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Abstract. Deep brain stimulation (DBS) is a well-established treatment option for 14
a variety of neurological disorders, including Parkinson’s disease (PD) and essential 15
tremor (ET). It is widely believed that the efficacy, efficiency and side-effects of the 16
treatment can be improved by stimulating ‘closed-loop’, according to the symptoms 17
of a patient. Multi-contact electrodes powered by independent current sources are 1s
a recent development in DBS technology which allow for greater precision when 19
targeting one or more pathological regions but, in order to realise the potential of 20
such systems, algorithms must be developed to deal with their increased complexity. 21
This motivates the need to understand how applying DBS to multiple regions (or 22
neural populations) can affect the efficacy and efficiency of the treatment. On the 23
basis of a theoretical model, our paper aims to address the question of how to best 24
apply DBS to multiple neural populations to maximally desynchronise brain activity. 25
Using a coupled oscillator model, we derive analytical expressions which predict how 26
the symptom severity should change as a result of applying stimulation. On the 27
basis of these expressions we derive an algorithm describing when the stimulation 28
should be delivered to individual contacts. Remarkably, these expressions also allow 29
us to determine the conditions for when stimulation using information from individual 30
contacts is likely to be advantageous. Using numerical simulation, we demonstrate that 31
our methods have the potential to be both more effective and efficient than existing 32
methods found in the literature. 33
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1. Introduction 35

Deep brain stimulation (DBS) is an effective treatment for advanced Parkinson’s disease 36
(PD) and essential tremor (ET') which involves delivering stimulation through electrodes s
implanted deep into the brain and targeting regions thought to be implicated in the s
disease, which in the case of PD is typically the subthalamic nucleus (STN) and for ET 1
the ventral intermediate nucleus (VIM). PD is a common movement disorder caused 4o
by the death of dopaminergic neurons in the substantia nigra. Primarily, symptoms a
manifest as slowness of movement (bradykinesia), muscle stiffness (rigidity) and tremor.
ET is purportedly the most common movement disorder, affecting just under 1% of s
the world population [1, 2] with the main symptom being involuntary shaking most 4
commonly in the upper limbs [3]. Despite its prevalence, the pathophysiology of ET s
remains elusive, although the cortex, thalamus and cerebellum are all thought to be 4
involved in the disease [2]. Symptoms of these disorders are thought to be due to overly
synchronous activity within neural populations. For PD patients, higher power in the 4
beta frequency range (13-30Hz) of the local field potential (LFP) measured in the STN 4
has been shown to correlate with motor impairment [4] while thalamic activity in ET  so
patients is strongly correlated with tremor measured using the wrist flexor EMG [5]. =
It is thought that DBS acts to desynchronise this pathological activity leading to a s
reduction in the symptom severity. 53

A typical DBS system consists of a lead, an implantable pulse generator (IPG) s
and a unit to be operated by the patient. The DBS lead terminates with an electrode, ss
which is typically divided into multiple contacts. Post surgery, clinicians manually s
tune the various parameters of stimulation, such as the frequency, amplitude and s
pulse width, in an attempt to achieve optimal therapeutic benefit. Stimulation is s
then provided constantly, or ‘open-loop’, according to these parameters. The choice s
of stimulation frequency in particular is known to be crucial for efficacy with high e
frequency (HF) DBS (120-180 Hz) being found to be effective for both PD and ET &
patients [6]. Despite the effectiveness of conventional HF DBS in treating PD and ET, &
it is believed that improvements to the efficiency and efficacy can be achieved by using ¢
more elaborate stimulation patterns informed by mathematical models. Coordinated ¢
reset (CR) neuromodulation is an open-loop DBS strategy where brief HF pulse trains s
are applied through different contacts of a stimulation electrode [7, 8, 9, 10]. The efficacy s
of CR was first demonstrated theoretically, where precisely-timed delivery of HF pulses e
can be shown to desynchronise a system of coupled oscillators [7]. In practice, CR has s
been shown to yield both acute and long-lasting benefits in nonhuman primates [8]. 69

Closed-loop stimulation and IPGs with multiple independent current sources 7o
are promising new advances in DBS technology. Closed-loop stimulation is a new =
development in DBS methods which aims to deliver stimulation on the basis of feedback
from a patient. There is a growing body of evidence [11, 12, 4, 13] suggesting that 7
closed-loop stimulation has the potential to offer improvements in terms of efficacy,
efficiency and reduction in side effects. IPGs with multiple independent current sources s
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are the ‘cutting-edge’ of DBS technology which, unlike their single current source 7
counterparts, allow for current to be delivered independently to each contact. This gives
increased control and flexibility over the shape of the electric fields delivered through the
electrodes, allowing for more precise targeting of pathological regions and the possibility
of delivering more complex potential fields over space, in addition to allowing for the s
possibility of recording activity from different regions. The use of multiple contacts &
for DBS, however, naturally leads to increased complexity, as many more stimulation s
strategies are now possible. This has created the need to better understand how applying s
DBS through multiple contacts can affect the treatment. 84

Closed-loop DBS strategies are characterised by their use of a feedback signal to e
determine when stimulation should be applied. The choice, use and accuracy of this s
feedback signal therefore plays a crucial role in determining the efficacy of a particular &
strategy. In the literature, both the LFP and tremor have been used as feedback s
signals with studies showing that the effects of DBS to be dependent on both the phase s
and amplitude of the oscillations at the time of stimulation [12, 4]. In adaptive DBS,
high frequency stimulation is applied only when the amplitude of oscillations exceeds a o
certain threshold [4] and in phase-locked DBS stimulation is applied according to the o
instantaneous phase of the oscillations, which for ET patients corresponds to stimulation o
at roughly the tremor frequency (typically ~ 5 Hz) [12]. The combined approach of o
adaptive and phase-locked stimulation has also been investigated in simulation [13]. %

In our previous work [14], we provided a mathematical basis for the phase and o
amplitude dependence of DBS. Here, we extend these ideas and introduce adaptive o
coordinated reset (ACR), which proposes a closed-loop strategy especially suited to o
multi-contact systems. Our goal is to understand how the effects of multi-contact DBS s
should depend on the ongoing neural activity measured through each channel. As part of 10
this work, we demonstrate using numerical simulations that a coupled oscillator model 101
is a plausible neural mechanism for generating tremor found in ET patients. Then, 10
on the basis of this, we model the activity of multiple neural populations using a set 103
of oscillators and relate this activity to the pathological oscillations associated with 104
symptom severity in ET and PD. Using a coupled oscillator model we then describe 10
how this activity (and hence the symptom severity) is likely to change when DBS is 10
applied through multiple contacts. The results we present suggest how DBS should be 107
provided through multiple contacts in order to maximally desynchronise neural activity. 1o
Using numerical simulation and parameters fitted to ET patients, we then compare 10
our methods to others found in the literature, namely phase-locked stimulation and 110
coordinated reset. The methods we present can be applied in different ways, either
using multiple electrodes or single electrodes with multiple contacts. We therefore use 1
the terms ‘electrode’ and ‘contact’ synonymously throughout. 13
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2. A Model for Single Contact DBS 114

2.1. Phase Synchrony and Oscillations 115

In this section, we consider how stimulation with a single electrode acts on a population 1
of oscillators. Here we follow our previous paper [14], which the interested reader may v
refer to for a more detailed derivation of the results presented in this section. A list of s
frequently used notation is provided in Table 1. 119

Parameter Description

k Coupling constant

o Noise amplitude

&l

Mean of natural frequencies
Standard deviation of natural frequencies
Neuronal phase response curve (nPRC)
Cosine Fourier coefficient of nPRC
Sine Fourier coefficient of nPRC
Phase of oscillator
Phase of population
Synchrony of population
Complex order parameter
Scaling constant for experimental data
Number of populations
Number of electrodes
Number of neurons
Number of constraints

HWZMNno 3 € oo N&

Amplitude response for a single population

g

Population weight
Arorm Electrode-population distance

~

Electrode position

T

Neuron position
Population position

Sl vio!

