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Abstract 
Data generated by genome-wide association studies (GWAS) are growing fast with the linkage 
of biobank samples to health records, and expanding capture of high-dimensional molecular 
phenotypes. However the utility of these efforts can only be fully realised if their complete 
results are collected from their heterogeneous sources and formats, harmonised and made 
programmatically accessible. 

Here we present the OpenGWAS database, an open source, open access, scalable and 
high-performance cloud-based data infrastructure that imports and publishes complete GWAS 
summary datasets and metadata for the scientific community. Our import pipeline harmonises 
these datasets against dbSNP and the human genome reference sequence, generates summary 
reports and standardises the format of results and metadata. Users can access the data via a 
website, an application programming interface, R and Python packages, and also as 
downloadable files that can be rapidly queried in high performance computing environments. 

OpenGWAS currently contains 126 billion genetic associations from 14,582 complete GWAS 
datasets representing a range of different human phenotypes and disease outcomes across 
different populations. We developed R and Python packages to serve as conduits between these 
GWAS data sources and a range of available analytical tools, enabling Mendelian randomization, 
genetic colocalisation analysis, fine mapping, genetic correlation and locus visualisation. 

OpenGWAS is freely accessible at ​https://gwas.mrcieu.ac.uk​, and has been designed to facilitate 
integration with third party analytical tools. 

Introduction 
Genome-wide association studies (GWAS) have contributed to our understanding of the biology 
of many complex traits and diseases ​1​. Since their emergence nearly 15 years ago many 
thousands of GWAS studies have been published, and the results from these studies offer a portal 
into understanding disease biology, complex trait architecture and evolutionary history. This 
paper describes our efforts to harmonise results of these studies into a platform that is freely 
programmatically accessible for a range of analytical tools.  

Genetic variation has two important properties. First, it represents quasi-random perturbations of 
genomic regions​2​. When tested for association with a trait, genetic variants can be used to 
approximate the counterfactual effect of a variant substitution on a trait​3​. Second, due to 
imputation and a focus on common variants, the genetic variants analysed in GWAS are finite in 
number, with a large proportion of variants consistently included across all GWAS​4​. These two 
properties make GWAS results a powerful tool for understanding the shared genetic properties of 
different traits, without the need for individual-level genetic data​5​. Methodological advancements 
have been made in particular in Mendelian randomization (MR) ​6​, genetic colocalisation ​7–9​ and 
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genetic correlation ​10,11​ that require only GWAS summary data to explore the shared aetiology of 
two or more traits.  

While the rate of GWAS summary data generation is accelerating, the collective value of these 
resources do not meet their full potential if they are not made publicly available, or are only 
made available in non-standard formats and dispersed across the internet. In 2015 we launched 
the MR-Base platform which systematically collected complete GWAS summary data into a 
single database ​12​. The database was accessible through the TwoSampleMR R package ​13​, which 
focused on querying the data to automate MR analyses ​6​. Since then several other similar 
resources have appeared ​14,15​, and development of the MR-Base platform has also continued. 
Now superseding the original MR-Base database, the MRC IEU OpenGWAS database aims to 
be more open, scalable and accessible for other analytical approaches and third-party software. 
This paper describes the resource, and explains how and why various design choices were made. 
In the Discussion we detail the practical and technical barriers that remain in building a 
homogeneous resource of GWAS summary data. 

Results 
The OpenGWAS infrastructure incorporates four domains - (1) ​data are sourced and imported 
before being (2) ​processed for format and quality control​ in order to be (3) ​served publicly​ and 
(4) ​connected to a range of analytical tools​ (Figure ​1​). 

Summary of the database contents 

At the time of writing there are 14582 complete and publicly available GWAS summary datasets 
within OpenGWAS, where ‘complete’ refers to all analysed variants being retained regardless of 
p-value. This corresponds to a total of 125.8 billion genetic associations. The data are typically 
sourced from results made public by specific GWAS consortia (representing 196 unique 
publications) or those that were analysed in bulk on biobanks (such as UK Biobank and Biobank 
Japan). At this point the data are predominantly from samples of European ancestry, but as new 
biobanks around the world begin publishing their GWAS results the populations represented in 
the database will increase in diversity. 

