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 2	

Abstract 11	

This paper introduces AlphaSimR, an R package for stochastic simulations of 12	

plant and animal breeding programs. AlphaSimR is a highly flexible software package 13	

able to simulate a wide range of plant and animal breeding programs for diploid and 14	

autopolyploid species. AlphaSimR is ideal for testing the overall strategy and detailed 15	

design of breeding programs. AlphaSimR utilizes a scripting approach to building 16	

simulations that is particularly well suited for modeling highly complex breeding 17	

programs, such as commercial breeding programs. The primary benefit of this scripting 18	

approach is that it frees users from preset breeding program designs and allows them to 19	

model nearly any breeding program design. This paper lists the main features of 20	

AlphaSimR and provides a brief example simulation to show how to use the software. 21	

 22	
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.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.08.10.245167doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.245167
http://creativecommons.org/licenses/by/4.0/


 3	

Introduction 24	

This paper introduces AlphaSimR, an R package for stochastic simulations of 25	

plant and animal breeding programs. Stochastic simulation is a powerful tool for design 26	

and optimization of breeding programs, because it provides a fast, inexpensive method 27	

for testing alternative breeding program designs. Simulations have been used to 28	

improve both plant breeding programs (e.g.; Lin et al. 2016; Gaynor et al. 2017; 29	

Gorjanc et al. 2018) and animal breeding programs (e.g.; Hayes and Goddard 2003; 30	

Jenko et al. 2015; Johnsson et al. 2019) as well as to address theoretical concepts in 31	

quantitative genetics and breeding (e.g., Gorjanc et al. 2015). AlphaSimR has been 32	

specifically designed to make simulations more common by providing an easy-to-use 33	

and highly flexible software package able to simulate a wide range of plant and animal 34	

breeding programs. 35	

Stochastic simulations have rarely, if ever, been used to improve breeding 36	

programs for many agriculturally important species. This is likely due to the difficultly 37	

in setting up and running these simulations. This difficulty is in no small part due to the 38	

need for a person with thorough knowledge of breeding programs and computer 39	

programming. This person must possess a thorough understanding of the breeding 40	

programs they wish to simulate so that they can construct an informative simulation. 41	

They must also possess the programming skills needed to develop, run, and evaluate 42	

the simulations. The amount of programming skills this person needs to possess is 43	

considerable when there are not existing software programs for modeling the specific 44	

breeding program of interest. To address this issue, new software is needed that can 45	

lower the programming burden and thereby increase the ease of running simulations. 46	
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 4	

AlphaSimR has been specifically designed to make running stochastic 47	

simulations of whole breeding programs easier. To accomplish this goal, AlphaSimR 48	

provides the ability to run simulations both interactively or via scripts within the R 49	

software environment (R Core Team 2019). More specifically, AlphaSimR provides 50	

users with a range of R functions that correspond to common operations in a breeding 51	

program, such as crossing and selection. This allows users to apply functions 52	

representing breeding operations directly to objects that represent populations of 53	

animals or plants. The benefit of this approach is that it makes writing simulation code 54	

more intuitive, by allowing users to directly translate a description of a breeding 55	

program into an R script. It also provides a natural path for learning how to use the 56	

software by allowing users to start with simulations of simple breeding programs and 57	

gradually progress to more complicated breeding programs. With the respect to 58	

learning, simulations are also an invaluable tool to teach students and new professionals 59	

about theoretical and practical breeding concepts. 60	

AlphaSimR is suitable for simulating a wide range of breeding programs and 61	

species. The software models the genomes of both diploid and autopolyploid species. 62	

The scripting approach employed by AlphaSimR allows for modeling nearly any 63	

breeding program structure, without limiting users to preset designs. AlphaSimR has 64	

been heavily optimized for large scale simulations (>1,000,000 individuals), because it 65	

is specifically designed for whole breeding program simulations. 66	

  67	
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 5	

Methods 68	

AlphaSimR is a large package with an extensive list of features, so we will only 69	

describe its main features here. For the sake of brevity, these descriptions are designed 70	

to provide an overview of AlphaSimR’s functionality and not a detailed accounting of 71	

its implementation. First, AlphaSimR’s approach to stochastic simulations will be 72	

given to provide a high-level overview of how the software works. Then, we will 73	

describe a few key elements of this approach before concluding with an overview of 74	

