New Results
Predictability in natural images determines V1 firing rates and synchronization: A deep neural network approach
Cem Uran, View ORCID ProfileAlina Peter, Andreea Lazar, William Barnes, Johanna Klon-Lipok, Katharine A Shapcott, Rasmus Roese, Pascal Fries, Wolf Singer, View ORCID ProfileMartin Vinck
doi: https://doi.org/10.1101/2020.08.10.242958
Cem Uran
aErnst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
Alina Peter
aErnst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
Andreea Lazar
aErnst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
William Barnes
aErnst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
bMax Planck Institute for Brain Research, Frankfurt, Germany
Johanna Klon-Lipok
aErnst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
bMax Planck Institute for Brain Research, Frankfurt, Germany
Katharine A Shapcott
aErnst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
cFrankfurt Institute for Advanced Studies, Frankfurt, Germany
Rasmus Roese
aErnst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
Pascal Fries
aErnst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
dDonders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
Wolf Singer
aErnst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
bMax Planck Institute for Brain Research, Frankfurt, Germany
cFrankfurt Institute for Advanced Studies, Frankfurt, Germany
Martin Vinck
aErnst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany

Article usage
Posted August 10, 2020.
Predictability in natural images determines V1 firing rates and synchronization: A deep neural network approach
Cem Uran, Alina Peter, Andreea Lazar, William Barnes, Johanna Klon-Lipok, Katharine A Shapcott, Rasmus Roese, Pascal Fries, Wolf Singer, Martin Vinck
bioRxiv 2020.08.10.242958; doi: https://doi.org/10.1101/2020.08.10.242958
Predictability in natural images determines V1 firing rates and synchronization: A deep neural network approach
Cem Uran, Alina Peter, Andreea Lazar, William Barnes, Johanna Klon-Lipok, Katharine A Shapcott, Rasmus Roese, Pascal Fries, Wolf Singer, Martin Vinck
bioRxiv 2020.08.10.242958; doi: https://doi.org/10.1101/2020.08.10.242958
Subject Area
Subject Areas
- Biochemistry (4774)
- Bioengineering (3319)
- Bioinformatics (14626)
- Biophysics (6617)
- Cancer Biology (5156)
- Cell Biology (7402)
- Clinical Trials (138)
- Developmental Biology (4340)
- Ecology (6858)
- Epidemiology (2057)
- Evolutionary Biology (9876)
- Genetics (7328)
- Genomics (9496)
- Immunology (4534)
- Microbiology (12631)
- Molecular Biology (4919)
- Neuroscience (28206)
- Paleontology (198)
- Pathology (802)
- Pharmacology and Toxicology (1380)
- Physiology (2012)
- Plant Biology (4473)
- Synthetic Biology (1295)
- Systems Biology (3903)
- Zoology (722)