Included amongst the datasets are a wide range of traits. At the time of writing there are 4126 
binary traits, 725 metabolites, 3371 proteins, 3143 brain imaging phenotypes, and 3217 other 
continuous phenotypes. In addition to the complete GWAS summary data, we have also 
extracted the independent top hits for every dataset, totalling 116918 independent signals in 
which 7109 datasets have at least one hit. All publicly available datasets can be searched and 
browsed online or through various programming interfaces as we go on to describe​16​. 

Data harmonisation and quality control 

Datasets obtained from different sources can be difficult to analyse jointly. Even after 
imputation, GWAS results can vary in terms of how variant identifiers are presented, which 
alleles are used to represent the effect allele, which version of dbSNP is used to name the 
variants, etc. We developed a harmonisation pipeline (​https://github.com/MRCIEU/gwas2vcf​) 
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that aligns the non-effect allele for every variant to the human genome reference sequence, trims 
alternative alleles to their minimal representation ​17​ and matches the variant to a consistent build 
of dbSNP ​18​ (Figure 2). 

In addition, we generate and publish a report for every dataset that evaluates the sanity of the 
reported statistics. The report includes a summary of the estimated heritability, genomic inflation 
and genetic confounding of the dataset; a list of independent sites after strict LD-based clumping; 
a comparison of allele frequencies against 1000 genomes reference data ​19​; and a comparison of 
Z-scores estimated from the reported effect sizes and standard errors against those calculated 
from the reported p-values. 

Online access to the database 

The primary goal of creating a comprehensive database of harmonised GWAS summary 
statistics is to enable easy flow of that data through to analytical tools. There are two stages to 
this process: (1) fast and easy querying of the data with different programming languages; (2) 
converting the query results into formats ready to be analysed by different tools. 

Access to the database is mediated by a representational state transfer (RESTful) application 
programming interface (API) ​20​, which allows positional queries based on dbSNP rsid, 
chromosome:position, or a genomic range. Where a requested rsID is not available for a 
particular dataset, it will return the result for a proxy variant (a variant in high linkage 
disequilibrium, LD, with the requested variant) (with aligned alleles) instead. Queries by p-value 
are also available, returning all variants with association p-values below that p-value, or 
(optionally) a subset of these based on automated, on-the-fly clumping. The API provides 
options to generate LD matrices for a given set of variants and perform LD clumping on a given 
set of variants. The API also makes it possible to retrieve the effect of a single variant or 
chromosome-position range on all traits in the database (i.e. a phenome-wide association study, 
PheWAS).  

For convenience, all the API endpoints can be accessed directly (e.g. using curl) or through 
either an R package (ieugwasr ​21​) or a python package (ieugwaspy ​22​). 

Accessing the data for high performance computing 

If a high volume of queries needs to be performed, or the results of a query will typically be very 
large, performing the queries through the API will be sub-optimal both for the user and for the 
OpenGWAS infrastructure, as intensive, automated queries run in parallel can influence the 
performance of the database. To this end we have made the complete data available already 
harmonised for download as flat files that can be utilised in any high performance computing 
(HPC) environment. Each GWAS summary dataset is available for download in GWAS-VCF 
format ​23​, designed to optimise data fidelity and query speed relative to standard tabular text 
files. We provide R (gwasvcf ​24​ [ ​23​]) and python (pygwasvcf ​25​) packages that can perform rapid 
queries on these file formats, therefore simplifying parallel processing of many large queries. 
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Connecting the queried data to analytical tools 

Both the gwasvcf  ​24​ and the ieugwasr ​26​ R packages retrieve GWAS summary data into set data 
structures within R, while the ieugwaspy ​22​ package retrieves GWAS summary data into Python 
dictionaries (easily convertible to Pandas dataFrames). Across the discipline, many different 
software tools have been developed for MR, genetic colocalisation analysis and fine-mapping 
analysis. Each requires slightly different data fields and formats, may require LD matrices for the 
set of variants under analysis, and may require multiple datasets to be harmonised for joint 
analysis. To this end we developed the gwasglue R package ​27​. This is a repository of R methods 
that connect either the API data or GWAS-VCF data directly to a broad set of analytical tools 
(Figure ​1​). As new software applications become available that are relevant to GWAS summary 
data, the gwasglue package will be updated to accommodate the necessary data structures to 
enable connectivity between the data and the analytical methods. 