Voltage at electrode
Voltage at neuron

< <

Voltage at population

~

Charge of electrode

LS

Charge of neuron
Charge of population
Activity to voltage at electrode transformation matrix
Electrode to voltage at population transformation matrix
Element of D
Element of D

o, ThOg O <

Table 1. List of frequently used symbols together with their description.
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Our goal in this subsection is to show how the amplitude measured in feedback
signals can be related to the synchrony of neural populations. The instantaneous phase
U(t) and envelope amplitude P(t) of a signal F'(t) can be obtained using the analytic
signal R(t)

R(t) = Pe’ = F(t) + iH[F(t))], (1)
where H denotes the Hilbert transform. We would like to relate this quantity to those 12
associated with a state of oscillators. 121

We define the state of IV regular spiking neurons to be given by the set of oscillators
{01(t),05(t),05(t) ... 0N (t)}, which are the phases describing where each neuron is in its
firing cycle. The phase synchrony of this system can be measured using the order

parameter r, defined to be
N

w1 iy,
T’—pew—ﬁ;e ) (2)
The above definition ensures the magnitude of the order parameter p can take values
between 0 and 1, representing full desynchrony and full synchrony, respectively. We can
transform the state of the system to a signal representing the neural activity using a
superposition of cosine functions
| N
f(t) =Re(r) = > cos[0a(t)]. (3)
n=1
The choice of a cosine function is for mathematical convenience since it corresponds to
the real part of (2). In addition to this, the cosine function has a maximum at 0, and
in classic coupled oscillator models, phase 0 corresponds to the phase when neurons
produce spikes [15]. Hence post-synaptic potentials in down-stream neurons receiving
an input from the modelled population will be a smoothed function of spikes produced
in phase 0, so the cosine function captures key features of such post-synaptic potentials.
Using the Euler relation and comparing (3) with the real part of (2) shows

1(t) = peos(v). (4)

We assume here a simple relationship between the neural activity and feedback signals
we may measure, for example tremor and the LFP

F(t) = cf(t), (5)

where the experimental signal has now been denoted by F(¢). This is reasonable in
the case of ET, where thalamic activity is known to be highly correlated to tremor [5].
Inserting Eq. (5) into (1) gives

Pe' = c{ f(t) +iH[f(t)]}. (6)
Inserting Eq. (3) into Eq. (6) and using the linearity of H leads to

Pe'V = % Z{cos(@n) + iH[cos(6,)]}. (7)
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Under the reasonable assumption that the time evolution of 6, is approximately
monotonic, it can be shown that [14]

~

Hlcos(6,,)] ~ sin(6,,), (8)

where ‘~’ is used to indicate ‘approximately equal to’. Therefore

N
PelV — % S {cos(8,) +isin(8,)} = cpe. 9)
n=1

Hence, the instantaneous envelope amplitude and phase (the analytic signal) is relatable
to the magnitude and phase of the order parameter using

P=cp, V=1 (10)

In summary, assuming the experimental data and neural activity are related according 12
to Eq. (5) and that the phases {6,} increase monotonically with time, we can use 1
the Hilbert transform of the experimental data to relate the envelope amplitude and 12
instantaneous phase to the magnitude and phase of the order parameter, respectively. 1

2.2. Response Curves 126

The neuronal phase response curve (nPRC) for a spiking neuron is the change in spike
timing due to a perturbation as a function of the inter-spike time. Hansel et al [16]
categorised nPRCs into either type I or type II depending on whether a small excitatory
(inhibitory) input always advances (delays) a neuron to a next spike or whether it
either advances or delays a spike, depending on where the neuron is in its firing cycle,
respectively [17]. These effects of inputs can be captured using a simple mathematical
function Z(#). By mapping where a neuron is in its firing cycle onto a phase variable
0 € [0, 2x], the nPRC describes the change in phase of a single neuron due to a stimulus.
More precisely, under the assumption of a weak input eU(t), the evolution of a single
oscillator can be written in terms of a natural frequency wy in addition to a response

term W
o =wy + eU(t)Z(8). (11)
A general neuronal nPRC can be expanded as a Fourier series
Qo > > .
Z(0) = 5 + mZZI ay, cos(mb) + m221 by, sin(md). (12)

The nPRC type is reflected in the zeroth harmonic ag, or the shift, with |ag| large 1
and small relative to the other coefficients being indicative of type I and type II 12
curves, respectively. Phase oscillator models which incorporate the nPRC can be 1
shown to reproduce the experimentally-known characteristics of a patient’s response to 1
stimulation [14], namely that the effects should be both amplitude and phase dependent 1


https://doi.org/10.1101/2020.08.10.242743
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.10.242743; this version posted August 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

7

[4, 12]. This leads to the concept of the phase response curve (PRC) and the amplitude 13
response curve (ARC) for feedback signals, such as LFP and tremor, which can be 13
described by perturbing a population of oscillators and respectively describe changes 13
in the phase and amplitude of the feedback signal at the point of stimulation. The 13
instantaneous curves, which are functions of both the phase and amplitude at which 13
the stimulation is delivered, are not commonly found in experimental analysis due 13
primarily to the difficulties associated with obtaining a function of two independent 13
variables from noisy data. It is more common to find the averaged response curves, 13
which are only functions of the phase and are averaged over the amplitude. Such curves 140
are readily obtainable using standard signal processing techniques and have been used 1a
to characterise a patient’s response to stimulation [18, 12, 19]. 142

2.8. The Kuramoto Model 143

Modelling the effects of DBS generally poses a challenge since the brain networks
involved in disorders such as ET (cortico-thalamic circuit) and PD (cortico-basal-ganglia
circuit) are complex and it is still debated from which parts of these circuits the
pathological oscillations originate [20, 21]. The task can be made more tractable by
considering a simple phenomenological model which does not attempt to explicitly
describe the underlying circuits, but rather focuses on general mechanisms leading
to the synchronization of neurons. One example of this is the Kuramoto model,
[22, 23] where the dynamics of neurons are described using a system of homogeneously
coupled oscillators, whose phases evolve according to a set of underlying differential
equations. Such models are particularly attractive due to their simplicity and explicit
dependence on phase, which makes them convenient for describing the effects of phase-
locked stimulation. In the previous section we showed that the oscillation data typically
measured in experiment can be modelled using an underlying system of oscillators, whose
state is described by the set of N phases {6,}. We can describe the time evolution of
this state (for a single population) using the Kuramoto equations, with an additional
term describing the effects of stimulation [22, 7]

do,, koo

Sty mz_:l sin(f, — 0,) + V() Z(6,). (13)
The first term of (13) is the natural frequency w, which describes the frequency in the
absence of external inputs. The second term describes the coupling between the activity
of individual neurons, where k is the coupling constant which controls the strength
of coupling between each pair of oscillators and hence their tendency to synchronize.
The third term describes the effect of stimulation, where the intensity of stimulation
is denoted by V(¢). The nPRC denoted by Z(6,), describes a neuron’s sensitivity
to stimulation at a particular phase and reflects the observation that the effects of
stimulation depend on where a neuron is in its firing cycle [24]. Using the definition of
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the order parameter given in Eq. (2), Eq. (13) can be transformed to give
db,,
= + kpsin(y — 6,) + V() Z(6,,). (14)

In this form, it is clear that each oscillator has a tendency to move towards the 1
population phase ¢ and that the strength of this tendency is controlled by the coupling 14
parameter k. To gain an intuition for this behaviour readers may wish to explore an 14
online simulation of the model [25]. 147

2.4. Reduced Kuramoto Model 148

In the previous section, we described the dynamics of a finite system of oscillators using
the Kuramoto equations given by Eq. (14). In this model, stimulation is described as a
perturbation to the phase of an oscillator, with each oscillator experiencing a different
effect of stimulation depending on its phase (and determined by Z(€)). Stimulation
therefore has the effect of changing the distribution of oscillators and hence the order
parameter of the system. Since the order parameter, given by Eq. (2), is determined
by both the amplitude and phase of the system, the expectation is that stimulation
will lead to a change in both these quantities, which we refer to as the instantaneous
amplitude and phase response of the system. To obtain analytical expressions for these
quantities, we can consider an infinite system of oscillators satisfying the ansatz of Ott
and Antonsen [26, 27]. In our previous work [14], we showed that for a general nPRC
given by Equation (12) and assuming the natural frequencies are Lorentzian distributed
with centre wy and width v, the instantaneous change in the order parameter can be
written as

—=<mo—w>r+’“2<1—|rr>

+@ {aor ()" ) Z bm - m“]} . (15)

