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 2 

SUMMARY 29 

• Zinc is an essential nutrient at low concentrations, but toxic at slightly higher ones. 30 

This could be used by plants to fight pathogens colonization. 31 

• Elemental distribution in Arabidopsis thaliana leaves inoculated with the 32 

necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM) was 33 

determined and compared to mock-inoculated ones. Infection assays were carried 34 

out in wild type and long-distance zinc trafficking double mutant hma2hma4, 35 

defective in root-to-shoot zinc partitioning. Expression levels of genes involved 36 

in zinc homeostasis or in defence phytohormone-mediated pathways were 37 

determined. 38 

• Zinc and manganese levels increased at the infection site. Zinc accumulation was 39 

absent in hma2hma4. HMA2 and HMA4 transcription levels were upregulated 40 

upon PcBMM inoculation. Consistent with a role of these genes in plant 41 

immunity, hma2hma4 mutants were more susceptible to PcBMM infection, 42 

phenotype rescued upon zinc supplementation. Transcript levels of genes 43 

involved in the salicylic acid, ethylene and jasmonate pathways were 44 

constitutively upregulated in hma2hma4 plants. 45 

• These data are consistent with a role of zinc in plant immunity not only of 46 

hyperaccumulator plants, but also of plants containing ordinary levels of zinc. 47 

This new layer of immunity seems to run in parallel to the already characterized 48 

defence pathways, and its removal has a direct effect on pathogen resistance. 49 

 50 
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INTRODUCTION  59 

Zinc concentration has to be kept within a very narrow range in all cells (Frausto 60 

da Silva & Williams, 2001; Outten & O'Halloran, 2001). Low zinc levels deprive the cell 61 

of the essential cofactor of around 10 % of its proteome (Andreini et al., 2006; Broadley 62 

et al., 2007), including enzymes involved in stress resistance and a large number of 63 

transcription factors. However, a slight excess of intracellular zinc results in toxicity, as 64 

zinc can interfere with the uptake of other essential transition metals or displace these in 65 

the active sites of enzymes (McDevitt et al., 2011; Hassan et al., 2017). This dual nature 66 

of zinc seems to be used by different organisms to fend-off invading microbes. Infected 67 

hosts may withhold growth-limiting nutrients from a pathogen to starve it and control its 68 

proliferation, in what has been known as nutritional immunity. For example, mammals 69 

remove zinc to combat bacterial and fungal infections (Kehl-Fie & Skaar, 2010; Grim et 70 

al., 2020). Alternatively, host organisms may accumulate Zn either globally or locally in 71 

order to poison a pathogen. For example, zinc hyperaccumulator plants concentrate zinc 72 

to high levels in leaves, thus achieving some protection against herbivores, sap-feeding 73 

organisms and pathogenic microbes (Fones et al., 2010; Kazemi-Dinan et al., 2014; 74 

Stolpe et al., 2017).  75 

To date, there is only little direct evidence for zinc-mediated immunity in non-76 

hyperaccumulator plants. For instance, zur (zinc uptake regulator) mutants in plant 77 

pathogens Xanthomonas campestris or Xylella fastidiosa are less virulent than wild type 78 

strains (Tang et al., 2005; Navarrete & De La Fuente, 2015). This is highly suggestive of 79 

zinc playing a role in the host plant defense strategy. Zur proteins reduce zinc uptake 80 

under excess conditions and, in some species, activate the zinc detoxification machinery 81 

(Mikhaylina et al., 2018). It can be hypothesized that the reduced virulence of zur strains 82 

is due to the lack of protection against high zinc levels in plants. However, we do not 83 

presently know whether plants accumulate zinc cations at infection sites and, if so, how 84 

this operates at the molecular level. 85 

Plant zinc homeostasis has been thoroughly studied in the model Arabidopsis 86 

thaliana (Olsen & Palmgren, 2014). Uptake from the rhizosphere into the root symplasm 87 

is very likely mediated by ZIP (Zrt1-like, Irt1-like Proteins) transporters, such as AtZIP1, 88 

AtIRT3, AtZIP4, and/or AtZIP9 (Korshunova et al., 1999; Lin et al., 2009; Assunção et 89 

al., 2010). Transporting zinc in the opposite direction, MTPs (Metal Tolerance Proteins) 90 

are involved in zinc efflux from the cytosol, either into cellular compartments (storage or 91 
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zinc metalation) or out of the cell. For instance, AtMTP1 and AtMTP3 participate in the 92 

sequestration of zinc into vacuoles (Arrivault et al., 2018; Desbrosses-Fonrouge et al., 93 