AlphaSimR’s implementation. 75	

Simulation approach 76	

AlphaSimR uses a simulation approach that combines the coalescent and gene 77	

drop methods (Hickey and Gorjanc 2012). The coalescent method is used for 78	

backwards-in-time simulations. It is used in AlphaSimR to generate whole-79	

chromosome founder haplotypes. The gene drop method is used for forwards-in-time 80	

simulations. It is used in AlphaSimR to create new haplotypes from the original founder 81	

haplotypes. 82	

Founder haplotypes 83	

The preferred method for creating founder haplotypes in AlphaSimR is to use 84	

the Markovian Coalescent Simulator (MaCS; Chen et al. 2009). MaCS is included in 85	

AlphaSimR and used to generate founder haplotypes according to either a predefined 86	

parameter set for some species, or user supplied parameters. Alternatively, users can 87	

create founder haplotypes by importing external data into AlphaSimR or using built-in 88	

functions for random sampling. The option to import external data allows users to use 89	

other coalescent simulators or real genotypic data, provided the linkage phase and 90	

genetic map are known. 91	
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 6	

Genetic recombination 92	

AlphaSimR creates new haplotypes by modeling genetic recombination during 93	

meiosis. A genetic map is used to model the distribution of genetic recombination. 94	

AlphaSimR allows for sex-specific genetic maps to represent different recombination 95	

rates between sexes. The specifics for modeling meiosis in AlphaSimR depend on 96	

whether the species is a diploid or an autopolyploid.  97	

For diploid species, AlphaSimR simulates meiosis and genetic recombination 98	

according to the gamma model (McPeek and Speed 1995). The gamma model 99	

accommodates crossover interference and has been shown to fit real data (e.g. Broman 100	

and Weber 2000). The magnitude of crossover interference is controlled by a single 101	

parameter that can be adjusted by the user. 102	

For autopolyploid species, AlphaSimR simulates meiosis using a combination 103	

of bivalent and quadrivalent chromosome pairing. Bivalent or quadrivalent 104	

homologous pairs are chosen at random according to a parameter for the probability of 105	

quadrivalent pairing, which can be tuned by the user. Bivalent pairs are resolved using 106	

the gamma model for diploids. Quadrivalent pairs are resolved according to the model 107	

for “cross-type” configurations used in the PedigreeSim software (Voorrips and 108	

Maliepaard 2012). This model involves sampling chiasmata positions from a gamma 109	

distribution and resolving crossovers by sampling centromeres and working outwards 110	

towards the telomeres. This technique models unique features of meiosis in 111	

autopolyploids, such as recombinant chromosomes composed of three parental 112	

chromosomes and double reductions (Bourke et al. 2015). 113	
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 7	

Traits 114	

Traits in AlphaSimR are classified according to the biological effects they 115	

model. The biological effects modeled in AlphaSimR are: Additive, Dominance, 116	

Epistatic, and Genotype-by-environment. The first letter of each effect is used to derive 117	

a name for each trait type under the ADEG framework. For example, a trait with only 118	

additive effects is called an A trait. A trait with additive and dominance effects is called 119	

an AD trait. AlphaSimR currently supports the following trait types: A, AD, AE, AG, 120	

ADE, ADG, AEG, and ADEG. 121	

The modeling of biological effects is based on classic quantitative genetics 122	

models. For example, the additive effects are equivalent to additive effects described in 123	

a quantitative genetics textbook (e.g. Falconer and Mackay 1996). The modeling of the 124	

dominance effects allows for both directional dominance and a variable degree of 125	

dominance, ranging from partial dominance to overdominance (Gaynor et al. 2018). 126	

For autopolyploid species, the modeling of dominance represents digenic dominance. 127	