Using this, we can find expressions for the ARC and PRC due to stimulation

d stim t -
pd; = lem ! [am sin(m) — by, cos(mw)} (16)
and
Bsim _ V(1) N .
pra e +(1+p )mZ:l P @y, cos(ma)) + by, sin(ma) | ». (17)
3. Reproducing Tremor in ET Patients 149

We now address the question of whether the Kuramoto model can produce oscillations
which are compatible with tremor data from ET patients. To account for random
forces which may influence the firing of individual neurons, the Kuramoto model can be
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extended to include a noise term, which we take here to be a Wiener process. The time
evolution for 6,, then becomes

b, = [w, + kpsin(y — 0,) + V() Z(6,)] dt + N (0,1)Vt, (18)

where & is the noise amplitude and N(0, 1) is a random number sampled from a standard 1so
normal distribution. During a simulation, the set of oscillators {6,,} evolves according to 15
(18) and oscillations can be generated using Equation (3). The oscillation data output s
from the Kuramoto model (18) depends on the choice of parameters {w,}, k, N and 7. 153
We can characterise these oscillations by using features extracted from the data, which 1s
we choose to be: the power spectral density (PSD), the probability density function iss
(PDF) for the amplitude and the PSD of the envelope amplitude. To reproduce the 1s
response of a particular patient, we also fit to the averaged PRC [14, 12, 28] of the patient s/
by adjusting the parameters for the nPRC. These characterisations can be applied to 1ss
both the experimental and synthetic simulated data from the model. The similarity 1so
between features from the simulated and experimental data can then be quantified 160
using least squares, which in turn allows us to quantify the degree of similarity between 16
simulated and experimental oscillation data. By using this similarity measure as a cost 1
function, we can then find the parameters of the Kuramoto model which minimise the 16
cost using optimisation and thus find the parameters which allow the model to produce 1
oscillations similar to experimental data. 165

The computational cost of the optimisation depends on a number of factors, ies
including the number of parameters. To ensure feasibility and prevent overfitting, we 16
choose a reasonable number of oscillators N = 60 and sample {w,} from a normal s
distribution with mean @ and standard deviation s,,. We chose to simulate the Kuramoto 1ee
model with {w,} sampled from a normal distribution as opposed to a Lorentzian 1o
distribution (which was assumed in the derivation of the response curves) since the
long tails of the latter can lead to a non-monotonic evolution for 1, due to sampling 17
small /negative w,. This can be problematic for the methodologies used to calculate the 173
phase response curves, which require a monotonic evolution for . 174

We fit the Kuramoto model to tremor data [12, 29] from ET patients deemed to s
have significant response curves [28]. The parameters found through optimisation are 1
provided in Table 2. Figures 1 and 2(a)-(c¢) show the Kuramoto model is able to fit well 17
to the features taken from the experimental data. Output from the model can be seen s
in Figure 3 and shows the resulting simulated data to be quite compatible with that 17
found from experiment. The model can be seen to capture the basic properties of the 1s
experimental data, but not the more exotic features, such as the sustained periods of s
lower amplitudes, which are likely due to non-stationarity. Figures 2(d)-(f) show that 1s
the fitted model is able to reproduce the amplitude response for patients generally well, 13
although Figure 2(d) does show a noticeable phase shift between the simulated and 1ss
experimental curves for Patient 1. Overall, our findings suggest that it is reasonable to 1ss
use the Kuramoto model as a model for tremor in ET patients. It is on this basis that we 1ss
derive the expressions for the response curves in subsequent sections. A more detailed 1s7
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Figure 1. Fits to various features extracted from oscillation data. The first row (a)-(c)
is the power spectral density (PSD), the second row (d)-(f) is the probability density
function (PDF) for the envelope amplitude and the third row (g)-(i) is the PSD of the
envelope. Columns (a)-(g), (b)-(h) and (c)-(i) are for patients 1, 5 and 6, respectively.
Patient o k w/2m | s,/2m | V ag a; by
1 2.78 | 9.15 | 4.96 0.31 | 0.06 || -0.01 | -0.01 | -0.05
) 3.10 | 14.11 | 4.24 0.68 | 0.22 || -0.12 | 0.01 | -0.02
6 1.58 | 1.57 | 3.88 0.44 | 0.15 || -0.07 | -0.02 | 0.01

Table 2. Parameters for the single population Kuramoto model given by Equation
(18). The parameters were found by fitting the model to tremor data taken from ET
patients by Cagnan et al [12].

description of our fitting methodology, together with details of the experimental data,
can be found in the Appendix.

188
189

4. Theory of Multi-contact DBS

190

4.1. Multi-population Kuramoto Model

191

We will show in this section that modelling a symptom due to excessive synchrony of
multiple neural populations can be achieved by using a simple extension of the concepts
presented in Sections 2.1 and 2.3. The set of oscillators {6;(t), 02(t), 05(t) ... On(t)} can
be arbitrarily divided into S populations with N, oscillators for the oth population.
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Figure 2. Comparison between the averaged response curves for experimental data
and the fitted Kuramoto model. The phase response curve was used as a feature
during the fitting procedure. The amplitude response curve is predicted from the
model. Columns (a)-(d), (b)-(e) and (c)-(f) are for patients 1, 5 and 6, respectively.

The order parameter defined by Equation (2) can then be rewritten using a double

summation
S N

r= %ZZ@ZB"", (19)

o=1 n=1
with oscillator n of population ¢ being denoted by 6,,. The factor of % can be brought
inside the first summation and rewritten as % Then, with

N
We = N (20)
the order parameter for the system can be written as
s w, N, o
r= ; N, ; e, (21)

Using the definition of the order parameter (2), Eq. (21) can be written as a weighted
superposition of the order parameters for each population

S
r= Z WeTo, (22)
o=1
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Model Output

Figure 3. Comparison between experimentally measured tremor data [12] and output
from the fitted Kuramoto model. Columns (a)-(d), (b)-(e) and (c)-(f) are for patients
1, 5 and 6, respectively.

with
s

> w, = 1. (23)

o=1
We define r to be the global order parameter with amplitude p and phase ¥ and r, to 19
be the local order parameter for population ¢ with amplitude p, and phase ¥,. The 10
importance of the global order parameter is that its magnitude p is a measure of total 1
synchrony and hence should be highly correlated to the severity of a symptom, such 1
as tremor in the case of ET. In the case of PD, symptom severity could be measured 1
using the unified Parkinson’s disease rating scale (UPDRS) scores [30]. Therefore, we 1o
will consider how to stimulate to maximally reduce the magnitude of the global order 10
parameter. 199

We can also relate (22) to feedback signals we might measure by using (3) and

taking the real part. Under the assumption (5) relating the neural activity to the
feedback signal we obtain an expression for the feedback signal in terms of population
activities

S
Pt) =3 cwofolt) (24

We refer to F'(t) and {f,(t)} as the global and local signals (or population activities),
respectively. Using (4), Equation (24) can also be written in terms of the global and
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local amplitudes and phases

S

Pcos(v) = Z Wy Po COS(Py). (25)

o=1

The Kuramoto equations (13) can also be rewritten in terms of the population
phases 1, and amplitudes p,

S
db,, .
dt = Won + Z wa’kao”pa’ Sln(l/}o’ - ean) + Vcr(t>Zo(90n)7 (26)

o’'=1

where V,(t) is the now the stimulation intensity at a population o. The coupling constant 20
kin Eq. (13) is now a S x S matrix with elements k,,.. The diagonal and off-diagonal 2n
elements describe the intrapopulation and interpopulation coupling, respectively. 202

4.2. Multi-population Response Curves 203

We now derive an expression describing the change in the global amplitude due to
stimulation as a function of the local (population) amplitudes and phases. For now it is
assumed that the local quantities (to base the stimulation on) can be measured. We will
discuss how these quantities can be measured later. Using the polar form of the order
parameter (2), Equation (22) can be written as a summation involving the amplitudes
and phases of individual populations

S
pet =D wopse™”, (27)
o=1

Taking the time derivative of (27) leads to

S
dp . dw dpa dwa % —
— +ip— = E W, {dt +ips i ei¥a=¥), (28)

which can be written in terms of the real and imaginary components

P 42— Z {{—cos( )~ 5 0 sin(us, —zm]

(29)
i [0 S0 cos(iby — ) + P sin(y, — )
Po d o di
It can be seen that the time derivative of the amplitude is the real part of (29)
S
d dpy o
d—? = Zwo [% cos(ty — 1) — ;Dt sin(¢, — ¢)] : (30)