2005) while AtMTP2 is involved in zinc delivery into the endoplasmic reticulum 94 

(Hanikenne et al., 2008; Sinclair et al., 2018). Root-to-shoot transport of zinc in the xylem 95 

is largely mediated by P1B-ATPases HMA2 and HMA4 (Hussain et al., 2004). These 96 

partially redundant Zn2+-ATPases are localized in the plasma membrane of vascular cells, 97 

where they would be transporting Zn2+ from the cell cytosol into the apoplast (Eren & 98 

Argüello, 2004; Hussain et al., 2004). An hma2hma4 double mutant has increased zinc 99 

levels in roots and lowered zinc levels in shoots, associated with complex alterations in 100 

transcript levels of zinc homeostasis genes (Sinclair et al., 2018).  Consistent with a role 101 

in zinc nutrition and distribution from roots to shoots, hma2hma4 plants largely recover 102 

the wild type phenotype upon exogenous application of zinc (Hussain et al., 2004). 103 

Transcription factors bZIP19 and bZIP23 control local transcriptional responses to zinc 104 

deficiency (Assunção et al., 2010), but systemically regulated transcriptional zinc 105 

deficiency responses are independent (Sinclair et al., 2018). If zinc is an integral part of 106 

plant innate immunity, it would be expected that zinc homeostasis genes, particularly 107 

those involved in long-distance metal allocation, were upregulated upon pathogen 108 

invasion. 109 

 In this work, we use synchrotron-based X-ray fluorescence (S-XRF) to show that 110 

zinc levels are increased at the infection site in A. thaliana leaves 48 hours after being 111 

inoculated with the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM). 112 

This increase in local zinc levels requires HMA2 and HMA4 as indicated by the lack of 113 

zinc accumulation in double hma2hma4 mutants. The enhanced susceptibility of 114 

hma2hma4 double mutant plants PcBMM further supports a role of zinc in plant immunity 115 

and resistance to the necrotrophic fungus PcBMM. 116 

 117 

MATERIALS AND METHODS 118 

Plant material and growth conditions 119 

 Wild type A. thaliana Columbia-0 (Col-0) ecotype was used in this study as well 120 

as the following lines in the Col-0 background: hma2-4, hma4-2, double mutant 121 

hma2hma4 (Hussain et al., 2004), agb1-2 (Ullah et al., 2003), and irx1-6 (Hernandez-122 

Blanco et al., 2007). The 35S:HMA2 line was in hma2hma4 background (Hussain et al., 123 

2004). Plants were sown in a mixture of peat:vermiculite (3:1), covered with sterilized 124 
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sand and grown in growth chambers under short day conditions (10 hours light 125 

photoperiod and ~150µEm-2s-1) at 20-22°C. For infection experiments with PcBMM, 126 

plants were grown in growth chambers at 22-24°C. To perform Zn complementation 127 

assays, plants were watered with 1 mM zinc twice a week.  128 

 129 

Synchrotron-based X-ray Fluorescence assays  130 

Leaves of 16-day-old A. thaliana were inoculated with a 2.5 µl drop of either 131 

sterilized water (mock) or with a suspension of 4 x 106 PcBMM spores/ml. Subsequently, 132 

plants were maintained under a saturated atmosphere (80-85 % relative humidity) and 133 

short-day conditions. Samples were collected prior to inoculation (0 hours-post-134 

inoculation, hpi) or at 48 hpi. Fifteen plants per time point, treatment, and genetic 135 

background were generated. At harvest, mock or PcBMM-inoculated leaves were 136 

immediately covered with ultralene membrane and flash-frozen in isopentane chilled with 137 

liquid nitrogen.    138 

The elemental spatial distribution was characterized by synchrotron radiation 139 

scanning micro-XRF at the Swiss Light Source (SLS; microXAS beamline, Villigen, 140 

Switzerland) in cryo-conditions (liquid nitrogen cryojet). Data were acquired with a 141 

micro-focused pencil beam with a size of about 2 µm diametre. The excitation energies 142 

of 9.7 keV and 9.8 keV were used, which allowed the detection of elements between Si 143 

and Zn (K lines). XRF spectra were treated with PyMca software (Solé et al., 2007). 144 

