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Abstract. Deep brain stimulation (DBS) is a well-established treatment option for 14

a variety of neurological disorders, including Parkinson’s disease (PD) and essential 15

tremor (ET). It is widely believed that the efficacy, efficiency and side-effects of the 16

treatment can be improved by stimulating ‘closed-loop’, according to the symptoms 17

of a patient. Multi-contact electrodes powered by independent current sources are 18

a recent development in DBS technology which allow for greater precision when 19

targeting one or more pathological regions but, in order to realise the potential of 20

such systems, algorithms must be developed to deal with their increased complexity. 21

This motivates the need to understand how applying DBS to multiple regions (or 22

neural populations) can affect the efficacy and efficiency of the treatment. On the 23

basis of a theoretical model, our paper aims to address the question of how to best 24

apply DBS to multiple neural populations to maximally desynchronise brain activity. 25

Using a coupled oscillator model, we derive analytical expressions which predict how 26

the symptom severity should change as a result of applying stimulation. On the 27

basis of these expressions we derive an algorithm describing when the stimulation 28

should be delivered to individual contacts. Remarkably, these expressions also allow 29

us to determine the conditions for when stimulation using information from individual 30

contacts is likely to be advantageous. Using numerical simulation, we demonstrate that 31

our methods have the potential to be both more effective and efficient than existing 32

methods found in the literature. 33

Submitted to: J. Neural Eng. 34
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1. Introduction 35

Deep brain stimulation (DBS) is an effective treatment for advanced Parkinson’s disease 36

(PD) and essential tremor (ET) which involves delivering stimulation through electrodes 37

implanted deep into the brain and targeting regions thought to be implicated in the 38

disease, which in the case of PD is typically the subthalamic nucleus (STN) and for ET 39

the ventral intermediate nucleus (VIM). PD is a common movement disorder caused 40

by the death of dopaminergic neurons in the substantia nigra. Primarily, symptoms 41

manifest as slowness of movement (bradykinesia), muscle stiffness (rigidity) and tremor. 42

ET is purportedly the most common movement disorder, affecting just under 1% of 43

the world population [1, 2] with the main symptom being involuntary shaking most 44

commonly in the upper limbs [3]. Despite its prevalence, the pathophysiology of ET 45

remains elusive, although the cortex, thalamus and cerebellum are all thought to be 46

involved in the disease [2]. Symptoms of these disorders are thought to be due to overly 47

synchronous activity within neural populations. For PD patients, higher power in the 48

beta frequency range (13-30Hz) of the local field potential (LFP) measured in the STN 49

has been shown to correlate with motor impairment [4] while thalamic activity in ET 50

patients is strongly correlated with tremor measured using the wrist flexor EMG [5]. 51

It is thought that DBS acts to desynchronise this pathological activity leading to a 52

reduction in the symptom severity. 53

A typical DBS system consists of a lead, an implantable pulse generator (IPG) 54

and a unit to be operated by the patient. The DBS lead terminates with an electrode, 55

which is typically divided into multiple contacts. Post surgery, clinicians manually 56

tune the various parameters of stimulation, such as the frequency, amplitude and 57

pulse width, in an attempt to achieve optimal therapeutic benefit. Stimulation is 58

then provided constantly, or ‘open-loop’, according to these parameters. The choice 59

of stimulation frequency in particular is known to be crucial for efficacy with high 60

frequency (HF) DBS (120-180 Hz) being found to be effective for both PD and ET 61

patients [6]. Despite the effectiveness of conventional HF DBS in treating PD and ET, 62

it is believed that improvements to the efficiency and efficacy can be achieved by using 63

more elaborate stimulation patterns informed by mathematical models. Coordinated 64

reset (CR) neuromodulation is an open-loop DBS strategy where brief HF pulse trains 65

are applied through different contacts of a stimulation electrode [7, 8, 9, 10]. The efficacy 66

of CR was first demonstrated theoretically, where precisely-timed delivery of HF pulses 67

can be shown to desynchronise a system of coupled oscillators [7]. In practice, CR has 68

been shown to yield both acute and long-lasting benefits in nonhuman primates [8]. 69

Closed-loop stimulation and IPGs with multiple independent current sources 70

are promising new advances in DBS technology. Closed-loop stimulation is a new 71

development in DBS methods which aims to deliver stimulation on the basis of feedback 72

from a patient. There is a growing body of evidence [11, 12, 4, 13] suggesting that 73

closed-loop stimulation has the potential to offer improvements in terms of efficacy, 74

efficiency and reduction in side effects. IPGs with multiple independent current sources 75
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are the ‘cutting-edge’ of DBS technology which, unlike their single current source 76

counterparts, allow for current to be delivered independently to each contact. This gives 77

increased control and flexibility over the shape of the electric fields delivered through the 78

electrodes, allowing for more precise targeting of pathological regions and the possibility 79

of delivering more complex potential fields over space, in addition to allowing for the 80

possibility of recording activity from different regions. The use of multiple contacts 81

for DBS, however, naturally leads to increased complexity, as many more stimulation 82

strategies are now possible. This has created the need to better understand how applying 83

DBS through multiple contacts can affect the treatment. 84

Closed-loop DBS strategies are characterised by their use of a feedback signal to 85

determine when stimulation should be applied. The choice, use and accuracy of this 86

feedback signal therefore plays a crucial role in determining the efficacy of a particular 87

strategy. In the literature, both the LFP and tremor have been used as feedback 88

signals with studies showing that the effects of DBS to be dependent on both the phase 89

and amplitude of the oscillations at the time of stimulation [12, 4]. In adaptive DBS, 90

high frequency stimulation is applied only when the amplitude of oscillations exceeds a 91

certain threshold [4] and in phase-locked DBS stimulation is applied according to the 92

instantaneous phase of the oscillations, which for ET patients corresponds to stimulation 93

at roughly the tremor frequency (typically ∼ 5 Hz) [12]. The combined approach of 94

adaptive and phase-locked stimulation has also been investigated in simulation [13]. 95

In our previous work [14], we provided a mathematical basis for the phase and 96

amplitude dependence of DBS. Here, we extend these ideas and introduce adaptive 97

coordinated reset (ACR), which proposes a closed-loop strategy especially suited to 98

multi-contact systems. Our goal is to understand how the effects of multi-contact DBS 99

should depend on the ongoing neural activity measured through each channel. As part of 100

this work, we demonstrate using numerical simulations that a coupled oscillator model 101

is a plausible neural mechanism for generating tremor found in ET patients. Then, 102

on the basis of this, we model the activity of multiple neural populations using a set 103

of oscillators and relate this activity to the pathological oscillations associated with 104

symptom severity in ET and PD. Using a coupled oscillator model we then describe 105

how this activity (and hence the symptom severity) is likely to change when DBS is 106

applied through multiple contacts. The results we present suggest how DBS should be 107

provided through multiple contacts in order to maximally desynchronise neural activity. 108

Using numerical simulation and parameters fitted to ET patients, we then compare 109

our methods to others found in the literature, namely phase-locked stimulation and 110

coordinated reset. The methods we present can be applied in different ways, either 111

using multiple electrodes or single electrodes with multiple contacts. We therefore use 112

the terms ‘electrode’ and ‘contact’ synonymously throughout. 113
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2. A Model for Single Contact DBS 114

2.1. Phase Synchrony and Oscillations 115

In this section, we consider how stimulation with a single electrode acts on a population 116

of oscillators. Here we follow our previous paper [14], which the interested reader may 117

refer to for a more detailed derivation of the results presented in this section. A list of 118

frequently used notation is provided in Table 1. 119

Parameter Description

k Coupling constant

σ̃ Noise amplitude

ω̄ Mean of natural frequencies

sω Standard deviation of natural frequencies

Z Neuronal phase response curve (nPRC)

a Cosine Fourier coefficient of nPRC

b Sine Fourier coefficient of nPRC

θ Phase of oscillator

ψ Phase of population

ρ Synchrony of population

r Complex order parameter

c Scaling constant for experimental data

S Number of populations

L Number of electrodes

N Number of neurons

J Number of constraints

Γ Amplitude response for a single population

w Population weight

dnorm Electrode-population distance

p′ Electrode position

p Neuron position

P Population position

v′ Voltage at electrode

v Voltage at neuron

V Voltage at population

q′ Charge of electrode

q Charge of neuron

Q Charge of population

D Activity to voltage at electrode transformation matrix

D̃ Electrode to voltage at population transformation matrix

d Element of D

d̃ Element of D̃

Table 1. List of frequently used symbols together with their description.
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Our goal in this subsection is to show how the amplitude measured in feedback

signals can be related to the synchrony of neural populations. The instantaneous phase

Ψ(t) and envelope amplitude P(t) of a signal F (t) can be obtained using the analytic

signal R(t)

R(t) = PeiΨ = F (t) + iĤ[F (t)], (1)

where Ĥ denotes the Hilbert transform. We would like to relate this quantity to those 120

associated with a state of oscillators. 121

We define the state of N regular spiking neurons to be given by the set of oscillators

{θ1(t), θ2(t), θ3(t) . . . θN(t)}, which are the phases describing where each neuron is in its

firing cycle. The phase synchrony of this system can be measured using the order

parameter r, defined to be

r = ρeiψ =
1

N

N∑
n=1

eiθn . (2)

The above definition ensures the magnitude of the order parameter ρ can take values

between 0 and 1, representing full desynchrony and full synchrony, respectively. We can

transform the state of the system to a signal representing the neural activity using a

superposition of cosine functions

f(t) = Re(r) =
1

N

N∑
n=1

cos[θn(t)]. (3)

The choice of a cosine function is for mathematical convenience since it corresponds to

the real part of (2). In addition to this, the cosine function has a maximum at 0, and

in classic coupled oscillator models, phase 0 corresponds to the phase when neurons

produce spikes [15]. Hence post-synaptic potentials in down-stream neurons receiving

an input from the modelled population will be a smoothed function of spikes produced

in phase 0, so the cosine function captures key features of such post-synaptic potentials.