The quantities dp,/dt and di,/dt of Equation (30) are the changes in the amplitude
and phase of a population with respect to time. If we assume the distribution of phases
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Figure 4. Different configurations of oscillators color coded according to
population showing (a) unimodal distribution (b) multimodal (clustered) distribution.
Configurations were obtained by simulating the multi-population Kuramoto equations
(26).

within a population satisfies the ansatz of Ott and Antonsen [26], we can substitute
Eq. (16) and Eq. (17) into (30) to obtain the amplitude response due to stimulation in
terms of the Fourier coefficients of Z(0)

dﬂ stim

:_Zw”" {Zp [am sin[(m — 1)th, + ¢] — by, cos[(m — 1)y + 1]

_ Z Pt am sin[(m + 1)1, — ¥ — by, cos[(m + 1)1y — ¢]] },
(31)

where, for simplicity, we assume that Z(#) is the same for all populations. Equation (31)
contains an expansion over the harmonics of Z(6). In our previous paper, we
demonstrated that, for a biologically realistic nPRC, it is reasonable to neglect higher
harmonic terms (m > 1) [14], leading to a simpler expression for the instantaneous
amplitude response

dp stim

~ = Zw" i { ay sin(y) — by cos(¥)] — prao sin(y, — )
(32)

— p2lay sin(2¢, — 1) — by cos(2¢, — 1#)]};

Equation (32) shows the global reduction in amplitude can be expressed as a sum of
contributions from each population, with each term dependent on 3 variables: the global
phase 1, the local phase 9, and the local amplitude p,. It also suggests that stimulating
on the basis of local quantities may not always be advantageous. It can be seen that
the terms of Equation (32) can be divided into two categories: ones which depends on
both global and local quantities and ones which depends only on global quantities. The
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Figure 5. The predicted contribution of a single population to the amplitude response
at different local amplitudes p, according to Eq. (32). Each panel corresponds to a
single ET patient from the study of Cagnan et al [12], where the Fourier coefficients
of the nPRC were determined using a fitting procedure. Panels (a) (b) and (c) are for
patients 1, 5 and 6, respectively. For each plot, the vertical axis is the global phase
(1) and the horizontal axis is the local (or population) phase (1, ). The corresponding
nPRC Z(6) is also shown, with zero indicated by a red dashed line. Blue regions
indicate areas where stimulation is predicted to suppress amplitude.

terms depending on both the global and local phases are also dependent on the local
amplitudes. In cases where the local amplitude is small, i.e. p, < 1, we can neglect the
term involving p?, leading to a simplified expression

dpstim ~ 1

dt 2

> w,Vi(t) { [ay sin(y) — by cos(1h)] — peagsin(i, — ¢)}. (33)

Here, it can be seen that the amplitude response would be dependent only on the global 20
phase if the zeroth harmonic of the nPRC aq is negligible, which is the case for type II 20
nPRCs. It can also be seen that the dependency of the amplitude response on the local 20
quantities of population o becomes less at increasingly lower local amplitudes p,. In 27
addition to this, the dependence on sin(t, — 1) implies that stimulating on the basis of s
local quantities would only have an effect if the phases of individual populations differ 20
sufficiently from the mean phase. One situation in which such phase difference may be 210
particularly high are for clustered configurations of oscillators. Examples of different »u
configurations of oscillators are shown in Figure 4. 212
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Plots for the amplitude response (32) together with the corresponding nPRC using 2
the fitted parameters from Table 2 for ET patients 1, 5 and 6 can be seen in Figures 5(a), 21
(b) and (c), respectively. For a given local amplitude, we plot a single term from s
the summation over populations in Equation (32). This provides the contribution of 2
a single population to the amplitude response as a function of the local and global 217
phases. Regions in blue are areas of amplitude suppression while orange regions predict s
amplification. In both cases, these regions can be seen to occur in bands. Graphically, 210
the dependence of the amplitude response on the global and local phases can be inferred 20
from the direction of the banding. A purely horizontal band implies the amplitude 22
response is independent of the local phase. An example of this can be seen at low 22
amplitudes in Figure 5 (a). Other plots show diagonal banding, which implies the 22
amplitude response is dependent on both the global and local phases. This behaviour 22
can be understood by considering the 3 terms of (32). At low amplitudes, the first 2
term dominates, which is only dependent of the global phase. As the local amplitude 2
increases, the second and third terms depending on local quantities become increasingly 2
more important. For the cases where |ag| is small, the effect is less apparent. The left 2
panel of Figure 5 (a) shows that stimulation can either increase or reduce the phase (i.e. 22
an nPRC of type II), implying a relatively small |ao|. Hence, for this patient, the second 230
and third terms are negligible, except at higher amplitudes. Figures 5 (b) and (c) shows 2a
that stimulation has the effect of only increasing the phase, which is indicative of Z(0) 2:
with larger |ag|. For these systems the amplitude response can be seen to depend more 233
strongly on the local phase for all amplitudes. 234

4.8. Obtaining Population Activities Through Electrode Measurements 235

In this subsection, we will describe how the local phases {1,} and amplitudes {p,} 23
can be recovered using LFP measurements through different contacts. This requires 23
us to incorporate information about the geometry of the electrode placement into the 23
equations for the response curve in addition to assigning a physical interpretation to 23
the population activity. Our aim here is not to construct a detailed electrophysiological 240
model of neuronal activity but rather to present a very general form for the voltage 2
measured at an electrode contact. We formulate our expressions here in terms of electric 2
charge, but the same form also permits the use of currents. In addition to this, our 2
expressions include summations over neurons, but an equally valid expression can be 24
made by summing over elements of space, as is the case in multi-compartmental models s
[31]. The quantities we consider in our model are voltages v](t) measured at electrode 2s
[ due to the activity of population o producing charges Q,(t) and voltages V,(t) at o«
population ¢ due to stimulation which delivers charge ¢;(t) to electrode I. The voltage 2s
V,(t) can also be thought of as the ‘stimulation intensity’ experienced at population o. 24
We begin by considering a system of L electrodes and N neurons with positions
in space denoted by p’ and p, respectively. From now on, we will use the following
notation throughout: primes to denote quantities associated with electrodes, lower case
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for neuronal quantities and upper case for population quantities. Voltages measured at
an electrode arise due to the geometry of the electrode-neuron system and the intrinsic
electrical activity of each neuron. We express the voltage measured at an electrode in
terms of a summation over charges due to the neurons ¢, ()

N

vi(t) = (D', P)an(t), (34)
n=1
where d(p’;, p,) are coefficients which reflect the medium and geometry of the electrode-

neuron system. For example, in the case of a coulombic system, the coefficients would
be

|p,l - pn| 7
where k. is the Coulomb constant. As before, a system of neurons can be arbitrarily

d(p';, pn) (35)

divided into S populations, with each neuron referenced by both a population and
position index o and n, respectively.

S No

V() =Y > d(D', Pon)on(t), (36)

o=1 n=1
We now let p,, = Py + Apon, i.6. we now define a vector to a neuron in terms of a

vector to a region (or population) plus a shift.

S No

UZ(t) = Z Z d(p/la P, + Apan)th(t)a (37)

o=1 n=1

If we assume the region at P, to be small, then
Apgn == 0. (38)

The potential at the electrode can then be written in terms of population activity

S

vi(t) = d(p, Py)Qn(t), (39)

o=1

where
Qo) = tomlt). (40)

The time dependent charge of a population @, (t) can be related to the neural activity
by assuming a form for ¢,,(t), specifically that

C

Gon(t) = i cos(lyn). (41)

Inserting this into (40) and using (20) gives

No
CW,

Q,(t) = N, Zcos(é(m). (42)

n=1
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(@) (b)

Electrode
Neuron

Figure 6. Visualisations of 4 electrode 4 population systems, where each population
occupies a small spatial region. Each system was generated by randomly choosing the
coordinates of the 4 populations so that they lie within a box of length Ly, = 10.
Each electrode is then placed dporm distance from a population. Panel (a) shows a
configuration where each electrode is placed very close to a population (dporm = 0.5).
Panel (b) shows a different system (dnorm = 2) where both the electrodes and
populations are more ‘dispersed’. In this scenario, electrodes may record activity from
multiple populations.