Epistatic effects are modeled as additive-by-additive epistatic effects between discrete 128	

pairs of loci. Genotype-by-environment effects are modeled as additive effects whose 129	

value is a function of a single environmental covariate. 130	

AlphaSimR can simulate multiple traits using any combination of trait types. 131	

Each trait is simulated according to a user-defined number of QTL, which can differ 132	

between traits. Correlated traits can be simulated, provided they are pleiotropic and 133	

belong to the same trait type. 134	

AlphaSimR uses a method for sampling QTL effects that is, to the authors’ 135	

knowledge, unique among stochastic simulation software. Users of AlphaSimR are 136	

asked to specify a desired mean and variance, either total or additive, for each trait. The 137	
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 8	

software then samples QTL effects and scales the values for those effects to achieve 138	

precisely this mean and variance in a founder population. The benefit of AlphaSimR’s 139	

approach is that it allows users to set variables relating to the relative levels of 140	

dominance or epistasis independently of the founder population’s genetic variance. For 141	

example, a user can specify the average degree of dominance for QTL controlling a 142	

trait independently of the additive genetic variance for this trait. 143	

Variance components 144	

AlphaSimR reports additive, dominance and additive-by-additive epistatic 145	

variances for any population. This is done without assuming random mating or linkage 146	

equilibrium, so that the values are correct regardless of the population’s genetic 147	

structure. This allows users to compare simulated populations to real-world data for the 148	

sake of benchmarking simulations. AlphaSimR also offers further partitioning of 149	

genetic variance into genic variance, covariance due to departures from Hardy-150	

Weinberg equilibrium and covariance due to linkage disequilibrium, as described by 151	

Bulmer (1976). 152	

Selection 153	

A wide range of functions are available for modeling selections. These functions 154	

allow for selection on multitude of criteria, such as: phenotypes, genetic values, 155	

breeding values, or estimated breeding values. Selection can be on one trait or an index 156	

of multiple traits. Selections can also be modeled as selection between or within 157	

families or over an entire population. AlphaSimR also supports user supplied 158	

selections, allowing users to implement their own selection methods, for example 159	

optimum contribution selection as in Gorjanc et al. (2018) 160	
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 9	

Mating and propagation schemes 161	

A wide range of functions are available in AlphaSimR for modeling common 162	

mating and propagation schemes. These schemes include: biparental crossing, selfing, 163	

clonal propagation, generation of doubled haploid lines, and propagation in open 164	

pollinating populations with variable degrees of selfing. AlphaSimR also supports user 165	

supplied mating plans. 166	

Genomic prediction 167	

Modeling genomic prediction in breeding programs is one of the main use cases 168	

for AlphaSimR. AlphaSimR offers several built-in functions for fitting common 169	

genomic prediction models. The built-in functions use mixed model solvers based on 170	

the following R packages: rrBLUP (Endelman 2011), EMMREML (Akdemir and 171	

Godfrey 2015) and Sommer (Covarrubias-Pazaran 2016). Each solver has been 172	

optimized for performance within AlphaSimR and written in C++ using the R packages 173	

Rcpp (Eddelbuettel and Francois 2011) and RcppArmadillo (Eddelbuettel and 174	

Sanderson 2014). Users can also make use of other R packages or external applications 175	

for modeling genomic prediction. This is done by exporting data from an AlphaSimR 176	

simulation into another R function or external program for genomic predictions, 177	

generating predictions, and importing the predictions back into AlphaSimR objects. 178	

Implementation 179	

Much of AlphaSimR’s code has been written in C++ to improve performance. 180	

For example, this has been used to implement bitwise storage of genotype data to 181	

reduce memory usage and enable multithreading for increased speed. AlphaSimR also 182	

improves performance by limiting data storage and calculations, such as variance 183	

component calculations, to only those expressly requested by the user. This approach 184	
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 10	

differs from other stochastic simulation programs, including the original AlphaDrop 185	

(Hickey and Gorjanc 2012) and AlphaSim (Faux et al. 2016), which typically perform 186	

all calculations and save all data. 187	

  188	
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 11	

Results and Discussion 189	

Example Simulation 190	

This section will demonstrate AlphaSimR using a simulation of a single 191	

breeding cycle for a generic wheat breeding program. The code needed to run this 192	

simulation is presented below after a brief description of the breeding program. 193	