Using the Euler relation and comparing (3) with the real part of (2) shows

f(t) = ρ cos(ψ). (4)

We assume here a simple relationship between the neural activity and feedback signals

we may measure, for example tremor and the LFP

F (t) = cf(t), (5)

where the experimental signal has now been denoted by F (t). This is reasonable in

the case of ET, where thalamic activity is known to be highly correlated to tremor [5].

Inserting Eq. (5) into (1) gives

PeiΨ = c{f(t) + iĤ[f(t)]}. (6)

Inserting Eq. (3) into Eq. (6) and using the linearity of Ĥ leads to

PeiΨ =
c

N

N∑
n=1

{cos(θn) + iĤ[cos(θn)]}. (7)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.08.10.242743doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.242743
http://creativecommons.org/licenses/by-nc-nd/4.0/


6

Under the reasonable assumption that the time evolution of θn is approximately

monotonic, it can be shown that [14]

Ĥ[cos(θn)] ' sin(θn), (8)

where ‘'’ is used to indicate ‘approximately equal to’. Therefore

PeiΨ =
c

N

N∑
n=1

{cos(θn) + i sin(θn)} = cρeiψ. (9)

Hence, the instantaneous envelope amplitude and phase (the analytic signal) is relatable

to the magnitude and phase of the order parameter using

P = cρ, Ψ = ψ. (10)

In summary, assuming the experimental data and neural activity are related according 122

to Eq. (5) and that the phases {θn} increase monotonically with time, we can use 123

the Hilbert transform of the experimental data to relate the envelope amplitude and 124

instantaneous phase to the magnitude and phase of the order parameter, respectively. 125

2.2. Response Curves 126

The neuronal phase response curve (nPRC) for a spiking neuron is the change in spike

timing due to a perturbation as a function of the inter-spike time. Hansel et al [16]

categorised nPRCs into either type I or type II depending on whether a small excitatory

(inhibitory) input always advances (delays) a neuron to a next spike or whether it

either advances or delays a spike, depending on where the neuron is in its firing cycle,

respectively [17]. These effects of inputs can be captured using a simple mathematical

function Z(θ). By mapping where a neuron is in its firing cycle onto a phase variable

θ ∈ [0, 2π], the nPRC describes the change in phase of a single neuron due to a stimulus.

More precisely, under the assumption of a weak input εU(t), the evolution of a single

oscillator can be written in terms of a natural frequency ω0 in addition to a response

term
dθ

dt
= ω0 + εU(t)Z(θ). (11)

A general neuronal nPRC can be expanded as a Fourier series

Z(θ) =
a0

2
+
∞∑
m=1

am cos(mθ) +
∞∑
m=1

bm sin(mθ). (12)

The nPRC type is reflected in the zeroth harmonic a0, or the shift, with |a0| large 127

and small relative to the other coefficients being indicative of type I and type II 128

curves, respectively. Phase oscillator models which incorporate the nPRC can be 129

shown to reproduce the experimentally-known characteristics of a patient’s response to 130

stimulation [14], namely that the effects should be both amplitude and phase dependent 131
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[4, 12]. This leads to the concept of the phase response curve (PRC) and the amplitude 132

response curve (ARC) for feedback signals, such as LFP and tremor, which can be 133

described by perturbing a population of oscillators and respectively describe changes 134

in the phase and amplitude of the feedback signal at the point of stimulation. The 135

instantaneous curves, which are functions of both the phase and amplitude at which 136

the stimulation is delivered, are not commonly found in experimental analysis due 137

primarily to the difficulties associated with obtaining a function of two independent 138

variables from noisy data. It is more common to find the averaged response curves, 139

which are only functions of the phase and are averaged over the amplitude. Such curves 140

are readily obtainable using standard signal processing techniques and have been used 141

to characterise a patient’s response to stimulation [18, 12, 19]. 142

2.3. The Kuramoto Model 143

Modelling the effects of DBS generally poses a challenge since the brain networks

involved in disorders such as ET (cortico-thalamic circuit) and PD (cortico-basal-ganglia

circuit) are complex and it is still debated from which parts of these circuits the

pathological oscillations originate [20, 21]. The task can be made more tractable by

considering a simple phenomenological model which does not attempt to explicitly

describe the underlying circuits, but rather focuses on general mechanisms leading

to the synchronization of neurons. One example of this is the Kuramoto model,

[22, 23] where the dynamics of neurons are described using a system of homogeneously

coupled oscillators, whose phases evolve according to a set of underlying differential

equations. Such models are particularly attractive due to their simplicity and explicit

dependence on phase, which makes them convenient for describing the effects of phase-

locked stimulation. In the previous section we showed that the oscillation data typically

measured in experiment can be modelled using an underlying system of oscillators, whose

state is described by the set of N phases {θn}. We can describe the time evolution of

this state (for a single population) using the Kuramoto equations, with an additional

term describing the effects of stimulation [22, 7]

dθn
dt

= ωn +
k

N

N∑
m=1

sin(θm − θn) + V (t)Z(θn). (13)

The first term of (13) is the natural frequency ωn which describes the frequency in the

absence of external inputs. The second term describes the coupling between the activity

of individual neurons, where k is the coupling constant which controls the strength

of coupling between each pair of oscillators and hence their tendency to synchronize.

The third term describes the effect of stimulation, where the intensity of stimulation

is denoted by V (t). The nPRC denoted by Z(θn), describes a neuron’s sensitivity

to stimulation at a particular phase and reflects the observation that the effects of

stimulation depend on where a neuron is in its firing cycle [24]. Using the definition of
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the order parameter given in Eq. (2), Eq. (13) can be transformed to give

dθn
dt

= ωn + kρ sin(ψ − θn) + V (t)Z(θn). (14)

In this form, it is clear that each oscillator has a tendency to move towards the 144

population phase ψ and that the strength of this tendency is controlled by the coupling 145

parameter k. To gain an intuition for this behaviour readers may wish to explore an 146

online simulation of the model [25]. 147

2.4. Reduced Kuramoto Model 148

In the previous section, we described the dynamics of a finite system of oscillators using

the Kuramoto equations given by Eq. (14). In this model, stimulation is described as a

perturbation to the phase of an oscillator, with each oscillator experiencing a different

effect of stimulation depending on its phase (and determined by Z(θ)). Stimulation

therefore has the effect of changing the distribution of oscillators and hence the order

parameter of the system. Since the order parameter, given by Eq. (2), is determined

by both the amplitude and phase of the system, the expectation is that stimulation

will lead to a change in both these quantities, which we refer to as the instantaneous

amplitude and phase response of the system. To obtain analytical expressions for these

quantities, we can consider an infinite system of oscillators satisfying the ansatz of Ott

and Antonsen [26, 27]. In our previous work [14], we showed that for a general nPRC

given by Equation (12) and assuming the natural frequencies are Lorentzian distributed

with centre ω0 and width γ, the instantaneous change in the order parameter can be

written as
dr

dt
= (iω0 − γ)r +

kr

2
(1− |r|2)

+
iV (t)

2

{
a0r +

∞∑
m=1

am[(r∗)m−1 + rm+1] + i
∞∑
m=1

bm[(r∗)m−1 − rm+1]

}
. (15)

Using this, we can find expressions for the ARC and PRC due to stimulation

dρstim

dt
=
V (t)

2
(1− ρ2)

∞∑
m=1

ρm−1

[
am sin(mψ)− bm cos(mψ)

]
, (16)

and
dψstim

dt
=
V (t)

2

{
a0 + (1 + ρ−2)

∞∑
m=1

ρm
[
am cos(mψ) + bm sin(mψ)

]}
. (17)