Using (3) and (4) gives an expression for the time dependent charge of a population in
terms of the population phase and amplitude

Q,(t) = cw,py cos(y). (43)

Using (39) the potential at the electrodes can therefore be written in matrix form

dyy dyg dis ... dis P1 COS(¢1) Ui (t)

: .. P2 COS(¢2) Ué (t>
03 COS(Q/J:J,) = Ué(t) ) (44)

d.m ‘ d; s ps cos(thg) vy (t)

where for simplicity we have denoted d;, = cw,d(p’;,P,). Equation (44) can be
expressed in a more compact form with D denoting the matrix of coefficients (of
dimensions L x S), f as the vector of neural activities and v’ as the vector of electrode
measurements.

Df = V. (45)

Equation (45) relates the voltages at the electrodes v’ to the neural activities f. In s
general, our ability to use Equation (32) in a closed-loop DBS strategy depends on being s
able to accurately measure the population quantities {p,} and {1¢,}. Equation (44) o
shows that what we actually measure at the electrodes is a linear superposition of s
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population activities. For the cases where D is approximately diagonal, the population s
quantities could be accurately recovered (although p, would be scaled). Such cases 25
would represent systems consisting of small separated regions of activity, with each s
electrode positioned close to each region (see Figure 6(a)). 257

Methods such as independent component analysis (ICA) [32] are well-suited to 2ss
solving the general problem of recovering a vector of ‘source signals’ f(¢) (in this case the s
population activities) given a vector of recordings v'(t), as expressed in Equation (44), a0
although the method cannot recover the scaling. We consider the special case of a single 26
contact recording, i.e. with L = 1, in the appendix. Since in theory the matrix D should 2
not evolve with time, we envisage ICA being applied offline to recover D and then used 23
to obtain the local signals. In practice, after determining the local signals, Equation (25) 2
should be used to construct the global signal. In this process, the weights {w, } should ass
be chosen to give a global signal with an amplitude that is highly correlated to the 26
symptom severity. 267

4.4. Optimal Stimulation Strategy 268

The equations for the amplitude response (31), (32) and (33) depend on the stimulation 2o
intensity at a population V. It is implied, therefore, that the ‘population’ exists at 2o
some region in space and that V,, should take into account the geometry of the electrode .
placement, how electric fields behave within brain tissue and the charges on a particular
electrode. In this subsection, our aim is to incorporate these ideas into an expression 23
for the amplitude response. 274
Equations (31), (32) and (33) all involve summations over populations, with each
term being the product of a weight w,, a stimulation intensity V, and some intrinsic
response, which we shall denote here by I',. For example, in the case of Equation (31)
I', would be

Z am sin[(m — 1)ty + 9] — by, cos[(m — 1), + Qm
m=1 (46)
— Z Pt am sin[(m + 1)1y — ¥] — by, cos[(m + 1), — 1],

Using this, a more compact expression for the amplitude response can be written using
linear algebra notation, with I' equal to the vector of responses and V equal to the
vector of voltages at a population

dpstim o 1

dt 2(

r'v), (47)

where the weights w, are now considered as part of the response I'. The amplitude
response involves a ‘stimulation intensity’ V(¢)- an abstract quantity which, intuitively,
should not only depend on the charge characteristics at the electrode, but also the
geometry of the electrode placement and the properties of the brain tissue. Taken
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altogether, the stimulation intensity is better interpreted as the voltage at a population,
which can be expressed as a weighted superposition of charges at the electrodes

Dq = V. (48)

As before, the elements of matrix D (of dimensions S x L) are coefficients which reflect
the medium and geometry of the electrode-neuron system. Its worth noting here that
Equations (45) and (48) can also be used to model systems where the stimulating and
recording electrodes are different, since D is allowed to be different from DT. Inserting
(48) into (47) leads to an expression for the amplitude response in terms of the charges
at the electrodes, i.e. the control variables

dpstim 1

= 5(f)Tr)Tq’. (49)

The quantity (f)TI‘)T is defined for each time step so that the optimisation becomes a
problem of choosing q’ so as to minimise dpgim/dt. Often, concern for tissue damage due
to stimulation imposes a limit on how much charge can be delivered to a single or group
of contact(s). To account for this and ensure feasibility, we impose two constraints.
The first constraint ensures the charge for a particular contact does not exceed some
maximum value ¢},

0<d" < Gax- (50)

A simple optimal solution (per time step) for Equations (49) and (50) can be found
by setting the charge for the [th contact to ¢, if the [th component of (f)TI‘)T is
negative. A second constraint ensures the charge density within a region does not
become dangerously high

Ad < Qs (51)

Here, for J groups of contacts, the constraint matrix A has dimension J x L and can o5
be used to constrain the collective charges of the group. The J-dimensional vector q;, ., 27
specifies the maximum charge for a particular group of contacts. Equations (49), (50) o
and (51) are in the standard form for a linear program and are solvable in polynomial 27
time. 279

5. Numerical Simulations 280

The instantaneous response tells us how the amplitude of a system should change as a 2
function of its state variables but did not take into account the dynamics of the system, 2
such as the coupling which acts to resynchronise the oscillators and the effects of a finite 23
number of oscillators— the latter leading to a breakdown in the underlying assumptions 2ss
which lead to Equation (32). To better assess the real world performance of a particular 2ss
stimulation strategy we use the time-averaged response, which requires us to simulate 2ss
a system using equations (4), (27) and (26). 287
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5.1. Sitmulated systems 288

We define a system in terms of its electrode-population configuration, dynamics and
intrinsic response to stimulation Z(#). To construct a particular system we first
randomly choose the coordinates of S populations such that they lie within a box of
length Ly,, = 10. We then assign to each population an electrode, which we place
dporm distance from the population. For a sufficiently large Lyoy, dyorm can be used to
characterise the system— a small d,,., means the effects of stimulation are localised
to a particular population and increasing d,.., increasingly delocalises the effects of
stimulation. For simplicity, we consider a system consisting of S = 4 populations and
L = 4 electrodes. The analytical expressions for the response curves are for an infinite
system, so we require that N, is large. For each population, we choose the number of
oscillators N, = 200 to satisfy this and to remain computationally feasible. We also
assume a coulombic system, where each electrode is able to simultaneously record and
stimulate. In this case, the elements of D are given by

CWy

o =
P, — Ps|

(52)

We denote the elements of matrix D as Jal, which can be related to D using the transpose

- d;
dol = l

. 53
o (53)
The dynamics of a system are determined by the parameters of the multipopulation
Kuramoto model with an additional noise term

S
dean = |Wen + Z wo’koa’pa’ Siﬂ(lba’ - ‘9071) + vcf (t)ZU(90n> dt + 5-N(07 1)\/£ (54)

o'=1

To simplify our testing, we fix the basic parameters of (54) to those found from fitting 2so
to Patient 5. As previously mentioned, the natural frequencies {w,,} are sampled from 20
a normal distribution. Such simulations represent a greater test for the robustness of 2
the predicted amplitude response due to stimulation (32), which assumes a Lorentzian 2o
distribution for {wyy, }. 203

The S x S coupling constant matrix can be simplified by focussing only on the 20
diagonal and off-diagonal components, which we denote by kgiag and Kofdiag, respectively. 2o
We fix Eogdiag = 6, so that kgiag can be used to control the level of clustering for a s
particular configuration of oscillators- increasing Kkging leading to increasingly multi- 2o
modal distributions of oscillators. The nPRC Z(f) was also chosen according to s
parameters fitted to Patient 5, but we allow the zeroth harmonic aq to vary. 299

5.2. Running the simulation 300

To test each strategy we first create a system according to the set of parameters s
{dnorm; kdiag: @0} then choose a stimulation strategy from CR, phase-locked (PL) and o
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Figure 7. Output from numerical simulations showing the effects of Coordinated
Reset (CR). Stimulation was turned on at ¢t = 20 seconds. The top panel of (a) shows
the model output for a system simulated according to Equations (54) and (24). The
bottom panel of (a) shows the stimulation delivered as a function of time, taken to
be the average of the charges across the contacts. The bottom panel of (b) shows the
stimulation across each contact, with the corresponding model output provided in the
top panel.

