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Recent technological and experimental advances in recording from neural systems have led to a significant 

increase in the type and volume of data being collected in neuroscience experiments. This brings an 

increasing demand for development of appropriate analytical tools to analyze large scale neuroscience data. 

Simultaneously, advancement in deep neural networks (DNNs) and statistical modeling frameworks have 

provided new techniques for analysis of diverse forms of neuroscience data. DNNs like Long short-term 

memory (LSTM) or statistical modeling approaches like state-space point-process (SSPP) are widely used 

in the analysis of neural data including neural coding and inference analysis. Despite wide utilization of 

these techniques, there is a lack of comprehensive studies which systematically assess attributes of LSTM 

and SSPP approaches on a common neuroscience data analysis problem. As a result, this occasionally leads 

to inconsistent and divergent conclusions on the strength or weakness of either of the methodologies and 

also statistical significance of the analytical outcomes. In this research, we focus on providing a more 

systematic and multifaceted assessment of LSTM and SSPP techniques in a neural decoding problem.We 

examine different settings and modeling specifications to attain the optimal modeling solutions. We propose 

new LSTM network topologies and approximate filter solution to estimate a rat movement trajectory in a 

2-D spaces using an ensemble of place cells’ spiking activity. For each technique; we then study 

performance, computational efficiency, and generalizability of each technique in this decoding problem. 

By utilizing these results, we provided a succinct picture of the strength and weakness of each modeling 

approach and suggest who each of these techniques can be properly utilized in neural decoding problems.  

Keywords 

    Deep neural network (DNN), State space point process (SSPP), Neural decoding, Neural data 

analysis, Place cell, Spiking data. 

 

 

 

1 Introduction 

Recent advancements in sensor technology and progresses in clinical experiments have provided ability to 

simultaneously record neural activity of different brain areas in human and non-human primates [1-3]. 

Analyzing these data will help us to understand what stimuli or event elicits a particular pattern of neural 

activity [4-6] or how complex processes in brain, like learning [7] and memory, are shaped [8]. Higher 

dimension and volume of the neural data recorded in these experiments present a unique set of challenges 
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and difficulties in their analysis and have led to an elevated demand for more accurate and computationally 

efficient solutions [9-11]. In this research, we focus on a neural decoding problem which is based on 

processing spiking data recorded from a cell ensemble representing an external behavioral or physiological 

correlates like movement. We utilize deep neural network (DNN) and state-space (SS) modeling 

frameworks to process the neural data and decode relevant behavioral correlates. 

 

SS have provided powerful tools in analysis of neuroscience data [12-14]. For instance, state-space poin-

process (SSPP) has been successfully applied to estimate a rat position in 2-D spaces from hippocampus 

place cells’ spiking activity [15], tracking oscillatory activities in the subthalamic nucleus of Parkinson’s 

patients [16], and decoding arm movement and grasp actions from neural activity of motor cortex area [13]. 

In parallel, deep neural networks (DNNs) have been utilized in neuroscience data analysis to address a 

similar class of decoding and inference problems. For example, Long Short-term Memory (LSTM) [17], a 

particular recurrent neural networks (RNN) [18], is used to charactrize direct input and output relationship 

between neural activity and physilogical variables such as decoding from motor and somatosensory cortices 

[19], Self-localization in 2-D spaces [20]. It also used as decoder model in encoding-decoding problems 

like decoding from human motor cortical signals [21], and decoding a rat position in 2-D spaces using 

hippocampus place cells spiking activity [22]. 

Despite the extensive utilization of DNN and SS approaches in analysis of neuroscience data, there are still 

multiple modeling and computational challenges to be addressed. In SSPP approach, the neural spiking 

activity are formulated as a function of underlying latent dynamical states, and dynamical state models are 

defined by a state-space point process. The established solution for SSPP uses recursive Bayes filter which 

consists of prediction and update rules defined by Chapman-Kolmogorov and Likelihood function. The 

solution is appropriate for a one-dimensional decoding problem, but becomes computationally expensive 

as the dimension of the decoding problem grows; even a 2-D decoding problem becomes computationally 

demanding [23]. Tools and techniques like Gaussian approximation [24, 25], sequential Monte-Carlo 

(SMC) methods including particle filtering [26, 27] have been applied to address computational challenge. 

However, these solutions might be less efficient in multi-dimensional decoding problems.  

DNNs also are not immune to the computational complexcity. DNNs are data greedy; the number of the 

model’s parameters are thousands of times larger than the traditional neural networks like shallow neural 

network and they demand large datasets for a proper traning [28]. When a DNN is trained with a small 

dataset, it simply overfits to the training data and lose its accuracy and generalizability on the test data [29]. 

Even though this problems are partially addressed using synthetic training data [26] or dropout technique 

[29], there are ongoing efforts to reduce the size (number of parameters) of DNNs. In practice, this is a 

challenging task as construction of an efficient network for a specific problem requires a lot of experience 

and good insight of the problem in hand [30]. The other issue with DNNs is the lack of model interpretabilty, 

which is a major caveat of DNNs [31]. A remedy to overcome this problem which is inspired from 

biological neural system is hierarchical processing of features by increasing level of model interpretability 

in deeper layers of neural systems [32]. By embedding this charactrestic in DNN, the network accuracy and 

generalizability showed a significanct boost [33, 34]. Even though DNNs are used for neural decoding 

problems, but none of them addressed interpretation ability of DNNs for neural decoding problems [19, 

20]. So, building interpretable DNNs for neuroscience data which have complex dynamics is still a 

modeling challenge and need to be addressed to elevate potential of DNNs for neural decoding problems. 

Here, we focus on decoding a rat movement trajectory in 2-D spaces from neural activity recorded from an 

ensemble of place cells. Through this problem, we aim to revisit and potentially address these challenges. 

Despite established solutions [12] for 2-D decoding problems, this problem has room to be better addressed, 

particularly when the experiment is being conducted in a complex maze structure [23]. We address this 
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problem by proposing DNN and SSPP models to estimate the rat movement. We work to assess different 

aspects of both technqiues including accuracy, computational efficiency, and generalizability, which are 

crucial to build a succint picture of each methodology’s strength and weaknesses.  