3. Reproducing Tremor in ET Patients 149

We now address the question of whether the Kuramoto model can produce oscillations

which are compatible with tremor data from ET patients. To account for random

forces which may influence the firing of individual neurons, the Kuramoto model can be
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extended to include a noise term, which we take here to be a Wiener process. The time

evolution for θn then becomes

dθn = [ωn + kρ sin(ψ − θn) + V (t)Z(θn)] dt+ σ̃N(0, 1)
√
dt, (18)

where σ̃ is the noise amplitude and N(0, 1) is a random number sampled from a standard 150

normal distribution. During a simulation, the set of oscillators {θn} evolves according to 151

(18) and oscillations can be generated using Equation (3). The oscillation data output 152

from the Kuramoto model (18) depends on the choice of parameters {ωn}, k, N and σ̃. 153

We can characterise these oscillations by using features extracted from the data, which 154

we choose to be: the power spectral density (PSD), the probability density function 155

(PDF) for the amplitude and the PSD of the envelope amplitude. To reproduce the 156

response of a particular patient, we also fit to the averaged PRC [14, 12, 28] of the patient 157

by adjusting the parameters for the nPRC. These characterisations can be applied to 158

both the experimental and synthetic simulated data from the model. The similarity 159

between features from the simulated and experimental data can then be quantified 160

using least squares, which in turn allows us to quantify the degree of similarity between 161

simulated and experimental oscillation data. By using this similarity measure as a cost 162

function, we can then find the parameters of the Kuramoto model which minimise the 163

cost using optimisation and thus find the parameters which allow the model to produce 164

oscillations similar to experimental data. 165

The computational cost of the optimisation depends on a number of factors, 166

including the number of parameters. To ensure feasibility and prevent overfitting, we 167

choose a reasonable number of oscillators N = 60 and sample {ωn} from a normal 168

distribution with mean ω̄ and standard deviation sω. We chose to simulate the Kuramoto 169

model with {ωn} sampled from a normal distribution as opposed to a Lorentzian 170

distribution (which was assumed in the derivation of the response curves) since the 171

long tails of the latter can lead to a non-monotonic evolution for ψ, due to sampling 172

small/negative ωn. This can be problematic for the methodologies used to calculate the 173

phase response curves, which require a monotonic evolution for ψ. 174

We fit the Kuramoto model to tremor data [12, 29] from ET patients deemed to 175

have significant response curves [28]. The parameters found through optimisation are 176

provided in Table 2. Figures 1 and 2(a)-(c) show the Kuramoto model is able to fit well 177

to the features taken from the experimental data. Output from the model can be seen 178

in Figure 3 and shows the resulting simulated data to be quite compatible with that 179

found from experiment. The model can be seen to capture the basic properties of the 180

experimental data, but not the more exotic features, such as the sustained periods of 181

lower amplitudes, which are likely due to non-stationarity. Figures 2(d)-(f) show that 182

the fitted model is able to reproduce the amplitude response for patients generally well, 183

although Figure 2(d) does show a noticeable phase shift between the simulated and 184

experimental curves for Patient 1. Overall, our findings suggest that it is reasonable to 185

use the Kuramoto model as a model for tremor in ET patients. It is on this basis that we 186

derive the expressions for the response curves in subsequent sections. A more detailed 187
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Figure 1. Fits to various features extracted from oscillation data. The first row (a)-(c)

is the power spectral density (PSD), the second row (d)-(f) is the probability density

function (PDF) for the envelope amplitude and the third row (g)-(i) is the PSD of the

envelope. Columns (a)-(g), (b)-(h) and (c)-(i) are for patients 1, 5 and 6, respectively.

Patient σ̃ k ω̄/2π sω/2π V a0 a1 b1

1 2.78 9.15 4.96 0.31 0.06 -0.01 -0.01 -0.05

5 3.10 14.11 4.24 0.68 0.22 -0.12 0.01 -0.02

6 1.58 1.57 3.88 0.44 0.15 -0.07 -0.02 0.01

Table 2. Parameters for the single population Kuramoto model given by Equation

(18). The parameters were found by fitting the model to tremor data taken from ET

patients by Cagnan et al [12].

description of our fitting methodology, together with details of the experimental data, 188

can be found in the Appendix. 189

4. Theory of Multi-contact DBS 190

4.1. Multi-population Kuramoto Model 191

We will show in this section that modelling a symptom due to excessive synchrony of

multiple neural populations can be achieved by using a simple extension of the concepts

presented in Sections 2.1 and 2.3. The set of oscillators {θ1(t), θ2(t), θ3(t) . . . θN(t)} can

be arbitrarily divided into S populations with Nσ oscillators for the σth population.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.08.10.242743doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.242743
http://creativecommons.org/licenses/by-nc-nd/4.0/


11

(a) (b) (c)

(d) (e) (f)

Phase Response

Amplitude Response

0 /2 3 /2 2
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 /2 3 /2 2

-0.15

-0.1

-0.05

0

0.05

0 /2 3 /2 2
-0.3

-0.2

-0.1

0

0.1

0.2

0 /2 3 /2 2
-6

-4

-2

0

2

4
10

-3

0 /2 3 /2 2
-0.01

-0.005

0

0.005

0.01

0.015

0 /2 3 /2 2
-0.01

-0.005

0

0.005

0.01

0.015

0.02

ψ (rad)

0 2 4 6
-0.3

-0.2

-0.1

0

0.1

0.2

Experimental
Simulation

Figure 2. Comparison between the averaged response curves for experimental data

and the fitted Kuramoto model. The phase response curve was used as a feature

during the fitting procedure. The amplitude response curve is predicted from the

model. Columns (a)-(d), (b)-(e) and (c)-(f) are for patients 1, 5 and 6, respectively.

The order parameter defined by Equation (2) can then be rewritten using a double

summation

r =
1

N

S∑
σ=1

Nσ∑
n=1

eiθσn , (19)

with oscillator n of population σ being denoted by θσn. The factor of 1
N

can be brought

inside the first summation and rewritten as Nσ
NσN

. Then, with

wσ =
Nσ

N
, (20)

the order parameter for the system can be written as

r =
S∑
σ=1

wσ
Nσ

Nσ∑
n=1

eiθσn . (21)

Using the definition of the order parameter (2), Eq. (21) can be written as a weighted

superposition of the order parameters for each population

r =
S∑
σ=1

wσrσ, (22)
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Figure 3. Comparison between experimentally measured tremor data [12] and output

from the fitted Kuramoto model. Columns (a)-(d), (b)-(e) and (c)-(f) are for patients

1, 5 and 6, respectively.

with
S∑
σ=1

wσ = 1. (23)

We define r to be the global order parameter with amplitude ρ and phase ψ and rσ to 192

be the local order parameter for population σ with amplitude ρσ and phase ψσ. The 193

importance of the global order parameter is that its magnitude ρ is a measure of total 194

synchrony and hence should be highly correlated to the severity of a symptom, such 195

as tremor in the case of ET. In the case of PD, symptom severity could be measured 196

using the unified Parkinson’s disease rating scale (UPDRS) scores [30]. Therefore, we 197

will consider how to stimulate to maximally reduce the magnitude of the global order 198

parameter. 199

We can also relate (22) to feedback signals we might measure by using (3) and

taking the real part. Under the assumption (5) relating the neural activity to the

feedback signal we obtain an expression for the feedback signal in terms of population

activities

F (t) =
S∑
σ=1

cwσfσ(t). (24)

We refer to F (t) and {fσ(t)} as the global and local signals (or population activities),

respectively. Using (4), Equation (24) can also be written in terms of the global and
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local amplitudes and phases

P cos(ψ) =
S∑
σ=1

cwσρσ cos(ψσ). (25)

The Kuramoto equations (13) can also be rewritten in terms of the population

phases ψσ and amplitudes ρσ

dθσn
dt

= ωσn +
S∑

σ′=1

wσ′kσσ′ρσ′ sin(ψσ′ − θσn) + Vσ(t)Zσ(θσn), (26)

where Vσ(t) is the now the stimulation intensity at a population σ. The coupling constant 200

k in Eq. (13) is now a S × S matrix with elements kσσ′ . The diagonal and off-diagonal 201

elements describe the intrapopulation and interpopulation coupling, respectively. 202

4.2. Multi-population Response Curves 203

We now derive an expression describing the change in the global amplitude due to

stimulation as a function of the local (population) amplitudes and phases. For now it is

assumed that the local quantities (to base the stimulation on) can be measured. We will

discuss how these quantities can be measured later. Using the polar form of the order

parameter (2), Equation (22) can be written as a summation involving the amplitudes

and phases of individual populations

ρeiψ =
S∑
σ=1

wσρσe
iψσ , (27)

Taking the time derivative of (27) leads to

dρ

dt
+ iρ

dψ

dt
=

S∑
σ=1

wσ

[
dρσ
dt

+ iρσ
dψσ
dt

]
ei(ψσ−ψ), (28)

which can be written in terms of the real and imaginary components

dρ

dt
+ iρ

dψ

dt
=

S∑
σ=1

wσ

{[
dρσ
dt

cos(ψσ − ψ)− ρσ
dψσ
dt

sin(ψσ − ψ)

]
+ i

[
ρσ
dψσ
dt

cos(ψσ − ψ) +
dρσ
dt

sin(ψσ − ψ)

]}
.