ACR. Our implementation of PL stimulation is to use Equation (33), but to neglect all 303
the local terms, which is equivalent to setting p, = 0. 304
We use the time-shifted variant of CR neuromodulation [7, 33] in our testing. For

a given electrode, stimulation is delivered in bursts of HF pulse trains. The stimulation
pattern is time-shifted across each electrode indexed by [ by
T

T = ==
20w

(1—1), (55)
where @ is the mean of the natural frequencies (~ 4.2 Hz). The number of bursts per s
second, the burst frequency fiust, was chosen to be equal to @w/27m and the HF pulse 306
train frequency fiain Was chosen to be 130 Hz. The width of each burst st was chosen 3o
to be 0.1 seconds. Tass et al originally tested CR on a homogeneously coupled system 3o
with s, = 0 [7]. We test our implementation and reproduce these results by constructing s
a simple homogeneously coupled system according to the parameters of Patient 5 given 30
in Table 2, but with 6 = 0, s, = 0 and the parameters of Z () scaled by a factor of su
10. The simulation parameters were chosen according to Table 3. The desynchronising s
effects of CR neuromodulation on this system are shown in Figure 7, which reproduces s
the results of Tass et al [7]. 314
The maximum charge for an electrode ¢/ .. is chosen so that, for a given system, s
the maximum perturbation to a single oscillator is df,,.x = 0.27 rad. For our testing, s
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Parameter | Value | Description
At 0.04 | Integration time step
T 2 Simulation time
Lyox 10 Box length
L 4 Number of electrodes
S 4 Number of populations
N, 200 Number of oscillators per population
Eottdiag 6 Off-diagonal of coupling constant matrix
A0 max 0.2 | Maximum angle moved per stimulation pulse
Ntrials 24 Number of trials
frmax 130 Maximum frequency for PL stimulation
Sourst 4.2 CR burst frequency
Jirain 130 CR HF train frequency
thurst 0.1 CR burst time
w/2m 4.2 Mean oscillator frequency
Sw/2m 0.7 Standard deviation of oscillator frequency

Table 3. Summary of fixed parameters used in the simulations.

we do not constrain ACR using Equation (51), which leads to trivial optimal solutions s
to the linear program (49) and (50), where the charge for the Ith contact is set to ¢, if s
the Ith component of (DTI)T is negative. ACR was tested at 3 maximum stimulation s
frequencies: 5 Hz, 50 Hz and 130 Hz. The maximum stimulation frequency for PL was s
fixed at 130 Hz. Equation (54) was then integrated using Euler’s method with a time 32
step of At = 0.04 seconds and simulated for T" = 2 seconds. The PL and ACR strategies s»
were applied according to phases and amplitudes obtained directly from the simulation. 3

During a simulation, a stimulation pulse is calculated as the average of the charges 3u
¢'(t) across the L electrodes. Two quantities are calculated after each simulation: the ss
time-averaged value of p, p and the total of all stimulation pulses E delivered. The 3
former is indicative of the efficacy of the strategy while the latter is related to the total s
energy consumption of a strategy, which can be used to gauge efficiency. For each set of 3
parameters, the simulations are repeated over 24 trials, with a new electrode-population 32
configuration being generated according to dy.m, for each trial. The parameters dporm 3%
and Kgiag were chosen within the range dporm € [0.1,6] and kg € [5,150]. Example s
output from these simulations, showing the effects of applying ACR, is provided in 33
Figure 8. When compared to Figure 7, it is clear that the stimulation pattern from s
ACR is significantly different from that produced by CR, with the latter pattern being 3.
simply time-shifted across electrodes. The stimulation pattern from ACR allows for the 33
possibility that multiple electrodes may be stimulated simultaneously. A summary of 33
the parameters used in these simulations is provided in Tables 3 and 4. 337
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Parameter | Min | Max | Ngiq | Description

dyorm 01 |6 5 Distance from population to electrode
Ediag 5 150 |5 Diagonal of coupling constant matrix
agp 0 1.7 |4 Zeroth harmonic of Z(0)

Table 4. Summary of variable parameters used in the simulations. Each parameter
was chosen in the range [Min,Max] using a uniform grid of spacing (Max-Min)/Ngyiq.
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Figure 8. Output from numerical simulations showing the effects of Adaptive
Coordinated Reset (ACR). Stimulation was turned on at ¢ = 20 seconds. The top
panel of (a) shows the model output for a system simulated according to Equations
(54) and (24). The bottom panel of (a) shows the stimulation delivered as a function
of time, taken to be the average of the charges across the contacts. The bottom panel
of (b) shows the stimulation across each contact, with the corresponding model output
provided in the top panel.

5.5. Results 338

Figure 9 shows plots for the average amplitude p, i.e. p averaged over all trials and all 33
values of dyorm for a particular value of kg and zeroth harmonic ay. ACR was tested 0
at maximum frequencies of 130 Hz, 50 Hz and 5 Hz. The maximum frequency of PL s
was fixed at 130 Hz. The rise in p shown between kqing = 50 and Kging = 70 is indicative
of a bifurcation, which is typical in Kuramoto systems [26]. Significant improvements s
with ACR over PL and CR are observed in simulations when stimulation is delivered 3a
at higher frequencies and when aq is non-negligible. The utility of ACR over other as
methods is also shown to be greatest when kgiae is larger, which corresponds to larger s
local amplitudes p, and increased clustering. 347

The efficacy of CR can also be seen to improve with systems with larger ag. With s
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[+-No stim -F ACR (5 Hz) I ACR (50 Hz)-F ACR (130 Hz)-+PL (130 Hz) - CR |

(@) a,=0 (b) a,=0.57

0 50 100 150 0 50 100 150
kdiag diag
(c) a0=1.1 (d) ao=1 7

0 50 100 150 0 50 100 150

Figure 9. The average amplitude of a simulated Kuramoto system with a coupling
constant kgiag for different stimulation strategies: no stimulation (no stim), Adaptive
Coordinated Reset (ACR), phase-locked (PL) and Coordinated Reset (CR). The
maximum stimulation frequency used for ACR and PL is also given in the legend.
Dashed lines are for the ACR method. Each sub plot shows a set of simulations
performed with a particular zeroth harmonic of the nPRC ay.

ag = 0, CR and no stimulation are shown to be equally effective. The results shown in s
Figure 9 are in contrast with those shown in Figure 7, indicating that the efficacy of CR 35
is sensitive to the parameters ¢ and s, in addition to the scaling of Z(6). 351

For systems where ag ~ 0, PL. and ACR are found to be equally as effective, as 35
predicted. The efficacy of ACR at 130 Hz is greater than at other frequencies, but with ss3
more energy usage than PL and similar energy usage to CR, as shown in Figure 10. ACR 35
at 50 Hz is found to have good efficacy for ag > 0 but with significantly less energy usage 3
than PL and CR. ACR with low frequency stimulation at 5 Hz (or approximately the sss
tremor frequency) is predicted to have little to no effect on all the systems tested. 357

As previously mentioned, we expect the utility of ACR to be greatest for those s
systems described by type I nPRCs as the amplitude response curve then depends ss
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Figure 10. The average energy used by: mno stimulation (no stim), Adaptive
Coordinated Reset (ACR), phase-locked (PL) and Coordinated Reset (CR) stimulation
strategies on a simulated Kuramoto system with a coupling constant kgiag. The
maximum stimulation frequency used for ACR and PL is also given in the legend.
Dashed lines are for the ACR method. Each sub plot shows a set of simulations
performed with a particular zeroth harmonic of the nPRC ay.

explicitly on non-negligible terms involving population quantities. Equation (32) shows o
that when ay = 0, the terms involving population quantities depend on second harmonics 36
21),. These terms carry a factor of p2 and hence are likely to be negligible, except when  se
po is reasonably large. To investigate these effects, we simulate systems with ag = 0 363
and use a larger stimulation intensity ¢ ... By comparing ACR to PL, we can then se
ascertain the impact of these second harmonic terms. A comparison of the efficacy of 36
ACR with PL and CR, is shown in Figure 11 for different stimulation amplitudes ¢/ .. s
and with ay = 0. Increasing stimulation amplitude can be seen to improve the efficacy s
of all the strategies tested, but is most noticeable for ACR and PL. Higher stimulation ses
amplitudes also seem to be particularly beneficial for those systems with larger kgiag. 360
ACR can be seen to perform better than CR in all cases. Figure 11 shows the ACR 3w
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Figure 11. The average amplitude of a simulated Kuramoto system with a coupling
constant kgiag for different stimulation strategies: no stimulation (no stim), Adaptive
Coordinated Reset (ACR), phase-locked (PL) and Coordinated Reset (CR). During
these simulations, the zeroth harmonic ay of the nPRC Z(6) was fixed to zero.
Increasing dfmax leading to larger stimulation amplitudes ¢, shows the effect of
the second harmonic term in the amplitude response given by Equation (32).