 

For SSPP, we examine Numerical exact solution and an approximate filter solution. Numerical exact 

solution, uses a Bayes filter solution [28]. The posterior distribution of the rat position in the maze is 

estimated by solving the filter update and likelihood functions numerically. For the approximate solution, 

we propose a approximate filter solution with a drop-merger algorithm proposed in  [35] to estimate the rat 

movement trajectory. For DNN approach, we propose LSTM network topologies to derive an architecture 

that properly captures structural dynamics of the rat’s movement by presenting interpretable elements of 

movement from its spiking activity in a hierarichal structure. This research provides a new set of modeling 

approaches in decoding from neural activity problems and helps to reach a more clear picture of pros and 

cons of DNN and SSPP in neural decoding problems and eventually provides alternative choices in this 

field . 

In the next sections, we discuss our proposed SSPP models and LSTM network topologies to estimate a rat 

movement trajectory in 2-D spaces (W-shaped maze) in details. We then discuss the 2-D decoding problem 

and the dataset being used in this research. We run different tests to check performance, computational 

complexity and generalizability of both approaches. Finally, we investigate how the relationship between 

place cells and rat position is being captured in them. Using this result, we eventually provides alternative 

choices in neural decoding problems . 

2 Methods 

 In this section, we describe SSPP and LSTM modeling approaches to decode 2-D movement trajectory 

from an ensemble spiking activity and explain the theory behind each technique. For SSPP, we define how 

the relationship between the movement trajectory and spiking activity can be formulated. We build the state 

and observation processes’ equations and define the relationship between the state variables and observed 

neural activity. For LSTMs, we represent an hirariacal structure in LSTM network topology. We 

incorporate higher information of the rat movement including geometry of the maze, the movement 

velocity, and the movement direction into the network topology to increase accuracy and interpretability of 

the network topology. We discuss how the decoding accuracy improves by incorporating these information 

in a hiarical structure in the network topology.  

 

2.1 State-space point-process approach 

Here, we discuss two solutions: Numerical exact solution and an approximate filter solution. The first 

solution, Numerical exact solution, uses a Bayes filter solution [36]. The posterior distribution of the rat 

position in the maze is estimated by solving the filter update and likelihood functions numerically. In this 

solution, each cell firing activity is modeled by a conditional intensity function (CIF) which is built using 

a non-parametric method to characterize the spiking activity of individual neurons as a function of the rat 

position in a 2-D maze [23]. For the second solution, which is an approximate filter solution, we assume 

that the posterior distribution of the rat position per each time-step can be approximated using a Gaussian 

Mixture Model (GMM). In this solution, each cell’s CIF is defined by Mixture of Gaussian (MoG). Utilizing 

this specific form of CIF function, we build a computationally efficient algorithm that estimates the optimal 

number of mixture components and corresponding parameters per each time-step given the observed 

spiking activity [35]. This solution is computationally efficent in 2-D and higher-dimensional decoding 
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problems where the computation of numerical solution becomes demanding [37]. In the next part we 

describe each model in detail. 

2.1.1 Exact solution 

For a point-process observation, we model spiking activity of a neuron by representing its firing rate as a 

function of neural correlates such as position plus the history of the population spiking activity. The firing 

rate of a neuron at time 𝑡 is defined by  

𝜆𝑐(𝑡|𝐻𝑡) = lim
𝛿𝑡→0

𝑃(𝐴 𝑠𝑝𝑖𝑘𝑒 𝑖𝑛 (𝑡, 𝑡 + 𝛿𝑡)|𝐻𝑡)

𝛿𝑡
  (1) 

where, 𝑐 is the neuron index and 𝐻𝑡 represents the full history of spiking for all neurons up to time 𝑡 [38, 

39]. For the specific problem of this research, we use a non-parametric kernel method to build each neuron’s 

firing rate - or CIF – as a function of 𝑋𝑘 = (𝑥𝑘 , 𝑦𝑘), where (𝑥𝑘 , 𝑦𝑘) represent the rat’s position at the time 

index 𝑘 in a 2-D spaces [40]. Given the neural ensemble spiking activity, the likelihood that the rat is at 

coordinate 𝑋𝑘 given observing 𝛥𝑁𝑘 total spikes from an ensemble of 𝐶 cells, in the interval 𝛥𝑘 =

(𝑡𝑘−1, 𝑡𝑘] is defined by   

𝐿(𝑋𝑘; 𝑁𝑘) ∝ {
𝑒𝑥𝑝(− △𝑘 Λ(𝑡𝑘|𝐻𝑘)) △ 𝑁𝑘 = 0

∏𝐶
𝑐=1 [𝜆𝑐(𝑡𝑘|𝐻𝑘)Δ𝑘]Δ𝑁𝑘

𝑐
𝑒𝑥𝑝(−Δ𝑘Λ(𝑡𝑘|𝐻𝑘)) △ 𝑁𝑘 > 0

   (2) 

 

𝑁𝑘 = {Δ𝑁𝑘
𝑐: 𝑐 = 1. . . 𝐶}, Δ𝑁𝑘 = ∑𝑐 Δ𝑁𝑘

𝑐 (3) 

 

Λ(𝑡𝑘|𝐻𝑘) = ∑𝑐 𝜆𝑐(𝑡𝑘|𝐻𝑘) (4) 

where 𝑐 refers to the cell index and 𝜆𝑐(𝑡𝑘|𝐻𝑘) represents the 𝑐𝑡ℎ cell intensity as a function of 𝑋𝑘, and Δ𝑘 

defines the time-step. We assume that the rat movement over the 2-D spaces follows a Markov process, 

which is defined by 

𝑋𝑘 = 𝐴𝑋𝑘−1 + 𝑊𝑘     𝑊𝑘 ∼ 𝑁(0, 𝑄) (5) 

where, 𝐴 is the state matrix, 𝑊 is the process noise, and 𝑄 is the process noise covariance matrix. Under 

this assumption, the one-step density of state 𝑋𝑘, is defined by  

𝑝(X𝑘|𝑋𝑘−1)~𝑁(𝐴 𝑋𝑘−1 + 𝐵, Σ𝑄) (6) 

Using equations (2) and (5), we can run the recursive Bayes filter [13] to estimate the rat movement using 

the spiking activity of the place cell ensemble. The likelihood function does not follow a Gaussian 

distribution, and thus the filter solution does not have an analytical solution. Base on [41], the posterior 

distribution of the state at time index 𝑘 can be derived by  

𝑃(𝑋𝑘|𝑁1,...,𝑘) ∝ 𝐿(𝑋𝑘; 𝑁𝑘) ∫𝑥𝑘−1
𝑃(𝑋𝑘|𝑋𝑘−1)𝑃(𝑋𝑘−1|𝑁1,...,𝑘−1)𝑑𝑋𝑘−1  (7) 

where the integral over 𝑋𝑘−1 defines the one-step prediction in the Bayes filter paradigm [36]. The term 

𝑃(𝑋𝑘|𝑁1...𝑘) is the filter estimation at time index 𝑘 given {𝑁1, . . . , 𝑁𝑘}. The computational complexity of 

the exact solution grows exponentially as the dimension of the decoding problem increases [23]. As a result, 

for a 2-D decoding problem the computational cost becomes prohibitive; especially when the filter is 

required to be estimated with a fine spatial resultion in each axis of X – here, x and y. In the following 
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section, we discuss a computationally efficient approximate solution which can be used for real-time 

decoding problems in multi-dimensional spaces.  