(29)

It can be seen that the time derivative of the amplitude is the real part of (29)

dρ

dt
=

S∑
σ=1

wσ

[
dρσ
dt

cos(ψσ − ψ)− ρσ
dψσ
dt

sin(ψσ − ψ)

]
. (30)

The quantities dρσ/dt and dψσ/dt of Equation (30) are the changes in the amplitude

and phase of a population with respect to time. If we assume the distribution of phases
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(a) (b)

Figure 4. Different configurations of oscillators color coded according to

population showing (a) unimodal distribution (b) multimodal (clustered) distribution.

Configurations were obtained by simulating the multi-population Kuramoto equations

(26).

within a population satisfies the ansatz of Ott and Antonsen [26], we can substitute

Eq. (16) and Eq. (17) into (30) to obtain the amplitude response due to stimulation in

terms of the Fourier coefficients of Z(θ)

dρstim

dt
=

1

2

S∑
σ=1

wσVσ(t)

{ ∞∑
m=1

ρm−1
σ

[
am sin[(m− 1)ψσ + ψ]− bm cos[(m− 1)ψσ + ψ]

]
−
∞∑
m=0

ρm+1
σ

[
am sin[(m+ 1)ψσ − ψ]− bm cos[(m+ 1)ψσ − ψ]

]}
,

(31)

where, for simplicity, we assume that Z(θ) is the same for all populations. Equation (31)

contains an expansion over the harmonics of Z(θ). In our previous paper, we

demonstrated that, for a biologically realistic nPRC, it is reasonable to neglect higher

harmonic terms (m > 1) [14], leading to a simpler expression for the instantaneous

amplitude response

dρstim

dt
' 1

2

S∑
σ=1

wσVσ(t)

{
[a1 sin(ψ)− b1 cos(ψ)]− ρσa0 sin(ψσ − ψ)

− ρ2
σ[a1 sin(2ψσ − ψ)− b1 cos(2ψσ − ψ)]

}
,

(32)

Equation (32) shows the global reduction in amplitude can be expressed as a sum of

contributions from each population, with each term dependent on 3 variables: the global

phase ψ, the local phase ψσ and the local amplitude ρσ. It also suggests that stimulating

on the basis of local quantities may not always be advantageous. It can be seen that

the terms of Equation (32) can be divided into two categories: ones which depends on

both global and local quantities and ones which depends only on global quantities. The
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Figure 5. The predicted contribution of a single population to the amplitude response

at different local amplitudes ρσ according to Eq. (32). Each panel corresponds to a

single ET patient from the study of Cagnan et al [12], where the Fourier coefficients

of the nPRC were determined using a fitting procedure. Panels (a) (b) and (c) are for

patients 1, 5 and 6, respectively. For each plot, the vertical axis is the global phase

(ψ) and the horizontal axis is the local (or population) phase (ψσ). The corresponding

nPRC Z(θ) is also shown, with zero indicated by a red dashed line. Blue regions

indicate areas where stimulation is predicted to suppress amplitude.

terms depending on both the global and local phases are also dependent on the local

amplitudes. In cases where the local amplitude is small, i.e. ρσ � 1, we can neglect the

term involving ρ2
σ, leading to a simplified expression

dρstim

dt
' 1

2

S∑
σ=1

wσVσ(t)

{
[a1 sin(ψ)− b1 cos(ψ)]− ρσa0 sin(ψσ − ψ)

}
. (33)

Here, it can be seen that the amplitude response would be dependent only on the global 204

phase if the zeroth harmonic of the nPRC a0 is negligible, which is the case for type II 205

nPRCs. It can also be seen that the dependency of the amplitude response on the local 206

quantities of population σ becomes less at increasingly lower local amplitudes ρσ. In 207

addition to this, the dependence on sin(ψσ−ψ) implies that stimulating on the basis of 208

local quantities would only have an effect if the phases of individual populations differ 209

sufficiently from the mean phase. One situation in which such phase difference may be 210

particularly high are for clustered configurations of oscillators. Examples of different 211

configurations of oscillators are shown in Figure 4. 212
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Plots for the amplitude response (32) together with the corresponding nPRC using 213

the fitted parameters from Table 2 for ET patients 1, 5 and 6 can be seen in Figures 5(a), 214

(b) and (c), respectively. For a given local amplitude, we plot a single term from 215

the summation over populations in Equation (32). This provides the contribution of 216

a single population to the amplitude response as a function of the local and global 217

phases. Regions in blue are areas of amplitude suppression while orange regions predict 218

amplification. In both cases, these regions can be seen to occur in bands. Graphically, 219

the dependence of the amplitude response on the global and local phases can be inferred 220

from the direction of the banding. A purely horizontal band implies the amplitude 221

response is independent of the local phase. An example of this can be seen at low 222

amplitudes in Figure 5 (a). Other plots show diagonal banding, which implies the 223

amplitude response is dependent on both the global and local phases. This behaviour 224

can be understood by considering the 3 terms of (32). At low amplitudes, the first 225

term dominates, which is only dependent of the global phase. As the local amplitude 226

increases, the second and third terms depending on local quantities become increasingly 227

more important. For the cases where |a0| is small, the effect is less apparent. The left 228

panel of Figure 5 (a) shows that stimulation can either increase or reduce the phase (i.e. 229

an nPRC of type II), implying a relatively small |a0|. Hence, for this patient, the second 230

and third terms are negligible, except at higher amplitudes. Figures 5 (b) and (c) shows 231

that stimulation has the effect of only increasing the phase, which is indicative of Z(θ) 232

with larger |a0|. For these systems the amplitude response can be seen to depend more 233

strongly on the local phase for all amplitudes. 234

4.3. Obtaining Population Activities Through Electrode Measurements 235

In this subsection, we will describe how the local phases {ψσ} and amplitudes {ρσ} 236

can be recovered using LFP measurements through different contacts. This requires 237

us to incorporate information about the geometry of the electrode placement into the 238

equations for the response curve in addition to assigning a physical interpretation to 239

the population activity. Our aim here is not to construct a detailed electrophysiological 240

model of neuronal activity but rather to present a very general form for the voltage 241

measured at an electrode contact. We formulate our expressions here in terms of electric 242

charge, but the same form also permits the use of currents. In addition to this, our 243

expressions include summations over neurons, but an equally valid expression can be 244

made by summing over elements of space, as is the case in multi-compartmental models 245

[31]. The quantities we consider in our model are voltages v′l(t) measured at electrode 246

l due to the activity of population σ producing charges Qσ(t) and voltages Vσ(t) at 247

population σ due to stimulation which delivers charge q′l(t) to electrode l. The voltage 248

Vσ(t) can also be thought of as the ‘stimulation intensity’ experienced at population σ. 249

We begin by considering a system of L electrodes and N neurons with positions

in space denoted by p′ and p, respectively. From now on, we will use the following

notation throughout: primes to denote quantities associated with electrodes, lower case
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for neuronal quantities and upper case for population quantities. Voltages measured at

an electrode arise due to the geometry of the electrode-neuron system and the intrinsic

electrical activity of each neuron. We express the voltage measured at an electrode in

terms of a summation over charges due to the neurons qn(t)

v′l(t) =
N∑
n=1

d(p′l,pn)qn(t), (34)

where d(p′l,pn) are coefficients which reflect the medium and geometry of the electrode-

neuron system. For example, in the case of a coulombic system, the coefficients would

be

d(p′l,pn) =
κe

|p′l − pn|
, (35)

where κe is the Coulomb constant. As before, a system of neurons can be arbitrarily

divided into S populations, with each neuron referenced by both a population and

position index σ and n, respectively.

v′l(t) =
S∑
σ=1

Nσ∑
n=1

d(p′l,pσn)qσn(t), (36)

We now let pσn = Pσ + ∆pσn, i.e. we now define a vector to a neuron in terms of a

vector to a region (or population) plus a shift.

v′l(t) =
S∑
σ=1

Nσ∑
n=1

d(p′l,Pσ + ∆pσn)qσn(t), (37)

If we assume the region at Pσ to be small, then

∆pσn ' 0. (38)

The potential at the electrode can then be written in terms of population activity

v′l(t) =
S∑
σ=1

d(p′l,Pσ)Qσ(t), (39)

where

Qσ(t) =
Nσ∑
n=1

qσn(t). (40)

The time dependent charge of a population Qσ(t) can be related to the neural activity

by assuming a form for qσn(t), specifically that

qσn(t) =
c

N
cos(θσn). (41)

Inserting this into (40) and using (20) gives

Qσ(t) =
cwσ
Nσ

Nσ∑
n=1

cos(θσn). (42)
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Figure 6. Visualisations of 4 electrode 4 population systems, where each population

occupies a small spatial region. Each system was generated by randomly choosing the

coordinates of the 4 populations so that they lie within a box of length Lbox = 10.