Incoming flux and transmitted intensities were also recorded using a micro ionization 145 

chamber and a silicon carbide diode, respectively, allowing to analyze absorption contrast 146 

simultaneously together with the XRF signal. The two-dimensional projection maps were 147 

recorded using 50 µm of step size and a dwell time of 400 ms per pixel. Two samples 148 

were analyzed through scanning XRF approach. The lateral step-size of 5 µm was used 149 

for the scanning tomography scans. 120 lateral projections equally spaced over 180° were 150 

measured for each of the 6 scans, each one at a different height of the sample. The 151 

tomography scan dataset was analyzed using home-made python codes, using the Astra 152 

Toolbox library (van Aarle et al., 2015; van Aarle et al., 2016), the SIRT method and 153 

parallel beam GPU code (Palenstijn et al., 2011). 154 

 155 

Pathogenicity Assays 156 
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Resistance assays with PcBMM were performed as described (Escudero et al., 157 

2019). Briefly, PcBMM spores (4 x 106 spores/ml) were sprayed onto 16-day-old A. 158 

thaliana leaves grown under short day conditions. A minimum of 20 plants per genotype 159 

were used in each experiment. agb1-2 (Llorente et al., 2005) and irx1-6 (Hernández-160 

Blanco et al., 2007) plants were used as susceptible and resistant controls, respectively. 161 

Plants were kept at high relative humidity for the remaining duration of the experiment. 162 

At the indicated times, shoots from at least 4 plants were collected and gDNA extracted 163 

to determine relative PcBMM biomass by qPCR using specific primers for β-tubulin from 164 

PcBMM and UBC21 (At5g25760) from A. thaliana to normalize (Table S1). These assays 165 

were repeated in triplicate. 166 

 167 

Gene expression experiments 168 

 Gene expression was determined in 48 hpi sprayed-infected and mock-inoculated 169 

16-days-old A. thaliana plants. Shoots and roots were collected (from at least 8 plants per 170 

independent experiment) and RNA extraction, cDNA synthesis, and qRT-PCRs were 171 

performed as reported (Jordá et al., 2016). Oligonucleotides used are listed on Table S1. 172 

Gene expression was normalized with the house-keeping gene UBC21. The Ct values of 173 

three independent experiments were used to calculate the gene expression using the 174 

2˄(ΔCt) method (Schmittgen & Livak, 2008).The results were represented as n-fold 175 

relativized with mock plants. These assays were carried out in triplicate. 176 

 177 

Statistical Tests 178 

 Data were analyzed by Student’s unpaired t-test to calculate statistical 179 

significance of observed differences. Test results with p-values < 0.05 were considered 180 

as statistically significant. 181 

 182 

RESULTS 183 

Enhanced zinc accumulation at leaf PcBMM infection site of wild-type plants is 184 

abolished in hma2 hma4 double mutants 185 

 To determine whether high levels of zinc and other transition are altered upon 186 

infection, S-XRF studies were carried out in cryofixed PcBMM-infected leaves of wild-187 

type plants (Col-0). In all samples, due to the abundance in cell walls, calcium distribution 188 

was used to define the general leaf shape as well as to indicate the position of PcBMM 189 
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mycelium in the leaf, as Ca2+ influxes are one of the hallmark early events after pathogen 190 

perception. Indeed, at 48 hours post inoculation (hpi), a high-density calcium-rich spot 191 

could be observed in wild type A. thaliana leaves, but not in mock-inoculated ones (Fig. 192 

1), coincident with the position in which the fungal hyphae were growing. Interestingly, 193 

marked increases in zinc and manganese concentrations were also detected in the same 194 

positions, although at lower magnitudes and with a pattern that might be associated to the 195 

leaf veins. Manganese and zinc-enrichment at the infection sites were also present at 196 

lower levels at the earlier 24 hpi time point (Fig. S1). Tomographic reconstructions of 197 

different fluorescence sections showed that both transition metals located to the surface 198 

of the leaf, where the spores germinated, and the mycelium was proliferating (Fig. S2). 199 

No other transition metal was observed at high levels at the time points analysed (Fig. 200 

S3). 201 

 The transporters HMA2 and HMA4 make the predominant contribution to root-202 

to-shoot translocation of zinc (Hussain et al., 2004). HMA2 also has a very modest Mn2+ 203 

transport capability (Eren & Argüello, 2004). Therefore, these two proteins are likely 204 

candidates of zinc, and perhaps manganese, accumulation at the infection site. Notably, 205 