2.1.2 Approximate filter solution 

There are approximate solutions  like Gaussian approximataion solutions with a low computational cost 

that use a Gaussian approximation of the posterior distribution; however, multi-modality of cells’ receptive 

field make this solution less accurate in decoding the rat position as the number of cells in the recording 

grows. We propose a new solution, where  filter is approximated by GMM and each neuron’s CIF is defined 

by a MoG. The CIF for a neuron is defined by  

 𝜆𝑐(𝑡|𝐻𝑡) = ∑𝑈
𝑢=1 𝜆𝑢

𝑐  det(2𝜋Σ𝑥,𝑢)
−

1

2exp (−
1

2
(𝑋𝑡 − 𝜇𝑥,𝑢)′Σ𝑥,𝑢

−1(𝑋𝑡 − 𝜇𝑥,𝑢)  ) (8) 

where, 𝜆𝑢
𝑐  defines the rate of 𝑢𝑡ℎ mixture model related to 𝑐𝑡ℎ cell. 𝜇𝑥,𝑢 and Σ𝑥,𝑢 are the mean and 

covariance of the 𝑢𝑡ℎ mixture model over 𝑋𝑡 space. For each cell, there are U mixture components, where 

the number of mixture component for a neuron may differ from other neurons. It is worth to mention that 

sum of 𝜆𝑢 is not normalized and it can be any positive number depending the cell firing rate over the space. 

The likelihood of the rat position given the ensemble spiking activity is the same as the one defined in 

equation (2), and the rat movement trajectory over the space is defined by equation (5). In this filter solution, 

we assume that the posterior distrubtuin of the rat position in the space has multi-modal distribution which 

can be approximated by a GMM,  

 𝑝(𝑋𝑘|𝑁1⋯𝑘) ∼ ∑𝑉𝑘
𝑣=1 𝑤𝑘,𝑣det(2𝜋Σ𝑘,𝑣)

−
1

2  exp (−
1

2
(𝑋𝑘 − 𝜇𝑘,𝑣)′Σ𝑘,𝑣

−1(𝑋𝑘 − 𝜇𝑘,𝑣)) (9) 

  

∑𝑉𝑘
𝑣=1 𝑤𝑘,𝑣   = 1          &              𝑤𝑘,𝑣 > 0 (10) 

 where 𝑉𝑘 is the number of mixture components at time index 𝑘 and 𝑤𝑘,𝑣 is the weight of the 𝑣𝑡ℎ mixture 

component with (𝜇𝑘,𝑣 , Σ𝑘,𝑣) paramaters. Appendix A describes how each of these parameters is estimated 

over different time points. Computation time of this filter solution does not grow exponentially with the 

decoding problem dimension, and as a result, it can be applied to high dimensional decoding problems 

without an exponential growth in the computational cost [23]. Note that the number of mixture components 

on each processing time can be optimally controlled; thus, its computational time can be adjusted depending 

on the processing time  and accuracy requirements [35].  

In this section, we introduced both exact and the approximate filter solutions for the 2-D decoding problem. 

We revisit these techniques and study their performance and computational efficiency along with DNNs. 

 

 

 

2.2 Deep neural network approach  (LSTM network topologies)  

In this section, we argue that a directly mapping the input – spiking activity to the rat position is not 

necessary the best toplogy from both interprtatbility and prediction accuracy viewpoints. Then, we propose 

an hierarchal architecture that properly captures structural dynamics of the rat’s movement by extracting 

higher order elements of its movement in a hierarchal  structure. We suggest this hierarchal  LSTM network 
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toplogy along with a proper training constraints not only reaches a higher prediction accuracy, but also 

captures higher elements of movements in the enural activity. 

2.2.1 Higher-order movement components and how to decode them in LSTM network 

a rat movement trajectory depends on the geometry of the area that rat moves in, the rat velocity – and in 

particular, the direction of its movement. These provides higher-order information about the rat  movement 

and its position. As a result, embedding these information as a part of LSTM toplogy might improve 

accuracy of the rat movement estimation. However, the key is how different layers of the LSTM are 

constuctued and communication with each other. We propose a hierchical structure where deeper layers 

capture higher-order information of the rat movement and uses them to estimate the rat position in the maze. 

We propose two decoding steps (layers): decoding the maze toplogy by segementing the experiment area 

to subregions and decoding derivations of movement. We use them to improve accuracy of the rat 

movement estimation. 

The movement constraints by the shape of the maze and walls inside and outside area of the maze. So, we 

can consider the geometrical features as areas that a rat can – alos cannot - move in it. There are multiple 

approaches that we can embed this information in a DNN [42]. The approach we utilize, segments the 

experiment area to multiple regions (segments). By applying this segmentation method and a Multiple 

Logistic Regression (MLR) [43], we can estimate the probability of rat being in each of these segmenet 

given the ensemble spikign activity. Assume that the maze structure is a W-shaped, Figure 1.a. We want 

to segment its area for encoding model. The first strategy that reaches to mind is to segment the whole area 

of the experiment to equal segments, like Figure 1.b. In this strategy the area outside the maze is segmented 

to multiple segments, but it is not necessary. Because the rat won’t walk through the outside area at all and 

information of exact locations outside the maze is not useful, so we can model it as a one segment and 

reduce number of segments, Figure 1.c. The probability information of this area can be interperate as a 

penalty term for the position decoder to estimate positions outside the maze. 