Future data harvesting 

Future data harvesting will be from multiple sources. Some GWAS studies will perform detailed 
analysis of one or few traits, which can be uploaded through an API. Other GWAS studies will 
analyse hundreds or thousands of traits, which we process using a HPC pipeline. Any new 
complete GWAS summary datasets that have been harmonised by the EBI-NHGRI GWAS 
catalog ​15​ are automatically integrated into OpenGWAS. We strongly encourage users and 
researchers performing GWAS to upload their published summary data to the EBI-NHGRI 
GWAS catalog, which will then be automatically mirrored in OpenGWAS for more extensive 
analytical options. Unpublished GWAS summary datasets (that are not eligible for inclusion in 
the EBI-NHGRI GWAS catalog) can be submitted directly to the OpenGWAS database using 
the request system here: ​https://github.com/mrcieu/opengwas-requests​. 

We note also that in some instances users request that uploaded datasets are embargoed for a 
specified time period. OpenGWAS allows user-specific access to specified embargoed datasets 
with access being authenticated using the Google OAuth2.0 protocol. 

Discussion 
We have created a resource that harmonises and shares the results of a diverse array of published 
and unpublished GWAS. This is the largest resource of its kind described to date, and has been 
designed to accelerate the joint analysis of multiple traits in a free and open manner. The data 
can be downloaded or queried directly through an API, and we have made available tools in R 
and Python to connect to the resource. Users have options to operate on the data through the 
cloud or through high performance computing infrastructures. We also developed an R package 
that automates the channelling of the data in OpenGWAS to a diverse set of analytical tools. The 
automated data import pipelines that we developed enables future growth of the database and 
provides transparency over the data processing steps through the publication of QC reports for 
each dataset. A comparison against other similar resources is shown in Table ​4​. 

We do emphasise, however that there are a number of complex features and practices of GWAS 
in this diverse and evolving field. Hence the analysis of summary statistics (where users have no 
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control over sample selection, individual-level data QC or statistical models) raises some 
important considerations for users of OpenGWAS 

Population differences between studies 

While most datasets in OpenGWAS derive from European ancestry samples, there are 
substantial population differences between and within country ​28,29​. This has implications for LD 
structure, assumptions of panmixia and population structure. Bias can arise in methods such as 
two sample MR and genetic colocalisation when two datasets are analysed jointly but with 
different underlying LD structures. If two datasets are analysed jointly it often assumes panmixia 
- i.e. that the underlying causal structure is identical across the two samples. This could further 
be violated if two studies include individuals from different environments or from different time 
points. Similarly, population structure could introduce apparent genetic differences between 
studies if they have varying ancestral backgrounds. 

GWAS methods vary between studies 

Various statistical methods are in common use for performing GWAS. Linear models and linear 
mixed models can have different properties, especially with regards to how controls for 
population structure influence the estimated effect sizes ​30​. LD score regression may give 
substantially attenuated results for GWAS summary data generated using LMM ​11​. Studies 
obtained from family data (e.g. transmission disequilibrium test results from trios) could differ 
substantially from population based estimates as they may more adequately control for 
population structure as well as family structure, such as assortative mating or dynastic effects 
2,31,32​. 

Controlling for covariates differs between studies 

On the assumption that covariates included in a model are a cause of the target trait, a number of 
differences between studies can arise if the set of covariates used differ. For example, a GWAS 
of type 2 diabetes that has controlled for adiposity will have a different genetic profile than one 
that does not, because adiposity is causal for type 2 diabetes, and the genetic effects that 
influence type 2 diabetes through adiposity will be attenuated ​33​. If more covariates are 
controlled for in one study compared to another, and the residuals have not been scaled, effect 
size estimates should not be altered drastically. However, the variance explained by the variants 
will appear inflated if there are more covariates controlled for in one study. 