Figure 1 shows a schematic representing the stages of the generic wheat 194	

breeding program with a seven-year breeding cycle. In the first year, 200 bi-parental 195	

populations are produced by crossing and production of doubled haploid (DH) lines 196	

from those bi-parental populations begins. In the second year, the production of DH 197	

lines is completed in. In the third year, the DH lines are visually evaluated in a head-198	

row (HDRW) nursery. In the remaining years, lines are selected based on performance 199	

in the previous year and evaluated in a yield trial. The yield trials are conducted over 200	

the course of three years before selecting a variety to release. 201	

The first step is to generate founder haplotypes using MaCS. The founder 202	

haplotypes will be used to form the initial parents in the breeding program. Code for 203	

simulating the founder haplotypes for 50 inbred individuals is shown below. Each 204	

individual will have 21 chromosomes, each with 1000 segregating sites.  205	

founderPop = runMacs(nInd=50, nChr=21, segSites=1000, inbred=TRUE) 206	

The second step is to set global parameters. Below is code for setting simulation 207	

parameters to model a single trait. The trait models additive genetic effects on 1000 loci 208	

per chromosome. The trait is also modeled as having a broad-sense heritability of 0.4 209	

for evaluation in a single location. 210	
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 12	

SP = SimParam$ 211	
  new(founderPop)$ 212	
  addTraitA(1000)$ 213	
  setVarE(H2=0.4) 214	

 215	

The next step is to simulate each year of the breeding program. In the first year, 216	

200 bi-parental populations are produced by crossing the parents formed from the 217	

founder haplotypes. This code is presented below. The first line uses the founder 218	

haplotypes to form the parents and the second line makes 200 randomly chosen crosses 219	

between those parents. 220	

Parents = newPop(founderPop) 221	
F1 = randCross(Parents, 200) 222	
 223	

In the second and third years, the DH lines are produced and then they are 224	

evaluated in the HDRW nursery. The code for both these years is presented below. The 225	

first line forms 100 DH lines per F1 plant. The second line models evaluation in the 226	

HDRW nursery for the previously defined additive trait. The broad-sense heritability 227	

of this trait is reduced to 0.1 to represent visual selection. 228	

HDRW = makeDH(F1, 100) 229	
HDRW = setPheno(HDRW, varE=9) #H2=0.1 230	
 231	

In the fourth year, the best entries in the HDRW nursery are selected and 232	

evaluated in a preliminary yield trial (PYT). This is modeled with the code below. The 233	

first line models selection in the HDRW by selecting the best lines within families. The 234	

second line models evaluation of the PYT at one location. The accuracy of this 235	

evaluation is based on the broad-sense heritability defined in the simulation parameters. 236	
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 13	

PYT = selectWithinFam(HDRW, 5) 237	
PYT = setPheno(PYT) 238	
 239	

In the fifth year, the best PYT entries are selected and evaluated in an advanced 240	

yield trial (AYT). This is modeled with the code below. The first line models selection 241	

of the best PYT lines. The second line models evaluation of the AYT at four locations, 242	

which are represented as reps in the code. 243	

AYT = selectInd(PYT, 100) 244	
AYT = setPheno(AYT, reps=4) 245	
 246	

In the sixth year, the best AYT entries are selected and evaluated in an elite 247	

yield trial (EYT). This is modeled with the code below. The first line models selection 248	

of the best AYT lines. The second line models evaluation of the EYT at sixteen 249	

locations. 250	

EYT = selectInd(AYT, 10) 251	
EYT = setPheno(EYT, reps=16) 252	
 253	

In the seventh year, the best performing EYT entry is chosen for release as a 254	

variety. This is modeled with the code below. 255	

Variety = selectInd(EYT, 1) 256	
 257	

The final step is to evaluate the simulation results. This is done by producing a 258	

boxplot for the genetic values of entries in stage of the breeding program. The boxplot 259	

is shown in Figure 2. The code for generating the boxplot is given below. The first line 260	

of code extracts the genetic values for each entry and saves it in a list. The second line 261	