In addition, the area inside of the maze , by considering the maze shape (the maze has three arms), can be 

divided to three general segments (number of arms) like Figure 1.d. This can reduce the number of segment 

and still convey information of moving path between arms of the maze. This is the optimum way to segment 

inside area of the maze, because If we reduce this number we cant extract enough information. For example 

if we consider one segment for the inside are, we can’t gain anything because we already have this 

information by using information of the outside area. The rat always can move from Area-1 to Area-2 and 

it can’t be in Area-1 and in the next time-step jumps to Area-3 without passing Area-2, so this can be 

interpreted as continuity information. This segmentation method provides penalty term for the position-

estimator layer to avoid estimating wrong positions outside the experiment structure area by providing 

information of rat position in the area-4. And provides continuity term for movement inside the maze, by 

providing information of transition between the inside areas, area-1 to area-3. 

For decoding information about derivations of the movement from neural activity we can use a regressor 

layer for each derivation order. This regressor layer could be any  type of linear or non-linear regressors. 

For example, to extract information about the  first derivation of movement (rat’s velocity) from neural 

activity, we can build the regressor layer by two LSTM units (because we have 2-D velocity). Each unit 

extract velocity information for a specific axis (𝑥 and 𝑦 axis). This information can helps the position 

estimator layer to estimate the 2-D position with considering first order dynamics of the rats’ movement. 
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(a) 

 

(b)  

 (c)   (d)  

Figure 1: Different mechanisms to encode the geometry of the maze. a. The experiment maze structure, 

where the rat moves in, blue lines represents the walls and borders of the maze; and the black lines are 

boards of the experiment area. b. The maze area is segmented using multiple small squares. Here, we 

have 49 different segments representing the whole area including both inside and outside maze.  c. The 

experiment area divided one segment covers outside area and 20 segments covers inside the maze d. A 

balanced segmentation of the maze topology, the maze area is encoded by three segments, and one 

segment for the outside area. 

2.2.2 LSTM network toplogies deriven by high-order movement terms:  

To have a refrence model to assess possible improment in prediction result, we use a traditional LSTM 

topology (the 1st LSTM topology) with formulation described in [44]. This topology has been used widely 

to decode neural spiking activity [19, 20, 22, 44] and it is our reference model to compare prediction 

accuracy and interpretability of network topologies being proposed in this research. Figure 2 shows the 

block diagram of the 1st LSTM model; in this network topology, higher-order terms of the movement like 

velocity or geometry decoded at the same order without considering any hierarchal orders among the 

network layers. Based on physical rules of movement, these information improves prediction accuracy if 

being used in a proper and coronoligcal order. So, the key to use them is in what order these information 

should extract in the network. In the this section, we discuss the hierarchal topologies we developed to 

address this challenge. 
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Figure 2: Traditional LSTM network topology (the 1st model). This model consists of a layer of LSTM 

recurrent units and a fully connected output layer to estimate the rat position -(𝑥, 𝑦) - from the place 

cells’ ensemble spiking activity. The input is spiking activity of an ensemble of C place cells and the 

output is -2D position of the rat in the maze (identified by a red dot indicator in the output image). Red 

segment in geometry-estimator section is the segment with highest probability where the rat is in it in the 

current time step. Finially, red arrow in velocity estimator section is direction of the rat movement. 

 

We propose our 2nd LSTM network topology with the ability to extract information about the geometrical 

features (mentioned in previous section)  of the area that a rat moves in, prior to estimation of the rat 

position. The “position-estimator” layers uses this higher order movement term to estimate the rat’s position 

- shown in Figure 3.a. In this topology, the second layer of the network, called “geometry-estimator” layer, 

extracts the geometrical features from the cell ensemble neural activity and passes it to the output layer, 

position-estimator layer. This extra information which is being passed to the output layer improves the 

decoding accuracy in predicting the rat position if our assumption mentioned in previous section and 

proposed hierarchy is correct. This is because if the geometry layer does not carry information about the 

position, we then expect the prediction performance not to significantly gorw compared to 1st LSTM. Also 

this geometry-estimator layer restricts the output of the position estimator from estimating positions outside 

the maze area (see previous section) and leads to higher position estimation accuracy. 

The 3rd LSTM network topology is simialrt to the 2nd LSTM network topology, but instead of estimating 

position and velocity in a same order, it extracts velocity features which are the derivative of position as 

prior knowledge for estiamtiong the position and  pass this higher order movement term to the position-

estimator layer to estimate the rat’s position; Figure 3.b shows our 3rd LSTM network topology. In this 

topology, the “velocity-estimator” layer first decodes information about first order dynamics of the rat’s 

movement using LSTM units and passes decoding result to the position-estimator layer to estimate the rat 

position. Because the velocity features are not related to the geometrical features we can extract them in the 

same order (prior to the position-estimator layer) with geometrical features, but independently. Like before 
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this extra information which being passed to the output layer, improves the decoding accuracy in predicting 

the rat position if our assumption and proposed hierarchy is correct. 

 

 

 (a)  (b)  

Figure 3:  The propsed LSTM network topologies. a. The 2nd LSTM network topology. Similar 

structure to the 1st topology for position estimator with addition of the geometry-estimator layer 

that adds information about geometry of the environment as an input to the output layer. Green 

boxes imaginary separate the layers and visualization of the layers output. The output of geometry-

estimator layer shows that the area that the rat is at the current time step , area-1 (left arm of the 

maze identified by red color). d. The 3rd LSTM network topology. In this topology, the movement 

velocity (red arrow) is extracted directly from spiking activity and passed to the position-estimator 

layer along with geometry information.  