On the assumption that the covariate included in a model is itself caused by the target trait, 
complications could potentially arise due to collider bias. Here, genetic influence on the 
covariate could become associated with the trait, leading to spurious associations or biased 
genome-wide effect estimates ​34​. Such a situation is difficult to guard against, so where possible 
the trait metadata in OpenGWAS includes information about covariates adjusted for in the 
model.  
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Quality control decisions differ between studies 

Different GWAS consortia and biobank datasets have varying approaches to performing quality 
control. In particular, decisions about imputation accuracy thresholds can introduce 
heterogeneity between studies. If there are differences in imputation accuracy between two 
studies then the one with poorer imputation will have stronger attenuation of effect size 
estimates, which could introduce heterogeneity in MR studies, loss of power in colocalisation 
studies, and genetic correlation estimates biased downwards. 

Winner’s curse is a function of architecture and power 

Where the most statistically extreme associations from a GWAS are of interest to a follow up 
study, for example in MR, there is a potentially biasing influence of winner’s curse on the 
estimated effect sizes ​35​. Overcoming this issue can be achieved with the availability of 
independent replication of these effects. Unfortunately this is a challenge in the current data 
sharing ecosystem as the generation of replicated effect sizes is relatively ad hoc, and their 
dissemination is much harder to harvest than the discovery GWAS summary data. One 
advantage of OpenGWAS is that many traits have multiple datasets from independent samples, 
often owing to systematic analysis of traits in UK Biobank, so users can perform ​post hoc 
discovery and replication analyses within the database. A detailed exploration of one context in 
which the winner's curse is a potentially serious issue - that of performing MR with weak 
instruments - is provided in Elsworth et al (2020), highlighting the importance of creating a 
systematic way of linking discovery and replication data in resources such as OpenGWAS. 

Summary 

We have developed a system for housing GWAS summary data that aims to be scalable and 
programmatically accessible, while ensuring a level of data QC and harmonisation that simplifies 
downstream analyses. 

 

Web links 
OpenGWAS homepage: ​https://gwas.mrcieu.ac.uk/ 

OpenGWAS API: ​https://gwas-api.mrcieu.ac.uk/ 

gwasglue R package: ​https://mrcieu.github.io/gwasglue/ 

gwasvcf R package: ​https://mrcieu.github.io/gwasvcf/ 

pygwasvcf python package: ​https://mrcieu.github.io/pygwasvcf/ 

ieugwasr R package: ​https://mrcieu.github.io/ieugwasr/ 

ieugwaspy python package: ​https://mrcieu.github.io/ieugwaspy/ 
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TwoSampleMR R package: ​https://mrcieu.github.io/TwoSampleMR/ 

gwas2vcf command line tool: ​https://github.com/mrcieu/gwas2vcf 

Data requests for OpenGWAS: ​https://github.com/mrcieu/opengwas-requests 
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Methods 

Obtaining GWAS summary data 

GWAS summary data was obtained from several sources. Table ​1​ provides an overview of the 
data sources present in OpenGWAS at the time of writing. In general, we group datasets using 
the following rules: 

1. If one or a few summary datasets arise from a publication, we add these to the general data 
batch known as ‘ieu-a’. This contains a diverse collection of such published GWAS datasets 
collected over the last few years.  

2. If there are a large number of summary datasets arising from a publication (e.g. a set of 
metabolites, protein levels, expression levels etc) or a systematic biobank-wide GWAS 
analysis that were generated using a single analytical pipeline, a new dedicated data-batch is 
created for that entire set of datasets (e.g. ukb-a, ukb-b, met-a, etc). 

We also incorporate all harmonised datasets from the EBI GWAS summary database into 
OpenGWAS. The publicly available data can be searched and browsed online. 

Our recommendation for users wishing to upload single published datasets is to deposit them in 
the EBI-NHGRI GWAS catalog, following which they will automatically appear in OpenGWAS 
after they have been through the EBI-NHGRI GWAS harmonisation pipeline.  