Each electrode is then placed dnorm distance from a population. Panel (a) shows a

configuration where each electrode is placed very close to a population (dnorm = 0.5).

Panel (b) shows a different system (dnorm = 2) where both the electrodes and

populations are more ‘dispersed’. In this scenario, electrodes may record activity from

multiple populations.

Using (3) and (4) gives an expression for the time dependent charge of a population in

terms of the population phase and amplitude

Qσ(t) = cwσρσ cos(ψσ). (43)

Using (39) the potential at the electrodes can therefore be written in matrix form

d11 d12 d13 . . . d1S

...
. . .

...
. . .

...
. . .

dL1 dLS




ρ1 cos(ψ1)

ρ2 cos(ψ2)

ρ3 cos(ψ3)
...

ρS cos(ψS)

 =


v′1(t)

v′2(t)

v′3(t)
...

v′L(t)

 , (44)

where for simplicity we have denoted dlσ = cwσd(p′l,Pσ). Equation (44) can be

expressed in a more compact form with D denoting the matrix of coefficients (of

dimensions L× S), f as the vector of neural activities and v′ as the vector of electrode

measurements.

Df = v′. (45)

Equation (45) relates the voltages at the electrodes v′ to the neural activities f . In 250

general, our ability to use Equation (32) in a closed-loop DBS strategy depends on being 251

able to accurately measure the population quantities {ρσ} and {ψσ}. Equation (44) 252

shows that what we actually measure at the electrodes is a linear superposition of 253
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population activities. For the cases where D is approximately diagonal, the population 254

quantities could be accurately recovered (although ρσ would be scaled). Such cases 255

would represent systems consisting of small separated regions of activity, with each 256

electrode positioned close to each region (see Figure 6(a)). 257

Methods such as independent component analysis (ICA) [32] are well-suited to 258

solving the general problem of recovering a vector of ‘source signals’ f(t) (in this case the 259

population activities) given a vector of recordings v′(t), as expressed in Equation (44), 260

although the method cannot recover the scaling. We consider the special case of a single 261

contact recording, i.e. with L = 1, in the appendix. Since in theory the matrix D should 262

not evolve with time, we envisage ICA being applied offline to recover D and then used 263

to obtain the local signals. In practice, after determining the local signals, Equation (25) 264

should be used to construct the global signal. In this process, the weights {wσ} should 265

be chosen to give a global signal with an amplitude that is highly correlated to the 266

symptom severity. 267

4.4. Optimal Stimulation Strategy 268

The equations for the amplitude response (31), (32) and (33) depend on the stimulation 269

intensity at a population Vσ. It is implied, therefore, that the ‘population’ exists at 270

some region in space and that Vσ should take into account the geometry of the electrode 271

placement, how electric fields behave within brain tissue and the charges on a particular 272

electrode. In this subsection, our aim is to incorporate these ideas into an expression 273

for the amplitude response. 274

Equations (31), (32) and (33) all involve summations over populations, with each

term being the product of a weight wσ, a stimulation intensity Vσ and some intrinsic

response, which we shall denote here by Γσ. For example, in the case of Equation (31)

Γσ would be

Γσ =
∞∑
m=1

ρm−1
σ

[
am sin[(m− 1)ψσ + ψ]− bm cos[(m− 1)ψσ + ψ]

]
−
∞∑
m=0

ρm+1
σ

[
am sin[(m+ 1)ψσ − ψ]− bm cos[(m+ 1)ψσ − ψ]

]
,

(46)

Using this, a more compact expression for the amplitude response can be written using

linear algebra notation, with Γ equal to the vector of responses and V equal to the

vector of voltages at a population

dρstim

dt
=

1

2
(ΓTV), (47)

where the weights wσ are now considered as part of the response Γ. The amplitude

response involves a ‘stimulation intensity’ V(t)- an abstract quantity which, intuitively,

should not only depend on the charge characteristics at the electrode, but also the

geometry of the electrode placement and the properties of the brain tissue. Taken
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altogether, the stimulation intensity is better interpreted as the voltage at a population,

which can be expressed as a weighted superposition of charges at the electrodes

D̃q′ = V. (48)

As before, the elements of matrix D̃ (of dimensions S×L) are coefficients which reflect

the medium and geometry of the electrode-neuron system. Its worth noting here that

Equations (45) and (48) can also be used to model systems where the stimulating and

recording electrodes are different, since D̃ is allowed to be different from DT. Inserting

(48) into (47) leads to an expression for the amplitude response in terms of the charges

at the electrodes, i.e. the control variables

dρstim

dt
=

1

2
(D̃TΓ)Tq′. (49)

The quantity (D̃TΓ)T is defined for each time step so that the optimisation becomes a

problem of choosing q′ so as to minimise dρstim/dt. Often, concern for tissue damage due

to stimulation imposes a limit on how much charge can be delivered to a single or group

of contact(s). To account for this and ensure feasibility, we impose two constraints.

The first constraint ensures the charge for a particular contact does not exceed some

maximum value q′max

0 ≤ q′ ≤ q′max. (50)

A simple optimal solution (per time step) for Equations (49) and (50) can be found

by setting the charge for the lth contact to q′max if the lth component of (D̃TΓ)T is

negative. A second constraint ensures the charge density within a region does not

become dangerously high

Aq′ ≤ q′max. (51)

Here, for J groups of contacts, the constraint matrix A has dimension J × L and can 275

be used to constrain the collective charges of the group. The J-dimensional vector q′max 276

specifies the maximum charge for a particular group of contacts. Equations (49), (50) 277

and (51) are in the standard form for a linear program and are solvable in polynomial 278

time. 279

5. Numerical Simulations 280

The instantaneous response tells us how the amplitude of a system should change as a 281

function of its state variables but did not take into account the dynamics of the system, 282

such as the coupling which acts to resynchronise the oscillators and the effects of a finite 283

number of oscillators– the latter leading to a breakdown in the underlying assumptions 284

which lead to Equation (32). To better assess the real world performance of a particular 285

stimulation strategy we use the time-averaged response, which requires us to simulate 286

a system using equations (4), (27) and (26). 287
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5.1. Simulated systems 288

We define a system in terms of its electrode-population configuration, dynamics and

intrinsic response to stimulation Z(θ). To construct a particular system we first

randomly choose the coordinates of S populations such that they lie within a box of

length Lbox = 10. We then assign to each population an electrode, which we place

dnorm distance from the population. For a sufficiently large Lbox, dnorm can be used to

characterise the system– a small dnorm means the effects of stimulation are localised

to a particular population and increasing dnorm increasingly delocalises the effects of

stimulation. For simplicity, we consider a system consisting of S = 4 populations and

L = 4 electrodes. The analytical expressions for the response curves are for an infinite

system, so we require that Nσ is large. For each population, we choose the number of

oscillators Nσ = 200 to satisfy this and to remain computationally feasible. We also

assume a coulombic system, where each electrode is able to simultaneously record and

stimulate. In this case, the elements of D are given by

dlσ =
cwσ

|p′l −Pσ|
. (52)

We denote the elements of matrix D̃ as d̃σl, which can be related to D using the transpose

d̃σl =
dlσ
cwσ

. (53)

The dynamics of a system are determined by the parameters of the multipopulation

Kuramoto model with an additional noise term

dθσn =

[
ωσn +

S∑
σ′=1

wσ′kσσ′ρσ′ sin(ψσ′ − θσn) + Vσ(t)Zσ(θσn)

]
dt+ σ̃N(0, 1)

√
dt. (54)

To simplify our testing, we fix the basic parameters of (54) to those found from fitting 289

to Patient 5. As previously mentioned, the natural frequencies {ωσn} are sampled from 290

a normal distribution. Such simulations represent a greater test for the robustness of 291

the predicted amplitude response due to stimulation (32), which assumes a Lorentzian 292

distribution for {ωσn}. 293

The S × S coupling constant matrix can be simplified by focussing only on the 294

diagonal and off-diagonal components, which we denote by kdiag and koffdiag, respectively. 295

We fix koffdiag = 6, so that kdiag can be used to control the level of clustering for a 296

particular configuration of oscillators- increasing kdiag leading to increasingly multi- 297

modal distributions of oscillators. The nPRC Z(θ) was also chosen according to 298

parameters fitted to Patient 5, but we allow the zeroth harmonic a0 to vary. 299

5.2. Running the simulation 300

To test each strategy we first create a system according to the set of parameters 301

{dnorm, kdiag, a0} then choose a stimulation strategy from CR, phase-locked (PL) and 302
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Figure 7. Output from numerical simulations showing the effects of Coordinated

Reset (CR). Stimulation was turned on at t = 20 seconds. The top panel of (a) shows

the model output for a system simulated according to Equations (54) and (24). The

bottom panel of (a) shows the stimulation delivered as a function of time, taken to

be the average of the charges across the contacts. The bottom panel of (b) shows the

stimulation across each contact, with the corresponding model output provided in the

top panel.