method to be consistently more effective than PL at higher kqiag, although the difference sn
is marginal. This is indicative of the aforementioned effects of second harmonic terms in s
(32). Taken altogether, we predict the efficacy of ACR to be similar to PL stimulation s
for those systems where ag ~ 0. 374

6. Discussion 375

In this work we propose ACR as a method for DBS using multiple contacts. Unlike CR, 37
the method is closed-loop and uses information about the system to determine when to 3
apply stimulation. Using numerical simulation, we show that in many cases, substantial s
improvements to the efficacy can be achieved with the method. The mathematical s
description of ACR also predicts that the effectiveness of multi-contact stimulation is s
largely dependent on the form of the nPRC and in particular on the zeroth harmonic sa
ag, which is related to whether it is type I or type II. We predict that for type I s
systems, where |ag| is small, stimulation on the basis of local quantities is unlikely to ss3
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be beneficial. We also show that the dependency of the amplitude response on the local 3z
quantities of population o becomes less at increasingly lower local amplitudes p, but sss
that the effects of stimulation are, in general, explicitly dependent on the state of the ss
system and that providing stimulation without knowledge of this state is likely to be s
suboptimal. Following from this, it is worth discussing the feasibility of resolving this sss
state in practice. 389

6.1. Practicalities of Using ICA 390

The ACR method assumes an underlying system of phase oscillators, which can be s
divided into small populations with the distribution of oscillators in each population 30
satisfying the ansatz of Ott and Antonsen [26]. Equation (44) links the state to s
measurable quantities from the electrode and is of the form modelled by ICA [32]. The 30
goal of ICA here is to resolve the S population quantities from L electrode measurements. 3o
Variations of the ICA problem exist depending on whether S < L (the overdetermined 30
case), S > L (the underdetermined case) and S = L (the determined case). The s
determined case is perhaps the most common and more easily solved, since the mixing 30
matrix D is invertible. However, we do not know the value of S a priori and therefore 30
cannot know which ICA method is best suited. If we assume the case of S = L, then a0
ICA will always resolve exactly L components. With this assumption, increasing the o
number of electrodes in a system has a definite purpose: it increases our potential s
to resolve the internal state. Assuming a larger number of populations also increases o3
the validity of the small region approximation presented in Equation (38) and thus 4o
the accuracy of ACR. It may also be possible to obtain good approximations to the s
state by using L < S electrodes, since in some cases the weights w, may be small 40
for some populations and can hence be neglected. This together with the statistical a0
nature of ICA, errors due to applying various signal processing techniques and noise 4o
within measurement would inevitably lead to some uncertainty when determining the a0
population quantities. In addition to this, the amplitude response (32) is also dependent 410
on the harmonics of Z(6), which also need to be determined. Electrodes which record the an
population activity are also susceptible to recording the stimulation pulses themselves. a1
This manifests in recordings as an artefact, which poses a challenge for closed-loop a3
methods that rely on the real-time measurement of phases and amplitudes. Addressing i
the effects of stimulation artefacts is beyond the scope of this work, but we expect s
that significant suppression of the stimulation artefact would be required for ACR to 4
be effective. This suppression may come as a byproduct of using ICA, which has been
found by others [34, 35]. Alternatively, by recording through two contacts adjacent s
to a single stimulating contact, the properties of differential amplifiers can be used to a1
suppress the stimulation artefact [36]. In this paper we have considered perturbations o
to neural populations using electrodes, but in principle, our theories should also be
valid for other types of perturbation, such as optogenetic, where light pulses are used to a2
perturb genetically modified neurons. This approach would eliminate the stimulation 4
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artefact and thus likely improve the real-world performance of ACR. In summary, the 4
effectiveness of ACR in practice is likely to be dependent on both the ability of the 4
model to capture the underlying dynamics of the system and our ability to resolve the 4
state and parameters of the system. It is worth mentioning that the latter does not 4
factor into the results presented in Section 5 since both the state and the parameters s
were taken directly from the simulation. Therefore the results we present for ACR (and
PL) can be taken as an upper bound on performance. 430

6.2. Future Work 431

As a preliminary study, the simulations presented in this work provide a broad s
understanding of the potential efficacy and efficiency of ACR but there is scope for future s
work. Firstly, we could test the simulation on a greater variety of systems, changing both 43
the distribution of natural frequencies, the noise parameter and the harmonics of Z (). 43
Secondly, we could investigate how the constraints of the linear program (51) affect a3
both the efficacy and efficiency of ACR. In addition to these, there is also considerable a3
scope for understanding both the potential and effective real world performance of ACR, 43
which could involve investigating the performance of ACR with the harmonics of Z () 4
estimated through machine learning, using the state variables obtained through ICA 40

and finally testing ACR on patients. aa1
Appendix a2
A. Model Fitting 443
A.1. Feature Selection aaa

In Section 3 we described how the similarity between two time series can be quantified
using features extracted from the data. We define here a feature to be some
transformation of the time series F'(f) into a new function y({), where ¢ is in a new
domain. For example, the PSD can be obtained by applying the Fourier transformation
to the time series with  being the frequency in this case. We can then characterise a
time series using a set of features. This set, though arbitrary, should be chosen so as to
reproduce important properties of the data. For a set of IV, features, we can construct
a cost function C(X) for a vector of parameters X to be used in a local optimisation

C(X)_Li(Hyj_y;'nodel(X)H) | (A1)

Ne = ly; — il

model gra the features s

where y indicates a vector over the domain (. Here y and y
from the experimental and simulated data, respectively. The mean of an experimental s
feature is denoted by ¥. Each term in the summation is simply (1 — R?), where R? is the a7
standard coefficient of determination. Qualitatively, Equation (A.1) is simply the mean s

of (1 — R?) across all the features. Equation (A.1) quantifies the similarity between o
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Figure Al. Experimental data for Patient 1 from the study of Cagnan et al [12].
Tremor oscillations are shown in the top panels. The bottom panels shows the
stimulation triggers. (a) shows the entirety of the dataset consisting of stimulation
provided over 9 trials. (b) shows a single trial which consists of 5 seconds of phase-
locked stimulation over 12 phases.

features obtained from simulated and experimental data. It can be seen that C'(X) =0 s
implies both sets of features are equal. When C(X) = 1, the fit of the model is no
better than the mean y. As previously mentioned in Section 3, the features reflecting s
the dynamics of the oscillations are chosen to be: the PSD, the PDF for the amplitude s
and the PSD of the envelope amplitude. We also use the averaged PRC as an additional s
feature to characterise the response of a particular patient. 455

A.2. Experimental data 456

Cagnan et al [12] studied phase-locked DBS delivered according to the tremor in ET s
patients. Data was collected from 6 ET patients and 3 dystonic tremor patients. All s
patients gave their informed consent to take part in the study, which was approved by s
the local ethics committee in accordance with the Declaration of Helsinki. The data e
from this study can be obtained through an online repository [29]. 461

Duchet et al [28] defined a criterion for assessing significance in the averaged ARCs
and PRCs from the study of Cagnan et al. In their study, a patient is considered to s
have a significant response if both the ARC and PRC are found to be significant either s
according to an ANOVA test or cosine model F-test. Using this, they deemed 3 out of 4
the 6 ET patients to have a significant response curve. We restrict our analysis to these e
3 patients, who we shall refer to as patients 1, 5 and 6, as in the original study. The s
tremor data was filtered using a non-causal Butterworth filter of order 2 with cut-off s
frequencies at +2 Hz around the tremor frequency. Stimulation was delivered over a set e
of trials (typically 9), with each trial consisting of 12 blocks of 5 second phase-locked 7o
stimulation at a randomly chosen phase from a set of 12. Each block of phase-locked 4n
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Parameter | Value | Description
At 0.002 | Integration time step
T 5 Stimulation time
T 1 Inter-block time
Ty 10 Inter-trial time
N, 60 Number of oscillators
Nirials 54 Number of trials

Table Al. Parameters used when simulating the Kuramoto model for global
optimisation.