48 hpi hma2hma4 mutant leaves did not show the localized enhanced zinc levels observed 206 

in Col-0 (Fig. 1), whereas accumulation of calcium and manganese were still abundant 207 

and reached similar levels to that of wild-type plants. Infection-induced zinc 208 

accumulation was restored to levels indistinguishable from the wild type in hma2 hma4 209 

plants into which HMA2 had been reintroduced under the control of a 35S promoter. 210 

 211 

HMA2 and HMA4 are required for A. thaliana resistance to PcBMM 212 

 Enhanced zinc allocation to the infection site is suggestive of an up-regulation in 213 

the transcription levels of at least one of these Zn2+-ATPases. Real-time RT-PCR analyses 214 

of leaves at 48 hpi showed a consistent and significative induction of the transcription of 215 

both genes. HMA2 transcript levels were up-regulated over two-fold in both shoots and 216 

roots of plants infected with PcBMM in comparison to mock-treated plants at 48 hpi (Fig. 217 

2A). HMA4 expression was highly up-regulated in roots of infected plants, but not in 218 

shoots (Fig. 2B). In contrast, transcript levels of other genes implicated in zinc transport 219 

and its regulation were not significantly changed in PcBMM-infected compared to mock 220 

inoculated plants (Fig. S4). This included genes with roles under zinc deficiency (bZIP19, 221 
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bZIP23, ZIP4, ZIP9, or MTP2) as well as in detoxification (MTP1, MTP3) (Desbrosses-222 

Fonrouge et al., 2005; Arrivault et al., 2006; Assunção et al., 2010; Sinclair et al., 2018). 223 

These data are consistent with a role for HMA2 and HMA4 in zinc mobilization to 224 

the infection site, regulated at the transcript level, as part of the Arabidopsis innate 225 

immune response. To further test this possibility, wild type, hma2, hma4, hma2hma4, and 226 

35S::HMA2 in hma2hma4 background were sprayed-inoculated with PcBMM. Fungal 227 

biomass was determined in leaves at 5 days-post-inoculation (dpi) by the relative ratio of 228 

fungal vs plant gDNA using qPCR (Fig. 3A). As expected, hma2hma4 had a higher 229 

pathogen proliferation, similar to what is observed in the hypersusceptible mutant agb1-230 

2. Single mutants hma2 and hma4 had a very similar response to PcBMM than Col-0 231 

wild-type plants, indicating that HMA2 and HMA4 have redundant functions in immune 232 

responses to this fungus. Of note, 35S::HMA2 hma2hma4 plants overexpressing  HMA2 233 

recovered the disease resistance level of wild-type plants (Col-0), further confirming the 234 

functionality of HMA2 in disease resistance to PcBMM. These observations were also 235 

supported by visual evaluation of the macroscopic symptoms in infected plants compared 236 

to the mock-inoculated controls (Fig. 3B). 237 

 The growth defect of hma2hma4 mutants has been demonstrated to be restored by 238 

supplementing the irrigation water with zinc (Hussain et al., 2004). Similarly, when 239 

hma2hma4 plants were watered with 1 mM zinc, their susceptibility to PcBMM was 240 

ameliorated. Double mutant plants watered with additional zinc had a severe reduction in 241 

fungal proliferation at 5 dpi (Fig. 4A), and their defence response was completely restored 242 

to wild type levels. Also, the overall look of these plants was much healthier than when 243 

no zinc was added to irrigation water (Fig. 4B). 244 

  245 

Mutations in HMA2 and HMA4 lead to transcriptional activation of defence genes 246 

Plant hormones play central roles in modulating defence resistance mechanisms upon 247 

pathogen perception (Bürger & Chory, 2019). Among them, the ethylene (ET), jasmonic 248 

acid (JA), abscisic acid (ABA) and salycilic acid-mediated pathways orchestrate a 249 

complex network that contributes to plant immunity. Alterations in any of these 250 

phytohormone pathways diminishes resistance to pathogens, including the necrotrophic 251 

fungus PcBMM (Nawrath & Métraux, 1999; Adie et al., 2007; Hernandez-Blanco et al., 252 

2007; Sanchez-Vallet et al., 2010). To test whether the enhanced susceptibility of 253 
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hma2hma4 plants was due to alterations in any of the main defence signalling pathways, 254 

we quantified the expression of the following signature genes PR1 (SA), PDF1.2 (ET and 255 