ACR. Our implementation of PL stimulation is to use Equation (33), but to neglect all 303

the local terms, which is equivalent to setting ρσ = 0. 304

We use the time-shifted variant of CR neuromodulation [7, 33] in our testing. For

a given electrode, stimulation is delivered in bursts of HF pulse trains. The stimulation

pattern is time-shifted across each electrode indexed by l by

τl =
π

2ω̄
(l − 1), (55)

where ω̄ is the mean of the natural frequencies (' 4.2 Hz). The number of bursts per 305

second, the burst frequency fburst, was chosen to be equal to ω̄/2π and the HF pulse 306

train frequency ftrain was chosen to be 130 Hz. The width of each burst tburst was chosen 307

to be 0.1 seconds. Tass et al originally tested CR on a homogeneously coupled system 308

with sω = 0 [7]. We test our implementation and reproduce these results by constructing 309

a simple homogeneously coupled system according to the parameters of Patient 5 given 310

in Table 2, but with σ̃ = 0, sω = 0 and the parameters of Z(θ) scaled by a factor of 311

10. The simulation parameters were chosen according to Table 3. The desynchronising 312

effects of CR neuromodulation on this system are shown in Figure 7, which reproduces 313

the results of Tass et al [7]. 314

The maximum charge for an electrode q′max is chosen so that, for a given system, 315

the maximum perturbation to a single oscillator is dθmax = 0.2π rad. For our testing, 316
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Parameter Value Description

∆t 0.04 Integration time step

T 2 Simulation time

Lbox 10 Box length

L 4 Number of electrodes

S 4 Number of populations

Nσ 200 Number of oscillators per population

koffdiag 6 Off-diagonal of coupling constant matrix

dθmax 0.2π Maximum angle moved per stimulation pulse

ntrials 24 Number of trials

fmax 130 Maximum frequency for PL stimulation

fburst 4.2 CR burst frequency

ftrain 130 CR HF train frequency

tburst 0.1 CR burst time

ω̄/2π 4.2 Mean oscillator frequency

sω/2π 0.7 Standard deviation of oscillator frequency

Table 3. Summary of fixed parameters used in the simulations.

we do not constrain ACR using Equation (51), which leads to trivial optimal solutions 317

to the linear program (49) and (50), where the charge for the lth contact is set to q′max if 318

the lth component of (D̃TΓ)T is negative. ACR was tested at 3 maximum stimulation 319

frequencies: 5 Hz, 50 Hz and 130 Hz. The maximum stimulation frequency for PL was 320

fixed at 130 Hz. Equation (54) was then integrated using Euler’s method with a time 321

step of ∆t = 0.04 seconds and simulated for T = 2 seconds. The PL and ACR strategies 322

were applied according to phases and amplitudes obtained directly from the simulation. 323

During a simulation, a stimulation pulse is calculated as the average of the charges 324

q′(t) across the L electrodes. Two quantities are calculated after each simulation: the 325

time-averaged value of ρ, ρ̄ and the total of all stimulation pulses E delivered. The 326

former is indicative of the efficacy of the strategy while the latter is related to the total 327

energy consumption of a strategy, which can be used to gauge efficiency. For each set of 328

parameters, the simulations are repeated over 24 trials, with a new electrode-population 329

configuration being generated according to dnorm for each trial. The parameters dnorm 330

and kdiag were chosen within the range dnorm ∈ [0.1, 6] and kdiag ∈ [5, 150]. Example 331

output from these simulations, showing the effects of applying ACR, is provided in 332

Figure 8. When compared to Figure 7, it is clear that the stimulation pattern from 333

ACR is significantly different from that produced by CR, with the latter pattern being 334

simply time-shifted across electrodes. The stimulation pattern from ACR allows for the 335

possibility that multiple electrodes may be stimulated simultaneously. A summary of 336

the parameters used in these simulations is provided in Tables 3 and 4. 337

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.08.10.242743doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.242743
http://creativecommons.org/licenses/by-nc-nd/4.0/


24

Parameter Min Max Ngrid Description

dnorm 0.1 6 5 Distance from population to electrode

kdiag 5 150 5 Diagonal of coupling constant matrix

a0 0 1.7 4 Zeroth harmonic of Z(θ)

Table 4. Summary of variable parameters used in the simulations. Each parameter

was chosen in the range [Min,Max] using a uniform grid of spacing (Max-Min)/Ngrid.
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Figure 8. Output from numerical simulations showing the effects of Adaptive

Coordinated Reset (ACR). Stimulation was turned on at t = 20 seconds. The top

panel of (a) shows the model output for a system simulated according to Equations

(54) and (24). The bottom panel of (a) shows the stimulation delivered as a function

of time, taken to be the average of the charges across the contacts. The bottom panel

of (b) shows the stimulation across each contact, with the corresponding model output

provided in the top panel.

5.3. Results 338

Figure 9 shows plots for the average amplitude ρ̄, i.e. ρ averaged over all trials and all 339

values of dnorm for a particular value of kdiag and zeroth harmonic a0. ACR was tested 340

at maximum frequencies of 130 Hz, 50 Hz and 5 Hz. The maximum frequency of PL 341

was fixed at 130 Hz. The rise in ρ̄ shown between kdiag = 50 and kdiag = 70 is indicative 342

of a bifurcation, which is typical in Kuramoto systems [26]. Significant improvements 343

with ACR over PL and CR are observed in simulations when stimulation is delivered 344

at higher frequencies and when a0 is non-negligible. The utility of ACR over other 345

methods is also shown to be greatest when kdiag is larger, which corresponds to larger 346

local amplitudes ρσ and increased clustering. 347

The efficacy of CR can also be seen to improve with systems with larger a0. With 348
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Figure 9. The average amplitude of a simulated Kuramoto system with a coupling

constant kdiag for different stimulation strategies: no stimulation (no stim), Adaptive

Coordinated Reset (ACR), phase-locked (PL) and Coordinated Reset (CR). The

maximum stimulation frequency used for ACR and PL is also given in the legend.

Dashed lines are for the ACR method. Each sub plot shows a set of simulations

performed with a particular zeroth harmonic of the nPRC a0.

a0 = 0, CR and no stimulation are shown to be equally effective. The results shown in 349

Figure 9 are in contrast with those shown in Figure 7, indicating that the efficacy of CR 350

is sensitive to the parameters σ̃ and sω in addition to the scaling of Z(θ). 351

For systems where a0 ' 0, PL and ACR are found to be equally as effective, as 352

predicted. The efficacy of ACR at 130 Hz is greater than at other frequencies, but with 353

more energy usage than PL and similar energy usage to CR, as shown in Figure 10. ACR 354

at 50 Hz is found to have good efficacy for a0 > 0 but with significantly less energy usage 355

than PL and CR. ACR with low frequency stimulation at 5 Hz (or approximately the 356

tremor frequency) is predicted to have little to no effect on all the systems tested. 357

As previously mentioned, we expect the utility of ACR to be greatest for those 358

systems described by type I nPRCs as the amplitude response curve then depends 359
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Figure 10. The average energy used by: no stimulation (no stim), Adaptive

Coordinated Reset (ACR), phase-locked (PL) and Coordinated Reset (CR) stimulation

strategies on a simulated Kuramoto system with a coupling constant kdiag. The

maximum stimulation frequency used for ACR and PL is also given in the legend.

Dashed lines are for the ACR method. Each sub plot shows a set of simulations

performed with a particular zeroth harmonic of the nPRC a0.

explicitly on non-negligible terms involving population quantities. Equation (32) shows 360

that when a0 = 0, the terms involving population quantities depend on second harmonics 361

2ψσ. These terms carry a factor of ρ2
σ and hence are likely to be negligible, except when 362

ρσ is reasonably large. To investigate these effects, we simulate systems with a0 = 0 363

and use a larger stimulation intensity q′max. By comparing ACR to PL, we can then 364

ascertain the impact of these second harmonic terms. A comparison of the efficacy of 365

ACR with PL and CR, is shown in Figure 11 for different stimulation amplitudes q′max 366

and with a0 = 0. Increasing stimulation amplitude can be seen to improve the efficacy 367

of all the strategies tested, but is most noticeable for ACR and PL. Higher stimulation 368

amplitudes also seem to be particularly beneficial for those systems with larger kdiag. 369

ACR can be seen to perform better than CR in all cases. Figure 11 shows the ACR 370
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Figure 11. The average amplitude of a simulated Kuramoto system with a coupling

constant kdiag for different stimulation strategies: no stimulation (no stim), Adaptive

Coordinated Reset (ACR), phase-locked (PL) and Coordinated Reset (CR). During

these simulations, the zeroth harmonic a0 of the nPRC Z(θ) was fixed to zero.