2.2.3 Cost function and training constraints 

In neuroscience experiments that involve studying a rat movement in a maze, the rat spends a significant 

amount of time on places which it gets rewards or needs a turnaround; however, the spiking activity 

observed during these periods might not solely represent information of the rat position. So, the rat 

occupation over time in the maze is non-uniform and this needs to be reflected back to the LSTM model 

training. Wihtout this consideration, the LSTM or any other statistical decoder will favor the decoding result 

toward those points that the rat spends most of its times. This looks an unbalanced learning problem for 

position decoding, and it should be compensated in the training step. There are multiple solutions to address 

this, first including a non-uniform sampling over time. Second, defining the cost function as a function of 

velocity or other information which compensates the non-uniform occupancy. We can also address the 

unbalanced occupancy problem by adding a weight to the learning mechanism. We define the training 
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objective function by a weighted Mean Squared Error (MSE) where the weighted is a function of the 

velocity. The weighted MSE is define by 

 Weighted _𝑀𝑆𝐸 =
1

𝑁
∑𝑁

𝑘=1 ((𝑥𝑘 − 𝑥𝑘)2 + (�̂�𝑘 − 𝑦𝑘)2) ∗ Ck;    Ck = √(𝑉𝑥𝑘
2 + 𝑉𝑦𝑘

2 ) (11) 

  where 𝑁 is the total number of samples in a training batch, (𝑥𝑘 , 𝑦𝑘) is the rat position at the time interval 

k, and (𝑥𝑘 , �̂�𝑘) is the estimated rat position. (𝑉𝑥𝑘
, 𝑉𝑦𝑘

) is the velocity of the rat at the time-step 𝑘, where the 

weight is defined by the amplitude of the velocity. We use this cost function to train the position-estimator 

layer. This weighted cost function debilitates effect of unbalanced data from the regions that rat spends 

more time in and helps to smooth effects of biased dataset. Regarding to other layers in the LSTM 

topologies, the velocity-estimator layer train by MSE cost function because it solves a regression problem. 

The geometry-estimator layer which extracts probability of the rat appearance in a area of the maze, train 

by a cross-entropy cost function which is a well-known cost function for a multinomial classification [45]. 

In the next section, we use the training algorithm to update each of propose models paramaters (numerical 

exact solution, approximate filter solution, and three LSTM network topologies) for decoding a rat’s 

movement trajectory in 2-D spaces.  

 

3 Application of SSPP and LSTM approaches in spiking activity of hippocampus place cells ensemble  

In this section, we start with describing the experiment  and the neural data recorded from a rat hippocampus 

while moving in a W-maze. We then discuss different metrics to assess accuracy of different solutions. 

Finally, we configure the LSTM and SSPP models introduced in previous sections to estimate the rat 

movement trajectory from the cell ensemble spiking activity properly.   

3.1 Data Description 

The neural data were recorded from 62 place cells in the CA1 and CA2 regions of the hippocampus brain 

area of a Long-Evans rat, aged approximately 6 months. The rat has been trained to traverse between the 

home box and the outer arms to receive a liquid reward (condensed milk) at the reward locations. Figure 4 

shows the maze structure and the rat's movement trajectory in 2-D spaces, where the rat position at each 

time step is represented by (𝑥, 𝑦) coordinates. Spiking activity of these 62 units were detected offline by 

choosing events that their peak-to-peak amplitudes were above a threshold of 80uV in at least one of the 

tetrode channels [46]. In the experiment process, the actual rat’s position was measured by a video tracking 

software which was used as the ground truth for the position. We used a 15 minutes experiment session, 

sampled with a time resolution of 33 milliseconds, to train and then evaluate the models performance. We 

divide the data to training and test datasets. We used 85% of the data, which corresponds to 23209 data 

points to train the LSTM networks and SSPP models. The remaining15% of the data, corresponding to 4095 

data points, were used to test the trained models estimation result. 
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(a) (b) 

Figure 4: The maze structure and the rat's movement trajectory. a. Structure of the experiment, W-

maze. The rat moves from the center arm to the left and right arms to get food rewards. b. Movement 

trajectory in X and Y directions during the experiment. 

 

3.2 Performance Metrics  

 To analyze the accuracy of the approaches, we calculated both the mean of L1-norm, called least absolute 

errors (LAE), and the root mean square error (rMSE) [47] between the rat actual position and the estimated 

position. LAE and rMSE performance metrics are defined by: 

 

𝐿𝐴𝐸 =
1

𝑁
∑𝑁

𝑘=1 |𝑥𝑘 − 𝑥𝑘| + |�̂�𝑘 − 𝑦𝑘| (12) 

𝑟𝑀𝑆𝐸 = √
1

𝑁
∑𝑁

𝑘=1 (𝑥𝑘 − 𝑥𝑘)2 + (�̂�𝑘 − 𝑦𝑘)2 (13) 

where 𝑁 is the total number of timesteps, (𝑥𝑘 , 𝑦𝑘) is the rat actual position at timestep k, and (𝑥𝑘 , �̂�𝑘) is the 

decoder estimation of the rat position. There are unique properties of these metrics which make them good 

choices as performance metrics for this problem; lower rMSE and LAE show a more accurate decoding 

result. But, rMSE is more sensitive to larger error (larger than one). The rMSE measure effects the error by 

powering it by two. In other hand, in LAE measure, error contributes equally in the overall decoding 

performance. For the SSPP models, we can also build other metrics based on the decoder posterior 

distribution, like 95% HPD coverage area which is the 95% highest probability density region of the 

computed posterior distribution of the rat’s position [42]. 

3.3 Parameters setting in DNN and SSPP 

In this section, we setup our proposed LSTM and SSPP models to fit to the data. For the SSPP models, we 

assume the rat movement follows a random walk in 2-D spaces, we set 𝐴𝑘 = 𝑑𝑖𝑎𝑔[1,1] and 𝐵𝑘 = [0,0]𝑇 

defined in equation(5), where 𝑄 (equation (5)) is a diagonal covariance matrix defined by 
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𝑄 = [
6 0
0 6

] (14) 

Where its terms extracted from the rat movemnts statistics during the training session. For the Numerical 

exact solution, The spatial resolution in both the 𝑥 and 𝑦 dimensions is 2 cm; given the maze dimension, 

we have 50 samples in the 𝑥 direction and 58 samples in the 𝑦 direction. We draw 4000 samples at each 

spike time to calculate the likelihood function and rat position posterior estimation using Riemann sum 

integral method [48]. For the approximate filter solution, discussed in Appendix A, we set 𝛼𝑚 = 0.001 and 

𝛼𝑑 = 0.001 to calculate likelihood function and the rat posterior.  

In this experiment, the rat’s position is constrained to the maze area. So, the rat’s movement is bounded by 

the maze, and the formuation for SSPP models (section 2.1), which defined for the rat movement inside the 

maze, may be misspecified. To address this issue, we add a penalty term to the likelihood function of SSPP 

models that accounts for the toplogy of the maze [23]. The revised prediction process is expressed as  

�̂�(𝑋𝑘; 𝑁𝑘)  ~ 𝐿(𝑋𝑘; 𝑁𝑘) × 𝑔(𝑋𝑘)  (15) 

where 𝑔(𝑥𝑘) is close to zero for x-y coordinates outside the maze area and one otherwise. 