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.08.10.245167doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.245167
http://creativecommons.org/licenses/by/4.0/


 14	

creates the boxplot showing the distribution of genetic values for entries in each stage 262	

of the breeding program. 263	

yield = list(Parents=gv(Parents), F1=gv(F1),  264	
             HDRW=gv(HDRW), PYT=gv(PYT),  265	
             AYT=gv(AYT), EYT=gv(EYT),  266	
             Variety=gv(Variety)) 267	
boxplot(yield, ylab="Genetic Value") 268	
 269	

Concluding remarks 270	

AlphaSimR represents a considerable improvement over its predecessor in 271	

terms of ease-of-use, flexibility, and computational efficiency (AlphaSim; Faux et al. 272	

2016). It has been used in a handful of published simulations (Gorjanc et al. 2018; 273	

Muleta et al. 2019; Johnsson et al. 2019) as well as numerous unpublished simulations. 274	

The largest simulation undertaken in AlphaSimR to date involved over a hundred 275	

million individuals (unpublished), a feat that would not be feasible with original 276	

AlphaSim.  277	

The improvements made to AlphaSimR make it uniquely well suited for 278	

simulating whole breeding programs. These types of simulations serve as a valuable 279	

tool for aiding strategic decision making within breeding programs. For example, 280	

AlphaSimR can be used test the economic value of modifying an existing breeding 281	

program. This will be of particular interest to breeding programs considering 282	

implementing genomic selection or changing their current implementation. These types 283	

of simulations can also be used to optimize selection stages or compare the efficiency 284	

of mating strategies. 285	

AlphaSimR can be used for a wide range of simulations outside of whole 286	

breeding program simulations. For example, AlphaSimR can be used to test QTL 287	
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mapping strategies or marker imputation strategies. AlphaSimR is also well suited for 288	

running simulations that help with teaching quantitative genetics and breeding. This is 289	

because students can be quickly taught how to use AlphaSimR for simple simulations, 290	

and the software’s ability to report variance components, perform genomic evaluations 291	

and evaluate accuracy of evaluations against the simulated true values is highly 292	

instructive. 293	

AlphaSimR is under continuous development with new features being added on 294	

a semi-regular basis. Additional planned features include developing standard breeding 295	

program blueprints for major species and developing easy-to-use graphical user 296	

interfaces for these blueprints. These planned additions should make AlphaSimR even 297	

more user-friendly than it currently is. 298	

 299	
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Web resources 300	

AlphaSimR is publicly available on CRAN (https://CRAN.R-301	

project.org/package=AlphaSimR). Additional documentation as well as links to 302	

graphical user interfaces for specialized applications are available on the AlphaGenes 303	

website (https://alphagenes.roslin.ed.ac.uk/wp/software-2/alphasimr/). A repository of 304	

example simulation scripts for learning to use the software, modeling specific breeding 305	

programs, and learning quantitative genetics principles are available on Bitbucket 306	

(https://bitbucket.org/hickeyjohnteam/alphasimr_examples). 307	

  308	
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Figure	1.	An	overview	of	the	variety	development	cycle	for	the	example	wheat	376	
breeding	program.	A	variety	is	developed	over	the	course	of	seven	years.	The	377	
steps	in	the	development	cycle	are:	making	bi-parent	crosses,	forming	doubled	378	
haploid	(DH)	lines,	visually	select	lines	grown	in	headrows	(HDRW),	evaluate	379	
lines	in	a	preliminary	yield	trial	(PYT),	evaluate	lines	in	an	advanced	yield	trial	380	
(AYT),	evaluate	lines	in	an	elite	yield	trial	(EYT),	and	release	a	variety.	381	

	382	

	383	

Figure	2.	The	distribution	of	genetic	values	in	one	replicate	of	the	example	384	
breeding	program.	Separate	boxplots	are	given	for	each	stage	of	the	breeding	385	
program.		386	
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 388	
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