Increasing dθmax leading to larger stimulation amplitudes q′max shows the effect of

the second harmonic term in the amplitude response given by Equation (32).

method to be consistently more effective than PL at higher kdiag, although the difference 371

is marginal. This is indicative of the aforementioned effects of second harmonic terms in 372

(32). Taken altogether, we predict the efficacy of ACR to be similar to PL stimulation 373

for those systems where a0 ' 0. 374

6. Discussion 375

In this work we propose ACR as a method for DBS using multiple contacts. Unlike CR, 376

the method is closed-loop and uses information about the system to determine when to 377

apply stimulation. Using numerical simulation, we show that in many cases, substantial 378

improvements to the efficacy can be achieved with the method. The mathematical 379

description of ACR also predicts that the effectiveness of multi-contact stimulation is 380

largely dependent on the form of the nPRC and in particular on the zeroth harmonic 381

a0, which is related to whether it is type I or type II. We predict that for type II 382

systems, where |a0| is small, stimulation on the basis of local quantities is unlikely to 383
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be beneficial. We also show that the dependency of the amplitude response on the local 384

quantities of population σ becomes less at increasingly lower local amplitudes ρσ but 385

that the effects of stimulation are, in general, explicitly dependent on the state of the 386

system and that providing stimulation without knowledge of this state is likely to be 387

suboptimal. Following from this, it is worth discussing the feasibility of resolving this 388

state in practice. 389

6.1. Practicalities of Using ICA 390

The ACR method assumes an underlying system of phase oscillators, which can be 391

divided into small populations with the distribution of oscillators in each population 392

satisfying the ansatz of Ott and Antonsen [26]. Equation (44) links the state to 393

measurable quantities from the electrode and is of the form modelled by ICA [32]. The 394

goal of ICA here is to resolve the S population quantities from L electrode measurements. 395

Variations of the ICA problem exist depending on whether S < L (the overdetermined 396

case), S > L (the underdetermined case) and S = L (the determined case). The 397

determined case is perhaps the most common and more easily solved, since the mixing 398

matrix D is invertible. However, we do not know the value of S a priori and therefore 399

cannot know which ICA method is best suited. If we assume the case of S = L, then 400

ICA will always resolve exactly L components. With this assumption, increasing the 401

number of electrodes in a system has a definite purpose: it increases our potential 402

to resolve the internal state. Assuming a larger number of populations also increases 403

the validity of the small region approximation presented in Equation (38) and thus 404

the accuracy of ACR. It may also be possible to obtain good approximations to the 405

state by using L < S electrodes, since in some cases the weights wσ may be small 406

for some populations and can hence be neglected. This together with the statistical 407

nature of ICA, errors due to applying various signal processing techniques and noise 408

within measurement would inevitably lead to some uncertainty when determining the 409

population quantities. In addition to this, the amplitude response (32) is also dependent 410

on the harmonics of Z(θ), which also need to be determined. Electrodes which record the 411

population activity are also susceptible to recording the stimulation pulses themselves. 412

This manifests in recordings as an artefact, which poses a challenge for closed-loop 413

methods that rely on the real-time measurement of phases and amplitudes. Addressing 414

the effects of stimulation artefacts is beyond the scope of this work, but we expect 415

that significant suppression of the stimulation artefact would be required for ACR to 416

be effective. This suppression may come as a byproduct of using ICA, which has been 417

found by others [34, 35]. Alternatively, by recording through two contacts adjacent 418

to a single stimulating contact, the properties of differential amplifiers can be used to 419

suppress the stimulation artefact [36]. In this paper we have considered perturbations 420

to neural populations using electrodes, but in principle, our theories should also be 421

valid for other types of perturbation, such as optogenetic, where light pulses are used to 422

perturb genetically modified neurons. This approach would eliminate the stimulation 423
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artefact and thus likely improve the real-world performance of ACR. In summary, the 424

effectiveness of ACR in practice is likely to be dependent on both the ability of the 425

model to capture the underlying dynamics of the system and our ability to resolve the 426

state and parameters of the system. It is worth mentioning that the latter does not 427

factor into the results presented in Section 5 since both the state and the parameters 428

were taken directly from the simulation. Therefore the results we present for ACR (and 429

PL) can be taken as an upper bound on performance. 430

6.2. Future Work 431

As a preliminary study, the simulations presented in this work provide a broad 432

understanding of the potential efficacy and efficiency of ACR but there is scope for future 433

work. Firstly, we could test the simulation on a greater variety of systems, changing both 434

the distribution of natural frequencies, the noise parameter and the harmonics of Z(θ). 435

Secondly, we could investigate how the constraints of the linear program (51) affect 436

both the efficacy and efficiency of ACR. In addition to these, there is also considerable 437

scope for understanding both the potential and effective real world performance of ACR, 438

which could involve investigating the performance of ACR with the harmonics of Z(θ) 439

estimated through machine learning, using the state variables obtained through ICA 440

and finally testing ACR on patients. 441

Appendix 442

A. Model Fitting 443

A.1. Feature Selection 444

In Section 3 we described how the similarity between two time series can be quantified

using features extracted from the data. We define here a feature to be some

transformation of the time series F (t) into a new function y(ζ), where ζ is in a new

domain. For example, the PSD can be obtained by applying the Fourier transformation

to the time series with ζ being the frequency in this case. We can then characterise a

time series using a set of features. This set, though arbitrary, should be chosen so as to

reproduce important properties of the data. For a set of Nc features, we can construct

a cost function C(X) for a vector of parameters X to be used in a local optimisation

C(X) =
1

Nc

Nc∑
j=1

(
||yj − ymodelj (X)||
||yj − ȳj||

)2

, (A.1)

where y indicates a vector over the domain ζ. Here y and ymodel are the features 445

from the experimental and simulated data, respectively. The mean of an experimental 446

feature is denoted by ȳ. Each term in the summation is simply (1−R2), where R2 is the 447

standard coefficient of determination. Qualitatively, Equation (A.1) is simply the mean 448

of (1 − R2) across all the features. Equation (A.1) quantifies the similarity between 449
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Figure A1. Experimental data for Patient 1 from the study of Cagnan et al [12].

Tremor oscillations are shown in the top panels. The bottom panels shows the

stimulation triggers. (a) shows the entirety of the dataset consisting of stimulation

provided over 9 trials. (b) shows a single trial which consists of 5 seconds of phase-

locked stimulation over 12 phases.

features obtained from simulated and experimental data. It can be seen that C(X) = 0 450

implies both sets of features are equal. When C(X) = 1, the fit of the model is no 451

better than the mean ȳ. As previously mentioned in Section 3, the features reflecting 452

the dynamics of the oscillations are chosen to be: the PSD, the PDF for the amplitude 453

and the PSD of the envelope amplitude. We also use the averaged PRC as an additional 454

feature to characterise the response of a particular patient. 455

A.2. Experimental data 456

Cagnan et al [12] studied phase-locked DBS delivered according to the tremor in ET 457

patients. Data was collected from 6 ET patients and 3 dystonic tremor patients. All 458

patients gave their informed consent to take part in the study, which was approved by 459

the local ethics committee in accordance with the Declaration of Helsinki. The data 460

from this study can be obtained through an online repository [29]. 461

Duchet et al [28] defined a criterion for assessing significance in the averaged ARCs 462

and PRCs from the study of Cagnan et al. In their study, a patient is considered to 463

have a significant response if both the ARC and PRC are found to be significant either 464

according to an ANOVA test or cosine model F-test. Using this, they deemed 3 out of 465

the 6 ET patients to have a significant response curve. We restrict our analysis to these 466

3 patients, who we shall refer to as patients 1, 5 and 6, as in the original study. The 467

tremor data was filtered using a non-causal Butterworth filter of order 2 with cut-off 468

frequencies at ±2 Hz around the tremor frequency. Stimulation was delivered over a set 469

of trials (typically 9), with each trial consisting of 12 blocks of 5 second phase-locked 470

stimulation at a randomly chosen phase from a set of 12. Each block of phase-locked 471
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Parameter Value Description

∆t 0.002 Integration time step

T 5 Stimulation time

Tib 1 Inter-block time

Tit 10 Inter-trial time

Nσ 60 Number of oscillators

ntrials 54 Number of trials

Table A1. Parameters used when simulating the Kuramoto model for global

optimisation.

stimulation was also separated by a 1 second interblock of no stimulation. The envelope 472

amplitude and instantaneous phase were calculated using the Hilbert transform. As an 473

example, the data for Patient 1 is shown in Figure A1. From this, the characteristics we 474

identify as being desirable for our model to reproduce are: the frequency spectrum of 475

the data, the bursts of oscillations and the sustained periods of low envelope amplitude. 476