In LSTM topologies, we use weighted MSE on (equation (18)) as the position-estimator layer which 

consists of four LSTM nodes (cost function 𝐿1).  We use Traditional MSE cost function for the velocity-

estimator layer which is consist of two LSTM nodes (cost function 𝐿2). As we discussed (section 2.2.1), 

we should segment the experiment area which the rat moves. Figure 5 shows suggested segmentation 

approach for encoding the experiment area for training the geometry-estimator layer. A further explanantion 

of the specific segementaityon of the regions can be found in the Appendix B. This layer consists of four 

LSTM nodes for extracting probability of all four segements and uses cross-entropy cost function (cost 

function 𝐿3)[45].  

 

 

Figure 5: Segmentation mechanism for the maze structure. Three arms 

plus outside area encoded as Area1 to Area4. The areas between two 

adjacent arms assigned randomly to one of these near areas.  

To perform the learning process, we try to minimize total cost function defined by 𝐿 = 𝐿1 + 𝐿2 + 𝐿3 using 

RmsProp optimizer [49], with a learning rate of 0.001, a decay factor of 1𝑒−6 for the first 100 iterations, 
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and a learning rate of 0.0001 for the 100 next iterations, which is the same for all topologies in training 

section. 

  

 

4 Results 

We analyzed the decoding performance of the LSTM and SSPP models in decoding 2-D movement 

trajectory of the rat using place cells’ spiking activitiy. We examined the metrics described in section 3.2, 

and the computational cost (i.e. computational time) of the decoer models. Table 2 shows the performance 

of the SSPP and LSTM models. The performance result of the approximate filter solution shows that even 

though the accuracy drops only about 15%, 25%, and 2%, in LAE, rMSE, and 95% HPD measures, 

respectively, as the Table 2 shows the computation time in approximate filter solution is much less than 

the Numerical exact solution (the approximate filter solution is about 2780 times faster than the Numerical 

exact solution).  Beside that, the performance of different LSTM network topologies show that our a 

assumption in utilizing higher order elements of movement including movement speed, and direction of 

movemet in the hierarchical LSTM networks, improves accuracy of the network in decoding 2-D position 

from spiking activity. 

 

The 3rd LSTM network topology has the best accuracy among all three LSTM network topologies in 

decoding the rat position. Although its accuracy drops less than 13% in LAE metric compared to the 

Numerical exact model, but the 3rd LSTM network topology is 3600 times faster than the exact solution. 

In summary, the 3rd LSTM network topology and approximate filter solution are the best among the models 

based on computational time and accuracy. Figure 6 shows the mean of estimated movement trajectory for 

the approximate Filter solution, the 3rd LSTM network topology, and the Numerical exact solution. 

We already know SSPP models encode the place cell’s area of activity (receptive field) of indivudal neurons 

[50, 51], which characterize the realatinship btween a cell firing activity and positionis. In the next section, 

we  study how information  about receptive field is being captured in different LSTM models. 

Table 2: Performance and computational cost result. 

Approaches 𝐿𝐴𝐸 𝑟𝑀𝑆𝐸 95% HPD Comp. 

Time/timestep 

Total of Train 

Time  

Numerical Exact 

Solution 

6.8 10.3 83.2% 8.8 s 10-min 

Approximate 

Filter Solution 

7.83 12.9 81.54% 3.2 ms 10-min 

1st-LSTM Top. 31.7 29.8 –  0.5 ms 30-min 

2nd-LSTM Top. 12.1 17.6 –  1.7 ms 90-min 

3rd-LSTM Top. 8.7 8.86 – 2.44 ms 120-min 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.08.10.244368doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.244368


14 

 

4.1 Analysis Result of the Encoding Mechanisms  

Each place cell has a distinct receptive field; the receptive filed of a place cell corresponds to areas in the 

space where the cell firing activity grows significantly from its normal firing rate. Place cells' receptive 

fields might have different shapes and also cover different areas of the maze; generally, the receptive field 

of a place cell might be multi-modal and change over time as well. Figure 7 shows the spiking activity of 

different cells as the rat traverse the maze. Receptive field of these samples cells are shown in Figure 7. In 

this analysis, we choose an input channel of the decoder model which is assigned to a specific place cell. 

Then we replace its spiking activity with a periodic spiking activity with a firing rate close to its natural 

peak firing rate. The period of the spiking patterns has been chosen carefully based on the spiking rate of 

the place cell; note that other place cells have their recorded spiking activity. With this set up, we then 

decode the rat movement trajectory based on new data. 

The hypothesis is that if the decoder model is capable of capturing information of receptive field for each 

place cell, the decoder should decode a trajectory that converges to the corresponding cell receptive field 

area; no matter where the decoder starts in the maze. In the other hand, if the corresponding place cell does 

not have a distinct receptive field, the decoded trajectories should stand near starting point or move to the 

different points over the maze. 

(a) (b) 

(c) 

Figure 6:  a. Mean of estimated trajectory in  approximate filter solution. b. Mean of estimated 

trajectory in the 3rd LSTM network topology. c. Mean of estimated trajectory in Numerical exact 

solution. 
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For place cells with a distinct receptive field. We replace a cell spiking activity with its natural peak firing 

rate pattern individually; then we run the decoder from three different initial points over the maze area. As  

the result show (fourth and fifth rows of Figure 8) the movement trajectories given by the 3rd topology of 

the LSTM network and the approximate filter solution converged to these receptive field areas. The result 

indicate these models captured the information of place cells’ receptive field with a distinct area. However, 

the movement trajectories given by the 1st and 2nd topology of the LSTM networks did not converge to the 

receptive field areas (second and third rows of Figure 8). 

For place cells without a distinct receptive field; the result show (fourth and fifth rows of the Figure 8) the 

3rd LSTM network topology and the approximate filter solution decoded movement trajectory neither 

moves nor converges to a specific area in the maze, it means the 3rd LSTM model and the approximate filter 

solution captured the information of place cells’ receptive fields without any distinctive area too. In other 

hand, the 1st and 2nd LSTM network topologies did not decode movement trajectories which contradict the 

hypothesis (second and third rows of Figure 8). In other word, the 1st and 2nd LSTM network topologies 

neither captured the information of place cells with a distinctive receptive field area nor the information of 

place cells without any distinctive receptive field area.  

The results show the approximate filter solution and the 3rd LSTM network topology have similar behavior 

with spiking activity data comapare to the exact solution which is a gold strandard for this problem even 

though they are built using completely different modeling structures. 