JA), LOX2 (JA) and RD22 (ABA) in wild type and mutant plants under mock and 256 

PcBMM-inoculated conditions. Figure 5A shows that no significant differences could be 257 

observed in the expression levels of the RD22 gene between hma2hma4 and wild type 258 

plants, while, PR1, PDF1.2 and LOX2 were highly expressed in mock inoculated 259 

hma2hma4 compared to Col-0 plants. This up-regulation in hma2hma4 was maintained 260 

for PR1 when the plants were infected with the necrotrophic fungus (Fig. 5B), but no 261 

additional induction was observed for LOX2 or RD22. Besides, the hma2hma4 mutant 262 

showed a strong repression in the expression of the PDF1.2 gene after infection with the 263 

pathogen. 264 

 265 

DISCUSSION 266 

Life walks a narrow edge between zinc toxicity and zinc deficiency (Frausto da 267 

Silva & Williams, 2001). This can be used to combat invading microbes. Zinc deficiency 268 

can be produced locally to starve the invader (Kehl-Fie & Skaar, 2010), while it might 269 

also be increased to toxic levels to eliminate it (Fones et al., 2010). Both strategies seem 270 

to be used in innate immunity. Zinc deficiency is favored in mammal immune systems 271 

(Kehl-Fie & Skaar, 2010; Hood & Skaar, 2012), while plants, and not only the zinc 272 

hyperaccumulators (Fones et al., 2010; Kazemi-Dinan et al., 2014; Stolpe et al., 2017), 273 

seem to prefer  the toxicity approach. 274 

Our data shows that zinc and manganese are locally increased at PcBMM infection 275 

sites of leaves. The hma2hma4 mutant is unable to mount a local increase in zinc levels 276 

at the infection site, and it is more susceptible to infection by the necrotrophic fungus 277 

PcBMM. Wild-type levels of resistance were restored in the hma2hma4 mutant by 278 

application of exogenous zinc or constitutive overexpression of HMA2 in the hma2hma4 279 

background. Two alternative and not incompatible explanations can be offered for these 280 

observations: i) Arabidopsis is using large amounts of zinc-proteins to combat PcBMM 281 

infection, or ii) Arabidopsis is using zinc to poison the invader. Within the first 282 

hypothesis, zinc limitation in the hma2 hma4 mutants could reduce the activity of one or 283 

several zinc-proteins required for resistance to PcBMM. In this sense, PDF1.2 and other 284 

defensins have been shown to be able to bind zinc and to play a role in plant immunity 285 

and plant zinc tolerance (Shahzad et al., 2013). However, this explanation would require 286 
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the expression and concentration at the infection site of a large amount of zinc-proteins 287 

to account for the large increase of zinc at the infection site. Furthermore, it does not 288 

explain why pathogen strains in high risk of zinc toxicity are less virulent (Tang et al., 289 

2005; Navarrete & De La Fuente, 2015). 290 

The alternative hypothesis suggests that a large portion of the zinc observed at the 291 

infection site would be free, hydrated. HMA2 and HMA4 would increase zinc 292 

concentrations to toxic levels for PcBMM. In this scenario it would be expected that the 293 

ability to detoxify this element would provide a competitive edge, what agrees with 294 

reports that plant pathogens require zinc detoxification systems for efficient virulence 295 

(Tang et al., 2005; Navarrete & De La Fuente, 2015). More recently, it has been shown 296 

that a PcBMM CDF/MTP gene (PcBMM_CBGP_AIM006405) is induced when infecting 297 

Arabidopsis leaves compared to free-living conditions (Muñoz-Barrios et al., 2020). 298 

Considering that CDF/MTP genes are involved in zinc detoxification, this is further 299 

indication of PcBMM facing high zinc levels at the infection site. The general pattern of 300 

pathogen protection against excess zinc as part of bacterial and fungal infection processes, 301 

indicates that zinc-mediated immunity would be a more general process not only limited 302 

to PcBMM. This use of zinc in plant immunity contrasts to what has been predominantly 303 

reported with animal pathogens, in which the ability to bind and uptake zinc with high 304 

affinity is a necessary requirement (Neumann et al., 2017; Zackular et al., 2020).  305 

Manganese also accumulates at the infection site at similar time and at higher 306 

concentrations as zinc, what could indicate a role in PcBMM resistance. Further analyses 307 

in manganese transporter mutants might also yield similar results for manganese-308 

mediated immunity. At the timepoints analysed in our S-XRF experiments, we did not 309 

observe any major changes in the distribution of iron or copper, in spite of existing 310 

literature indicating that it should be present. Upon phyopathogenic enterobacteria attack, 311 