stimulation was also separated by a 1 second interblock of no stimulation. The envelope
amplitude and instantaneous phase were calculated using the Hilbert transform. As an 3
example, the data for Patient 1 is shown in Figure A1. From this, the characteristics we 47
identify as being desirable for our model to reproduce are: the frequency spectrum of a5
the data, the bursts of oscillations and the sustained periods of low envelope amplitude. a7
In addition to this we would also like the model to reproduce a given patient’s response a7
to stimulation, as characterised by the averaged PRC. 478

A.3. Sitmulated data 479

For the mth local optimisation step, we simulate the Kuramoto model (18) using a s
parameter set X,,, and obtain the feature set described in Section A.1. The stochasticity s
of the model naturally leads to variation in the features for a particular optimisation as
step. To stabilise this variation we average the features over ni.s = 54 trials. The 4
simulation was configured to reproduce the methodology of Cagnan et al [12], namely 4ss
that stimulation was delivered in blocks of trials, as described in Section A.2. A summary ass
of the parameters used in the simulations is provided in Table A1. ag6

Calculation of the cost function C'(X) requires us to obtain the feature set for s
each instance of the simulation. The averaged PRC can be obtained according to the ass
methods described in our previous paper [14] and elsewhere [12, 28]. The method is s
suitable for both experimental and simulated data, but can be computationally costly a0
and generally unsuitable in an optimisation setting. To ensure computational feasibility, o
we use an approximation for the averaged PRC for part of the optimisation. A suitable 40
approximation should be computationally cheap, stable and reasonably accurate. The 40
requirement of stability precludes the use of the analytical expressions for the PRC 40
(17), which are derived on the basis of an infinite system of oscillators satisfying s
the ansatz of Ott and Antonsen [26]. Situations affecting stability which may arise 4o
during optimisation include large values of the noise parameter &, which may lead to a s
breakdown in the assumptions underlying (17). This motivates the need for alternative 4o
method, which we present here. 499

Assuming an infinite system of oscillators, the order parameter r can be written in
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integral form

2
r= / F(6,t)edp, (A.2)
0

where F'(0,t) is the PDF for the oscillators. Differentiating with respect to time gives

dr [P (OF(0,t)\ .

Using the stimulation part of (18), the continuity equation for F'(6,t) due only to
stimulation can be written as

OF(0,t) 0
T —V% [Z(0)F(0,1)] . (A.4)
Inserting (A.4) into (A.3) gives
detim o a i0
= — — |Z(0)F “de. A.
sy [ G ZOF@.0] " (A5)
Using the polar form for d”j‘i% in (A.5) gives
dpstim . dqvbstim - /27r 0 i(0—1)
e vV a0 (Z(0)F(0,t)] e de. (A.6)

Expressions for the instantaneous ARC and PRC can be found by equating the real and
complex parts of (A.6), respectively, leading to

dﬂ;;m — v /0 ' % (Z(0)F(0,1)] cos(0 — ¢)do, (A7)

and
dgis V[>T D

ad — p ), 060

The averaged PRC can be expressed using a summation over the time points of

[Z(0)F(0,1)] sin(60 — 1)do. (A.8)

stimulation {t,,}

dWstim Vk 1 (79 |
< . >:_V¢ZM /0 S ZOF@,t,)]sin6 —v)ds. (A9

m=1

If we group these time points according to the phase v, with V,, points for the phase
1, then we can express the averaged response in terms of the PDFs conditioned on 1

<dwsﬁm> _ Ly [/01 %dp} 0% O 1 Z(0)P(010)] sin(0 — 0)do.  (A.10)

dt 90

Equation (A.10) represents a computationally cheap way of estimating the averaged soo
PRC since the PDF for the amplitude conditioned on the phase G(p|¢) and the PDF s
for the oscillators F'(]1)) conditioned on the phase can be easily accumulated during s

o
=

simulation. 503
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A.4. Global optimisation 504

For each instance of the model output, we calculate the vector of features {y}”"del(X)} 505
and their similarity with the experimental feature set {y;} measured by C'(X). Since sos
model
J

over a certain number of trials. The global minimum of the cost function C(X) s

Equation (18) is a stochastic differential equation, the features {y (X)} are averaged sor
corresponds to the set of optimisable parameters which best reproduces the experimental s
features. Starting at a configuration X,, we can reach a local minimum of C'(X) using s
local optimisation. By repeating this process using many randomly generated starting su
configurations, a best fit can be obtained by taking the smallest local minimum. To s
obtain an initial configuration Xy, we choose a value for each optimisable parameter s
by randomly sampling from a bounded uniform distribution. The bounds for each s
optimisable parameter are given in Table A2. Optimisation of the cost function C(X) s
was performed using custom written code in MATLAB. The local optimisation was s
performed using the fminsearch function which uses the derivative-free Nelder-Mead sz
simplex method of Lagarias et al [37]. 518

Simultaneous optimisation of the Kuramoto parameters, together with those of s
the nPRC, is necessary to allow the model to fit to both the features reflecting the s
oscillation dynamics and the averaged PRC. In order to be computationally feasible, we sz
performed the optimisation in stages. The principle here is to use a cheaper calculation s
to push the local optimisation towards a local minimum and then gradually refine the s
optimisation using a higher quality calculation. First, we performed the optimisation s
without stimulation, only fitting to those features representing the dynamics. We then s
used the parameters from our best fit in a second optimisation, using the features s
representing the dynamics and the theoretical approximation to the averaged PRC, s
for computational efficiency. Finally, the parameters from this best fit were used in a s
final optimisation, where the averaged PRC feature was instead calculated using the s
experimental methodology. 530

The best fits found through optimisation are shown in Figures 1 (for the dynamics) su
and 2 (for the response). Instances of output for the fitted models are shown in sz
Figure 2 together with experimental data included for comparison. The parameters s
found through optimisation are provided in Table 2. 534

B. Implications for Single Contact DBS 535

In this subsection we will review our results in the context of single contact DBS.
Specifically, we want to understand the feasibility of a closed-loop DBS strategy which
uses a feedback signal from a single contact. In the case of a single electrode contact, the
voltage can be expressed as a summation over population activities using Equation (44)

s
vi(t) = Z dyopo c08(y ). (B.1)
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Parameter | Min | Max

k 0 6

o 0 4

w/2m 4.5 5.5

Sw/2m 05 |1

ao -0.1 [0.1

a -0.09 | 0.09

b1 -0.09 | 0.09

V 0 0.6

Table A2. Bounds for the optimisable parameters used in generating random initial
configurations. An initial configuration is generated by randomly sampling from a
uniform distribution for each parameter within the bounds.

Comparing this with the expression for the global signal (24) and (25) (with ¢ = 1
for simplicity) we can immediately see a correspondence between the matrix elements
{di;»} and the population weights {w,}. The matrix elements encode the electrostatic
properties of the medium and the electrode-population geometry. In theory, therefore,
positioning the electrode has the effect of changing the matrix elements in the expansion
given by Equation (B.1). An expression for the amplitude and phase of vj(t) can be
obtained using the analytic signal (1), namely

Pe = wj(t) + iH[v)(t)). (B.2)

Then, inserting (B.1) into (B.2) and using the approximation (8) leads to

S
Pe' = Z diopoe™, (B.3)
o=1

which has an identical form to (27). If the electrode is positioned such that the matrix
elements coincide exactly with the population weights, although unlikely in general, then
the amplitude P(¢) would equal the synchrony p. In general, the electrode should be
positioned so that P(t) is highly correlated to the symptom severity and hence p. Using
(B.3), the derivation of the amplitude response due to stimulation can then proceed
exactly as before, leading to an identical expression to (32) except with the population
weights replaced with the matrix elements. Explicitly,

dPstim
dt

~ %Z dlUVU(t){[al Sin(W) — by cos(W)] — poao sin(thy — xy)}. (B.4)

Since, by definition, P(¢) should be correlated to symptom severity, it follows that s
Equation (B.4) can be used in a closed-loop DBS strategy. From this we also conclude s
that the effectiveness of single contact closed-loop DBS should also be dependent on |ag|. s
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In the cases where |ag| is non-negligible, knowledge of the population quantities p, and s
1, would be required for an effective closed-loop strategy. Therefore, by estimating |ag| s
for a particular system, we can go some way towards predicting the likely effectiveness sa
of single contact closed-loop DBS. 542
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