(a) (b) 

(c) (d) 

Figure 7:  The spiking patterns of two different groups of place cells with a localized receptive field and 

putative place cells with a less distinct receptive field. a-b. place cells with a distinct receptive field. c- 

d. place cells without a localized receptive field. 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

(m) (n) (o) (p) 

(q) (r) (s) (t) 

Figure 8: a-d. Spiking activity density over the maze surface for place cells 21, 36, 19, and 21, 

respectively. e-h. Decoding result of the 1st LSTM network topology by considering a periodic stimulus 

replaced the place cells spiking activity. i-l.  Decoding result of the 2nd LSTM network topology by 

considering a periodic stimulus replaced the place cells spiking activity. m-p.  Decoding result of the 3rd 

LSTM network topology by considering a periodic stimulus replaced the place cells spiking activity. q-

t. Decoding result of the approximate filter solution by considering a periodic stimulus replaced the place 

cells spiking activity. 
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 5  Discussion 

In this research we porposed LSTM and SSPP models to decode a rat movement in 2-D spaces from its 

spiking activites. We studied two different metrics - 𝐿𝐴𝐸, 𝑀𝑆𝐸 and computational efficiency - to compare 

the performance of DNN and SSPP models in 2-D spaces decoding problem. The result show that the 

approximate Filter solution and 3rd LSTM network topology significantly reduce computational time of the 

decoding step; compared to the Numerical exact solution. These models are more than 2000 times faster 

than the Numerical exact solution with negligible decrease in prediction accuracy accuracy. To design these 

models we faced multiple challenges which our methods to address the discussed in bellow. 

LSTM networks are flexible and powerful tools to extract information from complex and multi-dimensional 

time-series data including the neural activity. The idea of using LSTM network topologies to characterize 

neural activity has a great promise in the neural data analysis and in particular neural decoding problems. 

However designing a proper LSTM network topology is challenging. The first challenge was interperatation 

ability of the LSTM network. To address that, in the 3rd LSTM network toplogy we extracted higher order 

information of the rat movement (like velocity, movement direction, and geometry of the maze structure) 

in a specific hierical structure and use them to decode the rat position in the maze. By doing this we 

increased the interperatation ability and accuracy of LSTM network topologies. This leaded to a LSTM 

network topology with better performance and generalizability in the neural decoding task. Our approach 

in developing this topology may helps other researchers to build their specific LSTM network topologies 

for other neuroscience data. 

The other challenge was  identifying the size of the LSTM network topology, which indicates the number 

of free parameters. As the size of the LSTM network increases, the training data must also be increased to 

prevent overfitting problem. In this research by using right information (geometrical features and velocity) 

and embeding them in right hierarical structure, we could maintained the number of the LSTM topologies 

parameters in order of 103. These topologies are much smaller than other networks previously used for 

neural decoding problems [19], which are designed blindly and without considering the characteristics of 

the problem that they designed the LSTM network for it. So, there is no need for a large training dataset to 

properly train these models. 

The other challenge was overfitting issue, to address that we used to reduce the effect of overfitting in 

traning the LSTM topologies is technique [52]. In each layer of our LSTM network topologies we set the 

drop out ratio to 0.2, meaning that 20 percent of parameters in each layer are randomly chosen to be ignored 

in each iteration of training. This technique improves the LSTM network topologies generalizability and 

reduce effect of overfitting on the training data [53]. 

We addressed a couple of challenges in designing a proper LSTM network topology fro neural decoding 

problems, but there are still doubts about how the trained networks perform with unseen place cells’ 

receptive filed information. The 3rd LSTM network topology can extract features of each place cells’ 

receptive fields , but we don’t know if it combines them, or extracts collective behavioral features of place 

cells’ receptive fields to estimate the rat position. A promising solution to address this is computing a 

posterior for the network parameters. We can use the  Bayesian approach combined with the learning 

process to calculate this posterior for the network parameters, which is our concern for future work [54]. 

Our analysis shows that the approximate filter solution is a proper approximation for the Numerical excat 

solution in this particular neuroscience experiment, but to design it, we also faced a couple of challenges. 

The first challenge was computational efficiency, by selecting small values for 𝛼𝑑 and 𝛼𝑚 parameters, even 
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though we can get better accuracy in decoding the movement trajectory, this led to increase in the size of 

MoG which process in each time-step and this means increase in computational time. So, it is a tradeoff 

between gainig accuracy and computational effieciency. We used the parameter set based on its effect on 

accuracy and computational effiecieny studied in [35]. A better solution for selecting 𝛼𝑑 and 𝛼𝑚 parameters 

is a adapting solution. Means updating values for these parameters in each time step based on our 

observation of spiking activity and the postieror frequently, which our concern for our future work.  

The second challenge was, the primary hypothesis in this approach is that we modeled CIF of each neuron 

with a MoG, which means by considering large enough MoG we can model any CIF of neourons, but  due 

to the size of MoG, it might debilitate computationa the efficiency of the approximate filter solution. So, it 

is crucial to select the right MoG to modle each neuron’s CIF. Here we choosed a MoG (set of 30 gaussian 

models) to cover the hole are of the maze which enables the model to cover all areas of the maze for 

estimating each neuron’s CIF and maintain it size small enough to avoid computationl complexity. Finally, 

as we discussed in the application section to compensate misspecification of the rat movement outside the 

maze structure, we added a penalty term to the likelihood function of SSPP models that accounts for the 

maze toplogy. This penalty term push the likelihood towards the area inside the maze and avoid any 

misspecified position autside the maze area.s 

 

 

 

6 Conclusions 

In a context where a comprehensive study which systematically assess attributes of DNN and SSPP 

approaches on a common neuroscience data analysis problem is lacking we have presented a rational 

approach to design neural decoder models. We compared the methods in common neuroscience problem. 

for the DNN models, we presented an effective way in embedding higher order information like velocity 

and maze structure in the LSTM networks for gaining accuracy and generalizability for a class of point-

process filter problems. In the SSPP approach, we developed an approximate filter solution for this class of 

filter problems. We used these solutions in decoding 2-D position from spiking activities of a population of 

neurons in the hippocampus area of a rat, when it’s navigating through a W-shaped maze. The approximate 

filter solution and LSTM networks are more than 2000 times faster than the Numerical exact method with 

insignificant decrease in position decoding accuracy. We also investigated both modeling approaches 

mechanisms in encoding place cells' receptive field information. As the result shows, the approximate filter 

solution and the 3rd LSTM network topology can properly capture the activities of place cell and encode 

each receptive field, even though they have completely different natures and modeling structures. 
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 Appendix A : Dropping and Merging Procedure of a GMM 