For new data batches comprising large-scale systematic or unpublished datasets, users can 
submit a request for upload using a specific github issues page created for this process 
( ​https://github.com/mrcieu/opengwas-requests​). 

Linkage disequilibrium reference panel 

For some operations, such as linkage disequilibrium (LD) clumping or generating LD matrices 
for a set of variants, it is necessary to calculate the LD between a set of variants on the fly. For 
LD clumping operations we use five different super-populations from the 1000 genomes phase 3 
sequenced reference panel, depending on the geographic origin of the individuals in the GWAS 
study. We retained only autosomal single nucleotide polymorphisms with minor allele frequency 
> 0.01 within the super-population. INDELs are removed, while multiallelic variants (with 
duplicate rsids representing the different allele pairs) are reduced to a single variant representing 
the most common allele pair. 

The clumping endpoint of the API can be used to perform clumping using PLINK 1.90 on one of 
the five LD reference panels for a set of GWAS summary data. Very strict clumping thresholds 
are used by default - retaining variants with LD  within a 10Mb window and with.001R2 < 0  
p-value . While this is conservative, it ensures independence of top hits, but users cane< 5 −8  
optionally implement alternative thresholds through the API. 

The API is also able to provide a LD matrix utilising a similar approach in which the signed LD r 
value for the pairwise set of variants is returned as a matrix by issuing a PLINK 1.90 call to 
process the relevant variants using the specified LD reference panel. 
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Data processing pipeline 

Meta-data are stored as a flat file in JSON format, describing the GWAS file columns and the 
study metadata. Summary statistics  are processed either on single datasets through the API, or 
for large numbers of datasets simultaneously in a HPC environment. The API orchestrates a 
containerised pipeline using the Cromwell scientific workflow engine 
(https://cromwell.readthedocs.io/en/stable/). The HPC pipeline orchestrates the same software 
natively but using a Snakemake (https://snakemake.readthedocs.io/en/stable/) pipeline. 

GWAS summary statistics and study metadata are processed using gwas2vcf 
( ​https://github.com/mrcieu/gwas2vcf​; Figure 2). First, the data are read and validated to ensure 
no missing values of essentials inputs and to ensure variables are of the correct type. Each 
variant is compared against a supplied reference sequence (GRCh37/hg19 by default), if the data 
is not already on the forward strand then the alleles are flipped to the forward strand where 
necessary. During this process the data is checked for errors, if each column of the data has the 
appropriate characteristics. For example, standard errors must be positive and numeric, effect 
sizes must be numeric, p-values must be between 0 and 1. All variants are oriented to the human 
genome reference panel (GRCh37/hg19) based on their chromosome and position, which means 
that the non-effect allele is forced to be the human genome reference allele. If this requires 
switching the effect allele, then the sign of the effect size is also switched and the reported effect 
allele frequency is transformed appropriately. Variants are subsequently left-aligned and 
trimmed to the minimal representation using vgraph (​https://github.com/bioinformed/vgraph​). 
This process ensures equal comparison of haplotypes between studies.  The data are then 
annotated by position with the dbSNP database (build 153). Therefore, across all datasets every 
variant has a consistent rsID and effect alleles are consistently the same. 

Effect allele checks 

An ever present concern with GWAS summary data in the current climate is that the effect allele 
has been incorrectly annotated, which could lead to analytical problems. For example, in a MR 
analysis the direction of a causal effect would be erroneously inferred to be the reverse. All 
studies in the OpenGWAS database have been verified for their effect allele frequency via 
documentation released with the original data or through personal communication. However we 
have also implemented a separate automatic check. Here, if the effect allele frequency is 
available then we compare the reported effect allele frequency for the study against a relevant 
population reference, using a set of common variants in the frequency range of 0.1-0.3. An 
inverse relationship between the effect allele frequency and the population allele frequency 
indicates the effect allele is incorrectly annotated, or the effect allele frequency is incorrectly 
annotated. Several studies have been flagged (across many of the batches) that have required 
follow up investigation to assert the correct allele frequency. This problem ambiguous GWAS 
summary data raises the importance of using standard GWAS summary data formats​23​. 