In addition to this we would also like the model to reproduce a given patient’s response 477

to stimulation, as characterised by the averaged PRC. 478

A.3. Simulated data 479

For the mth local optimisation step, we simulate the Kuramoto model (18) using a 480

parameter set Xm and obtain the feature set described in Section A.1. The stochasticity 481

of the model naturally leads to variation in the features for a particular optimisation 482

step. To stabilise this variation we average the features over ntrials = 54 trials. The 483

simulation was configured to reproduce the methodology of Cagnan et al [12], namely 484

that stimulation was delivered in blocks of trials, as described in Section A.2. A summary 485

of the parameters used in the simulations is provided in Table A1. 486

Calculation of the cost function C(X) requires us to obtain the feature set for 487

each instance of the simulation. The averaged PRC can be obtained according to the 488

methods described in our previous paper [14] and elsewhere [12, 28]. The method is 489

suitable for both experimental and simulated data, but can be computationally costly 490

and generally unsuitable in an optimisation setting. To ensure computational feasibility, 491

we use an approximation for the averaged PRC for part of the optimisation. A suitable 492

approximation should be computationally cheap, stable and reasonably accurate. The 493

requirement of stability precludes the use of the analytical expressions for the PRC 494

(17), which are derived on the basis of an infinite system of oscillators satisfying 495

the ansatz of Ott and Antonsen [26]. Situations affecting stability which may arise 496

during optimisation include large values of the noise parameter σ̃, which may lead to a 497

breakdown in the assumptions underlying (17). This motivates the need for alternative 498

method, which we present here. 499

Assuming an infinite system of oscillators, the order parameter r can be written in
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integral form

r =

∫ 2π

0

F (θ, t)eiθdθ, (A.2)

where F (θ, t) is the PDF for the oscillators. Differentiating with respect to time gives

dr

dt
=

∫ 2π

0

(
∂F (θ, t)

∂t

)
eiθdθ. (A.3)

Using the stimulation part of (18), the continuity equation for F (θ, t) due only to

stimulation can be written as

∂F (θ, t)

∂t
= −V ∂

∂θ
[Z(θ)F (θ, t)] . (A.4)

Inserting (A.4) into (A.3) gives

drstim
dt

= −V
∫ 2π

0

∂

∂θ
[Z(θ)F (θ, t)] eiθdθ. (A.5)

Using the polar form for drstim
dt

in (A.5) gives

dρstim

dt
+ iρ

dψstim

dt
= −V

∫ 2π

0

∂

∂θ
[Z(θ)F (θ, t)] ei(θ−ψ)dθ. (A.6)

Expressions for the instantaneous ARC and PRC can be found by equating the real and

complex parts of (A.6), respectively, leading to

dρstim

dt
= −V

∫ 2π

0

∂

∂θ
[Z(θ)F (θ, t)] cos(θ − ψ)dθ, (A.7)

and
dψstim

dt
= −V

ρ

∫ 2π

0

∂

∂θ
[Z(θ)F (θ, t)] sin(θ − ψ)dθ. (A.8)

The averaged PRC can be expressed using a summation over the time points of

stimulation {tm}〈
dψstim

dt

〉
= − V

Nψ

Nψ∑
m=1

1

ρ(tm)

∫ 2π

0

∂

∂θ
[Z(θ)F (θ, tm)] sin(θ − ψ)dθ. (A.9)

If we group these time points according to the phase ψ, with Nψ points for the phase

ψ, then we can express the averaged response in terms of the PDFs conditioned on ψ〈
dψstim

dt

〉
= −V

[∫ 1

0

G(ρ|ψ)

ρ
dρ

] ∫ 2π

0

∂

∂θ
[Z(θ)F (θ|ψ)] sin(θ − ψ)dθ. (A.10)

Equation (A.10) represents a computationally cheap way of estimating the averaged 500

PRC since the PDF for the amplitude conditioned on the phase G(ρ|ψ) and the PDF 501

for the oscillators F (θ|ψ) conditioned on the phase can be easily accumulated during 502

simulation. 503
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A.4. Global optimisation 504

For each instance of the model output, we calculate the vector of features {ymodelj (X)} 505

and their similarity with the experimental feature set {yj} measured by C(X). Since 506

Equation (18) is a stochastic differential equation, the features {ymodelj (X)} are averaged 507

over a certain number of trials. The global minimum of the cost function C(X) 508

corresponds to the set of optimisable parameters which best reproduces the experimental 509

features. Starting at a configuration X0, we can reach a local minimum of C(X) using 510

local optimisation. By repeating this process using many randomly generated starting 511

configurations, a best fit can be obtained by taking the smallest local minimum. To 512

obtain an initial configuration X0, we choose a value for each optimisable parameter 513

by randomly sampling from a bounded uniform distribution. The bounds for each 514

optimisable parameter are given in Table A2. Optimisation of the cost function C(X) 515

was performed using custom written code in Matlab. The local optimisation was 516

performed using the fminsearch function which uses the derivative-free Nelder-Mead 517

simplex method of Lagarias et al [37]. 518

Simultaneous optimisation of the Kuramoto parameters, together with those of 519

the nPRC, is necessary to allow the model to fit to both the features reflecting the 520

oscillation dynamics and the averaged PRC. In order to be computationally feasible, we 521

performed the optimisation in stages. The principle here is to use a cheaper calculation 522

to push the local optimisation towards a local minimum and then gradually refine the 523

optimisation using a higher quality calculation. First, we performed the optimisation 524

without stimulation, only fitting to those features representing the dynamics. We then 525

used the parameters from our best fit in a second optimisation, using the features 526

representing the dynamics and the theoretical approximation to the averaged PRC, 527

for computational efficiency. Finally, the parameters from this best fit were used in a 528

final optimisation, where the averaged PRC feature was instead calculated using the 529

experimental methodology. 530

The best fits found through optimisation are shown in Figures 1 (for the dynamics) 531

and 2 (for the response). Instances of output for the fitted models are shown in 532

Figure 2 together with experimental data included for comparison. The parameters 533

found through optimisation are provided in Table 2. 534

B. Implications for Single Contact DBS 535

In this subsection we will review our results in the context of single contact DBS.

Specifically, we want to understand the feasibility of a closed-loop DBS strategy which

uses a feedback signal from a single contact. In the case of a single electrode contact, the

voltage can be expressed as a summation over population activities using Equation (44)

v′l(t) =
S∑
σ=1

dlσρσ cos(ψσ). (B.1)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.08.10.242743doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.242743
http://creativecommons.org/licenses/by-nc-nd/4.0/


34

Parameter Min Max

k 0 6

σ̃ 0 4

ω̄/2π 4.5 5.5

sω/2π 0.5 1

a0 -0.1 0.1

a1 -0.09 0.09

b1 -0.09 0.09

V 0 0.6

Table A2. Bounds for the optimisable parameters used in generating random initial

configurations. An initial configuration is generated by randomly sampling from a

uniform distribution for each parameter within the bounds.

Comparing this with the expression for the global signal (24) and (25) (with c = 1

for simplicity) we can immediately see a correspondence between the matrix elements

{dlσ} and the population weights {wσ}. The matrix elements encode the electrostatic

properties of the medium and the electrode-population geometry. In theory, therefore,

positioning the electrode has the effect of changing the matrix elements in the expansion

given by Equation (B.1). An expression for the amplitude and phase of v′l(t) can be

obtained using the analytic signal (1), namely

PeiΨ = v′l(t) + iĤ[v′l(t)]. (B.2)

Then, inserting (B.1) into (B.2) and using the approximation (8) leads to

PeiΨ =
S∑
σ=1

dlσρσe
iψσ , (B.3)

which has an identical form to (27). If the electrode is positioned such that the matrix

elements coincide exactly with the population weights, although unlikely in general, then

the amplitude P(t) would equal the synchrony ρ. In general, the electrode should be

positioned so that P(t) is highly correlated to the symptom severity and hence ρ. Using

(B.3), the derivation of the amplitude response due to stimulation can then proceed

exactly as before, leading to an identical expression to (32) except with the population

weights replaced with the matrix elements. Explicitly,

dPstim

dt
' 1

2

S∑
σ=1

dlσVσ(t)

{
[a1 sin(Ψ)− b1 cos(Ψ)]− ρσa0 sin(ψσ −Ψ)

}
. (B.4)

Since, by definition, P(t) should be correlated to symptom severity, it follows that 536

Equation (B.4) can be used in a closed-loop DBS strategy. From this we also conclude 537

that the effectiveness of single contact closed-loop DBS should also be dependent on |a0|. 538
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In the cases where |a0| is non-negligible, knowledge of the population quantities ρσ and 539

ψσ would be required for an effective closed-loop strategy. Therefore, by estimating |a0| 540

for a particular system, we can go some way towards predicting the likely effectiveness 541

of single contact closed-loop DBS. 542
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