Arabidopsis removes iron from the infection site to starve the invader (Aznar et al., 2014; 312 

Aznar et al., 2015), while copper levels should be increased as indicated by the loss of 313 

virulence in Arabidopsis of Pseudomonas aeruginosa that lose some of their copper-314 

detoxification systems (González-Guerrero et al., 2010). It is possible that infection-315 

dependent changes in iron or copper localization in Arabidopsis leaves occurred, but were 316 

below our detection limits or occurred at time points other than 48 hpi. 317 

Arabidopsis zinc-mediated immunity do not seem to be under the control of the 318 

known regulatory pathways of zinc homeostasis. Out of all zinc homeostasis genes tested, 319 
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transcript levels responded to PcBMM infection only for HMA2, with mild increases in 320 

both roots and shoots, and HMA4, with a large increase confined to roots. Transcript 321 

levels of genes contributing to root zinc uptake from soil were not increased in response 322 

to infection (IRT3, ZIP1, ZIP14, ZIP19). Similarly, expression levels of genes encoding 323 

the transcription factors controlling locally regulated zinc deficiency responses (bZIP19 324 

and bZIP23) were unchanged. Gene expression of MTP2 reflecting a systemically 325 

regulated zinc deficiency response was also unaltered in response to infection. Zinc 326 

detoxification, or vacuolar zinc sequestration (MTP1 and MTP3), as a protecting 327 

mechanism against zinc toxicity was not transcriptionally increased, either. The 328 

transcriptional upregulation in roots of the Zn2+-ATPases when the pathogen is only 329 

applied in shoots illustrates that some systemic signaling occurs.  330 

Our results indicate that zinc-mediated resistance is a fundamental mechanism in 331 

Arabidopsis innate immunity, as mutants impaired in the Zn2+-ATPases HMA2 and 332 

HMA4 are highly susceptible to PcBMM, despite presenting an upregulation of three of 333 

the main defence signalling pathways (SA, JA and ET). The higher expression levels of 334 

PR1, PDF1.2, and LOX2 would reflect an attempt by the host plant to compensate for the 335 

lack of zinc-mediated immunity. However, this compensatory mechanism would not be 336 

sufficient to control fungal colonization of the double mutant plants. These data illustrate 337 

the relevant role of zinc to combat PcBMM.  It should be noted that hma2hma4 mutants 338 

are unable to activate PDF1.2 marker gene expression after pathogen inoculation, in 339 

contrast to wild plants, suggesting a possible defect in the ET/JA signalling pathways, 340 

required for PDF1.2 regulation. However, the expression levels of  PDF1.2  in the double 341 

mutant prior infection were higher than in Col-0 plants, suggesting that the defective up-342 

regulation of PDF1.2 only take place after pathogen reception. Future work will be 343 

directed to unveiling the connection of zinc-mediated immunity with the complex 344 

phytohormone-mediated defence signaling pathways. 345 

 Regardless of the specific mechanism, it seems that zinc transport via HMA2 and 346 

HMA4 is important for plant immunity, and that zinc itself might control fungal infection, 347 

as supported by the use of zinc-protective measures in plant pathogens (Tang et al., 2005; 348 

Navarrete & De La Fuente, 2015; Muñoz-Barrios et al., 2020). In addition to this process, 349 

yet-to-be-unveiled zinc-proteins might also be participating in PcBMM tolerance. Since 350 

zinc is a limiting nutrient (Alloway, 2008), it is intriguing why zinc has an important role 351 

in resistance to a pathogen instead of a more plentiful element. Perhaps the answer lies in 352 
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its scarcity, to which most organisms are typically adapted so that they tend to accumulate 353 

it. It could also be that zinc toxicity takes advantage of the iron nutritional immunity in 354 

plants (Aznar et al., 2014; Aznar et al., 2015). Upon invading the host, a pathogen would 355 

up-regulate their iron uptake systems to ensure sufficient iron supply in the host 356 

environment. At the same time, this would make a pathogen more sensitive to zinc, since 357 

many iron transporters permeate other divalent metals as secondary substrates (Guerinot, 358 

