926 

Table 2. The change point algorithm minimizes the error when detecting the 927 

locations of transitions. Mean and 95% confidence intervals for the error when 928 

detecting transitions within simulated data sets 1-10 with the single threshold method, the 929 

peak-to-peak method, and the change point algorithm. When estimating the binding 930 

initiation times, 645 of 1000 transitions were detected and analyzed for the peak-to-peak 931 

method, 598 transitions were detected and analyzed for the single threshold method, and 932 

644 transitions were detected and analyzed for the change point algorithm. The same 933 

number of transitions were detected and analyzed for each method when estimating the 934 

binding termination times. Note that a negative average error indicates that the detected 935 

transitions occurred before the actual transitions, on average. 936 

 937 

Table 3. The change point algorithm improves ensemble averages. 10 sets of data 938 

were simulated, each containing 100 binding interactions (sets 1-10). Interactions were 939 

detected using either the peak-to-peak or the single threshold method, and interactions 940 
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44 

were aligned using either the transitions estimated by the covariance threshold method 941 

or the change points identified by the change point algorithm. For each data set, ensemble 942 

averages were generated using either the known locations of actual simulated binding 943 

interactions (real) or using the binding interactions detected by each method of analysis. 944 

The averages were fit with exponential functions, and the substep sizes and rates of the 945 

simulated myosin working stroke were estimated from the rates and amplitudes of the 946 

exponential fits. (top) Mean and 95% confidence intervals for the size of substep 1, the 947 

size of substep 2, the total step size, and the rate of transitioning from the first substep to 948 

the second substep, as estimated by the time forward ensemble averages. (bottom) Mean 949 

and 95% confidence intervals for the size of substep 1, the size of substep 2, the total 950 

step size, and the rate of transitioning from the second substep to the detached state, as 951 

estimated by the time reversed ensemble averages. The p-value for a given set of 952 

parameter values estimated by a given analysis method was obtained from the Wilcoxon 953 

rank sum test between those estimated parameter values and the values estimated by 954 

using the known locations of actual simulated binding interactions (real).  955 
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Figure 1 956 
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Figure 2 958 
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Figure 3 960 
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Figure 4 962 

  963 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.10.241752doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.241752
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

49 

Figure 5 964 
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Figure 6 966 
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Table 1 968 
 969 

Method 
Average # of correctly 
detected interactions 

(mean ± SD) 

Average # of 
missed interactions 

(mean ± SD) 

# of false positive 
interactions / 100 

seconds (mean ± SD) 

Single threshold 80 ± 4 20 ± 4 4 ± 1 

Peak-to-peak 65 ± 5 36 ± 5 0 
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Table 2 971 
 972 

Method 
Error in binding initiation 

times (ms, mean with 95% CI) 
Error in binding termination 

times (ms, mean with 95% CI) 

Single threshold 28.2 (+13.8, -21.7) -28.6 (+19.1, -11.9) 

Peak-to-peak -55.5 (+69.0, -195.5) 50.4 (+188.1, -64.9) 

Change point 
algorithm 

0.5 (+9.0, -5.5) 0.7 (+4.8, -4.2) 
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Table 3 974 
 975 

Time forward ensemble averages (mean with 95% CI) 

Parameter real PTP ST PTP, CP ST, CP 

Substep 1 (nm) 
4.7 

(+0.4, -0.4) 
0.6 

(+0.7, -0.5) 
p < 0.001 

6.3 
(+0.3, -0.3) 
p < 0.001 

5.0 
(+0.5, -0.3) 
p = 0.021 

5.0 
(+0.4, -0.6) 
p = 0.045 

Substep 2 (nm) 
1.7 

(+0.5, -0.4) 
5.6 

(+1.7, -0.8) 
p < 0.001 

0.5 
(+1.7, -0.4) 
p = 0.003 

1.6 
(+0.3, -0.4) 
p = 0.427 

1.5 
(+0.5, -0.6) 
p = 0.186 

Total step (nm) 
6.4 

(+0.2, -0.2) 
6.2 

(+2.0, -1.1) 
p = 0.026 

6.8 
(+2.1, -0.3) 
p = 0.002 

6.6 
(+0.1, -0.1) 
p = 0.001 

6.5 
(+0.2, -0.2) 
p = 0.186 

Rate (s-1) 
68.7 

(+15.8, -20.9) 
20.2 

(+7.4, -12.8) 
p < 0.001 

84.3 
(+43.8, -84.3) 

p = 0.141 

64.5 
(+30.0, -20.9) 

p = 0.473 

63.6 
(+42.3, -25.0) 

p = 0.241 

Time reversed ensemble averages (mean with 95% CI) 

Parameter real PTP ST PTP, CP ST, CP 

Substep 1 (nm) 
5.7 

(+0.2, -0.3) 
1.7 

(+0.8, -0.4) 
p < 0.001 

5.2 
(+1.8, -5.2) 
p = 0.026 

5.7 
(+0.4, -0.6) 
p = 0.970 

5.0 
(+1.0, -5.0) 
p = 0.385 

Substep 2 (nm) 
0.7 

(+0.2, -0.2) 
7.1 

(+1.7, -1.4) 
p < 0.001 

1.4 
(+5.2, -1.4) 
p = 0.038 

1.0 
(+0.5, -0.4) 
p = 0.026 

1.6 
(+4.8, -1.1) 
p = 0.045 

Total step (nm) 
6.5 

(+0.1, -0.2) 
8.8 

(+1.4, -1.6) 
p < 0.001 

6.6 
(+0.4, -0.1) 
p = 0.003 

6.7 
(+0.1, -0.1) 
p < 0.001 

6.7 
(+0.4, -0.2) 
p = 0.011 

Rate (s-1) 
4.3 

(+2.2, -1.9) 
3.3 

(+1.2, -0.6) 
p = 0.054 

1.7 
(+4.8 -1.7) 
p = 0.038 

3.3 
(+3.9, -2.0) 
p = 0.089 

3.0 
(+3.8, -2.9) 
p = 0.076 
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