Per-study reports 

Upon data conversion, a report is produced for visual inspection of the data. This involves 
performing LD score regression and LD-based clumping as described above. The Z-values 
obtained by dividing the effect size by the standard error are plotted against the Z-values 
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obtained from the p-values to ensure that these data fields have been correctly specified. Effect 
allele frequencies are compared against the 1000 genome reference panel to help evaluate if 
chromosome positions and rsIDs have been specified correctly. Numbers of independent top hits 
are displayed, along with the estimates of genomic inflation factor and LD score regression 
outputs, to help evaluate if population structure is having a large influence on the traits and 
whether the number of independent top hits is reflective of the sample size of the data. 

LD score regression procedure 

As part of the GWAS QC report, LD score regression was performed using the LDSC python 
package​36​ using default LD scores from European samples in the 1000 genomes reference panel. 
For each dataset variants were only retained if they were present in the hapmap3 reference 
panel​37​, excluding the MHC region. 

Database design 

Once the QC report for a dataset has been inspected, an API call prepares the data for upload to 
be made public. 

The data infrastructure has three main components: an Elasticsearch cluster 
( ​https://www.elastic.co/elasticsearch​) to facilitate efficient search of the GWAS summary data, a 
Neo4j graph database (​https://neo4j.com/​) to store metadata for each study, and flat files that 
provide LD reference panels. The summary data and meta-data are all stored separately as flat 
files also, which can be downloaded directly in GWAS-VCF format and serve as the source of 
data fed into the Elasticsearch and Neo4j databases. 

Metadata 

The metadata for each GWAS are stored in a unique node in the Neo4j graph, a description of 
which can be seen in table ​2​. In addition, information about GWAS access and permissions for 
embargoed datasets are also stored in the graph. Each database query is achieved via the API. 
For each query, the user ID is used to retrieve a list of available GWAS IDs from the Neo4j 
graph, which are then used to query the Elasticsearch cluster. Where possible, studies are 
mapped to existing ontologies, for example the trait name is mapped to an experimental factor 
ontology term (EFO) ​38​ and sample ancestry is mapped to the human ancestry ontology ​39​. 

GWAS summary data 

The harmonised GWAS-VCF format summary data are served to the public from an 
Elasticsearch cluster, which is only accessible through the API. The Elasticsearch architecture 
was selected over other database platforms on the basis of query speed and scalability. The 
GWAS summary data are pre-indexed as part of the data processing pipeline, and these indexed 
data snapshots are deployed on an Elasticsearch cluster hosted on the Oracle Cloud Infrastructure 
( ​https://www.oracle.com/uk/cloud/​). 

Prior to indexing into Elasticsearch, all data were cleaned to remove non-numeric fields and 
missing values replaced with null and transformed into a set format (Table ​3​) 
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API design 

An application programming interface (API) is available for automated access to GWAS results 
and corresponding metadata. The Python3 API is built using Flask-RESTPlus, adhering to the 
representational state transfer (REST) architectural constraints. The swagger (https://swagger.io/) 
implementation utilizes the popular Flask framework with comprehensive unit and integration 
testing for accuracy and robustness. High availability and performance are achieved by running 
multiple containerised instances of the API behind a load balancing reverse proxy. 

 

LD proxy lookups 

Pairwise LD  values are pre-calculated for variants within 10Mb windows, and pairs ofR2  
variants are retained where LD . This list of pairs of variants, along with their LD .4R2 > 0 R2  
values and the allelic phase of the two variants, are stored within the Elasticsearch database. If a 
variant is requested for a dataset and is found not to be present then the following procedure 
occurs: 

1. The LD pair database is searched, identifying the variants with highest LD with the target 
variant. 

2. The target dataset is queried for each of the proxy variants from (1). 
3. The proxy variant present in the target dataset with the highest  with the target variant isR2  

retained. 
4. The allele of the proxy variant that is in phase with the effect allele of the target variant is 

identified. 
5. The effect, with respect to the proxy effect allele from (4), is returned as the proxy effect for 

the target variant. 
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Figures 
 