2000; Forbes & Gros, 2001; Nevo & Nelson, 2006), particularly if present at sufficiently 359 

high concentrations. This model could also explain manganese accumulation at the 360 

infection site. Zinc-mediated immunity may open up new strategies against plant 361 

pathogens using proper application of zinc enriched fertilizers.  362 
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FIGURE LEGENDS 592 

Figure 1. Zinc and manganese accumulate locally at the PcBMM infection site in A. 593 

thaliana leaves. Synchrotron-based X-ray fluorescence images of leaves of wild type Col-594 

0 (WT), hma2hma4 mutant, and the hma2hma4 mutant expressing a wild type copy of 595 

the HMA2 cDNA under a 35S promoter (35S::HMA2) 48 hours post inoculation with 596 

PcBMM or mock-treated. Left column shows the calcium distribution; centre, 597 

manganese; and right, zinc. Position of the calcium-rich spots is surrounded by the dashed 598 

line. Units indicate number of photon counts. Each image is the representative of three 599 

images taken from a randomly chosen leaf, each from a different Arabidopsis plant for 600 

each of the treatments and genotypes analysed. 601 

Figure 2. HMA2 and HMA4 are up-regulated upon PcBMM infection. (A) Expression of 602 

HMA2 in 48 hpi shoots and roots normalized to mock inoculated plants. Data shows the 603 

mean ± SE of five independent infection assays, with tissues from 8-10 plants pooled per 604 

experiment. (B) Expression of HMA4 in 48 hpi shoots and roots relativized to mock 605 

inoculated plants. Data shows the mean ± SE of three independent infection experiments, 606 

in each of them collecting 8-10 pooled plants. * indicates statistically significant 607 

difference from mock-infected plants according to Student’s t-test (p -value < 0.05). 608 

Figure 3. Mutants impaired in Zn2+-efflux ATPases HMA2 and HMA4 are more 609 

susceptible to infection by the necrotrophic fungus PcBMM. (A) quantification of 610 

PcBMM biomass by qPCR in the indicated genotypes at 5 dpi upon spray-inoculation 611 

with a suspension of 4x106 spores/ml of the fungus. agb1-2 and irx1-6 plants were 612 

included as susceptible and resistant controls, respectively. Data shown are relative levels 613 

of fungal β-tubulin to Arabidopsis UBC21, normalized to the values of wild-type (Col-0) 614 

plants. Represented data are means ± SE, of three independent infection assays. Asterisks 615 

indicate statistically significant difference from the wild type according to Student’s t-616 

test (p -value < 0.05). (B) Macroscopic symptoms of mock and PcBMM-inoculated plants 617 

at 8 dpi. Photographs are from one experiment representative of three independent 618 

experiments. 619 

Figure 4. Application of exogenous zinc restores wild type infection levels in hma2 hma4 620 

plants. (A) quantification of PcBMM biomass by qPCR of the indicated genotypes at 5 621 

dpi with a spray-inoculation with a suspension of 4x106 spores/ml of the fungus. Data 622 

shown are relative levels of fungal β-tubulin to Arabidopsis UBC21, normalized to Col-623 

0 values. -Zn indicates no added zinc in the watering solution and + Zn indicates 1 mM 624 
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zinc sulphate used in the watering solution twice per week. Represented data are means 625 

± SE, of three independent infection experiments. Asterisks indicate statistically 626 

significant difference from the wild type according to Student’s t-test (p -value < 0.05). 627 

(B) Macroscopic symptoms of mock and PcBMM-inoculated plants at 8 dpi. Experiments 628 

were performed three times with similar results. Photographs are from one experiment 629 

representative of three independent experiments. 630 

Figure 5. SA and JA/ET-signalling pathways are upregulated in hma2 hma4 shoots. (A) 631 

Transcript levels of marker genes for the salicylic acid pathway (PR1), jasmonic acid 632 

pathway (LOX2), ethylene and jasmonate pathways (PDF1.2) and abscisic acid pathway 633 

(RD22) in shoots of mock-inoculated hma2 hma4 relative to wild-type (Col-0) plants. 634 

Shown are mean ± SE of three independent infection experiments, with tissues pooled 635 

from 8-10 plants per experiment. (B) Expression analysis of marker genes for the SA, JA, 636 

JA/ET and ABA signalling pathways in shoots of hma2 hma4 relative to wild-type (Col-637 

0) plants at 48 hpi upon inoculation with a spore suspension of PcBMM. Shown are mean 638 

± SE of three independent infection experiments, with tissues pooled from 8-10 plants 639 

per experiment. 640 

 641 
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