In the dropping process, we take one of the 𝑃 components out and rescale other mixtures’ weight to keep 

their sum equal to one. We then check the distance between these mixture models 𝑄 and 𝑃 to find which 

mixture model might be dropped [35]. We repeat this procedure until a stopping criterion is met. The 

dropping process is as follows:     

Table 1. Dropping Process Algorithm 

1. Set stopping criteria 𝜶𝒅 

2. Set 𝒑𝒅 = 𝟎 

3. Set 𝑸(𝑿) = 𝑷(𝑿) – components of 𝑸 are represented by (𝝅𝒌
∗ , 𝝁𝒌

∗ , 𝚺𝒌
∗ )   𝒌 = 𝟏, ⋯ , 𝑲∗ 

4. Define 𝑸−𝒛(𝑿) = ∑
𝝅𝒔

∗

𝟏−𝝅𝒛
∗  𝑵(𝑿; 𝝁𝒔

∗, 𝚺𝒔
∗)𝑲∗

𝒔=𝟏\𝒛   

5. Find 𝒌𝟎 such that 𝒌𝟎 = 𝐚𝐫𝐠 𝐦𝐢𝐧
𝒔∈{𝟏⋯𝑲∗} ⋂  (𝒑𝒅+𝝅𝒔

∗)<𝜶𝒅

𝑩(𝑷||𝑸−𝒔)  

6. if 𝒌𝟎 ≠ ∅ → 𝒑𝒅 = 𝒑𝒅 + 𝝅𝒌𝟎

∗ , 𝑸(𝑿) = 𝑸−𝒌𝟎
(𝑿) and jump to 4 

7. if 𝒌𝟎 == ∅, Stop 

 

In the merging process, we search for a pair of mixture components which can merged while the growth 

of 𝐵(𝑃 ∥ 𝑄𝑖∘𝑗) is minimal – 𝑄𝑖∘𝑗 represent the new mixture model with its 𝑖 and 𝑗 mixture components 

being merged. The merging process is run sequentially; thus, per each iteration, number of 𝑄 drops by 

one. The merging process is repeated until a stopping criterion is met. The merging process is as follows: 

    

Table 2. Merging Process Algorithm 
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1. Set stopping criteria 𝜶𝒎 

2. Set 𝑸(𝑿) = 𝑷(𝑿) –components of 𝑸 are represented by (𝝅𝒌
∗ , 𝝁𝒌

∗ , 𝚺𝒌
∗ )   𝒌 = 𝟏, ⋯ , 𝑲∗ 

3. Define 𝑸𝒌𝟏∘𝒌𝟐
(𝑿; 𝜶) as  

𝑸𝒌𝟏∘𝒌𝟐
(𝑿; 𝜶) = (𝟏 − 𝜶 (𝝅𝒌𝟏

∗ + 𝝅𝒌𝟐

∗ )) ∑
𝝅𝒌

∗

𝟏 − 𝝅𝒌𝟏

∗ − 𝝅𝒌𝟐

∗

𝑲∗

𝒌=𝟏\{𝒌𝟏,𝒌𝟐}
𝑵(𝑿; 𝝁𝒌

∗ , 𝚺𝒌
∗ )

+ 𝜶(𝝅𝒌𝟏

∗ + 𝝅𝒌𝟐

∗ )𝑵(𝑿; 𝝁𝒌𝟏∘𝒌𝟐
, 𝚺𝒌𝟏∘𝒌𝟐

) 

𝝁𝒌𝟏∘𝒌𝟐
= 𝝁𝒌𝟏

∗
𝝅𝒌𝟏

∗

𝝅𝒌𝟏

∗ + 𝝅𝒌𝟐

∗ + 𝝁𝒌𝟐

∗
𝝅𝒌𝟐

∗

𝝅𝒌𝟏

∗ + 𝝅𝒌𝟐

∗  

𝚺𝒌𝟏∘𝒌𝟐
=

𝝅𝒌𝟏

∗

𝝅𝒌𝟏

∗ + 𝝅𝒌𝟐

∗ 𝚺𝒌𝟏

∗ +
𝝅𝒌𝟐

∗

𝝅𝒌𝟏

∗ + 𝝅𝒌𝟐

∗ 𝚺𝒌𝟐

∗ +
𝝅𝒌𝟏

∗  𝝅𝒌𝟐

∗

(𝝅𝒌𝟏

∗ + 𝝅𝒌𝟐

∗ )
𝟐 (𝝁𝒌𝟏

∗   − 𝝁𝒌𝟐

∗ )(𝝁𝒌𝟏

∗   − 𝝁𝒌𝟐

∗ )
′
 

4. For each (𝒌𝟏, 𝒌𝟐) in the set find  𝜶𝒌𝟏,𝒌𝟐
= 𝐚𝐫𝐠 𝐦𝐢𝐧

𝟎<𝜶<𝟏
𝑩(𝑷 ∥ 𝑸𝒌𝟏°𝒌𝟐

(𝑿, 𝜶)) and set 𝜷𝒌𝟏,𝒌𝟐
= 𝑩(𝑷 ∥

𝑸𝒌𝟏°𝒌𝟐
(𝑿, 𝜶𝒌𝟏,𝒌𝟐

)) 

5. Find (𝒌𝟏
∗ , 𝒌𝟐

∗ ) in the set such that 𝜶𝒌𝟏
∗ ,𝒌𝟐

∗ ≥ 𝟏 − 𝜶𝒎   ∩    𝜷𝒌𝟏
∗ ,𝒌𝟐

∗ ≤ 𝜷𝒌𝟏,𝒌𝟐
    ∀𝒌𝟏, 𝒌𝟐 

6. if (𝒌𝟏
∗ , 𝒌𝟐

∗ ) ≠ ∅ → 𝑸(𝑿) = 𝑸𝒌𝟏
∗ °𝒌𝟐

∗ (𝑿; 𝜶𝒌𝟏
∗ ,𝒌𝟐

∗ ), and jump to 4 

7. if (𝒌𝟏
∗ , 𝒌𝟐

∗ ) == ∅, Stop 
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