 

Figure 1: A schematic of the GWAS summary data infrastructure that constitutes the 
IEU OpenGWAS database. Each of the data retrieval methods are open to be linked to 
other third party tools.  
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Figure 2. GWAS harmonisation flowchart 
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Tables 
Table 1: Data batches within the OpenGWAS  

count description id 
293 Datasets that satisfy minimum requirements imported 

from the EBI database of complete GWAS summary 
data​15 

ebi-a 

19942 eQTLGen 2019 results, comprising all cis and some 
trans regions of gene expression in whole blood​40 

eqtl-a 

465 GWAS summary datasets generated by many different 
consortia that have been manually collected and 
curated, initially developed for MR-Base​6 

ieu-a 

452 Human blood metabolites analysed by Shin et al 2014​41 met-a 
150 Human immune system traits analysed by Roederer et 

al 2015​42 
met-b 

123 Circulating metabolites analysed by Kettunen et al 
2016​43 

met-c 

3282 Complete GWAS summary data on protein levels as 
described by Sun et al 2018​44 

prot-a 

83 Complete GWAS summary data on protein levels as 
described by Folkersen et al 2017​45 

prot-b 

3143 Complete GWAS summary data on brain region 
volumes as described by Elliott et al 2018​46 

ubm-a 

2514 IEU analysis of UK Biobank phenotypes​47 ukb-b 
904 Neale lab analysis of UK Biobank phenotypes, round 

2​48 
ukb-d 
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 Table 2: GWAS metadata fields  

Property Description 
id A unique ID 
trait Description of measured trait 
note Extra information 
year Year of publication 
consortium GWAS consortium name, if applicable 
author First author of GWAS 
pmid PubMed identifier, where available 
sample_size Sample size of GWAS 
ncases Number of cases 
nsnp Number of variants in results file 
sex Males/Females 
population Geographic origins of the samples included in the study 
sd Standard deviation of the phenotype analysed 
unit How to interpret a 1-unit change in the phenotype? eg log 

odds ratio, mmol/L, SD units 
category Binary disease phenotype or a non-disease phenotype 
subcategory Further categorisation 
efo List of experimental factor ontology terms 
mr Suitability of GWAS for Mendelian Randomization 
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 Table 3: GWAS summary data fields stored in the Elasticsearch database  

Property Description 
gwas_id GWAS ID 
chromosome Chromosome hg19 
position Position hg19 
effect_allele Effect allele 
other_allele Alternative allele 
effect_allele_freq Effect allele frequency 
p P-value 
n Sample size for that variant 
beta Beta coefficient 
se Standard error 
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 Table 4. Comparison of IEU OpenGWAS infrastructure with existing tools 

Feature 

IEU OpenGWAS 
Database 
(https://gwas.mrc
ieu.ac.uk) 

GWAS Catalog 
(https://www.ebi.a
c.uk/gwas/) 

GWAS 
ATLAS 
(https://atlas.ct
glab.nl/) 

GWAS Central 
(https://www.gwasc
entral.org/) 

Data 

Study metadata 
✅ ✅ ✅ ✅ 

Full summary statistics (hosted) ✅ ✅ ❌ ✅ 

Top hit summary statistics (hosted) ✅ ✅ ✅ ✅ 

Quality control 

Effect size provided with consistent effect 
allele between studies 

✅ ❌ ❌ ❌ 

GWAS QC report ✅ ❌ ✅ ❌ 

Accessibility 

Software libraries for automated data 
extraction 

✅ ✅ ❌ ✅ 

Genome browser ✅ ✅ ❌ ✅ 

Full summary statistics download ✅ ✅ ✅ ✅ 

Functionality 

Automated procedure for uploading new 
GWAS data 

✅ ✅ ❌ ❌ 

PheWAS tool ✅ ✅ ✅ ✅ 

Query using LD proxies ✅ ❌ ❌ ❌ 

Interoperability 

API 
✅ ✅ ❌ ✅ 

Software for automated integration with 
secondary analysis tools ✅ ❌ ❌ ❌ 
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